DO LOW INTEREST RATES SOW THE SEEDS OF FINANCIAL CRISES?

Simona E. Cociuba Malik Shukayev Alexander Ueberfeldt

Discussion by **Skander Van den Heuvel** Federal Reserve Board

BU/Boston Fed Conference on Macro-Finance Linkages October 28-29, 2011

The views expressed here do not necessarily represent the views of the Federal Reserve Board or its staff.

A "Risk Taking Channel" of Monetary Policy?

- Thesis: Low interest rates encourage excessive risk taking.
 - Low federal funds rate in 2003-04 coincided with a housing bubble, lax lending standards, and were followed by the 2007-09 financial crisis.
 - Some empirical evidence that low rates are associated with more bank risk taking.
 - Hard to know if it is excessive.
 - Rajan: Asset managers 'reach for yield' when safe interest rates are low.
 - Shouldn't financial intermediaries always maximize profits?
 - Could reflect agency problems (Allen and Gale).

A "Risk Taking Channel" of Monetary Policy?

- Do real rates or nominal rates matter?
 - Real federal funds rate in 2003-04 was not unusually low by historical standards.
- If low nominal rates are the problem, this has big implications for monetary policy.
 - Makes a low inflation target less desirable.
 - Do we want to live in that world?
- If real rates matter, there is little monetary policy can do in the long run.

A "Risk Taking Channel" of Monetary Policy?

• More theoretical analysis is very welcome.

Cociuba, Shukayev, Ueberfeldt

A real DSGE model with

- 1. Financial Intermediation
- Deposit Insurance → Moral hazard of excessive risk taking
- 3. Monetary policy
- 4. Capital Regulation

Financial Intermediaries

- Assets:
 - Physical capital ('small business loans')
 - High or low risk (random)
 - Government bonds (riskless)
 - Can be sold or used as collateral in repo market – when banks find out their risk type to buy or sell more physical capital.
- Liabilities
 - Equity (limited liability)
 - Deposits (insured)

Monetary Policy

- Governments sets a real interest rate on government bonds and then satisfies demand at that rate.
 - Deposits proceeds in the banks net of issuance cost.
 - Pays transfers/taxes and deposit insurance payments, if any.

Technology

Single aggregate TFP+capital depr. shock:

		Low	High
•	Low risk financial (85%):	0.93	0.94
•	Nonfinancial corporate:	0.92	0.96
•	High risk financial (15%):	0.68	1.00

- Labor supply is fixed for each technology.
- Capital is mobile between periods.
- Within period, only between banks using repos, *before* knowing the aggregate shock.

Monetary Policy

- Governments sets real interest rate on government bonds and then satisfies demand at that rate.
 - Deposits proceeds in the banks net of issuance cost.
 - Pays transfers/taxes and deposit insurance payments, if any.
- Government bonds have option value because they can be used in repo market.
 - Option value is nonnegative, so there is a limit to what the government can do to the real rate: R^B <= R^D

Social Planner Solution

- Within-period reallocation with persistent technology shocks (and only then?):
 - Transfer capital to **high** risk projects in **good** state.
 - Transfer capital to low risk projects in bad state.
- Conditional means of projects are different!

Optimal Policy

- Competitive Equilibrium: Incentive to reallocate too much to the high-risk banks due to moral hazard.
- Solution: Restrict the supply of bonds to limit repo transactions.
 - I.e. **lower** the interest rate to restrict risk taking!
 - Collateral effect of government bonds outweighs portfolio composition effect on risk-taking.
 - Different from open market operations.

Further Results

- Permanently higher interest rates result in more risk taking.
 - Comment: show effect of higher interest rate in each state.
- Capital requirement (almost) eliminates excessive risk taking.
 - There is no cost of imposing a capital requirement, so seems to be the solution.
 - Would like to see welfare numbers for this.

Further Results

- With mispriced collateral, created by banks, lower interest rates can lead to excessive risk taking.
 - Separate mispricing from private issuance.

Comments

- Tight connection between conditional mean and condition variance.
 - What happens if you break that link?
- Repos are a small part of banks' balance sheets, but very volatile.
- Most I-banks borrow. Are high-risk banks investment banks?
- Most commercial banks lend. Are low-risk bank commercial banks?

Investment Banks' Leverage and Asset Growth Adrian and Shin (2010)

Figure 2.5: Total Assets and Leverage of Security Brokers and Dealers

Investment Banks' Leverage and Asset Growth Adrian and Shin (2010)

Figure 2.4: Total Assets and Leverage of Commercial Banks

In				tic				
111		Ju			711			

Interest Rate Surprises

Baseline Results

Cross Section

Accounting Data

CAPM 00

INTEREST RATES AND BALANCE SHEET COMPOSITION

Growth Contribution	Level	Slope	R^2	Share
$(\Delta LNS)/A$	0.973*	-0.836**	0.116	0.637
	(0.514)	(0.384)	-	-
$(\Delta SEC)/A$	0.823	0.464	0.110	0.234
	(1.267)	(0.899)	-	-
$(\Delta FFSRRP)/A$	-3.646***	-3.540***	0.215	0.033
	(1.019)	(0.560)	-	-
$(\Delta BALDEP)/A$	-0.556***	-0.499***	0.118	0.012
	(0.149)	(0.099)	-	-
$(\Delta COREDEP)/A$	-2.152**	-0.729	0.116	0.432
	(1.045)	(0.748)	-	-
$(\Delta TIMEDEP)/A$	0.037	-0.721***	0.121	0.281
	(0.321)	(0.192)	-	-
$(\Delta MNGLIAB)/A$	0.465	0.447*	0.085	0.167
	(0.366)	(1.717)	-	-

NOTE: Robust standard errors in parentheses; *, **, *** denotes statistical significance at the 10-, 5-, and 1-percent level, respectively.