Introduction	Data	Model	Estimation	Results	Conclusion

Price Discrimination with Experience Goods: Sorting-Induced Biases and Illusive Surplus

> Ron Goettler, Karen Clay Carnegie Mellon University

Federal Reserve Bank of Boston July 25, 2006

向下 イヨト イヨト

Introduction	Data	Model	Estimation	Results	Conclusion
••••					
Overview					
What we do					

- Estimate a dynamic structural model of consumers'
 - weekly usage of a nondurable experience good
 - tariff choice from among a menu of three two-part tariffs
- Use household level data from an online grocer operating as a monopolist in a Midwest city.
- Simulate the estimated model under a variety of counterfactual pricing schemes.

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Overview					
Why we do	it				

Positive Objectives

- How much uncertainty do consumers have regarding the value of this new service?
- Do consumers have biased prior beliefs?
- How quickly is the uncertainty/bias resolved?
- Are preferences and learning rates related to demographics?

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Overview					
Overview					
Why we do	it				

Positive Objectives

- How much uncertainty do consumers have regarding the value of this new service?
- Do consumers have biased prior beliefs?
- How quickly is the uncertainty/bias resolved?
- Are preferences and learning rates related to demographics?

Normative Objectives

- How effective are two-part tariffs?
- What is the optimal menu of two-part tariffs?
- What is the effect of biases and switching costs on optimal tariffs and consumer surplus?

向下 イヨト イヨト

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Overview					
Results					

- Consumers have sorting-induced biases:
 - Those who choose tariffs with high (fixed, ex-ante) fees and low per-delivery prices tend to be overly optimistic.
 - Beliefs can be biased conditional on tariff choice, even if consumers are correct on average.
 - ► Consumers expect CS of \$118 but realize CS of -\$45.

A (B) > A (B) > A (B) >

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Overview					
Results					

Consumers have sorting-induced biases:

- Those who choose tariffs with high (fixed, ex-ante) fees and low per-delivery prices tend to be overly optimistic.
- Beliefs can be biased conditional on tariff choice, even if consumers are correct on average.
- ► Consumers expect CS of \$118 but realize CS of -\$45.
- Consumers rarely switch tariffs: high switching costs (\$176)
 - The optimal two-part tariff has a high fee and low per-delivery price, if switching costs *always* high.
 - If switching costs are occasionally low, the optimal two-part tariff has a low fee and high per-delivery price.

・ロト ・同ト ・ヨト ・ヨト

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Overview					
Results					

- Consumers have sorting-induced biases:
 - Those who choose tariffs with high (fixed, ex-ante) fees and low per-delivery prices tend to be overly optimistic.
 - Beliefs can be biased conditional on tariff choice, even if consumers are correct on average.
 - ► Consumers expect CS of \$118 but realize CS of -\$45.
- Consumers rarely switch tariffs: high switching costs (\$176)
 - The optimal two-part tariff has a high fee and low per-delivery price, if switching costs *always* high.
 - If switching costs are occasionally low, the optimal two-part tariff has a low fee and high per-delivery price.
- > The gain in profits from offering a menu of tariffs is minimal.

• • = • • = •

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Literature					

Literature Review

Estimating Learning Models

- Miller (1984)
- Eckstein, Horsky, and Raban (1988)
- Erdem and Keane (1996)
- Ackerberg (2003)
- Crawford and Shum (2005)

크

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Literature					

Literature Review

Estimating Learning Models

- ▶ Miller (1984)
- Eckstein, Horsky, and Raban (1988)
- Erdem and Keane (1996)
- Ackerberg (2003)
- Crawford and Shum (2005)

Tariff Choice

- Miravete (1996, 2002, 2003, 2004)
- Courty and Hao (2000)
- DellaVigna and Malmendier (2005)

伺 ト イヨト イヨト

Introduction	Data	Model	Estimation	Results	Conclusion
0000					
Literature					

Literature Review

Estimating Learning Models

- Miller (1984)
- Eckstein, Horsky, and Raban (1988)
- Erdem and Keane (1996)
- Ackerberg (2003)
- Crawford and Shum (2005)

Tariff Choice

- Miravete (1996, 2002, 2003, 2004)
- Courty and Hao (2000)
- DellaVigna and Malmendier (2005)

Experience Goods

- Nelson (1970)
- Bergemann and Välimäki (forthcoming)

Ordering Online

- Initially connect direct via modem, then HTML
- Must know product names—no visual cues
- Delivery next day during a two-hour window Customer must be present
- Prices are the same as in partner chain
- Learn about service via print/radio advertising, mass mailings, news media, in-store advertising by partner chain, delivery truck displays, and word-of-mouth

(日) (同) (日) (日) (日)

Introduction	Data ○●○○○○○	Model	Estimation	Results 000000000000	Conclusion ○
Data					
Tariff Choi	се				

Data

- ▶ 5310 households (HH) enrolled 9/16/97 to 1/23/99
- Each HH chooses one of three tariffs (menu is fixed)
- 3 puzzles:
 - HH could change at any time, but only change when quit
 - 79% of HH on high fee plan have usage rates below the level needed to justify this plan
 - Many HH on plans with fees never use the service

			plan	usage for	mean	never
$Plan\ \#$	F	р	shares	min cost	usage	order
Plan 1	\$5.76	\$0	.12	.67–1	.56	.12
Plan 2	\$1.14	\$6.95	.32	.23–.67	.36	.18
Plan 3	\$0	\$11.95	.56	0–.23	.20	.57

Introduction	Data ○o●oooo	Model 00000	Estimation	Results	Conclusion ○
Data					

Demographic Characteristics, by Plan

characteristic	Plan 1	Plan 2	Plan 3
share all demographics missing	27.3	33.5	66.5
share no demographics missing	8.9	5.6	2.4
share income missing	60.3	61.3	80.4
share income $>$ 90k	38.2	30.7	23.2
share income 50–90k	45.2	42.4	49.2
share income $<$ 50k	16.6	26.9	27.5
mean $\#$ adults	2.1	2.0	2.0
mean $\#$ children	1.9	1.4	1.3
mean week enrolled	24.0	23.2	21.3
share female	75.4	70.8	68.5
share married	89.5	79.4	76.1
share co-habit	3.1	5.9	5.5
share single	7.4	14.7	18.3

・ 回 と く ヨ と く ヨ と

Introduction	Data	Model	Estimation	Results	Conclusion
Data	0000000	00000	00000	0000000000000000	

Demographic Characteristics, by Plan

characteristic	Plan 1	Plan 2	Plan 3
share age 18–24	0.3	3.1	2.6
share age 25–44	35.5	38.6	37.0
share age 35–49	58.5	49.3	50.0
share age 50–64	5.7	7.3	8.4
share age $65+$	0.0	1.7	2.0
share some HS	0.3	0.3	1.1
share graduate HS	6.6	10.1	10.8
share some College	19.7	25.0	31.2
share graduate College	49.6	43.1	36.7
share some Grad School	23.8	21.4	20.1

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	Data ○○○○●○○	Model 00000	Estimation	Results	Conclusion ○
Data					

Demographic Characteristics, by Plan

characteristic	Plan 1	Plan 2	Plan 3
share fulltime out	66.8	70.2	72.0
share parttime out	14.5	10.5	11.0
share fulltime in home	14.5	13.5	10.6
share student	0.9	1.8	0.9
share retired/other	3.4	4.0	5.6
share full out spouse	89.0	87.5	86.9
share part out spouse	3.4	4.3	3.6
share full home spouse	3.7	4.1	2.6
share student spouse	0.6	0.8	1.9
share retired/other spouse	3.4	3.3	5.0

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	Data ○○○○○●○	Model 00000	Estimation	Results	Conclusion O
Data					

Expected Cost per Delivery

Goettler, Clay Price Discrimination with Experience Goods

æ

Introduction	Data	Model	Estimation	Results	Conclusion
0000	000000	00000	00000	000000000000	
Data					
Usage Ra	ites				

Goettler, Clay Price Discrimination with Experience Goods

æ

Introduction	Data	Model	Estimation	Results	Conclusion
		00000			
Model					
A Davasia					

A Bayesian Learning Model

- Each consumer (i.e., HH) is endowed with an unknown match-value, μ_i, for the online grocer
- Each week, consumers decide whether to use online or traditional grocer
- If use online grocer, the realized utility provides unbiased signal of μ_i, which is used to update beliefs
- At end of week consumers decide whether to change tariffs
- Consumers maximize expected discounted utility

Introduction	Data 0000000	Model ○●○○○	Estimation	Results	Conclusion ○
Model					
Utility					

$$\max_{\{s_{\tau}(l_{i\tau}), c_{\tau}(l_{i\tau}, s_{\tau}, u_{i\tau})\}_{\tau=t}^{\infty}} \mathsf{E}\left[\sum_{\tau=t}^{\infty} \beta^{\tau-t} \left(\alpha F_{s_{\tau}} + \delta_{i\tau} \mathcal{I}(s_{\tau} \neq s_{\tau-1}) + U_{ic_{\tau}\tau}(s_{\tau}, u_{i\tau})\right) | I_{it}\right]$$

- $c_t \in \{0,1\}$ is the consumer's usage choice in period t.
- $s_t \in \{1, 2, 3\}$ is the tariff choice.
- ▶ *u*_{i1t} is i.i.d. shock, known by consumer, not econometrician.
- ► F_{s_t} is the fixed fee of the selected tariff at beginning of t. traditional grocer: $U_{i0t} = u_{i0t}$ online grocer: $U_{i1t} = \mu_i + \epsilon_{it} + \alpha p_{s_{it}} + u_{i1t}$
- *p*_{s_{it}} is the per-use component of tariff s_{it}.
- $\mu_{it} \equiv \mu_i + \epsilon_{it}$ is the experience signal.

Introduction	D 0	ata 000000	M O	lodel ○●○○	Estimation	Results	Conclusion O
Model							
D			1.11	NI I		·	

Bayesian Learning with Normal priors and signals

Signal Noise:
$$\epsilon_{it} \sim \text{ i.i.d. } N(0, \sigma_{\epsilon}^2)$$
,
Initial Prior: $\mu_i \sim N(m_{i0}, \sigma_{i0}^2)$
Posterior: $\mu_i \sim N(m_{it}, \sigma_{it}^2)$, where

$$m_{it} = \frac{\sigma_{\epsilon}^2 m_{i0} + \sigma_0^2 \mu_i}{\sigma_{\epsilon}^2 + \sigma_0^2}$$

$$\sigma_{it}^2 = \frac{\sigma_{\epsilon}^2 \sigma_0^2}{\sigma_{\epsilon}^2 + \sigma_0^2}$$

(日) (同) (目) (日) (日) (日)

Introduction	Data 0000000	Model ○○○●○	Estimation	Results	Conclusion ○
Model					
Bellman Eq	uation				

$$V_{u}(m_{it}, \sigma_{it}, s_{it}, u_{it}) = \max_{c_{it}, s_{it+1}} \mathsf{E} \left[U_{ic_{it}t} + \beta V_{u}(m_{it+1}, \sigma_{it+1}, s_{it+1}, u_{it+1}) | (m_{it}, \sigma_{it}, s_{it}, u_{it}), c_{it} \right]$$

Following Rust (1987), assume u is type I extreme value and integrate it out.

$$V(m_{it}, \sigma_{it}, s_{it}) = \ln \left[\exp \left(\beta \int \max_{s_{it+1}} \left\{ V(m_{it}, \sigma_{it}, s_{it+1}) + \alpha F_{s_{it+1}} + \delta_{it} \mathcal{I}(s_{it+1} \neq s_{it}) \right\} G_{\delta}(d\delta_{it}) \right) + \exp \left(m_{it} + \alpha p_{s_{it}} + \beta \int \max_{s_{it+1}} \left\{ V(m_{it+1}, \sigma_{it+1}, s_{it+1}) + \alpha F_{s_{it+1}} + \delta_{it} \mathcal{I}(s_{it+1} \neq s_{it}) \right\} \\ G_{\delta}(d\delta_{it}) \Phi(d\mu_{it} | m_{it}, \sigma_{it}) \right) \right] + \text{Euler's constant}$$

- G_{δ} is the iid distribution of switching costs.
- Φ is the perceived distribution of experience signals, which accounts for σ_{ϵ} and uncertainty about μ_i (via σ_{it}).

(日) (同) (E) (E) (E)

Introduction	Data 0000000	Model ○○○○●	Estimation	Results 000000000000	Conclusion ○
Model					
Solution a	nd Implic	ations			

- Numerically solve using value function iteration, Hermite quadrature.
- ▶ Linear interpolation of *m*_{it}. Fine grid for counterfactuals.
- Incentive to experiment increases in β and σ_{it} , decreases in σ_{ϵ} .
- Consumers on high F tariffs will tend to have high m_{it} .
 - This sorting is muted by switching costs, δ .
 - Higher consumption by consumers facing low p due to low p and sorting.

Introduction	Data 0000000	Model 00000	Estimation ●0000	Results	Conclusion ○
Estimation					
Initial Belief	S				

- Let $G_{\mu}(\mu_i)$ denote the distribution of match-values
- Rational Expectations assumes G is known by the consumer
 - Prior mean and variance is mean and variance of G
 - Conditional on tariff choice, beliefs are unbiased.
 - High usage by Plan 3 consumers is ok (information incentive).
 - Persistently low usage by Plan 1 consumers not ok.
- Instead, we assume G is not known by the consumer. Let m_{i0} ∼ N(μ_i, σ₀²) denote the consumer's signal of μ_i
 - Prior for μ_i is N (m_{i0}, σ_0^2)
 - On average, consumers have unbiased priors
 - Conditional on tariff choice, however, beliefs are biased

Introduction	Data 0000000	Model 00000	Estimation ○●○○○	Results	Conclusion \circ
Estimation					
Initial Tariff	Choice				

To address Puzzle #3 (many HH choose tariff with fee and never use the service) we allow "ex-ante" mistakes in the initial tariff choice.

$$\max_{s_{i0} \in \{1,2,3\}} \lambda_{s_{i0}} + \Lambda(V(m_{i0},\sigma_{i0},s_{i0}) + \alpha F_{s_{i0}}) + \xi_{i,s_{i0}},$$

- The optimal initial tariff maximizes $V(m_{i0}, \sigma_{i0}, s_{i0}) + \alpha F_{s_{i0}}$.
- Alternative: consumers receive another signal after enrollment, before usage.

向下 イヨト イヨト

Introduction	Data 0000000	Model 00000	Estimation ○○●○○	Results	Conclusion
Estimation					
Likelihood					

$$L_{i}(\theta) = \int \left[\prod_{t=0}^{\tau_{i}} Pr(s_{it}|m_{it},\sigma_{it},s_{it-1};\theta) Pr(c_{it}|m_{it},\sigma_{it},s_{it};\theta) \\\prod_{t=\tau_{i}+1}^{T_{i}} \sum_{s_{it}} Pr(s_{it}|m_{it},\sigma_{it},s_{it-1};\theta) Pr(c_{it}|m_{it},\sigma_{it},s_{it};\theta) \right] \\\Phi(d\{m_{i}\}_{t=0}^{T_{i}}|\mu_{i};\theta) G_{\mu}(d\mu_{i})$$

- Φ(d{m_i}^{T_i}_{t=0}|μ_i; θ) integrates over the entire sequence of beliefs conditional on the match value
- $G_{\mu}(d\mu_i)$ integrates over the match value
- After the last usage in week τ_i the tariff choice is censored
- s_{it} is deterministic (i.e., 0 or 1) given beliefs and s_{it-1}
- Pr(c_{it}) is logit (Miller, 1984, Rust, 1987)

A D A A B A A B A A B

Introduction	Data 0000000	Model	Estimation ○○○●○	Results	Conclusion ○
Estimation					
_			-		

Random Coefficients via Importance Sampling

$$L_i(\rho) = \int L_i(\theta_i) g(\theta_i | \rho) d\theta_i = \int L_i(\theta_i) \frac{g(\theta_i | \rho)}{h(\theta_i)} h(\theta_i) d\theta_i$$

g(θ|ρ) is density of random coefficients, parameterized by ρ
Draw (θ¹_i,...,θ^{NS}_i) from h (based on no RC estimates)
Compute L_i(θ^{ns}_i) once and choose ρ to maximize

$$\tilde{L}_i^{NS}(\rho) = \frac{1}{NS} \sum_{ns=1}^{NS} L_i(\theta_i^{ns}) \frac{g(\theta_i^{ns}|\rho)}{h(\theta_i^{ns})}$$

See Ackerberg (2002) for details

Sorting of Beliefs and Match Values across Plans

Goettler, Clay Price Discrimination with Experience Goods

Introduction	Data	Model	Estimation	Results	Conclusion
				• 000 00000000	
Estimates					

Parameter Estimates

		Myopic	Dynamic	Dynamic w/ Random $ heta$	
Parame	eter	Model	Model	mean θ_i	std.dev. θ_i
$\mu_{G\mu}$	(mean	-0.473	-2.190	-2.180	1.765
~	match quality)	(.025)	(0.021)	(0.075)	(0.068)
$\sigma_{G_{II}}$	(std. dev.	1.146	2.136		
~	match quality)	(0.017)	(0.018)		
σ_0	(initial uncertainty)	6.664	4.998	5.253	1.736
		(0.096)	(0.031)	(0.061)	(0.057)
σ_{ϵ}	(experience	5.200	5.388	5.639	1.938
	signal precision)	(0.054)	(0.035)	(0.075)	(0.055)
β	(weekly	0	0.973	0.965	0.012
	discount factor)		(0.001)	(0.001)	(0.001)
α	(price coefficient)	-0.287	-0.284	-0.292	0.106
		(0.001)	(0.001)	(0.005)	(0.003)
δ	(switching cost)	1.778	50.030	34.897	11.555
		(0.003)	(0.029)	(0.602)	(0.461)
Λ	(initial tariff,	0.546	0.036	0.083	0.050
	$V - \alpha F_{s_i0}$ coeff.)	(0.035)	(0.002)	(0.008)	(0.011)
λ_1	(initial tariff,	-0.828	0.582	0.313	0.261
	plan 1 intercept)	(0.079)	(0.051)	(0.041)	(0.034)
λ_2	(initial tariff,	-0.516	-0.178	-0.043	0.139
	plan 2 intercept)	(0.036)	(0.032)	(0.025)	(0.027)
	Log likelihood	-55768.4	-54689.1	-54	264.4

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Introduction	Data 0000000	Model 00000	Estimation	Results ○●0000000000	Conclusion O
Estimates					

Simulated Usage Rates

Goettler, Clay Price Discrimination with Experience Goods

Introduction	Data 0000000	Model 00000	Estimation	Results ○○●○○○○○○○○	Conclusion ○
Estimates					

Incentive to Acquire Information

Goettler, Clay Price Discrimination with Experience Goods

Introduction	Data	Model	Estimation	Results	Conclusion
				000000000000000000000000000000000000000	
Estimates					

Posterior Beliefs: Learning Rates

	Posterior	Posterior
cumulative	standard	mean w/
usage	deviation	$+\sigma_0$ bias
0	4.998	4.998
1	3.664	2.686
2	3.030	1.837
3	2.641	1.396
4	2.371	1.125
5	2.170	0.943
6	2.013	0.811
8	1.780	0.634
10	1.613	0.521
15	1.340	0.360
20	1.171	0.275
30	0.965	0.187
50	0.753	0.114
70	0.639	0.082

Last column uses $\mu_i = 0$, $m_{i0} = \sigma_0$. $\sigma_0 = 4.998$, $\sigma_{\epsilon} = 5.388$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction	Data 0000000	Model 00000	Estimation	Results ○○○●○○○○○○	Conclusion		
Pricing Counterfactuals							
Pricing Cou	nterfactu	als					

Two goals:

Isolate the effects on consumer behavior and revenues of

- ex-ante tariff choice mistakes
- switching costs
- match-value uncertainty
- Investigate optimal monopolist pricing:
 - Ex-ante versus ex-post pricing
 - Price discrimination via menus to screen consumers

Introduction	Data	Model	Estimation	Results	Conclusion
				000000000000	
Pricing Counterfactuals					

Mistakes, Switching Costs, and Uncertainty

	(Pla	Usage: initial, f n share: initial, f	Revenue disc.	CS realized	
Model Description	Plan 1	Plan 2	Plan 3	$\left(\frac{Rev_{final}}{1-\beta_{firm}}\right)$	(expected)
Using estimates	.812, .622	.454, .067	.240, .014	472.9	-45.9
	(.129, .049)	(.321, .321)	(.551, .630)	(448.4)	(118.5)
No mistakes	.993, .615	.723, .084	.056, .008	<mark>499.7</mark>	-45.4
(i.e., optimal <i>s_{i0}</i>)	(.184, .090)	(.222, .222)	(.593, .688)	(476.7)	(139.0)
No switching costs $(\delta=0, ext{ optimal } s_{i0})$.945, .930	.404, .408	.016, .011	<mark>193.2</mark>	-19.5
	(.540, .030)	(.057, .012)	(.403, .958)	(171.0)	(159.6)
No uncertainty $(\sigma_0=0, ext{ optimal } s_{i0})$.915, .915	.401, .401	.012, .012	182.7	6.0
	(.032, .032)	(.012, .012)	(.956, .956)	(182.7)	(6.0)

All revenue and surplus values are in dollars per consumer.

Weekly β_{firm} = .998. Hence, one dollar per week has present value of \$500.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Introduction	Data	Model	Estimation	Results	Conclusion
				000000000000	
Pricing Counterfactuals					

Optimal Tariffs: Base Model

	(Plar	Usage: initial, fi share: initial, fi	Revenue disc.	CS realized	
Tariff Description	Plan 1	Plan 2	Plan 3	$\left(\frac{Rev_{final}}{1-\beta_{firm}}\right)$	(expected)
$F_1 = 4.85, p_1 = 0$ (flat fee tariff)	.929, .298 (.417, .417)			998.1 (998.1)	-59.5 (138.3)
$F_3 = 0, p_3 = 6.12$ (per-use tariff)			.426, .071 (1.0 , 1.0)	232.4 (215.4)	-9.6 (164.5)
$F_2 = 4.85, p_2 = .85$ (1 two-part tariff)		.927, .272 (.400, .400)		1005.0 (1003.7)	-60.8 (129.6)
$F_1 = 4.85, p_1 = .85$ $F_2 = 4.84, p_2 = 5.11$ (2 two-part tariffs)	.930, .273 (.380, .380)	.801, .129 (.020, .020)		1009.7 (1008.0)	-61.4 (127.8)

Ex-ante pricing better for firms, but worse for consumers

(ロ) (四) (三) (三) (三)

크

Introduction	Data	Model	Estimation	Results	Conclusion
				0000000000000	
Pricing Counterfactuals					

Optimal Tariffs: Base Model with No Mistakes

	Usage: initial, final (Plan share: initial, final)			Revenue disc.	CS realized
Tariff Description	Plan 1	Plan 2	Plan 3	$\left(\frac{Rev_{final}}{1-\beta_{firm}}\right)$	$(e \times pected)$
$F_1 = 4.85, p_1 = 0$ (flat fee tariff)	.932, .297 (.417, .417)			998.1 (998.1)	-59.6 (138.3)
$F_3 = 0, p_3 = 6.51$ (per-use tariff)			.420, .066 (1.0 , 1.0)	230.9 (213.1)	-10.6 (160.3)
$F_2 = 4.85, p_2 = 1.15$ (1 two-part tariff)		.930, .263 (.395, .395)		1005.9 (1004.0)	-61.2 (126.5)

Essentially same as base model (with mistakes)

・ロン ・回 と ・ ヨン ・ ヨン

크

Introduction	Data 0000000	Model 00000	Estimation	Results ○○○○○○○●○○○	Conclusion O
Pricing Counterfactuals					

Optimal Tariffs: Random Switching Costs

	·	Usage: initial, f	Revenue	CS	
	(Pla	n share: initial, f	rinal)	disc.	realized
Tariff Description	Plan 1	Plan 2	Plan 3	$\left(\frac{Rev_{final}}{1-\beta_{firm}}\right)$	(expected)
$F_1 = 3.09, p_1 = 0$ (flat fee tariff)	.829, .794 (.654, .082)			155.8 (125.0)	-21.9 (184.9)
$F_3 = 0, p_3 = 6.12$ (per-use tariff)			.426, .071 (1.0 , 1.0)	232.4 (215.4)	-9.6 (164.5)
$F_2 = .03, p_2 = 6.11$ (1 two-part tariff)		.558, .139 (.764, .500)		235.4 (217.7)	-10.4 (163.8)
$F_1 = .58, p_1 = 4.54$ $F_2 = .05, p_2 = 7.03$ (2 two-part tariffs)	.636, .508 (.318, .110)	.543, .056 (.430, .284)		240.8 (219.9)	-13.2 (169.3)
$F_1 = .59, p_1 = 4.54$ $F_2 = .05, p_2 = 7.03$ $F_3 = 0, p_3 = 10.78$.486, .513 (.416, .108)	.724, .066 (.260, .236)	.086, .002 (.324, .656)	243.0 (221.4)	-13.7 (167.9)

• Ex-post pricing yields higher revenue when $Prob(\delta_{it} = 0) = .1$

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	Data	Model	Estimation	Results	Conclusion
				000000000000000000000000000000000000000	
Pricing Counterfactuals					

Optimal Tariffs: Random Coefficients Model

		Usage: initial, f	Revenue	CS	
	(Plai	n share: initial, fi	inal)	disc.	realized
Tariff Description	Plan 1	Plan 2	Plan 3	$\left(\frac{Rev_{final}}{1-\beta_{firm}}\right)$	(expected)
$F_1 = 3.28, p_1 = 0$ (flat fee tariff)	.877, .293 (.515, .358)			587.2 (579.5)	-44.5 (879.3)
$F_3 = 0, p_3 = 6.78$ (per-use tariff)			.401, .056 (1.0 , 1.0)	206.8 (189.1)	-12.0 (784.7)
$F_2 = 3.18, p_2 = 1.70$ (1 two-part tariff)		.868, .237 (.485, .333)		601.9 (590.3)	-47.0 (809.5)
$F_1 = 3.66, p_1 = 1.21$ $F_2 = 3.14, p_2 = 1.74$.884, .282 (.119, .075)	.864, .230 (.366, .253)		602.7 (590.8)	-47.7 (818.1)

Values generated by simulating 5000 consumers over 100 weeks for each of 100 draws of θ .

Minimal ability to screen consumers to increase revenues

Introduction	Data	Model	Estimation	Results	Conclusion
0000	0000000	00000	00000	000000000000000000000000000000000000000	
Pricing Counterfactuals					

Tariffs and Revenues as Initial Uncertainty varies

Goettler, Clay Price Discrimination with Experience Goods

Introduction	Data	Model	Estimation	Results	Conclusion
0000	0000000	00000	00000	0000000000	
Pricing Counterfactuals					

Tariffs and Revenues as Switching Costs vary

Goettler, Clay Price Discrimination with Experience Goods

Introduction	Data 0000000	Model 00000	Estimation	Results	Conclusion ●
Conclusion					

- Peapod serves 250,000 customers and offers a per-use price of \$6.95.
- A puzzle: what demand systems would yield a substantial gain for using menus to segment consumers?