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M anaging risk has always been an integral part of banking.
Recently, however, "risk management" has become a popular
buzzword--the phrase appeared in the American Banker 72

times in 1990 and 325 times in 1995.1 At the center of the recent interest
is an approach to risk management called "Value at Risk." In the past two
years it has been accepted by both practitioners and regulators as the
"right" way to measure risk, becomh~g a de facto industry standard. Yet,
the danger is that overreliance on value at risk can give risk managers a
false sense of security or lull them into complacency. After all, value at
risk is only one of many tools for managing risk, and it is based on a
number of unrealistic assumptions. Moreover, there is no generally
accepted way to calculate value at risk, and various methods can yield
widely different results.

This article wilJ review briefly the reasons for the new approaches
and describe the Basle Market Risk Standard, which proposes the use of
banks’ internal value-at-risk models to set appropriate capital levels to
cover market risk in bank trading operations. The article will describe
several common methods for calculating value at risk (VAR) and high-
light important assumptions and methodological issues. These issues
will be illustrated by two step-by-step examples of calculating VAR for
a single instrument. The article concludes with a brief discussion of
strengths and weaknesses of VAR.

I. Why a New Approach?

Increased volatility in the financial markets since the 1970s has
spurred new emphasis on risk management. Increased volatility first
became apparent in the currency markets after the collapse of the Brettou
Woods Agreement, followed, in short order, by interest rates and
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commodity prices. Figures la, lb, and lc depict exam-
ples of these volatility patterns.

Rapid advances in information technology have
increased proprietary trading activity and heightened
the emphasis on money management performance. At
the same time, the growing complexity of financial
products, particularly derivatives, has made it more
difficult to evaluate and measure the risks taken by
financial institutions, as accounting and disclosure
rules have failed to keep pace with financial innova-
tion. The use of derivatives has also increased linkages

The grozoing complexity of
financial products, particularly

derivatives, has made it
more difficult to evaluate and

measure the risks taken by
financial institutions, as

accounting and disclosure rules
have failed to keep pace with

financial innovation.

between markets. For example, a shock in the equity
futures market of one country can be transmitted
rapidly to the market for the underlying equities and
perhaps to currency and equity markets of other
countries as well.

The sharp rise in transaction volume in deriva-
tives markets, coupled with several well-publicized
trading losses, has led to a new interest in an "objec-
tive" way of gauging the adequacy of capital. In their
search, financial institutions turned in part to analyt-
ical tools introduced in derivatives markets, and VAR
emerged as the favored method for measuring risk.
The 1993 study by the Group of Thirty, Derivatives:
Practices and Principles, strongly recommends VAR
analysis; that study’s recommendations have been
broadly accepted by the industry as the standard of
"best practices."

Currently, derivatives techniques have spread to
many instruments and their structures have become

~See "New Risk Tests Win Fans--But Will They Work?"
American Banker, 2/7/96.

increasingly complex. More than 1,000 banks, nonfi-
nancial corporations, insurance companies, mutual
funds, and other asset managers use them to manage
their risks. The availability of data on derivatives
prices from the past decade gives a better empirical
foundation to VAR analysis. The Bank for Interna-
tional Settlements (BIS) has allowed banks to use their
own internal models of risk in setting capital require-
ments for market risk. The acceptable models must
rely on VAR methodologies.

VAR has an intuitive appeal because it summa-
rizes the risk of the entire portfolio in a single number.
Moreover, it expresses in dollar terms the major
concern of risk management--the potential loss to
portfolio value. VAR can be applied to many different
instruments and can calculate and aggregate risk
across instruments and types of assets.

VAR is applied primarily to market risk, though
applications have recently been expanded to incorpo-
rate credit risk. (See the box for definitions of the main
types of risks in banking.) VAR holds promise of
combining all quantifiable risks across the business
lines of an institution, yielding one firm-wide measure
of risk.

II. What Is Value at Risk?

Essentially, VAR poses the question: "How lnuch
money might we lose over the next period of time?"
Rephrasing it more precisely, "Over a given period of
time with a given probability, how much could the
value of the portfolio decline?" For example, if the
given time is one week, the given probability 1 per-
cent, and the value at risk $20 million, then we
estimate that the odds that this portfolio will decline in
value by lnore than $20 million within the next week
are 1 in a 100.

To calculate VAR, one needs to choose a common
measurement unit, a time horizon, and a probability.
The common unit can be U.S. dollars, German marks,
or whatever currency the organization primarily uses
to do business. The chosen probability of loss usually
ranges between 1 and 5 percent. The time horizon can
be of any length, but it is assumed that the portfolio
composition does not change during the holding pe-
riod. The most common holding periods used are one
day, one week, or two weeks. The choice of the
holding period depends on the liquidity of the assets
in the portfolio and how frequently they are traded.
Relatively less liquid assets call for a longer holding
period.
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Banking--What

The risks of banking can be divided into five
categories: credit, liquidity, operational, legal, and
market (Figure 2).

Credit risk is the possibility of loss as a result of
default, such as ~vhen a customer defaults on a loan,
or nrore generally, any type of financial contract.

Liquidity risk is the possibility that a firm will be
unable to fund its illiquid assets.

Operational risk is the possibility of loss resulting
from errors in instructing payments or settling
transactions.

Legal risk is the possibility of loss when a contract
cam~ot be enforced--for example, because the cus-
tomer had no authority to enter into the contract or
the contract turns out to be unenforceable in a
bankruptcy.

Market risk is the possibility of loss over a given
period of time related to uncertain movements in
market risk factors, such as interest rates, currencies,
equities, and commodities. The market risk of a finan-
cial instrument can be caused by more than one
factor. For example, holding a bond denominated
in a foreign currency exposes one to currency risk
and to interest rate risk. Similarly, entering into a
domestic equity swap exposes one to equity risk
and interest rate risk.

Banks may be exposed to some equity and com-
modity risk through s~vap positions and many
large banks have currency risk through their cur-
rency trading, but by far the largest market risk of
the banking industry is interest rate risk. A principal
source of earnings for banks is net interest income,
the difference between interest received and inter-

Are the Risks?

est paid. The main source of interest rate risk is the
volatility of those interest rates and the mismatch in
the timing when the rates on assets and liabilities
are reset.

Interest rate risk, in turn, can be divided into
three types--yield curve level risk, yield curve shape
risk, and basis risk, depending on the type of interest
rate change that can cause losses.

Yield curve level risk refers to an equal change in
rates across all maturities: for example, if all Trea-
sury yields, from 3-month T-bills to 30-year long
bonds, move up or down uniformly by 1 percent.

Yield curve shape risk refers to changes in the
relative rates for instruments of different maturities.
For example, the yield curve could "bulge," so that
yields rise for intermediate mat~rities, sucli as 3- to
5-year Treasury notes, while rates for bills and
long-term bonds remain unchanged.

Basis risk refers to the risk of changes in rates for
instruments with the same maturity but pegged to
a different index. For example, suppose a bank
ftmds itself by borrowing at a 6-month Libor (Lon-
don Interbank Offer Rate), a commonly used rate
for interbank borrowing, and invests in an instru-
ment whose rate is tied to the 6-month Treasury
rate. If the Libor rises relative to the Treasury rate,
the bank will lose money,

Of course, in reality all interest rates continu-
ously change, exposing the bank to all tlu:ee types
of interest rate risk. However, it is useful to distin-
guish alnong them conceptually to pinpoint the
areas of particular vulnerability.

IlL VAR and Capital Requirements
for Market Risk

VAR models have been accepted by both practi-
tioners and bank regulators as the state of the art in
quantitative risk measurement. In its recent risk-based
capital proposal, the Basle Committee on Banking
Supervision endorsed the use of banks’ VAR models
to allocate capital for market risk. The Basle standard
covers internationally active banks and applies only to
their trading account. The proposal offers two alterna-
tives: "standardized" and "internal models." U.S.
bank regulators favor the internal models approach,

whereby the bank’s own VAR model is used to set
aside capital for market risk. The proposal has an
implementation period of two years and will take
effect in January 1998.

To be acceptable to regulators for the purposes of
allocating capital, banks’ internal models must meet
certain qualitative and quantitative standards. In es-
sence, qualitative standards relate to the institution’s
risk management function as a whole. They call for
independent validation of the models by the bank or a
third party; strong controls over inputs, data, and
model changes; h~dependence of the risk management
function from business lines; full integration of the
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Figure 2
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model into risk management; and, most important,
director and senior management oversight of the risk
management process.

Quantitative standards relate to specific features
of the VAR model. They call for the use of a 1 percent
probability level and a two-week holding period. In
addition, the VAR thus found is to be multiplied by a
factor of three. The multiplication factor is designed to
allow for potential weaknesses in the modeling pro-
cess and other nonquantifiable factors, such as incor-
rect assumptions about distributions, unstable volatil-
ities, and extreme market movements.

Many practitioners, however, consider these
standards too restrictive. They note that a holding
period of two weeks is too long for many instruments,
as traders get in and out of positions many times
during a typical day. Moreover, a two-week holding
period combined with a 1 percent probability safe-
guards against events that can be expected to occur
only once in four years. This makes it difficult to
validate the model within a reasonable period of
time.

It should be noted that a few features of the
proposal have been modified as a result of industry
criticism. In particular, an earlier version of the pro-
posal allowed the models to account for correlations of
asset returns within, but not among, asset classes, such

as equities, currencies, and bonds. Now, all correla-
tions are allowed.

IV. Parametric VAR
No consensus has been reached on the best way

to implement VAR analysis. Most methodological
issues revolve around estimation of the statistical
distributions of asset returns. The main approaches
are known as parametric (also known as the analytical
or correlation method), historical, historical simula-
tion, and stochastic shnulation (also known as Monte
Carlo).

Parametric VAR is based on the estimate of the
variance-covariance matrix of asset returns, using
historical time series of asset returns to calculate their
standard deviations and correlations. The main as-
sumption of the parametric VAR is that the distribu-
tions of asset returns are normal. This means that the
variance-covariance matrix completely describes the
distribution.2

2 While a number of distributions other than normal can be
completely described by their parameters, in VAR analysis the
parametric appr.oach nsuaIly refers to a normal distribution.
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The parametric approach can be summarized by
the equation:

where:

the volatility of portfolio returns,
the dollar amount of the portfolio share of the ith
instrument,
the volatility of the ith instrument, and
the correlation between the returns of the ith and
jth instruments.

The equation shows that portfolio risk, as ex-
pressed by its variance, is a function of the variance of
the return on each instrument in the portfolio, as well
as on the correlations between each pair of returns.
This means that ~mless the returns in the portfolio
are perfectly correlated (all Ply = 1), the variance of the
portfolio does not equal the simple sum of the vari-
ances of the individual positions. When the risk that
any investment contributes to the portfolio is less than
the risk of that investment alone because of diversifi-
cation, the risk of the portfolio is less than the sum of
the risks of its parts.

The best-known parametric VAR model is J.P.
Morgan’s RiskMetrics. J.P. Morgan has done much to
advance the public understanding and acceptance of
VAR analysis by making both the methodology and
the data sets of volatility and correlation estimates for
RiskMetrics publicly available on the Internet.

To illustrate the parametric approach we will
calc~tlate the VAR for one instrument--a Treasury
bond futures contract.3 In this example, we will esti-
mate the VAR of a position consisting solely of a June
1996 Treasury bond futures contract purchased on
May 24, 1996. The closing futures price for that day
was 110. Since each Treasury bond futures contract is
for the delivery of $100,000 in face value of bonds,
each $1 cliange in the futures price results in a $1,000
change in the value of the position. VAR is usually
estilnated in terms of returns, rather than prices.

The return is calcnlated as:

Pt - Pt 1

Rt = Pt 1    ¯ 100,

3 A futures contract is an agreement to buy or sell an asset at a
certain time in the future for a certain price. A Treasury bond
futures contract is traded on the Chicago Board of Trade and is the
most popular long-term interest rate derivative.

Table 1
Daily Returns on a Bond Futures Contract

Futures Daily Return
Date Price (%)
May 24, 1996 (Today) 110.00
May 23, 1996 109.4063 .542702
May 22, 1996 110.1563 -.68085
May 21, 1996 109.5625 .541928
May 20, 1996 109.7813 -.171086

May 31, 1995 111.25 .674157
May 30, 1995 111.125 .112486

where R is the daily return and P is the price of the
instrument. The daily returns on the bond futures
contract are sho~vn in Table 1.

To calculate the one-day VAR of tliis position, we
need to esthnate the mean of the daily returns, and the
volatility, as measured by the standard deviation.
(Since the portfolio consists of only one instrument,
we need not be concerned about correlations.) If these
returns are governed by the normal distribution, then
95 percent of all returns will fall within 1.96 standard
deviations of the mean return. Moreover, 98 percent
of all returns will fall within 2.33 standard deviations
of the mean return. The mean and the standard de-
viation in our case of Treasury future returns were
found to be -0.00224 percent and 0.605074 percent,
respectively. This means that 98 percent of all returns
would fall between -1.41 percent and 1.41 percent
and only I percent of returns will be lower than -1.41
percent (Figure 3).

To convert the negative return of 1.41 percent to a
dollar amotmt, ~ve recall that the futures price on May
24, the day for which we are calctilath~g the VAR, was
110. From this we calculate a one-day VAR at the 1
percent probability level to be 1.41%/100 × 110 ×
$1,000 or $1,551.00. If the VAR esthnate is correct, the
daily loss on this position will exceed $1,551.00 no
more than one day out of a hundred.

Suppose that the risk manager decides that a
one-day holding period is too short, and that a one-
week holding period is more appropriate. If, in addi-
tion to normality, we assume that returns are serially
independent, meaning that a return on one day does
not affect the retttrn on any other day, then the
standard deviation h~creases proportionately with the
square root of time. Thus, if the one-day standard
deviation of returns is 0.605074 percent, the standard
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Figure 3

VAR for Normally Distributed
Futures Returns
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deviation for one week consisting of five tradh~g days
is ~ x 0.605074, or 1.3530 percent. This gives us a
one-week VAR of $3,467.70 with a 1 percent probabil-
ity level, which means that if we held the position
for a week, we should not expect to lose more than
$3,467.70 more often than in one week out of a
hundred.

The two assumptions about the distribution of
returns that underlie the parametric method--normal-
ity and serial independence--allo~v us to be very
parsimonious in the use of data. Since volatilities and
correlations are all we need to calculate the VAR at
any colffidence level for any holding period, it is
unnecessary to have the historical returns themselves,
which are used in the historical approach, as shown in
Section VI.

V. Does Volatility Change over Time?

For example, had we
used only the last
two months of returns,
rather than a full year,
we would have found
the standard deviation
to be 0.6513, rather than
0.605074, resulting in a
VAR of $1,669.22, rather
than $1,551.00. Clearly,
the result would have
been different still, had
we used one month, six
months, or five years
of historical data on re-
turns.

One popular way
to estimate volatility
is through exponential
weighting of observa-
tions. This approach
emphasizes more recent
observations at the ex-
pense of the more dis-
tant ones because the

weights assigned to past observations declh~e with
thne. The volatilities and correlations are updated ev-
ery day in accordance with the most recent data, as the
earliest observation is dropped from the historical series
and the newest one is added.

The formula for the standard deviation (o-) of the
daily return (R) and mean return/z with exponential
weights based on a historical period of N days is:

h~ the preceding example, by calculating the
volatility of the daily returns from a year of data, we
implicitly assmned that the volatility of returns was
constant throughout the year. However, volatility can
change over time, sometimes quite abruptly, and it
may make sense to pay more attention to the most
recent observations in forecasting fttture volatility.

~r =    1 a _/~)2.-- l~.i( R N_i

The parameter 2, is known as the decay factor; it
determines how fast the weight on past observations
decays. The higher the ;t, the slower is the rate of
decay and the more weight is given to the more
distant observations.4 One study (Hendricks 1996)
estimated volatilities for a number of decay factors
and historical periods of different length for 1,000
simulated foreign exchange portfolios and found sig-
nificant differences in the resulting volatilities.

4 See J.P. Morgan, RiskMetrics Technical Document, 3rd ed.
Chapter 2, Section 3 for details on the choice of decay factors.
RiskMetrics currently uses a decay factor of 0.94 for all daily
volatilities of the series it maintains (Peter Zangari, J.P. Morgan,
personal communication).
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Table 2
Estimates of VAR Using Different Decay Factors

)~ = .94 (rapid decay)                    ,~ = .97 (slower decay)
~ VAR ~ VAR

.5829 $1,494.04 .5503 $1,410.48

~. = .99 (slowest decay)

VAR
.4011 $1,028.44

To check if our VAR estimate is sensitive to a
choice of decay factors, we esthnate the 1 percent
probability level VAR for our bond futures returns
using three different decay factors for a period of 50
days. Table 2 shows these estimates.

In the time period chosen for our example, the
volatility of the return on the Treasury bond futures
was increasing over time. Tlius, the lower the weight
placed on the more distant observations, the higher
the estimate of volatility.

VI. The Historical Approach
The simplicity and convenience of the normal

distribution are powerful inducements for its use in
VAR analysis, but this does not necessarily make its
use appropriate. Since
the early work of Man-
delbrot (1963) and Fama
(1965), most empirical
research into the statisti-
cal properties of asset
returns has found sys-
tematic deviations from
normality, h~ particular,
many studies have
found that distributions
of asset returns tend to
exhibit kurtosis; namely,
they are more peaked
around the mean and
have fatter tails than
the normal distribution.
Moreover, some, though
not all, asset returns tend
to be skewed to the left;
that is, more unusually
large negative retttrns are
present than would have
been expected if returns
were normal.

To see if these observations apply to our chosen
example of the bond futures contract, we construct a
frequency distribution of the daily returns between
May 1995 and May 1996. The resulting histogram is
shown in Figure 4, with a normal distribution super-
imposed for comparison. The returns exhibit the typ-
ical pattern found in many asset returns: "fat tails"
and left-skewness.

Fortunately, it is possible to calculate VAR with-
out resorting to the assumption of normality, by us-
ing a simple historical method. This entails finding
the lowest returns in the real historical data. To
calculate VAR at the 1 percent probability level, we
ranked the daily returns and identified the lowest
1 percent of returns. The first percentile return is
1.73 percent, giving us the daily VAR of 1.73%/100 ×
110 × $1,000= $1,903.00, almost 23 percent greater

Figure 4

Daily Returns on a U.S. Treasury Bond Future
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than the $1,551.00 calculated with the parametric
approach.

If we want to recalculate the VAR for a different
holding period without making the assumption of
serial independence, we cannot simply multiply the
daily VAR by the square root of time. Instead, we
must recalculate all the returns for the new holding
period, construct the new frequency distribution, and
identify the appropriate percentiles.

The historical method has a number of advan-
tages over the parametric method. First, it makes no
explicit assumptions about the volatilities of returns

The historical method makes no
explicit assumptions about the
volatilities of returns and the

covariances between them,
or about the shape of the

distributions themselves. On
the other hand, it lacks flexibility

and requires large amounts
of actual, historical data.

and the covariances between them. Second, it makes
no assumptions about the shape of the distributions
themselves. In particular, it makes no assumption of
normality. On the other hand, the historical approach
lacks flexibility. Unlike the parametric method, it does
not allow one to try different values for volatilities and
correlations to test the sensitivity of VAR to these
assumptions. In addition, it requires investors to ob-
tain and maintain large amounts of actual, historical
data. Long historical data series relevant for one’s
portfolio can be expensive or may not even exist. In
contrast, the parametric approach requires just the
parameters of distributions, if one is willing to dele-
gate the estimation of those parameters to a third
party.

VII. Simulation Approaches--From
Risk Factors to VAR

Often, it is not appropriate to calculate VAR
directly by estimating the probability distribution of

returns on the instrument itself, as was done in the last
example. If an institution has a large or complicated
portfolio, it may be impossible or impractical to main-
tain historical data on all the instruments involved.
Moreover, historical data do not exist for many instru-
ments, particularly those that are customized. In those
cases, the historical data set used to calculate the VAR
will consist of returns not on the instruments them-
selves, but on their "risk factors," that is, other instru-
ments or factors that influence their values. For exam-
pie, for a domestic bond, the risk factor is the interest
rate. For a bond denominated in foreign currency, the
risk factors are the foreign interest rate and the ex-
change rate. For many equity derivatives, the main
risk factor is the value of the S&P 500 index. For an
S&P 500 option, the relevant risk factors are the value
of the S&P 500 index, its volatility, the dividend yield
on the index, and the risk-free interest rate.

In these cases, we can improve on the pure
historical approach by using "historical simtilation."
Instead of looking at the volatility of the actual port-
folio returns in the past, we will "simtflate" the past
portfolio returns by using the actual values of the risk
factors and the current portfolio composition. Then,
we can construct the empirical frequency distribution
of the simulated portfolio retttrns by ranking them
into percentiles and determining the VAR at the
chosen confidence level.

Stochastic Simulation in Six Easy Steps

Historical simulation shares one disadvantage
with the simple historical approach: a lack of flexibil-
ity to investigate different assumptions. However,
instead of using the past values of the risk factors,
we can model these factors explicitly by specifying
the underlying distributions and their parameters.
Using these distributions and parameters, we can gen-
erate thousands of hypothetical scenarios for the risk
factors and determine the portfolio value for each
scenario. As in the historical simulation, the resulting
portfolio returns can then be used to construct the
empirical frequency distribution and determine the
VAR at the desired confidence level. This is the ap-
proach generally known as the Monte Carlo, or "sto-
chastic simulation."

As an illustration of this approach, we will calcu-
late the one-day VAR for a position consisting of one
call option, which gives the holder the right, but not
the obligation, to buy an asset for a certain price. In
this example, we will calctilate the VAR for a call
option on the S&P 500 index--a popular equity deriv-
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ative traded on the Chi-
cago Board of Trade.
This particular option
was bought on May 28,
1996 for $20.90 (the clos-
ing price for the contract
on that day). The option
expires on July 20, 1996
and gives the holder the
right to buy the S&P 500
index for $670. (The ac-
tual value of the S&P
500 on May 28. 1996 was
$674.9606.)

Finding the one-
day VAR on May 28,
1996 involves the fol-
lowing six steps:

1. Calculate the daily
returns on the S&P
500 and find the
parameters of the
normal distribu-
tion of returns.

2. Simulate returns

Figure 5

Daily Returns oll Simulated S&P 500
Call Premiums
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on the S&P 500 for one day by generating
random numbers from a normal distribution
with the calculated parameters.

3. Use the simulated S&P 500 retttrns as input to
calculate the simulated S&P 500 prices.

4. Use an option-pricing model to calculate the
value of the call option at each simulated value
of the S&P 500 index.

5. Calculate the one-day returns on holding the call
option from the simulated call option prices.

6. Find the parameters of the distribution of call
option returns and calculate the VAR.

The crucial part of this process is the transforma-
tion from the distribution of the S&P 500 to the
distribution of the option values, h~ this example, the
option was valued using the standard Black-Scholes
model modified to value a stock index.5 The formula is
as follows:

C = Se-q(r t)N(dl) - Xe-"(T-t)N(d2),

where dI and d2 are given by:

ln(S/X) + (r- q + ~2/2)(T - t)
d~=

o- \fT - t

d2 = d~ = ~r \~-- t.

The notation is as follows:

S:
T - t:

q;

X:

N(x):

the value of the call option;
the price of the S&P 500 index;
the time left tmtil the expiration of the
option (in this case, 53 days);
the dividend yield of the S&P 500 (estimated
to be 2 percent per year);
the strike price of the option (in this case,
$670);
the cumulative probability distribution for a
standardized normal variable (that is, the
probability that such a variable will be less
than x);
risk-free rate of interest, in this case, the
federal funds rate, or 5.5 percent per year;
volatility of the S&P 500 index.

5 The model for valuing options for non-dividend-paying
stocks was developed by Black and Sd~oles (1973). The formula for
valtdng options on stock indexes paying dividends was derived by
Merton (1973).

The distribution of the resulting simulated re-
turns is depicted in Figure 5. To calculate VAR, we
rank the returns into percentiles and identify the 1
percentile return. This happens to be -0.3560. The
price of the call option on May 28, 1996 was 20.90.
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Every option contract on the S&P 500 is for $100 of the
index. Thus, the dollar value of VAR for one contract
is 0.3560 × 20.90 × $100 = $744.04. This means that
the chance is 1 in 100 that we ~vill lose more than
$744.04 on the call option contract in one day.

It should be noted that, in this example, volatility
was calculated from one year of data with all obser-
vations weighted equally. Of course, a longer or
shorter historical period could be used along with
various exponential weighting schemes to generate a
different estimate of volatility of the S&P 500 index,
which would result in a different VAR for the call
option.

VIII. Conclusion

In many financial circles, the reputation of value
at risk stands as high as that of motherhood and apple
pie. But, as with motherhood and apple pie, a good
concept is not enough--good hnplementation is
equally important. Value-at-risk analysis is a general
framework that covers models with a wide variety of
assumptions and methods of calculation, and, inevita-
bly, it produces a wide variety of results. Our exam-
pies demonstrate that varying assumptions about dis-
tributions and methods of calculating volatilities
produced qttite different estimates.

Value at risk is a useful tool for risk management
but it is not a panacea. One limitation is that it focuses
on a single arbitrary point on the distribution of
profits and losses, while it would be more useful to
have a representation of the whole distribution. A
second limitation of value at risk is that it tells us little
about how risks are to be measured in extreme market
conditions. During market crises, correlations between
asset prices break down, liquidity disappears, and
price data may not be available at all. Modeling risk
under such conditions would require some sense of
the concentration of ownership of different securities,
information that most market participants would be

reluctant to disclose, for competitive reasons.
Value at risk is often put forward as the way to

aggregate risks across the whole institution. While
integrating disparate risks is the ultimate purpose of
global risk management, the use of value at risk for
this purpose is problematic. Value-at-risk analysis
works best for frequently traded instruments for
which market values are easily available. Value at risk
first took hold at the derivatives desks in the trading
rooms of a few large banks, because they had both the
expertise and the need to estimate and aggregate the
market risks of many dissimilar instruments. From
derivatives desks it spread to other trading desks,
such as those for bonds and currency, and it is now
beginning to be applied beyond trading to the broader
arena of asset-liability management. However, many
bank assets and liabilities, in particttlar deposits and
loans, have long-term horizons and are not actively
traded. Thus, they have poor or nonexistent price data
and marking them to market on a day-to-day basis
would be both impractical and misleading. Value at
risk has the same limitations for life insurance compa-
nies, because these institutions have long-term, non-
traded liabilities. Other methods may prove superior
to value at risk as a global measure of risk.
One alternative is a measure of how much one is
willing to pay to elinxinate risk, or the price of pur-
chasing a guarantee to avoid a loss of a certain
magnitude. Value at risk, which focuses on the distri-
bution of possible losses, is only one element in the
valuation of such a guarantee.

Overall, value at risk constitutes a useful though
limited family of techniques for measuring risk. It is
most useful in measuring short-term risk of traded
instruments in normal market conditions. An addi-
.tional benefit is that its use has created a common
language for discussions about risk, and it has
prompted more dialogue about risk issues. However,
successful risk management is a much broader task,
which depends crucially on appropriate incentives
and internal controls.
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Research Report

Research Report No. 74 has just been issued.
Banking Structure in New England 1993~1996, by Susan
Bare, on and Krystl Black sffmmarizes structural changes
in New England’s banking industry that occurred between
June 30, 1993, and April 30, 1996, including mergers and
acquisitions, bank holding company formations, bank
openings and closings, and name changes. An update of
Research Report No. 73, the new report uses 1995 data to
rank New England commercial banking and thrift
organizations by total consolidated New England deposits.
Rankings are presented for all of New England, for each
state, and within local banking markets. For each local
banking market, Herfindahl-Hirschman Indexes and
three-firm concentration ratios are provided. The report
begins with a discussion of relevant antitrust issues.

Research Report No. 74 is available without
charge. Requests should be sent to Research Library - D,
Federal Reserve Bank of Boston, P.O. Box 2076, Boston,
MA 02106-2076. The fax number is (617) 973-4292, and
the e-mail address is boston.library@bos.frb.org.




