
Equilibrium Predictability, Term-Structure of Equity Premia, and Other Return
Characteristics

Satadru Hore1

1Federal Reserve Bank of Boston

Abstract. This paper presents a structural model of aggregate return characteristics based
on a one-channel Bansal and Yaron (2004) economy under recursive preferences. The re-
sults rest on an endogenously determined price-dividend ratio that is not exponentially
affine which implies time variation and predictability of equity premia. The predictability
coefficient is stochastic which provides theoretical foundations for recent works in pre-
dictability like Dangl and Halling (2011). In longer horizon, the predictability relationship
is highly volatile making it difficult to make inference about long-horizon predictability.
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1. Introduction

This paper investigates structural return predictability and term structure of equity premia

within a one-channel long-run risk framework of Bansal and Yaron (2004). Starting with

recursive preferences and simple joint dynamics of aggregate consumption and dividend

growth where the expected growth rates of both share a common stochastic component, I

find that equity premium is time-varying. This separates my model from the extant long-

run risk literature which focuses on stochastic volatility in macroeconomic dynamics to

generate time-varying equity premium. In this economic set-up, I explore two interesting

applications of equity returns. The first is time-varying coefficient of return predictability

which is consistent with recent empirical works in return forecasting. In my model, dividend

yield and the coefficient of return predictability are inversely related - a decrease in dividend

yield corresponds to a rapid increase in the return predicting coefficient which increases

equity premium. The second application I consider is term structure of equity premia. In
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this case, however, the model fails to deliver a downward sloping term structure of equity

returns and volatilities as has been shown empirically.

The theory presented here can be considered to be the simplest dynamic model which

can still deliver time-varying equity premium. My model and Bansal and Yaron (2004) can

both produce economically significant level of expected returns. However, the difference

between the two is the amount of variation in expected returns that can be produced by

each model. The one-factor model can produce only small variations, whereas models with

stochastic volatility can generate large time-variation in expected returns. Even though

the model here produces small variation in expected returns, it is sufficient to make the

central points about equilibrium return predictability. First of all, the model can produce

significant time-variation in the predictability coefficient across all return horizons. Sec-

ondly, this time-variation leads to high variance in return predictability, especially over

longer horizons. In essence, even using a model that can only generate small variation in

expected returns, the predictability results show that there is quite a bit of uncertainty in

long-horizon expected returns. Given less than a hundred years of return sample, there is

a lot of uncertainty about the true magnitude of variation in expected returns in the data,

and my model can generate this effect in a one-factor long-run risk model. The result on

long-horizon predictability differs markedly from other structural models like Bansal and

Yaron (2004) and Campbell and Cochrane (1999) who treat the predictability coefficient

as a constant. At the same time, this model fails to generate the downward sloping term-

structure of equity premia and volatility. Long-run risk can generate the level of equity

premia observed in the data by heavily discounting cash-flows farther out in the future. Un-

fortunately, it is this feature of the model which generates an upward sloping term structure

of equity premia.
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In this paper, I start with Duffie-Epstein preferences with elasticity of intertemporal

substitution equal to unity, which allows me to solve for the Hamilton-Jacobi-Bellman

equation of the representative agent in closed form. Subsequently, this gives me a closed

form expression of the pricing kernel which allows me to get an analytical expression for

the PD ratio that is no longer exponentially affine. The non-linearity in the log PD ratio

creates time-varying volatility in returns, which gives rise to time-varying risk-premia and

predictability. The non-linearity in the PD ratio implies that the quantity of risk is time-

varying. In response to a good expected dividend growth shock, the agent buys more of

the asset that pays aggregate dividends which increases the quantity of risk that the agent

bears. The opposite happens in response to a bad shock. Furthermore, in the Appendix

I relaxed the assumption of unit EIS and found that the above dynamics of PD ratio is

consistent with EIS greater than unity. Additionally, equity-premium is positive and pro-

cyclical as long as risk-aversion is greater than the inverse of EIS, i.e. as long as the agent

has preference for early resolution of uncertainty. The economic effect of this non-linearity

in the PD ratio manifests itself in the coefficient on return predictability.

Given the closed form solution of PD ratio, I can directly solve for the long-horizon

return predictability coefficient in a semi-closed form. This coefficient is time-varying and

reflects at any time t, the agent’s expectation of price and dividend growth over a par-

ticular horizon. The time-variation in predictability coefficients is yet unexplored in the

equilibrium literature although it has gained significant attention in the empirical works of

Lettau and Van Nieuwerburgh (2008) and Dangl and Holling (2011). These recent works

on predictability show substantial uncertainty in estimating the predictability coefficient

and Dangl and Holling (2011) address that by modelling the coefficient in a state-space

framework. The time-varying coefficient significantly helps out-of-sample forecasts, and in-
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vestors armed with such models outperform investors with constant coefficient models. My

model provides theoretical foundation for time-varying predictability coefficients. An im-

mediate conclusion from my model is that OLS regressions for predictability can be deeply

misspecified and the parameter uncertainty that these papers encounter is precisely due to

the time-variation in the predictability coefficient derived here.

Long-horizon predictability has received a lot of attention in the empirical literature

since the early studies of Shiller (1981), Rozeff (1984), Campbell and Shiller (1988), Fama

and French (1988), among others. Fama and French (1988) were the first to show long-

horizon predictability reporting coefficients and R2-s that increase with horizon. Since

then, others have cast doubt on long-horizon predictability. Stambaugh (1999) finds severe

biases in small sample estimators. For long-horizon predictability, Valkanov (2003) shows

that the coefficients have limiting distributions that are functionals of Brownian shocks and

the OLS estimators of them are inconsistent. Goetzmann and Jorion (1993) find spurious

R2’s in long-horizon regressions in their simulation based study. Recently, Boudoukh, et.

al. (2008) show that there is no extra information in long-horizon regressions than what is

already factored in short-horizon ones. They show that their return predicting coefficients

and R2’s, when represented as multiples of one-year coefficient or R2’s, scale perfectly with

time.

Other equilibrium asset pricing models like Campbell and Cochrane (1999) and Bansal

and Yaron (2004) do not investigate time-variation in predictability coefficients. These

models simulate long-horizon returns and run OLS regressions to show evidence of long-

horizon predictability characterized by increasing coefficients and R2s. I replicate these

regressions in my model and get the same results. However, in my model, I am able to

solve for the predictability coefficient and without running any regressions I can evaluate
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quantitative and qualitative properties of the coefficients. The coefficients show significant

time-variation, especially in longer horizon. However, this time-variation comes with a

price. To gauge what kind of unconditional inference can be drawn, I summarize the

variance of long-horizon predictability in a pseudo-R2 quantity. This pseudo-R2 increases

over the horizon purely due to the fact that the variance of the predictability component

increases faster than the variance of overall returns. Thus, over longer horizon this pseudo-

R2 increases artificially, whereas, at least qualitatively it is hard to justify predictive power

when this increase in pseudo-R2 is due to the increase in variance of the predictability

component. In essence, my equilibrium model tells the following story - the parameters

that comply with macroeconomic dynamics and can match key asset pricing quantities

imply significant time-variation in predictability coefficients. This time-variation implies

large unconditional variances of the predictable component of long-horizon returns which

creates doubt about return predictability in the long horizon.

The model also allows me to price dividend strips by considering them to be finite

horizon equity, i.e. present value of dividends between times t and T as has been defined in

Binsbergen, et al. (2012). The closed-form solution allows me to consider the term-structure

of expected return, volatility and β of these assets in an analytical form. The high discount

rate required to discount dividends farther out in the future - a feature of long-run risk

preferences and growth rate dynamics, generates an upward sloping term structure for all

of these quantities. However, this is contrary to what the empirical literature has found

in Binsbergen, et al. (2012) by constructing dividend strips from put-call parity. Other

structural models have also shown their limitation in generating this downward sloping

term-structure. The long-run risk model of Bansal and Yaron (2004), habit formation

model of Campbell and Cochrane (1999) and rare disasters model of Gabaix (2012) cannot
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generate this effect as well, although a reduced form model of Lettau and Wachter (2007)

has been able to replicate this pattern. This raises the challenge to incorporate the Lettau

and Wachter (2007) dynamics within a long-run risk framework to study which structural

shocks are responsible for the downward sloping equity premia.

The paper is subdivided into the following parts: section 1 discusses the details of the

model and establishes the predictability results. Section 2 discusses the estimation method-

ology. Section 3 covers the empirical findings on asset pricing quantities and equilibrium

predictability.

2. The Model

2.1 PREFERENCES AND DYNAMICS

Power utility puts a heavy restriction on risk-aversion and elasticity of intertemporal sub-

stitution (EIS)- they are reciprocals of each other. EIS measures willingness to exchange

non-stochastic consumption today for tomorrow given a particular interest rate today. As

such, the restriction that power utility imposes is too strict on two very different concepts

- risk aversion is about preference over a random variable and EIS is substitution across

deterministic consumption paths. In equilibrium asset pricing, the power utility restriction

amounts to jointly establishing both the risk-free rate and equity premium through the

same parameter - risk aversion. Empirically, the power utility restriction is a dismal failure

giving rise to the equity premium puzzle and the corresponding risk-free rate puzzle. To

break the strict relationship between the two, recursive utility functions are introduced a

la Epstein-Zin-Weil that considers the concepts separately.

The utility function that is considered here is due to Duffie and Epstein (1992) which
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is a continuous time counterpart of Kreps-Porteus and Epstein-Zin-Weil preferences. The

normalized utility function considered here is

f(C, J) =
β(1− γ)J

1− 1
ψ

[
C1− 1

ψ ((1− γ)J)

1
ψ
−1

1−γ − 1

]

where C is the current period consumption, J is the value function, ψ is the EIS, β is the

discount rate and γ is the risk-aversion. Assume furthermore that the representative in-

vestor is endowed with a log-recursive utility, which is a special case of the above preference

with ψ = 1. The above utility function simplifies substantially in the ψ = 1 special case to

f(C, J) = β(1− γ)J

[
logC − log(1− γ)J

1− γ

]

The appendix also solves the model for the general case using log-linearization.

Assume that consumption and dividend growth jointly follow a geometric path with

mean reverting growth rate Xt,

dD

D
= (µD +Xt)dt+ σDdWD (1)

dC

C
= (µC + λXt)dt+ σCdWC (2)

dXt = −κXtdt+ σxdWX (3)

where the Brownian motion shocks are all uncorrelated. This formulation has its origin in

Abel (1999) and this is very similar to the one-channel model of Bansal and Yaron (2004)

except for one caveat - the parameter λ loads on the latent shock in consumption growth

rate instead of dividends. When a growth rate shock jointly hits expected dividend and

consumption growth, λ < 1 has the effect of tempering down the corresponding expected
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consumption growth rate relative to dividend growth rate. This fact is also borne out in

the data.

******Figure 1 about here.******

Figure 1 shows that real dividend growth rate has a lot of time-series variation whereas the

corresponding real consumption growth is quite smooth, and λ < 1 helps us achieve that.

At the same time, the volatilities of dividend and consumption growth are non-stochastic.

Furthermore, correlations between all Brownian motion shocks is set to zero, so that I can

devote the full attention to market price of risk and risk-premia stemming from the long-run

risk due to growth rate Xt.

The utility process J satisfies the Bellman equation with respect to equilibrium con-

sumption

DJ (C,X, t) + f(C, J) = 0 (4)

where DJ is the differential operator applied to J with respect to {C,X, t} with the

boundary condition J(C,X, T ) = 0. I am interested in the equilibrium as T → ∞. Thus,

I drop the explicit time dependence assuming that the agent is infinilitely long-lived and

has reached equilibrium over time.

Proposition 1 The solution to the Bellman equation in (4) corresponding to growth rate

dynamics in (1)-(3) and preferences given by Duffie-Epstein utility with EIS=1 is

J(Ct, Xt) =
C1−γ
t

1− γ exp (u1Xt + u2) (5)
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where

u1 =
λ(1− γ)

κ+ β

u2 =
1− γ
β

[
µC −

1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

]

Proof: See Appendix.

2.2 ASSET PRICING

Duffie and Epstein (1992) show that the pricing kernel for stochastic differential utility,

Λt, is given by Λt = exp(
∫ t

0
fJds)fc. It has a particularly nice and elegant expression in

closed form for ψ = 1, and the appendix shows a version corresponding to the log-linearized

solution of the value function for ψ 6= 1.

Proposition 2 The pricing kernel for EIS=1 is given by

dΛ

Λ
= −rft dt− γσCdWC −

(γ − 1)λ

κ + β
σxdWX (6)

where

rft = µC + λXt + β − γσ2
C (7)

Proof: See Appendix.

The risk-free rate in (7) has many desirable properties which we do not observe in risk-

free rate derived from standard power utility setting. In this case, risk-free rate is actually

decreasing uniformly as risk-aversion, γ, increases, whereas in power utility I would need

γ really high for the precautionary savings term to kick-in and generate the same effect.

At that high level of risk-aversion, power utility implies that a one-percent increase in
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consumption growth would increase the risk-free rate by γ-percent - a claim not supported

by the data. In the log-recursive case, a one-percent increase in consumption growth signifies

a one-percent increase in the risk-free rate due to ψ = 1. The proposition that risk-free rate

decreases in risk-aversion uniformly in the log-recrusive case is not surprising. Recall, that

in the log-recursive case γ > 1 is sufficient to generate preference for early resolution of

uncertainty. The preference for early resolution increases the price of certainty equivalence

resulting in a lower real interest rate. For ψ > 1 and higher preference for early resolution

of uncertainty, the appendix shows that the risk-free rate falls sharply and is less responsive

to changes in consumption growth rate than in the unit EIS case.

Since there are two sources of consumption risk in this economy there are two market

prices of risk in (6). The first one is the traditional transient consumption risk term from

power utility coming from volatility of consumption growth, and the second is due to the

stochastic growth rate of consumption and recursive preferences and is popularly termed

long-run risk. Notice that if λ = 0 and there was no stochastic growth rate of consumption

then the long-run risk term will be zero. Moreover, notice that the long-run risk coefficient

(γ−1)λ
κ+β

σx = JX
J
σx measures change in the value function of the agent with respect to the

growth rate Xt. In recursive preferences, the value function is embedded within the utility

function. Thus volatility in marginal utility necessarily measures volatility in the life-term

utility of the agent - hence the name long-run risk.

Long-run risk is increasing in γ, but the effect is magnified due to κ and β in the denom-

inator. Recall, that the stationary distribution of Xt ∼ N
(

0, σx√
2κ

)
. Thus, as κ decreases

and the growth rate becomes more persistant, the volatility of growth rate increases and

an agent exposed to long-run risk from the volatile growth rate shocks seeks higher com-

pensation for bearing this risk. Notice, that the magnitude of the size of long-run risk can

10



be much higher vis-a-vis the risk from the transient consumption volatility as is shown in

Table II.

The long-run market price of risk for ψ 6= 1 is directly proportional to γ − 1
ψ

, which

distinguishes Duffie-Epstein preferences from standard time-separable preferences where

γ = 1
ψ

. Clearly, for time-separable preferences long-run risk vanishes. The quantity γ − 1
ψ

also determines preference for early resolution of uncertainty. Thus, stronger the preference

for early resolution of uncertainty of the growth rates the higher the market price of risk.

Given the pricing kernel of the stochastic differential utility, I establish the equilibrium

price-dividend ratio and return dynamics.

Proposition 3 Equilibrium price-dividend ratio is given by

Pt
Dt

= G(Xt) (8)

where G(Xt) =
∫∞
t

exp(P1(τ)Xt +P2(τ))ds, where τ = s− t, P1(τ) and P2(τ) are solutions

of a system of ODEs given in the appendix. The dynamics for cumulative excess return is

given by

dR =
dP +Ddt

P
− rft dt = µRt dt+ σDdWD +

GX

G
σxdWx

where equilibrium expected excess return is

µRt =
λ(γ − 1)

κ+ β

GX

G
σ2
x (9)

and the volatility of cumulative return given by

σRt =

√
σ2
D +

(
GX

G
σx

)2

(10)
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Proof: See Appendix.

This is the central result in the paper. The PD ratio in this one-channel economy is

not exponentially affine but is non-linear in the expected growth rate. This non-linearity

is responsible for generating time-varying equity premia and a dynamic predictability rela-

tionship. In the presence of a constant price of risk from the X shock, the non-linearities

in the log PD ratio creates time-varying volatilities in PD ratio which creates time-varying

equity premia. In other words, the market price of risk is constant but the quantity of

risk is time-varying which gives rise to time-varying equity premia. Notice, that in the

one-channel Bansal and Yaron (2004) economy, they posit the PD ratio as exponentially

affine in the growth rate which makes conditional volatility of PD ratio a constant, i.e.

if G = P
D

= exp(a + bXt), where a and b are constants, then Vol
(
dG
G

)
= bσx. Thus, if

market price of risk from Xt is also a constant, then equity premium will be a constant

thus eliminating any time-series phenomenon in expected returns.

The cumulative return volatility (10) has two components - the first one is the transient

risk of the volatility of dividend growth and the other is due to long-run risk. To reinforce

the point on the non-linearity of the PD ratio, notice that the long-run risk component of

volatility is time-varying precisely because G(Xt) is not exponentially affine in the growth

rate Xt, which ensures that GX
G

would be time-varying making return volatility stochastic.

The expected excess return (9) seeks compensation for only long-run risk since the

correlation between all the Brownian motion terms are shut off. It is straight-forward to

incorporate those kind of risks from correlation, but for brevity I focus only on the long-run

risk component arising from non-linearity in the PD ratio. Notice that

GX =
1− λ
κ

∫ ∞

t

exp(P1(τ)Xt + P2(τ))(1− e−κτ )dτ (11)
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If λ < 1, as has been assumed in the model to make expected consumption growth “slower”

than expected dividend growth, then GX > 0 which guarantees that expected return is

always positive. In the ψ 6= 1 case, GX > 0 if ψ > 1 along with λ < 1. Moreover, expected

return is positive and procyclical so long as the agent has preference for early resolution of

uncertainty, i.e. γ − 1
ψ
> 0. Thus, the above results that are obtained in closed form for

unit EIS carries over for ψ 6= 1, as long as γ and ψ are both greater than unity.

2.3 TIME-SERIES AND PREDICTABILITY

The non-linearity in the log price-dividend ratio presents valuable time-series dynamics

of aggregate returns. Before discussing predictability, it is essential that I discuss the

time-series nature of expected return. Since GX > 0, expected return is always positive.

Moreover, since

(
GX

G

)

X

=
1

G2

[∫ ∞

t

exp(·)dτ
∫ ∞

t

exp(·)P 2
1 (τ)dτ −

(∫ ∞

t

exp(·)P1(τ)dτ

)2
]
> 0

expected return is increasing in Xt.
1 Therefore, both PD ratio and expected return rise with

a positive growth rate shock. In response to a positive shock from underlying economic

growth rate, expected dividend growth increases. In response, the agent buys more of

the stock that pays future dividends which increases its prices relative to dividends. This

increases the quantity of risk that the agent bears. Since the market price of risk remains

unchanged, overall equity-premia rises. Therefore, in response to a good shock, dividend

yield decreases and expected return increases. From an equilibrium predictability point of

1This expression is positive due to a direct application of Cauchy-Schwartz inequality to functions

P1(τ)
√

exp(·) and
√

exp(·), both of which are integrable in the domain as long as the transversality

condition is satisfied.
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view that is only feasible if the coefficient on dividend yield goes in the opposite direction

from dividend yield from a shock in the growth rate. Let’s re-write the expression for

expected return in the form of a predictability relationship as

µRt =

[
(γ − 1)λ

κ+ β
σ2
xGX

]
Dt

Pt
(12)

where Dt
Pt

= 1
G(Xt)

. We just established that the left hand side of this expression increases in

Xt, and the dividend yield on the right decreases in Xt. However, the stochastic component

of the coefficient on dividend yield, GX , has the property that
(
GX
G

)
X
> 0. This ensures

that as G(Xt) increases (dividend yield decreases), GX also increases which “pulls up” a

diminishing dividend yield to produce higher expected return. This phenomenon is shown

in Figure 2.

******Figure 2 about here.******

In essence, the return predicting coefficient shows the effect of risk-premia. When PD

ratio is high due to high growth rates, the agent infers this “momentum” will continue

because of positively autocorrelated growth rate shocks and buys more of the risky security.

This increases the quantity of risk that he bears which increases the risk-premium. The

opposite happens with decreasing growth rate shocks when the investor holds less of the

risky asset thereby reducing the quantity of risk. The time-variation in the desire to bear

risks is embodied in the time-variation in the predictability coefficient - a fact empirically

uncovered in Dangl and Thomas (2011) and also shown in Lettau and van Nieuwerburgh

(2008). This stochastic nature of the predictability coefficient is missing in the equilibrium

literature. It helps us understand how an economy can have simultaneously both high

prices and high expected returns. It helps make returns stationary - when dividend yield
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changes, the return predicting coefficient moves in the opposite direction to keep returns

stationary. The time-series property of the return predicting coefficient is magnified in the

long-horizon as I show below.

The overall result suggests that as growth rate increases, expected dividend growth

increases, the PD ratio increases (dividend yield decreases) and expected return increases.

Thus, return shocks and dividend yield shocks are strongly negative correlated. Now I

explore the effect of the time-variation in predictability coefficient for long-horizon returns.

2.3.1 Long-Horizon Predictability Coefficient

An investor with a long horizon holding period will invest Pt in the market at time t, and

hold it until time T when the price will grow to PT and he will also receive dividends from

time t to T . Thus, his total return is given by

R̄T =
PT +

∫ T
t
Drdr

Pt
(13)

This is a particular convenient way to pose the long-horizon predictability relationship

because it is easier to solve. Notice I make one simplification where dividends are sim-

ply accumulated and not ploughed back into the stock. Note that this is different from

the instantaneous excess return dynamics developed in Propostion 3, where I use dRt =

dPt+Dtdt
Pt

− rft dt = −Et
(
dP
P
, dΛ

Λ

)
+ · · ·dW . The latter expression, integrated forward to

produce RT , is wholly unsuitable in analyzing long-horizon cummulative returns. This is

because the instantaneous cummulative return dynamics is of a dt - period return from t

to t + dt with dividends Dt and risk-free rate rft held constant at time t. The expected

growth rate Xt also stays constant, and I can only account for price change due to Xt.
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Integrating forward this quantity will not address the fact that there are dynamic relation-

ships between prices, dividends and risk-free rate through the growth rate which will grow

over time in longer horizon. To overcome this problem, I resort to looking at long horizon

returns through the quantity in (13) where I accumulate dividends from t to T and also

consider the intermediate shocks from dividend growth and risk-free rate to prices within

holding period z = T − t.

First, I determine the dynamics of prices Pt. The full distribution of price growth from

t to T can be written as

PT = Pt exp

(∫ T

t

[
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
]
ds+

∫ T

t

σP (Xs) · dW
)

(14)

where dW = [dWD dWx]. The expressions for µP (Xt) and σP (Xt) are in the appendix.

µP (Xt) is the total change in price resulting from dividend growth, risk-free rate and com-

pensation for bearing risk Xt along with other higher order terms whose effect over the

long horizon could be substantial. σP (Xt) is a vector of volatility shocks arising from both

transient dividend shock and growth rate shock from Xt. They are determined by applying

Ito’s Lemma to (8) and integrated forward. Similarly, dividend growth can be written as

Dr = Dt exp

(∫ r

t

(
Xs −

1

2
σ2
D

)
ds+

∫ r

t

σDdWD

)
(15)

Substituting them both into (13), I can write total return from t to T as

R̄T =

»
G(Xt) exp

»Z
T

t

»
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
–
ds+

Z
T

t
σP (Xs) · dWs

–
+

Z
T

t
exp

»Z
r

t
[Xs − σ2

D]ds+

Z
r

t
σDdWD

–
dr

–
Dt

Pt

This expresses cumulative return over horizon z = T − t as a function of current dividend

and growth rate shocks, as well as the effect of the entire path of the growth rates over the
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horizon. The first term inside the parenthesis is total price growth from t to T and the

second term is the growth in dividends. This expression is stochastic and highly non-linear

in the growth rate, and shows how endogenous shocks accumulate over time to produce

long-horizon returns. It is straight-forward to see that the non-linearity of endogenous

shocks rule out any possibility that the statistical properties of OLS will do justice in

estimating the above expression.

Fortunately, the conditional expectation of the above expression in (16), has a more

tractable form without the Brownian shocks. First, observe that the conditional expectation

of future dividends has a closed-form solution.

Lemma 1 Conditional expectation of future dividend satisfies

Et [Dr] = Dt exp(A(s)Xt +B(s))

where s = r − t and A(s) and B(s) are in the appendix.

Now it is straightforward to establish conditional expectation of cumulative expected

return R̄T using the accounting identity (13).

Proposition 4 The price process in (14) implies Et [PT ] = PtH(Xt, z) where H(Xt, z) =

Et

[
exp

[∫ T
t
µP (Xs)ds

]]
with z = T − t. Then, using Lemma (1)

Et[R̄T ] =
Et[PT ] +

∫ T
t
Et[Dr]ds

Pt

=

[
G(Xt)H(Xt, z) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt

= α(Xt, z)
Dt

Pt
(16)

To convert the conditional expectation relationship into a percentage return form, I simply
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subtract one and focus on the quantity.

Et[R̄T ]− 1 =

[
G(Xt)(H(Xt, z)− 1) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt
(17)

The expression H(Xt, z) is conditionally known at time t and represents expected price

changes over horizon z due to the stochastic growth rate. It satisfies a second order partial

differential equation that depends on Xt and z. It has an unique solution given a set of

boundary condtions. One of them is natural H(Xt, 0) = 1 such that limT→tEt[PT ] = Pt.

However, due to all the non-linearties in Xt, its general form cannot be solved analytically,

and no sensible boundary conditions are available in the Xt-plane to solve it numerically.

Details are in the appendix. Thus, I resort to solving H(Xt, z) by simulating several

thousand paths of Xt→T to compute Et

[
exp

(∫ T
t
µP (Xs)ds

)]
for every initial point Xt.

The z-horizon return predictability coefficient α(Xt, z) is composed of two parts. There

is an expected dividend growth component and then an expected price growth compo-

nent as a dynamic response to dividend growth rates and dividend shocks. In traditional

predictability regressions of Shiller (1981) and Fama-French (1988), the above conditional

expectation relationship is tested by running univariate regression of cumulative returns

of varying horizon on current dividend yields. The coefficients from these regressions are

taken as constants and tests on the coefficients are performed using standard assymptotics.

The structural relationship here suggests that the slope coefficient on these long-horizon re-

gressions are themselves stochastic with crucial time-series properties, and as such, treating

them as constants would lead to immense biases. The slope itself is a non-linear function of

the underlying state variable that also affects the regressor and as such should contribute

to the overall variance of the slope coefficient that treating it as a constant would miss. In
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fact, looking at the immense non-linearity of (16) in the Brownian shocks, it looks like the

coefficient estimated via OLS will also be highly inconsistent. In fact, it confirms Valkanov’s

(2003) argument that the coefficient is a function of underlying shocks with fundamentally

different properties than standard assymptotics which he analyzes by using the Functional

Central Limit Theorem.

Another important aspect of these regressions is the explanatory power of the regression

typically measured in terms of higher R2-s as horizon increases. Fama and French (1998),

for example, find R2-s that range from 19% to as high as 64% over 1-5 year horizons. The

equilibrium models of Bansal and Yaron (2004) and Campbell and Cochrane (1999) both

show that return R2-s are also increasing over the horizon. However, Goetzmann and Jo-

rion (1993) and recent work of Boudukh, et. al. (2008) have cast doubts on these findings.

In the latter work, for example, the authors find that the R2-s are not increasing but scale

with time and are, in fact, decreasing slightly as return horizon increases. Goetzmann and

Jorion (1993) show that one can still get high R2-s and significant coefficients where there

is no linear relationship between future returns and the dividend yield. The conditional

mean relationship given in (16), provides a theoretical foundation to compute pseudo-R2’s

in longer horizon. To gauge the magnitude of pseudo-R2 from my structural model, I ask

the question - How much of the unconditional variance of R̄T can be explained by the un-

conditional variance of the conditional mean relationship in (16)? Thus, to infer the model

implied R2’s for longer horizon, I simply compute pseudo-R2 =
Var
“
α(Xt,z)

1
G(Xt)

”

Var(RT )
where Var

denotes unconditional variance. Notice that the coefficient of the conditional mean α(Xt, z)

is itself a function of Xt which also impacts the dividend yield 1
G(Xt)

. Empirical works that

treat the return predictability coefficient as a constant misses this extra uncertainty that

increases with time.
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It is also obvious from the expression of α(Xt, z = T − t) that two return predicting

coefficients of different horizons T1 and T2 should also be correlated - not only through the

current expected growth rate Xt, but also because they will share the same expected price

and dividend growth changes upto min(T1, T2). Naturally this persistance will be stronger

if T1 and T2 are closer to each other than if they are further apart. Empirically, BRW

(2008) has found that this correlation between the return predicting coefficients is quite

significant. They are stronger when the horizons are closer as is the case in my model.

This establishes the full theory behind long horizon predictability that is completely

endogenized within a one-channel Bansal and Yaron (2004) economy under Duffie-Epstein

preferences. The setting here is tractable enough to produce a semi closed-form estimate

of the conditional mean of long-horizon regression with explicit expression for the long-

horizon predictability coefficient. The result shows time-series dependence between the

return predicting coefficient and dividend yield rendering inference drawn from pure OLS

based exercises biased and inconsistent.

3. Empirical Methodology

3.1 A BAYESIAN STRATEGY

In order to get the parameter estimates that govern the above state-space, I follow a

Bayesian methodology. Let the full parameter set that guides the system be θ = {µD, µC, σD,

σx, κ, λ}. The goal is to get joint estimates of p(θ,X) conditional on the data on con-

sumption and dividend growth. Here, X denotes the full time-series of growth rates

{X1, · · · , XT}. We will follow a Markov Chain Monte Carlo (MCMC) algorithm that
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will draw them conditionally on each other

p(θ|X) p(X|θ)

In order to generate the parameters and the time-series of the growth rates, first I discretize

dividend and consumption growth rates and write them in the familiar discrete-time state-

space notation. Let gdt+1 be dividend and gct+1 be consumption growth. Then the continuous-

time state-space can be written by taking dt = 1 as



gdt+1

gct+1


 =




(µD +Xt)

(µC + λXt)


 +



σD 0

0 σC


Z1 (18)

Xt+1 = (1− κ)Xt + σxZ2 (19)

where Z1 ∼ N(0, I2) and Z2 ∼ N(0, 1) are uncorrelated standard normals.

First, I draw the time-series of the growth rates X conditional on the rest of the pa-

rameter space, θ, and the full time-series of dividend and consumption growth. In order

to draw the time-series of growth-rates, I follow a Bayesian version of kalman filter called

Forward Filtering Backward Sampling (FFBS) as introduced by Carter and Cohn (1996).

In this step, recall I am assuming that I know the rest of the parameters θ, and I draw the

full time-series of X given the full time-series of dividend and consumption growth.

Then, my goal is to draw the parameter set θ conditional on the full time-series of the

growth rates, which I have obtained in the above step using FFBS. Here I generate the pa-

rameters using a MCMC algorithm called Gibbs sampler by which I draw one parameter at

a time conditional on the rest of them - θi|θ−i, X, gd, gc, where θ−i is the rest of the param-

eters modulo the i-th one. In this simple state-space setting, all the posterior distributions
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of the parameters are available in elementary conjugate form. The exact parameters of

these posterior distributions is discussed in detail in Allenby, McCulloch and Rossi (2005).

3.1.1 Priors

The strength of the Bayesian mechanism is the ability to specify prior information on the

growth rate X since it is not directly observable. Prior belief on the parameters of X - κ

and σx, based on the theory developed thus far allows incorporation of valuable economic

intuition into the estimation process precisely because Xt is not directly observable. In

order to generate high market prices of risk, I need the growth rate to be persistant. I

impose a prior on 1 − κ ∼ N(0.95, 0.12). Furthermore, my choice of hyperparameters for

prior on σx centers the prior mean of σx to be 0.015 - half the unconditional variance

of aggregate consumption growth, with fairly high uncertainty which will show up in the

posterior distribution of σx. Finally, since the theory heavily relies on λ < 1, I propose the

prior λ ∼ N(0.40, 12). Note, these are all proper but extremely diffuse priors. The 95%

confidence band of the prior distributions for these parameters is fairly wide and covers a

broad range of possible values. I leave it up to the data to play a crucial role in identifying

the posterior distribution of these parameters.

3.2 DATA

I use US data from 1929-2010 sampled annually. Aggregate dividend data is from CRSP

value-weighted portfolio. Cochrane (2008) points out that CRSP dividends capture all

payments to investors - including cash mergers, liquidations and repurchases. The risk-

free rate is obtained from the return on 90-day Treasury Bills. Aggregate consumption

is non-durables and services divided through by population growth to make it per capita
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consumption. All nominal quantities are converted to real by deflating them by CPI.

4. Empirical Findings

The Gibbs sampler produces simulations of parameter values from their posterior distribu-

tions. The estimates from the state-space estimation (18)-(19) is reported in panel A of

Table I in five different quintiles from 2.5-97.5-th quintile.

******Table I about here.******

It is clear from the MCMC simulated draws that the data has played a crucial role in

pinning down the posterior distrubition of κ, σx and λ. The posterior distribution of

both of these parameters have tightened around the posterior mean showing that the data

provides valuable inference in mitigating the prior uncertainty about these parameters.

The parameter for which the data plays the most crucial role is σx whose posterior mean

is 0.027. Also, the time-series of growth rates that are filtered from aggregate consumption

and dividend growth match the time-series behavior of the underlying series quite well as

is shown in Figure 2.

Another important test whether the model parameters are meaningful is their ability

to produce key moments of the macro data. The model implies that the unconditional

mean, standard deviation and first order autocovariance of consumption growth are µC ,
√
λ2 σ2

X

1−(1−κ)2 + σ2
C and λ2(1 − κ)

σ2
X

1−(1−κ)2 . Similarly, I can compute the unconditional mo-

ments of dividend growth. Panel B of Table I reports the posterior distribution of these

moments computed from the posterior distribution of the parameters simulated via MCMC.

The posterior distribution of the model implied moments match up very well with the data.

The only statistic it falls short on is the correlation of dividend and consumption growth.
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Whereas in the data the correlation is 0.58, the model implied correlation is only between

0.30-0.47. That is primarily due to the fact that this a one factor model. With additional

latent shocks, like stochastic volatility, this shortcoming can be easily addressed.

The overall message is that the parameters drawn from the MCMC can reproduce

salient features of the macroeconomic data - the filtered draws of the states Xt can track

the observed time-series of consumption and dividend growth and the parameter draws can

match the key moments implied by the model.

4.1 MARKET PRICES OF RISK

To focus on asset pricing, I pick the following preference parameters - time discount pa-

rameter β = .001 and risk-aversion γ = 7.5. The posterior estimates of the market prices

of risk are in Table II. There are two sources of risk in my economy - transient consump-

tion volatility risk given by γσC and long-run risk from persistant growth rates given by

(γ−1)λσx
κ+β

. The posterior distribution of the price of long-run risk dominates the price of

transient volatility risk by a huge margin. Whereas the posterior mean of the price of

transient risk is 0.15, the posterior mean of the price of long-run risk is 0.58. Clearly, the

time-series of dividend and consumption risk implies that the magnitude of long-run risk

is extremely economically significant. Hence, an agent in this economy with Duffie-Epstein

preferences is far more averse to marginal utility shocks resulting from long-run risk than

from traditional transient consumption volatility shocks.

4.2 ASSET PRICING QUANTITIES

This subsection shows the quantative magnitude of key asset pricing quantities implied by

my model. Taking the posterior distribution of the parameters, I simulate the posterior
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distribution of six key asset pricing quantities - expected excess return (9), volatility of

cumulative return (10), dividend-price ratio (8), volatility of changes in dividend-price

ratio, risk-free rate (7), the volatility of risk-free rate and the Sharpe Ratio. Since all of

these quantities depend on the growth rate Xt, I integrate it out by using the stationary

distribution of Xt ∼ N
(

0, σx√
2κ

)
to produce unconditional estimates. Table III reports the

2.5-97.5-th quintiles of these quantities.

******Table III about here.******

The model can match the equity premia (posterior distribution is 4.78-7.91%), dividend

yield (posterior distribution is 3.16-4.56%) and the low discount rate, β, helps to match the

risk-free rate (posterior distribution is 0.83-2.67%). The Appendix shows that for ψ > 1,

I can generate a far lower risk-free rate with higher discount rates. At the same time, my

model can also generate high volatilities of equity returns (posterior distribution is 16.22-

19.37%) and risk-free rate (posterior distribution is 1.68-2.51%). To gauge the effect of

long-run risk on equity volatility, notice that the volatility of changes in the dividend yield

is between 9.14-12.37% which is solely determined by exposure to long-run risk.

The parameters of the state-space that match the time-series properties of consumption

and dividend growth can generate plausible asset pricing quantities. Clearly, additional

factors, like stochastic volatility, can be used to enhance the quantitative effects. For

example, one limitation of the one-factor model is that it cannot generate large variation

in expected return. The two-factor model of Bansal and Yaron (2004) which incorporates

stochastic volatility can be used to generate such large variations. However, even when my

model produces small variation in expected return, it can produce substantial time-variation

in the predictability coefficient, which is discussed next.
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4.3 LONG HORIZON PREDICTABILITY

The long-horizon coefficient has rich time-series properties coming from both dividend and

price growths. These quantities are conditionally known and I can compute them without

running any regressions. I also compute how informative this unconditional relationship

is through a pseudo-R2 ratio that measures the size of the unconditional variance of the

conditional mean given by the predictability relationship relative to the unconditional vari-

ance of long-horizon return in my model. Quantitatively speaking, although the model can

only generate small variation in expected return, it can nonetheless generate quite a bit of

variability in the predictability coefficient.

The z-horizon conditional predictability coefficient is previously shown to be

[
G(Xt)(H(Xt, z)− 1) +

∫ T

t

[exp(A(s)Xt +B(s))]ds

]

that depends on the current growth rate Xt and the horizon z = T−t. The first component

of the coefficient is expected price growth from t → T , and the second reflects expected

dividend growth. Taking the 2.5, 50 and 97.5-th quintiles of parameters and states drawn

from the Gibbs sampler, I compute dividend growth and price growth at each point in time

for time horizons 1, 3 and 5 years. The time-series of expected dividend growth is shown

in Figures 5-7 and that of expected price growth in Figures 8-10.

First, let me focus on dividend growth. Assuming $1 of dividends at time t, the graph

shows expected dividend growth over horizons 1 (Figure 3), 3 (Figure 4) and 5 (Figure 5)

years.

******Figure 3 about here.******

******Figure 4 about here.******
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******Figure 5 about here.******

The time-variation in expected dividend growth is substantial. In some periods, responding

to poor negative shocks in the growth rate of dividends, the expected dividend growth

falls below $1. While the time-series is more stable in the post-war years, the early part

of the sample around the Great Depression shows pronounced movements in expected

dividend growth. Following the stock market crash in 1929, expected dividend growth fell

precipitously. Then an increase in dividends, which came alongside a rebound in the stock

market in the mid 1930’s, shows large upswings in expected dividend growth which fell

again when the stock market crashed in 1937. Subsequent boom during World War II

lifted expected dividend growth, and the post-war time-series shows a lot less variability

until the stock market crash of 2009. The time-series pattern is the same across all horizons

although the magnitude of expected dividend growth changes substantially. The time-series

average of expected dividend growth for each horizon is {1.01,1.04,1.08}, although there

is a quite a bit of uncertainty behind those growth figures. The 2.5 and 97.5 quintiles for

each of those quantities is {0.96,0.89,0.84} and {1.07,1.23,1.41}. Clearly, expected dividend

growth rises over the horizon. But, the uncertainty also increases. For a 5-year horizon, on

average, starting with $1 in dividends expected dividend growth is anywhere from $0.84 to

$1.41! The corresponding time-series variation is a lot more pronounced in price growth

which is discussed next.

To give an intuition of what this term looks like, Figure 6 plots the H(Xt, z)−1 function

for different values of Xt.

******Figure 6 about here.******

Expected price growth over any horizon is clearly monotonic in Xt, but it can be both

positive and negative. Since growth rates are autocorrelated, if a negative shock is realized
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expected dividend growth rate will be negative for quite some time. Consequently, price of

the asset which pays those dividends will also fall. Figures 7-9 show expected increases in

PD ratio for horizons 1, 3 and 5 years, respectively.

******Figure 7 about here.******

******Figure 8 about here.******

******Figure 9 about here.******

The time-series variation in expected price growth is a lot more pronounced than expected

dividend growth primarily due to the leverage effect created by λ < 1. Whereas the

post-war expected price growth is relatively stable, the largest increase takes place after

the stock market rebounded in the mid-1930’s. Following the market rebound, the mar-

ket expectation of prices soared which dropped again when the stock market crashed in

1937. The World War II years saw more fluctuation in expectation of prices which sta-

bilized at the end of the war. In the post-war years, the variability persists but not as

pronounced as the pre-war years. As is true for expected dividend growth, expected price

growth increases in horizon with substantial uncertainty. The time-series averages of price

growth for horizons 1,3 and 5 years are {1.83, 3.60, 5.57}. However, the 2.5 and 97.5 quin-

tiles are {0.45,-0.37,-0.90} and {4.35,11.77,20.20}. Clearly, the leverage effect exacerbates

the effect of dividend growth rate shocks in prices. Interestingly, the price growth scales

with the horizon. Dividing the median estimates by the respective horizons, median price

growths become {1.83,1.20,1.11}. Since price growth clearly occupies the lion’s share of the

long-horizon predictability coefficient, the latter also scales with time - a fact uncovered

empirically by Boudukh, et. al. (2008).
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Having shown time-series variation in the predictability coefficient, it is interesting to

investigate what kind of unconditional claims we can make from this theory. Long-horizon

predictability is handled in the equilibrium asset pricing literature by simulating long-

horizons returns from the equilibrium model and running reduced form regressions. For

references, see Bansal and Yaron (2004) Table VI and Campbell and Cochrane (1999) Table

5. Monotonically decreasing coefficients (on PD ratio) and increasing R2’s across horizons

are taken as theoretical justification of the classic pattern in the reduced form works of

Campbell and Shiller (1988) and Fama and French (1988). I perform the same regressions

in Table IV.

******Table IV about here.******

They also show monotonically increasing coefficients (on DP ratio) and R2’s across the

horizons. However, in my case these regressions are misspecified because of the dependence

between the coefficient of long-horizon predictability and the dividend yield. Instead of re-

lying on the R2s as evidence of long-horizon predictability, I compute pseudo-R2s described

in Section 1.3.1. These pseudo-R2s measure how much of the variance of long-horizon re-

turn in my model can be explained by the long-horizon predictability relationship and are

shown in Table V.

******Table V about here.******

Here as well, the pseudo-R2s increase over the horizon, but with a big caveat. Across the

horizons, the variance of the long-horizon predictability relationship increases much faster

relative to the unconditional variance of long-horizon returns. In other words, pseudo-R2s

increase simply because the variance of the predictability relationship increases faster than

the variance of total return for each horizon. This is hardly an evidence for long-horizon
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predictability. In fact, it shows that over long-horizon the predictability relationship has a

lot of uncertainty, which should give us pause in rendering any qualitative judgement on

long-horizon predictability. The model brings out a very salient feature of the data. With

less than hundred years of annual returns data, there is quite a bit of uncertainty in long-

horizon expected returns. Using parameter values that can explain key macroeconomic

dynamics, the model produces long-horizon predictability relationships which also embody

a large amount of uncertainty. This result is shown in a parsimonious one-factor model, and

adding other shocks like stochastic volatility, can only make the predictability relationship

more volatile. Much of this uncertainty is due to enforcing the structural link between the

endogenously determined regressor (DP ratio) and the predictability coefficient relative to

other models where the coefficient is held constant.

5. Dividend Strips

The above long-run risk framework can also be used to study dividend strips, i.e. an asset

which pays a dividend stream between times t and T . Dividend strips can be replicated

synthetically using optons data, or traded directly in the dividend futures market. In 1990,

the Chicago Board Options Exchange (CBOE) introduced Long-Term Equity Anticipation

Securities (LEAPS), which are long-term call and put options of maturity up to three years.

These option prices can be used in conjunction with put-call parity to construct dividend

strips artificially. Secondly, starting around 2000 there is an over-the-counter market to

trade dividend derivatives directly. Binsbergen et al. (2013) study the pricing behavior in

this dividend futures market.

There is a growing literature that looks at the dynamics of these synthetic dividend
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strips. Binsbergen et al. (2012) use LEAPS to compute the implied prices of synthetic

dividend strips from put-call parity. They conclude that the equity premia in short-term

dividend strips to be higher than longer-term strips. Belo, et al. (2013) seek an explanation

based on stochastic capital structure policies which can shift risk from long-horizon to short-

horizon dividends. Boguth, et al. (2012) construct dividend strips from highly levered long

and short positions in futures contracts, and show that small pricing frictions in the futures

market can produce, among many things, a downward sloping term structure of equity

premium. Binsbergen, et al. (2013) look at dividend trades directly from dividend futures

market and confirm the same downward sloping term-structure for risk premium.

In this section, I consider the implications of the one-factor long-run risk model de-

veloped in this paper on the term-structure of equity premia. Since the price of these

short-term assets are simply discounted prices of dividends between times t and T , I can

compute them as finite time equity

P T
t =

1

Λt

∫ T

t

Et [ΛsDs] ds (20)

= Dt

∫ T

t

S(Xt, τ)ds (21)

S(Xt, τ) = eP1(τ)Xt+P2(τ) (22)

where τ = s − t. Notice, this is simply a finite horizon version of equity valuation in (8)

where the upper limit was infinity. P1(τ) and P2(τ) have the same functional form as before

and can be found in the Appendix. Denoting GT (Xt) =
∫ T
t
S(Xt, τ)ds, the volatility, risk
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premium and β of the T -period short-term equity can be written as

σTt (Xt) =

√
σ2
D +

(
GT
X

GT

)2

σ2
x (23)

µTt (Xt) = −Cov

(
dΛ

Λ
,
dP T

t

P T
t

)

=
GT
X

GT

λ(γ − 1)

κ+ β
σ2
x (24)

βTt =
GT
X/G

T

GX/G
(25)

Taking the median parameter values from Panel A of Table I, I compute the risk-premia,

volatility and sharpe-ratio of dividend strips and plot them in Figure 10.

******Figure 10 about here.******

All three quantities are monotonically increasing in maturity, and they are lower than those

of the aggregate market.2 In addition, all three quantities are increasing in the growth rate

Xt. Unfortunately, upward sloping risk premium is contrary to the evidence found in

Binsbergen, et. al. (2012). The reason the risk-premium of dividend strips is upward

sloping is because an agent who has preference for early resolution of uncertainty requires a

higher discount rate to be exposed to uncertain dividends out in the future. The farther out

the dividend payment, the higher the risk-premium. To see this directly, consider an asset

at time t that makes only one dividend payment at time T of amount DT . The price of this

asset p(Xt, τ = T − t) = Et

[
ΛT
Λt
DT

]
= DtS(Xt, τ), as has been shown in the proof of (3).

The risk-premium of this τ horizon asset is −Cov
(
dΛ
Λ
, dp
p

)
= (γ−1)λ(1−λ)σ2

x

κ(κ+β)
(1− e−κτ )which

is increasing in τ .

2This is easy to see because the market is characterized by T → ∞ and all of these quantities are

monotonically increasing in maturity.
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The β of a τ period dividend strip is given by (25) and plotted in Figure 11. Binsbergen,

et al. (2012) report β of around 0.5 for dividend strips of one month maturity. The model

produces a β of 0.5 for dividend strips with maturity of 10 years, and short horizon assets

have β’s far less than 0.1.

******Figure 11 about here.******

The reason for the upward sloping β is the following. As T → 0, clearly β → 0. However, as

maturity increases, dividend strips start behaving like traditional market equity for which

the β of these assets converges to the market β of one. This increase is monotonic since the

numerator of (25) increases monotonically with T as was shown in the plot for risk-premia

in Figure 11.

This model joins a list of many leading structural asset pricing models, like Campbell

and Cochrane (1999), Bansal and Yaron (2004), and Gabaix (2012) which fail to produce

a downward sloping term structure of risk premia and volatilities. A reduced form model

of equity returns that can produce a downward sloping term-structure of risk premium was

proposed by Lettau and Wachter (2007). Using the correlation structure between expected

and unexpected cash-flow shocks and shocks to the price of risk and stochastic discount

factor, they can generate an economically meaningful downward sloping risk premium on

dividend strips. It is important to realize that the shock structure in the structural models

is far simpler relative to Lettau and Wachter (2007). An important next step is to consider

alternative dynamics of the underlying shock processes and preferences or technology that

will produce the pricing kernel dynamics in Lettau and Wachter (2007).

Using the filtered time-series of growth rates, I also produce the time-series of sharpe-

ratios (Figure 12) and β’s (Figure 13) of the dividend strips with maturities of 1 and 5

years.
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******Figure 12 about here.******

The sharpe-ratio of the 1-year (5-year) dividend strip is roughly 4.5% (18%), and it has been

fairly constant since the Great Depression. In contrast, the sharpe-ratio of the 1-month

asset is roughly 10% as reported in Binsbergen, et al. (2012).

******Figure 13 about here.******

The time-series of β’s for the 1 and 5 year assets also show stability since the Great De-

pression, however they are far below the β of 0.5 as reported in Binsbergen, et al. (2012).

6. Conclusion

This paper shows that if aggregate consumption and dividends share a single slow-moving

shock in the dynamics of their growth rate, then that has important ramifications for the

PD ratio under recursive preferences. Simple Mertonian mechanics imply elegant non-

linearities in the PD ratio which create stochastic volatility in returns and imply time-

varying equity premium. This is a key contribution of this paper since the extant long-run

risk literature relies on stochastic volatility to generate time-variation in equity premium.

The non-linearity in PD ratio produces two interesting results. First, it creates time-

variation in the coefficient of predictability - an unexplored fact in the equilibrium asset

pricing literature although empirical works with time-varying coefficients are promising.

Secondly, the model also implies that the term structure of equity premia is upward sloping

in contradiction to what researchers have uncovered in the data. Overall, the result in long-

horizon predictability elicits an important feature of the data. With less than a hundred

years of return data, there is quite a bit of noise in computing long-horizon expected returns.

The parameters of the model that can match key properties of consumption and dividend
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dynamics as well as basic asset pricing quantities imply large time-variation in the coefficient

of predictability across all return horizons. This creates a significant uncertainty in long-

horizon expected returns rendering inference about long-horizon predictability unreliable.

With regards to the term structure of equity premia, an interesting extension would be to

properly place the Lettau and Wachter (2007) dynamics within a long-run risk framework

and see which structural shocks are responsible for the downward sloping equity premia.

7. Appendix

Proof of Proposition 1: The Bellman equation in (4) can be written as

JCC[µC + λXt]− JXκXt +
1

2
JCCC

2σ2
C +

1

2
JXXσ

2
X + f(C, J) = 0

The continuation utility J has a solution of the form

(1− γ)J = exp(u0 lnCt + u1Xt + u2)

Substituting it in and collecting terms, reduces the above equation to a system of ODE’s

that can be solved recursively

u0 = (1− γ)

u1 =
(1− γ)λ

κ+ β

u2 =
(1− γ)

β

[
µC −

1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

]
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Thus, the continuation utility function reduces to J(Ct, Xt) =
C1−γ
t

1−γ exp(u1Xt + u2).

Proof of Proposition 2 The pricing kernel for stochastic differential utility can be written

as

dΛ

Λ
=
dfC
fC

+ fJdt

Using the above utility function, let g = fC = β(1−γ)J
C

= βC−γ exp(u1Xt + u2) and fJ =

−β(1+u1X+u2). Use Ito’s Lemma on g and (2) and (3) one can rewrite the pricing kernel

as

dΛ

Λ
= −rft dt− γσCdWC −

λ(γ − 1)

κ+ β
σxdWX

rft = λXt + µC − γσ2
C + β

Proof of Propostion 3 The stock price is

Pt =
1

Λt
Et

∫ ∞

t

ΛsDsds

=
1

Λt

∫ ∞

t

EtΛsDsds

Define ht = ΛtDt. Thus

dh

h
= [(1− λ)Xt + µD − µC + γσ2

C − β]dt− γσCdWc −
λ(γ − 1)σx
κ+ β

dWx + σDdWD
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Applying Feynman-Kac, Et [ΛsDs] = f(ΛtDt, Xt, s − t) = f(ht, Xt, τ = s − t). Applying

Ito’s Lemma to f and the martingale restriction, I get the following PDE

fhh[(1−λ)Xt+µD−µC+γσ2
C−β]−fXκXt+

1

2

(
fhhdh

2 + fXXσ
2
x

)
−fhX

λ(γ − 1)σ2
x

κ + β
−fτ = 0

Guess a solution of the form f = ht exp(P1(τ)Xt + P2(τ)). Plug the solution in the above

PDE and after collecting the terms in the constant and Xt, I get a system of ODE’s of the

form

P ′1(τ) = (1− λ)− κP1(τ)

P ′2(τ) = µD − µC + γσ2
C − β − P1(τ)σ2

x

[
λ(γ − 1)

κ+ β
− 1

2
P1(τ)

]

with initial conditions P1(0) = P2(0) = 0. The solution of these ODEs are

P1(τ) =
1− λ
κ

(
1− e−κτ

)

P2(τ) = aτ + b(e−κτ − 1) + c(1− e−2κτ )

a = µD − µC + γσ2
C − β +

σ2
x(1− λ)

2κ

[
1− λ
κ
− 2

λ(γ − 1)

κ + β

]

b =
1− λ
κ

[
σ2
x

κ

[
1− λ
κ
− λ(γ − 1)

κ + β

]]

c =
σ2
x(1− λ)2

4κ3

Thus, Et [ΛsDs] = ΛtDt exp(P1(τ)Xt + P2(τ)) which implies

Pt = DtG(Xt)
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where G(Xt) =
∫∞
t

exp(P1(τ)Xt + P2(τ))ds. The transversality condition holds for a < 0.

Cumulative excess return dRt =
Dtdt+dP−rft dt

Pt
over a small interval dt is

dRt = µRt dt+ σDdWD +
GX

G
σxdWx

where µRt = −Covt
(
dΛt
Λt
, dPt

)
= GX

G
λ(γ−1)
κ+β

σ2
x.

Proof of Lemma 1: Given dividend and growth rate dynamics in (1) and (3), we can

express the PDE satisfying Et[Dr] using Feynman-Kac. Let Et[Dr] = f(Dt, Xt, s), where

s = r − t. Then f satisfies

fDDt[µD +Xt]− κXtfX +
σ2
DD

2
t

2
fDD +

σ2
x

2
fXX = fs

Propose f = Dtg(Xt, s) which reduces the above PDE to

µD +Xt −
gX
g
κXt +

σ2
X

2

gXX
g

=
gs
g

It is straightforward to check that the solution to the above PDE is g(Xt, s) = exp [A(s)Xt +B(s)]

where

A(s; κ) =
1− e−κs

κ

B(s) = µDs+
σ2
x

2κ2
(s− 2A(s; κ) + A(s; 2κ))
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Proof of Proposition 4: The expression for z = T − t-horizon total return is

R̄T =
PT +

∫ T
t
Drdr

Pt

To compute the expression for long run predictability, first let us write down the SDE that

G satisfies:

dG = µGdt+ σGdWx

where

µG =
σ2
x

2

∫ ∞

t

exp(·)P 2
1 (τ)ds− κXt

∫ ∞

t

exp(·)P1(τ)ds

−
∫ ∞

t

exp(·) (P ′1(τ)Xt + P ′2(τ))) ds− 1

σG = σx

∫ ∞

t

exp(·)P1(τ)dτ

Furthermore, since Pt = DtG(Xt), then

dP

P
=

[
µD +Xt +

µG
G

]
dt+ σDdWD +

σG
G
dWx

= µP (Xt)dt+ σP (Xt) · dW (26)

where µP (Xt) =
[
µD +Xt + µG

G

]
and σP (Xt) =

[
σD

σG
G

]
and dW = [dWD dWx]. In

integral form, that can be expressed as

PT = Pt exp

[∫ T

t

[
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
]
ds+

∫ T

t

σP (Xs) · dWs

]
(27)

The dividend process in (1) can be written as Dr = Dt exp
[∫ r
t

[Xs − 1
2
σ2
D]ds+

∫ r
t
σDdWD

]
.
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Thus, z-horizon return can be written as

R̄T =

»
G(Xt) exp

»Z T
t

»
µP (Xs)−

1

2
σP (Xs)σP (Xs)

′
–
ds +

Z T
t
σP (Xs) · dWs

–
+

Z T
t

exp

»Z r
t

[Xs − σ2
D ]ds+

Z r
t
σDdWD

–
dr

–
D

P
(28)

Fortunately, the conditional expectation of R̄T has an easier form. First, I need to

compute Et[PT ] = f(Pt, Xt, z = T − t). Applying Feynman-Kac to f and enforcing the

martingale restriction produces the PDE,

fPP
[
µD +Xt +

µG
G

]
− fxκXt +

σ2
x

2
fXX +

P 2

2
fPP

(
σ2
D +

σ2
G

G2

)
− fz + PfPX

σGσx
G

= 0

Notice that the above PDE is homogeneous of degree 1 in Pt. Thus, I can propose a solution

of the form f = PtH(X, z) which reduces it to

[
µD +Xt +

µG
G

]
− HX

H
κXt +

σ2
x

2

HXX

H
+
HX

H

σGσx
G

=
Hz

H

with boundary condition H(Xt, 0) = 1. Thus Et[PT ] = PtH(Xt, z). Using ( 27) and

the law of iterated expectations, I can write Et[PT ] = PtEt

[
exp

[(∫ T
t
µP (Xs)ds

)]]
which

implies H(Xt, z) = Et

[
exp

(∫ T
t
µP (Xs)ds

)]
which satisfies the boundary condition that

H(Xt, 0) = 1. Now, using the result of Lemma 1, conditional expectation of cumulative
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return over any horizon from T to t can be written as

Et[R̄T ] =
Et[PT +

∫ T
t
Drdr]

Pt

=
Et[PT ] +

∫ T
t
Et[Dr]dr

Pt

=

[
G(Xt)H(Xt, z) +

∫ T

t

[exp(A(r − t)Xt +B(r − t))]dr
]
Dt

Pt

= α(Xt;T, t)
Dt

Pt

H(Xt;T, t) = Et

[
exp

[∫ T
t
µP (Xs)ds

]]
. Thus, the conditional mean of cumulative return

depends on the whole path of the growth rates Xs from t to T which can be generated

given an initial Xt.

Price-Dividend Ratio for ψ 6= 1: The above analysis holds for ψ = 1. Here I show

that for ψ 6= 1, the price-dividend ratio is isomorphic to the ψ = 1 case. Hence, the

predictability results that I derived earlier would hold for ψ 6= 1 as well. More specifi-

cally, I show in this section that the positive relationship between growth rates and the

price-dividend ratio - the centerpiece of our above analysis, holds here for ψ > 1.

The normalized aggregator for the general ψ case is given by

f(C, J) =
β(1− γ)J

1− 1
ψ

[
C1− 1

ψ ((1− γ)J)

1
ψ
−1

1−γ − 1

]

The Bellman equation still takes the form

JCC[µC + λXt]− JXκXt +
1

2
JCCC

2σ2
C +

1

2
JXXσ

2
X + f(C, J) = 0
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where f(C, J) now takes the general form. Guess a solution of the form J = C1−γ
1−γ g(Xt)

and plug it into the Bellman equation. It reduces to

β

1− 1
ψ

[
g

1
ψ
−1

1−γ − 1

]
+ µC + λXt −

γ

2
σ2
C −

gX
g

κ

1− γXt +
σ2
X

2(1− γ)

gXX
g

= 0 (29)

The pricing kernel takes the form

dΛ

Λ
= −rft dt− γσCdWC −

γ − 1
ψ

1− γ
gX
g
σXdWX

rft = β +
µC
ψ
−
γ
(

1 + 1
ψ

)
σ2
C

2
− σ2

X

2

(
γ − 1

ψ

)(
1− 1

ψ

)

(1− γ)2

(
gX
g

)2

+
λ

ψ
Xt

In order to price assets, I need a solution of the function g which should satisfy the functional

relationship given by (29).

First, I will solve for the price of discounted future consumption, and then look for

a solution of g around the unconditional mean of the consumption-wealth ratio. The

discounted price of future consumption is given by

Wt =
1

Λt

Et

∫ ∞

t

ΛsCsds

Applying Fubini’s Theorem and taking standard limits (refer to Cochrane(2005) Pages

27-29), the consumption wealth ratio is given by the relationship

Ct
Wt

dt = rft dt− Et
[
dW

W

]
− Et

[
dΛ

Λ

dW

W

]
(30)
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Guess Wt = Ct
g(Xt)

1− 1
ψ

1−γ

β
. Applying Ito’s Lemma

dW

W
=

"
µC + λXt −

1− 1
ψ

1− γ
gX

g
κXt +

1− 1
ψ

1− γ
σ2
X

2

"
gXX

g
+
γ − 1

ψ

1− γ

„
gX

g

«2
##

dt+ σCdWC +
1− 1

ψ

1− γ
gX

g
σXdWX

Plugging in wealth dynamics, risk-free rate and the pricing kernel into (30), I get

Ct
Wt

= β +

(
1

ψ
− 1

)(
µC + λXt −

γσ2
C

2
− gX

g

κ

1− γXt +
σ2
X

2(1− γ)

gXX
g

)

= β +

(
1

ψ
− 1

)(
1− g

1
ψ
−1

1−γ

)
β

1− 1
ψ

= βg
1
ψ
−1

1−γ

The second line follows from the first line due to the Bellman equation restriction in (29).

This confirms that my choice of consumption-wealth ratio is right. In fact, as ψ → 1,

the consumption-wealth ratio approaches β which is a familiar result for unit elasticity of

intertemporal substitution.

Now, let µ = E
[
ln C

W

]
. A first-order approximation of the consumption to wealth ratio

around µ produces

βg
1
ψ
−1

1−γ =
Ct
Wt
≈ eµ(1− µ) + eµ

(
ln β +

1
ψ
− 1

1− γ ln g

)

Substituting the approximation above into (29), the original Bellman equation reduces to

1

1− 1
ψ

"
eµ(1− µ) + eµ

 
lnβ +

1
ψ
− 1

1− γ ln g

!
− β

#
+ µC + λXt −

γ

2
σ2
C −

gX

g

κ

1− γ Xt +
σ2
X

2(1 − γ)

gXX

g
= 0

This has the familiar exponentially affine solution g(Xt) = eu1Xt+u2, where u1 and u2 are
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given by

u1 =
λ(1− γ)

κ+ eµ

u2 =
1− γ
1− 1

ψ

[
1− µ+ ln β − e−µβ

]
+

1− γ
eµ

[
µC −

γσ2
C

2
+
σ2
Xλ

2(1− γ)

2(κ+ eµ)2

]

Now, the pricing kernel and risk-free takes the form of

dΛ

Λ
= −rft dt− γσCdWC −

(
γ − 1

ψ

)
λ

κ + eµ
σXdWX

rft = β +
µC
ψ
−
γ
(

1 + 1
ψ

)
σ2
C

2
−

(
γ − 1

ψ

)(
1− 1

ψ

)
σ2
Xλ

2

2 (κ + eµ)2 +
λ

ψ
Xt

= A +BXt

Notice that as ψ → 1, the consumption to wealth ratio converges to β, i.e. µ → ln β as

ψ → 1. Plugging in that limit makes the function g, risk-free rate and risk-prices converge to

their ψ = 1 limit derived in the previous section. Thus, this method can also be considered

to be an approximate solution around ψ = 1.

At this point, I apply the same methodology as in the previous section to derive the

price-dividend ratio which takes the form

G(Xt) =

∫ ∞

t

exp(P1(τ)Xt + P2(τ)ds,
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where τ = s− t. P1(τ) and P2(τ) are given in closed form as

P1(τ) =
1− λ

ψ

κ

(
1− e−κτ

)

P2(τ) = aτ + b
(
e−κτ − 1

)
+ c
(
1− e−2κτ

)

a = µD − A+
σ2
X

(
1− λ

ψ

)

2κ


1− λ

ψ

κ
− 2

(
γ − 1

ψ

)
λ

κ+ eµ




b =
σ2
X

(
1− λ

ψ

)

κ2


1− λ

ψ

κ
−

(
γ − 1

ψ

)
λ

κ + eµ




c =
1

κ



σX

(
1− λ

ψ

)

2κ




2

As ψ → 1, P1 and P2 converge to the solutions derived in the earlier section. The risk-

premia in this case is given by µRt = GX
G

λ(γ− 1
ψ)

κ+eµ
σ2
X .

First of all, notice that for expected excess return to be positive, we need early resolution

of uncertainty, i.e γ > 1
ψ

. The central predictability result derived in the earlier section

depended on GX
G

> 0. For ψ 6= 1, this quantity will be positive as long as 1 − λ
ψ
> 0.

We have estimated λ to be far less than one, and thus if ψ > 1, that ensures GX
G

> 0 for

ψ 6= 1. Risk-premia was pro-cyclical in the previous section as long as γ > 1. In this case,

risk-premia is pro-cyclical as long as γ > 1
ψ

which holds if γ and ψ are both greater than

one.

Thus, the predictability relationship derived in closed form for ψ = 1 in the previous

section will also hold in the ψ > 1 setting.
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Figure 1: Time-Series Plot of Aggregate Dividend Growth against Aggregate Consumption
Growth.
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Figure 2: The top panel plots expected excess return (9) across different growth rates, Xt.
The middle panel plots GX and the bottom panel plots the dividend price ratio 1

G
. The

parameters used are the median parameters which are summarized in Panel A of Table I.
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Figure 3: Time-series of expected future dividends over a horizon of 1 year. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in one year using Lemma 1.3.1.
.
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Figure 4: Time-series of expected future dividends over a horizon of 3 years. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in three years using Lemma 1.3.1.
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Figure 5: Time-series of expected future dividends over a horizon of 5 years. Taking 2.5, 50
and 97.5th quintile of parameters and states Xt obtained from the MCMC, I plot expected
future dividends in five years using Lemma 1.3.1.
.
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Figure 6: The function H(Xt, z) − 1 for z = 1, 3 for different X ′s taken from the un-

conditional distribution of X ∼ N
(

0, σx√
2κ

)
using the median parameter values in Table

IA.
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Figure 7: Time-series of price-growth over a horizon of 1 year. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in one year using H(Xt, 1) = Et

[
exp

(∫ 1

t
µP (Xs)ds

)]
. The expression for µP (Xs) is given

in the appendix.
.
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Figure 8: Time-series of price-growth over a horizon of 3 years. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in three years using H(Xt, 3) = Et

[
exp

(∫ 3

t
µP (Xs)ds

)]
. The expression for µP (Xs) is

given in the appendix.
.
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Figure 9: Time-series of price-growth over a horizon of 5 years. Taking 2.5, 50 and 97.5th
quintile of parameters and states Xt obtained from the MCMC, I plot expected price growth

in five years using H(Xt, 5) = Et

[
exp

(∫ 5

t
µP (Xs)ds

)]
. The expression for µP (Xs) is given

in the appendix.
.
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Figure 10: Term structures of risk-premia, volatility and Sharpe ratio for the dividend strips
implied by the model. Low (High) values of Xt are given by the -2 (+2) standard deviation

of the unconditional distribution of the growth rates X ∼ N
(

0, σx√
2κ

)
. The parameters used

are the median values of the posterior distributions of the parameters.
.
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Figure 11: Term structure of β for the dividend strips implied by the model. Low (High)
values of Xt are given by the -2 (+2) standard deviation of the unconditional distribution

of the growth rates X ∼ N
(

0, σx√
2κ

)
. The parameters used are the median values of the

posterior distributions of the parameters.
.
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Figure 12: Time-series of Sharpe ratios for the 1-year and 5-year dividend strips. The
parameter values used are the median values of the posterior distributions of the parameters
and latent states Xt.
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Figure 13: Time-series of β for the 1-year and 5-year dividend strips. The parameter values
used are the median values of the posterior distributions of the parameters and latent states
Xt.
.
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Table IA: Panel A represents the parameter estimates from estimating the state-space
given in (18)-(19) via a Gibbs sampler. The posterior distribution is presented in the form
of 2.5-th to the 97.5-th quantiles of the simulated posterior draws from the Gibbs sampler.
Panel B reports the posterior distribution of key moments of real consumption and dividend
growth implied by the model (18)-(19). The posterior distribution is presented in the form
of 2.5-th to the 97.5-th quantiles of the moments computed from the parameter estimates
in Panel A. The data used for this sample is annual aggregate dividend from CRSP value-
weighted index and BLS consumption(non-durables and services) growth in the US from
1929-2010. All nominal quantities are converted to real using CPI.

Panel A 0.025 0.25 0.5 0.75 0.975

σD 0.0864 0.0952 0.1004 0.1060 0.1182
σC 0.0174 0.0191 0.0201 0.0212 0.0235
σx 0.0234 0.0258 0.0271 0.0286 0.0319
κ 0.0989 0.1026 0.1044 0.1063 0.1101
λ 0.3033 0.3304 0.3440 0.3572 0.3833
µC 0.0108 0.0164 0.0195 0.0228 0.0293
µD −0.0004 0.0139 0.0212 0.0284 0.0427

Panel B Data 0.025 0.25 0.5 0.75 0.975

Mean of dividend growth 0.0231 −0.0004 0.0139 0.0212 0.0284 0.0427
Mean of consumption growth 0.0199 0.0108 0.0164 0.0195 0.0228 0.0293

Vol. of dividend growth 0.1455 0.1051 0.1133 0.1179 0.1229 0.1338
Vol of consumption growth 0.0295 0.0259 0.0280 0.0292 0.0305 0.0331
AC(1) of dividend growth 0.2127 0.1719 0.2152 0.2402 0.2684 0.3263

AC(1) of consumption growth 0.4519 0.3580 0.4307 0.4690 0.5069 0.5764
Corr of dividend and consumption growth 0.5819 0.2989 0.3437 0.3729 0.4053 0.4690
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Table II: This Table documents the posterior distribution of market prices of risk given in
(6). Given the full parameter distribution summarized in Table I, I compute the posterior

distribution of transient volatility risk - γσC and long-run risk (LR risk) - (γ−1)λσx
κ+β

. The
2.5 to 97.5-th quantile of the posterior distribution of the two risks is presented below.
Furthermore, I use β = 0.001 and γ = 7.5.

0.025 0.25 0.5 0.75 0.975

Transient risk 0.1305 0.1432 0.1508 0.1590 0.1763
LR risk 0.4718 0.5390 0.5774 0.6186 0.7110
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Table III: Below I present quantiles from the posterior distribution of endogenous quan-
tities with β = 0.001 and γ = 7.5. Then using the full parameter distributions obtained
through the Gibbs sampler, I compute the posterior distribution of instantanoues expected
excess return, instantaneous volatility of cumulative return, the Sharpe-ratio, the dividend-
price ratio, the risk-free rate and the volatility of the risk-free rate. For all of the fol-
lowing quantities, I integrate out the initial state Xt by using its stationary distribution

Xt ∼ N
(

0, σx√
2κ

)
. The corresponding sample statistics are obtained from CRSP Value-

Weighted Market Index and the 90-day T-Bill Rate also obtained from CRSP. All nominal
quantities are deflated by the CPI. Empirical estimates are obtained with GMM, and stan-
dard errors are Newey-West corrected with five lags. The data interval is annual from
1929-2010.

Data 0.025 0.25 0.5 0.75 0.975

µR 0.0702(0.0177) 0.0478 0.0564 0.0614 0.0670 0.0791
σR 0.2011(0.0183) 0.1321 0.1417 0.1469 0.1524 0.1638

Sharpe ratio 0.3512(0.0211) 0.3335 0.3872 0.4171 0.4513 0.5247
D
P

0.0392(0.0035) 0.0316 0.0456 0.0534 0.0606 0.0760
Vol

(
dG
G

)
0.1536(0.0211) 0.0914 0.1009 0.1064 0.1120 0.1237

rf 0.0104(0.0078) 0.0083 0.0143 0.0175 0.0207 0.0267
σ(rf) 0.0403(0.0059) 0.0168 0.0192 0.0205 0.0219 0.0251
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Table IV: This table shows results of predictability regression Rt+z = a + bDt
Pt

+ ε where
ε ∼ N(0, 1) and z = 1, 3, 5 years. The data for this regression is generated the following
way. First, I discretize the state equation (3) and simulate the growth rates Xt in monthly
frequency for 720 months (roughly the size of post-war sample). Then, I compute monthly
dividend growth by discretizing equation (1) and price-dividend ratio from equation (8).

Using the relationship Rt+1 = Dt+1

Dt

Pt+1
Dt+1

+1

Pt
Dt

, I create monthly returns. From monthly returns,

I compound to create 1-5 year returns and run the above predictability regressions. This
is repeated 10,000 times. The parameters for the simulation are the median parameters
taken from the estimation in Table I. Below, I present the median and 2.5-97.5 quantiles of
the point estimate of the coefficient on dividend yield b, T-statistics of b and and R2 from
10,000 predictability regressions from 60-year simulated data.

z(years) median 0.025 quantile 0.975 quantile
1

b 0.6279 0.3192 0.9738
T-stat 3.6120 1.4713 6.2442

R2 0.1863 0.0366 0.4062
3

b 6.6225 2.7519 10.1020
T-stat 5.2306 1.7531 10.0113

R2 0.3322 0.0529 0.6457
5

b 38.7433 11.1834 62.1032
T-stat 5.3320 1.3194 11.1188

R2 0.3491 0.0322 0.6999
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Table V: This table shows the pseudo-R2’s of the predictability relationship using (16)
and (16). I restrict myself to the 0.25, 0.5 and 0.75-th quantiles of parameters given in
Table I. Furthermore, I use β = 0.001 and γ = 7.5 and simulate using monthly increment
by setting dt = 1/12.

The unconditional variance of R̄T in ( 16) is computed by using the total variance
formula - V ar(R̄T ) = V arX(E(R̄T |Xt))+EX(V ar(R̄T |Xt)). Starting at many different X ′ts
drawn from its unconditional distribution, I simulate out R̄T and form the inner conditional
expectation and variance for each starting point. Then I perform the outer expectation and
variance to compute the unconditional mean. In all, 250,000 paths are used to compute
each V ar(R̄T ). I repeat the same exercise to compute the variance of the conditional mean -
[Et[R̄T ]] in (16). To form pseudo-R2, I simply divide the variance of Et[R̄T ] by the variance
of R̄T .

z(years) Quantiles 0.25 0.5 0.75
1 V ar(R̄T ) 0.0192 0.0208 0.0224

V ar[Et[R̄T ]] 0.0018 0.0021 0.0026
pseudo− R2 0.0926 0.1022 0.1139

3 V ar(R̄T ) 0.0671 0.0859 0.0894
V ar[Et[R̄T ]] 0.0212 0.0285 0.0378
pseudo− R2 0.3164 0.3317 0.4234

5 V ar(R̄T ) 0.1568 0.1867 0.2283
V ar[Et[R̄T ]] 0.0731 0.1171 0.2062
pseudo− R2 0.4663 0.6272 0.9031
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