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Abstract 

This paper will discuss a proposed method for the estimation of loss distribution using 

information from a combination of internally derived data and data from external sources. The 

relevant context for this analysis is the estimation of operational loss distributions used in the 

calculation of capital adequacy. We present a robust, easy-to-implement approach that draws on 

Bayesian inferential methods. The principal intuition behind the method is to let the data itself 

determine how they should be incorporated into the loss distribution. This approach avoids the 

pitfalls of managerial choice on data weighting and cut-off selection and allows for the 

estimation of a single loss distribution. 
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I. Introduction 

This paper will discuss a proposed method for the estimation of loss distribution using 

information from a combination of internally derived data and data from external sources. The 

relevant context for this analysis is the estimation of operational loss distributions used in the 

calculation of capital adequacy.1 Under new Basel requirements, a number of institutions in the 

United States are likely to be required to use the so-called “advanced measurement approach” 

(AMA) and a handful more look likely to ‘opt-in.’2 This AMA approach requires the inclusion 

of information from four ‘elements’: internal and external data, scenarios and business 

environment and internal control factors.  We address here the combination of internal and 

external data, though the methods could in principle be extended to include information from the 

other two. 

External data are often used to ‘fill in’ information on very low frequency, high severity 

losses where data are unavailable within the institution. By their nature, it is this group of losses 

that are both of issue in capital adequacy and the most difficult to measure. Measurement 

difficulties derive from the very fact that they are of such low frequency.  

Why have large banks had such a difficult time in measuring large events and incorporating 

them into capital estimates? We focus here on the latter question and will return to the issue of 

data collection briefly in our conclusion. Assume that a bank has completed the exercise of 

gathering external data on large, low frequency losses. Its task is now to find a way to mix this 

information into the set of existing losses in some logically and statistically consistent way. This 

is a non-trivial exercise for a variety of reasons. First, there is no reason to believe that the 

quantity of available external data is related to the quantity of available internal data; that is, it is 

not possible to simply add this data to the existing data set without some attempt at accounting 

for the implied frequencies of the two samples. Second, once the relative frequency matter has 

been handled, a larger problem crops up. How relevant are the individual observations? Are all 

observations good? Should some of the data be weighted or scaled? Should some be tossed out? 

These questions are typically answered with a range of managerial decisions from the ‘weight’ to 

                                                 
1 Capital adequacy in this context may either be regulatory capital, as required under Basel II guidelines, or 
economic capital. Throughout the paper, we will refer to capital adequacy broadly as the methods and approaches 
here are generalizable. 
2 See the Notice of Proposed Rulemaking, Federal Reserve Board of Governors. 
[http://www.federalreserve.gov/GeneralInfo/Basel2/NPR%5F20060905/]. 



ascribe to internal data to the appropriate ‘cut-off’ point to distinguish between the body of a 

distribution and its tail. In theory, one wants to find a way to gather and use the information 

contained in the external data. Specifically, one wants to use only that information which is of 

relevance, while ignoring or down-weighting observations that are of less importance or 

accuracy. 

The goal of this paper is to present a methodology for the incorporation of external data into 

internal loss distributions. We present a robust, easy-to-implement approach that draws on 

Bayesian inferential methods. The principal intuition behind the method is to let the data itself 

determine how they should be incorporated into the loss distribution. The approach avoids the 

pitfalls of managerial choice on data weighting and cut-off selection and allows for the 

estimation of a single loss distribution. 

Section II describes some background to the approach and III describes the theoretical 

approach itself. Section IV presents a road-map for implementation. Finally section V concludes. 

 

II. Background 

We suggest that one can consider this a problem of ‘model uncertainty’ and that Bayesian 

methods of model averaging can resolve the persistent difficulties. When we refer to ‘models’ in 

this context, we mean a set of assumptions about the set of appropriate external data points to 

include in an analysis, their weighting relative to internal data, etc.  

The fundamental problem that underlies the disparate methods used across the industry is 

that individual approaches reflect unspecified, yet highly specific, assumptions about the 

appropriate weighting of data, distribution, cut-off points, etc. on the part of the analysts. These 

assumptions can reflect attempts to manage the number produced by the model (choosing to 

under-weight external data) and can have large effects on the conclusions of a particular data 

analysis. However, one is hard pressed to make a compelling argument that inclusion of a given 

point over another is the crucial decision in the formation of a study. This is based on the fact 

that these assumptions are themselves typically not falsifiable. As a result, regulators and bank 

managers - both of whom may have developed conceptually valid and potentially correct 

“models” - can reach quite distinct conclusions. The resulting lack of certainty over the 

appropriate data set and a suitable weighting procedure, or “model uncertainty”, is the technical 

focus of this note. In particular, we will utilize model averaging, a method that enables a 



researcher to take the weighted average of findings across possible ‘models’ to develop 

inferences that are not dependent on the assumption that one of the models is true.  

A growing literature has emerged in the use of this method known as model averaging. It 

seeks to avoid researcher bias in the determination of variable choice, specification choice, etc. 

by including a large set of possibilities into a single analysis. The earliest discussion of model 

averaging is Leamer (1978). After a long period in which the methods were not widely used, the 

mid-1990s saw a resurgence of interest. The re-initiation of interest appears to be due to Draper 

(1995), Raftery (1995) and Raftery, Madigan and Hoeting (1997). Useful introductions are 

available in Wasserman (2000) and Hoeting, et al. (1999). Model averaging has been advocated 

and employed in various fields, see Brock and Durlauf (2001), Brock, Durlauf and West (2003), 

Cohen-Cole, et al. (2007), Fernandez, Ley and Steel (2001), and Sala-i-Martin, Doppelhofer, and 

Miller (2004).  

 

III. Theory 

In our analysis here, we will follow the model averaging literature as our mechanism for 

dealing with model uncertainty. To accommodate the particulars of the case at hand, we will 

adapt the general framework that has been developed in the statistics literature; however, we will 

use standard frequentist estimators.3 This frequentist approach to model averaging is described in 

Sala-i-Martin, Doppelhofer and Miller (2004) and Brock, Durlauf and West (2003). The basic 

idea of model averaging is straightforward. Consider an object of interest – in this case the 

appropriate parameters of a loss-distribution – and take a weighted average of the findings across 

all possible ‘models’ that can explain the effect. Each model’s effect is weighted based on its 

ability to explain the data. 

To see how this procedure works intuitively, imagine a set of external data points and the 

question of whether or not to include a particular large fraud observation. One school of thought 

argues that it represents the existing risks to the institution and another that the case was non-

representative and should be excluded. Inclusion or exclusion of that particular data point leads 

to large differences in capital requirements. One can think of this disagreement as reflecting a 

simple form of model uncertainty in that the model space has only two elements: a set of data 

                                                 
3 Within the statistics literature, model averaging is usually done in Bayesian contexts. However, most readers will 
be unfamiliar with the interpretation and implementation of Bayesian estimators. A full discussion of the difference 
between Bayesian and Frequentist approaches is beyond this paper. 



that includes the point and one that does not. How would we propose adjudicating the 

disagreement? We would argue that one should average the estimates from the two studies by 

taking a weighted average of the results from each, where the weights are posterior model 

probabilities.4 By setting these two cases alongside one another, it is possible to evaluate the 

relative probability that each can describe the data used.   

More generally, the structure of model averaging can be understood as follows. Suppose one 

wishes to produce an estimate of some object of interestδ . In the context of operational risk and 

capital measurement, δ  tends to be the parameters of a statistical distribution that reflects the 

losses of a given institution. Conventional statistical methods may be thought of as calculating an 

estimate that is model specific, ˆ
mδ . In the model averaging approach, one attempts to eliminate 

conditioning on a specific model. To do this, one specifies a set or space of possible models M. 

The true model is of course unknown, so from the perspective of the researcher, each model will 

have some probability of being true.5 These probabilities depend on the relative goodness of fit 

of the different models given available data D as well as the prior beliefs of the researcher 

(something we discuss below); hence each model will have a posterior probability: ( )m Dμ . 

This can be read as the probability of a given model (m) conditional on data available, D. These 

posterior probabilities allow us to average the model-specific estimates:  

 

(ˆ ˆ
m

m

m Dδ δ μ=∑ )          (1) 

The estimate δ̂  thus accounts for the information contained in each specific model about δ  

and weights this information according to the likelihood the model is the correct one. As 

suggested above, in the case that a single model is true, that is, it perfectly fits the distribution in 

question, it will receive a weight of 1. Brock, Durlauf and West (2003) argue that the strategy of 

constructing posterior probabilities that are not model-dependent is appropriate when the 

objective of the statistical exercise is to evaluate alternative policy questions such as level of 

capital. Notice that this approach does not identify the “best” model; instead, it studies an 

outcome (a distribution and a capital number) conditional on the data. Notice that in theory, there 

                                                 
4 This can be thought of simply as the conditional probability that a given model describes the data. We discuss this 
at greater length below. 
5 If one model is true then this method produces a probability of 1 for that model and zero for all others. 



is no reason one needs to choose a particular set of external data points as the ‘correct’ ones. 

Instead, one wants the aggregated information content of the external data.6

Thus, while the exercise could theoretically yield a single model with a weight of 1, this is 

unlikely. In practice, a finding that a given model, m*, within some space M, that has the highest 

conditional probability of describing the data is not a recommendation to select that model. 

Instead, it merely identifies that model as being the one that has the largest contribution to δ̂ . 

Notice that averaging across models means that a key role is played by the posterior model 

probabilities. Using Bayes rule, the posterior probability may be rewritten as 

 ( ) ( ) ( )
( ) ( ) ( )

D m m
m D D m m

D
μ μ

μ μ
μ

= ∝ μ . (2) 

The calculation of posterior model probabilities thus depends on two terms. The first, 

(D mμ )  is the probability of data given a model (again, in our setting, a set of external data 

points). Raftery (1996) has developed a proof to illustrate that the probability of a model given a 

dataset can be calculated using the ratio of a given model’s likelihood to the sum of the 

likelihood of all models in the space M. This derivation allows us to use the likelihood of a given 

model for (D mμ ) . The second term, ( )mμ , is the prior probability assigned to model . 

Hence, computing posterior model probabilities requires specifying prior beliefs on the 

probabilities of the elements of the model space 

m

M  (see below). 

 

Calculating Variance of δ̂  

While one does not traditionally bound capital estimates to account for uncertainty in 

estimation, the methods here allow one to do so. We present the method for completeness. 

Applying the concepts above, one can compute the uncertainty, i.e. variance, associated with an 

estimated policy effect when one avoids conditioning on knowing the true model. This variance 

is written as: 

 ( ) ( ) ( ) ( )( )2ˆ ˆ
m

m M m M

var m D var m Dδ μ δ μ δ δ
∈ ∈

= +∑ ∑ ˆ ˆ
m−

                                                

 (3) 

 
6 We acknowledge that there is some value in the identifying a set of ‘correct’ scenarios, particularly for business 
planning and risk control establishment. However, we wish to distinguish that exercise from this one – the 
identification of an appropriate and accurate loss distribution. 



This formula illustrates how model uncertainty affects the overall uncertainty one should 

associate with given parameter estimates. The variance of δ̂  consists of two separate parts. The 

first, ( ) ( m̂
m M

m D var )μ δ
∈
∑ , is a weighted average of the variances for each model and is 

effectively the same construction as the estimate itself. The second term however, reflects the 

variance across models in M ; this reflects that the models themselves are different. This 

term, ( )( 2ˆ ˆ
m

m M

m Dμ δ δ
∈

−∑ )

)

, is not determined by the model-specific variance calculations. In 

some sense it captures how model uncertainty increases the variance associated with a parameter 

estimate relative to conventional calculations. To see why this second term is interesting, 

suppose that ( ˆ
mvar δ  is constant across models. In general, one should not conclude that the 

overall variance is equal to this same value. So long as there is any variation in m̂δ  across 

models, then ( ) (m̂var var )ˆδ δ< ; the cross model variations in the mean increase the uncertainty 

(as measured by the variance) that exists with respect to δ . 

 

IV. Road-Map 

In this section, we describe the four straightforward steps to implementing the theory from 

section III. We begin by outlining the basic steps and then proceed to discuss each. 

 

Process Summary 

1. specify distribution 

2. specify space of models  

3. specify priors for models 

4. estimate 

 



Specify Distribution 

 As with any operational risk loss distribution analysis, one must specify a choice of 

distribution or class of distributions. This method can in principle be broadened to include 

uncertainty over the choice of models, but to date the necessary theory has not been developed.7

 

Specify Space of Models 

 There are two issues to consider in this step. First is the collection of external data and 

second is the specification of the set of external data to use for estimation.  Our criterion for 

suitability is that the data collected can be considered unconditional draws from the same loss 

distribution that the internal data was derived. That is, one needs to make the assumption that the 

externally derived data come from the same ‘class’ of distributions that characterize the internal 

data. 

The latter of these is straightforward. The appropriate ‘space’ of models here is the 

combination of all possible subsets of the set of external data. Begin by identifying a set of 

external data points, S. Then, for each component subset s S∈ (e.g. the first, fifth and tenth data 

point) one has a model, m. The collection of all models, m comprises the space M. Since the 

number of models can quickly explode, one may wish for computational reasons to specify that 

only a subset of models, m, with more than a certain number of elements be included.  

 

Specify Priors for Models 

 For the approach to work, one needs to specify ( )mμ  for each model. A value of this 

approach is that the results, in general, are not sensitive to the selection of priors on the models. 

Since the determination of the final distribution parameters are done by weighting results by their 

posterior probabilities, the role of prior specification is minimized. Consider the case of a very 

unlikely model that is erroneously given a high prior probability. The posterior of this model will 

nonetheless be very low. The converse is also true. A ‘true’ model that is given a low prior will 

nonetheless receive a posterior that approaches 1.  

                                                 
7 The technical issues are beyond the scope of this paper, but the intuition is that if one wishes to compare and 
average across distributions, one must find a way to compare the likelihood of a given set of data describing the 
various distributions. To date, the methods for this are not in place. 



A baseline approach is to specify a ‘flat’ prior, i.e. one that gives a prior probability of 1 , 

n is the number of models in the space M. From this baseline, one can make some 

progress toward the determination of appropriate priors, even if one cannot be perfectly precise. 

An approach that can deliver some added value in this context is the hierarchical priors 

determination outlined in Brock, Durlauf and West (2003). They specify that groups of similar 

models be ‘nested’ in a hierarchical structure in the determination of priors. As an example, one 

might want to specify a flat prior across the data points at the risk type level and a corresponding 

flat prior at the lower level. If the number of risks within each risk type is not the same, this 

method produces priors that differ from a flat structure. 

n

where 

 

Estimate 

 Once the above steps are complete, estimation itself is a simple process. For each model, 

m, contained in the set, M, one simply estimates the parameters of the given distribution using 

standard maximum likelihood methods. From this process, one obtains not only distributional 

estimates, but also a log-likelihood value. Once all models, m, have been estimated, the posterior 

probability can be calculated using equation (2) and the weighted average object of interest, δ  

(the distribution parameters), can be computed using equation (1). 

 

V. Conclusions 

This note has provided a methodology and process for a robust method of including external 

data into the calculation of loss distributions. To date, institutions have struggled with notions of 

how to combine the information included in scenarios, internal and external data into the capital 

calculation process for operational risk. To the common approach of weighting data using ad-hoc 

assumptions on weight values, this paper provides a feasible, theoretically justified alternative. 

The method proposed here has associated recommendations relating to data collection. We 

can summarize the implications for data collection in two components. First, the method 

suggests that one does not need to find a ‘perfect’ external dataset under the proposed approach. 

This derives from the fact that the external data are not being used to determine a distributional 

form and their importance in the determination of parameters is dependent on the accompanying 

data. Second, one wants to collect a wide variety of data without modifications or adjustments. 

The practice of calibrating external data to fit with internal data trends or patterns is incorporated 



into the econometric methodology; as such, ad-hoc adjustments in effect reduce the available 

information.  
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