Loss Distribution Approach

OpRisk

Capital Allocation for Operational Risk Conference November 14th - 16th, 2001 - Boston

- G. Courage -

Global Risk Division/Risk Consulting

From Risk Information to Risk Capital

Contents

- Prerequisites
- Treatment of Data
- Calibration of Parameters
- Loss Distribution Approach
- Integration of Risk Transfer Options

A consistent Typology of Risks is the Prerequisite

147				Loss of Use			
War	Customer	Intake and	Documentation	Transaction Capture Execution&Maintenan			
Act of Government		Strike/R	Riot/Civil Commotion				
				Customer/Client	Account Management		
Unauthorized Activity	Expropriation	Diversity&Discriminati		Monitoring and Reporting			
		Suitab	ility, Disclosure&Fidu	ıciary			
Safe Environment - TI	hird Party Product	Flaws	Advisory Activities	Vendors&Suppliers	Trade Counterparties		
Political Risks			System Security	Improper Business or Market Practices			
Natural Disasters	Theft and Fraud	Employee	e Relations	Safe Environment - Workers			

...to map Perils against the Definition of Operational Risk

...and simultaneously to map Mitigation Options against Perils

Loss Distribution Approach/ G. Courage

Capital Allocation for Operational Risk Conference November 14th - 16th, 2001 - Boston

Allianz 🕕

Generating reliable Data from multi diversified Risk Information (,DataMining')

What (Loss describing) Data to collect (1)

What (Loss describing) Data to collect (2)

- Required Data (Proposal) -

Above minimum threshold

- Gross loss
- Net loss
- Currency
- Country of occurrence
- Date of occurrence
- Event Type / Risk Category (RC) (at least level 2)
- Business Line (BL)
- Loss Effect type (LE)

Above Expected Loss threshold

- Event Type / Risk Category (more detailed, level 3 or additional levels)
- Causative/ Contributory factor(s) (CC)
- Product/ Process/ Function type (PP)
- Type of insurance coverage / Relief Type (RT) applicable (e.g. bankers blanket bond, property, etc.)
- Date of discovery
- Date of insurance recovery
- Status of loss (open/ closed)
- Value of Exposure Indicators at time of loss (e.g. gross income, assets managed) (EI)
- Value of Relief Indicators at time of loss (e.g. insurance premium, limits, deductibles) (RI)

Continuum of Approaches

Notation: for single BL, RC, perfect RT mapping, without Credit Risk Adjustment

Calibration of Parameters

- "lower" approaches -

Calibration of Parameters

- "lower" approaches -

There are specific Advantages and Disadvantages for each Approach

"Lower"	approaches	

- facilitate the use:
 - work with lower amounts of data
 - "simple" formula approaches
- are conservative approaches as industry factors provide security margin
- lead to lower risk sensitivity and to higher capital cost
- do not enable full use of Risk Management opportunities

require high implementation efforts

"Higher" approaches

- require substantial data management (incomplete or insufficient data may lead to wrong assessment of actual risk situation)
- lead to more risk sensitivity and to lower capital costs
- enable feedback to improve Risk Management
- enable to manage risks
- enable to optimize risk transfer options

Frequency and Severity Distributions are generated

• Severity classes' equation:

 $border_i = \left(10^{\left(\frac{1}{c}\right)}\right)^{i+i_0}$

- Frequency / Severity estimation fitting
- Accuracy of approximation by ChiSquare

P

Е

But still there are Gaps within the Landscape

- Changing the risk map - Shaping the risk landscape -

Inclusion of "external" data
Inclusion of worst case scenarios
Inclusion of expert opinion
Inclusion of risk transfer

Mathematical Model

External Data have to be included using Scaling Techniques

Norming/Scaling equation:

$$X_{Bank.X} = X_{Bank.A} \cdot \left(1 + a \cdot \left(\left(\frac{EI_{Bank.X}}{EI_{Bank.A}} \right)^b - 1 \right) \right)$$

- Two parameters (*a*, *b*) allow various relations
 - linear with different factors
 - positive and negative
 - exponential
- Possibility to "stack" multiple Norming/Scaling
 Parameters
- Possibility to generate "anonymous" losses and to merge data
- Parameter in relation to
 - Lines of Banking Business
 - Classes of Sizes of Banks

Calibration of Parameters - Norming / Scaling -EI Bank Bank. Bank.A **Regression analysis** MLE - Approach Gross-Loss Gross-Loss EI ΕI

Loss Distribution Approach/ G. Courage

Capital Allocation for Operational Risk Conference November 14th - 16th, 2001 - Boston

How to account for Worst Case Scenarios ?

- High Impact / Low Frequency Events -

Risk Quality does have a Substantial Influence - How to account for ? -

Source: Wuppertaler Berichte zum Brand- und Explosionsschutz Band 3

Adjustment and Aggregation of Distributions

- Overall Picture -

Convolution/Aggregation											
				•		↓		Annu (per Peril	al Loss De Loss Cau	ensity Func use, Busine	ction ess Line)
dha.				•			Sc. •Da	enario base ata Analysi	ed assump s approacl	otions using hes (empir	g: ically,
							 parameterization) Expert Testimony (Delphi technique, ,bets') Modeling (stochastic simulation, analytical model, Bayesian model, segmentation) 				
Quality Adjustment Factors							Турь				
Dimension	Business	Business	Business	Business	Distribution	Probability	Scaling		Scaling	Approved b	∠ast Update
Management		Line A	Line B	Line C							
Organization					Scenario A	Weibull	,0	LogNormal	1,0	C,R	
Technical					Scenario B	Par	1,5	Beta	1,0	C,I,R	
Controlling					Scenario C	Poisson	1,0	LogNormal	1,0	C,I,R	
OR Man. Stand.								<u> </u>			
Other											

Aggregated Annual Loss Density Function (Single Risk / Gross)

- Calculated Capital at Risk (Gross)
- Confidence Level = 0,99 %
- Unexpected Loss
- Expected Loss set equal to Mean
- No Mitigation
- Per Single Risk
- Per Business Line

Aggregated Annual Loss Density Function (Single Risk / Net)

- Calculated Capital at Risk (Net)
- Confidence Level = 0,99 %
- Unexpected Loss being reduced
- Expected Loss set equal to Mean
- Mitigation
 - -->Prop. Insurance
 - -->Deductibles
 - -->Limits
- Per Single Risk
- Per Business Line

From single Risks to aggregated Risks and VaR (Gross and Net)

Overall Distributions

- Calculated aggregated Capital at Risk (Gross/Net)
- Confidence Level = 0,99 %
- Unexpected Loss
- Expected Loss set equal to Mean
- Mitigation on Single Risk Basis:
 - --> Proportional Insurance
 - --> Deductibles
 - --> Limits
- Mitigation on aggregated Risk Basis:
 - --> Stop Loss System
 - --> Deductible
 - --> Limit
- Per Business Line

Values in Millions

Summary

- Loss Distribution Approach -

The Loss Distribution Approach is/will be a feasible solution to:

- calculate operational risk capital including capital charge with a high degree of risk sensitivity
- integrate risk management quality and best practice standards into the overall process and therefore offer the opportunity to grant benefit for "good" risk management
- design risk mitigation by insurance as effective and comprehensive as possible

Summary

- Discussion on Taxonomy and Data Collection (Standards) is coming close to an end: Final summit of involved parties (regulators, banks & insurers) and final approval through regulators suggested
- It is important and possible to reflect the effects of risk management and risk transfer in the risk landscape, henceforth in the capital charge
- Discussion on approaches to calculate capital charge and relief: Further analytic, scientific and practical work as well as open exchange of ideas needed.
- LDA still regarded as most risk sensitive approach: Prototypes show feasibility - Pilot implementations will prove practicability