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Are Stock Returns
Different over
Weekends? A Jump
Diffusion Analysis of
the “Weekend Effect”

The distribution of returns on common stocks is, arguably, one of
the most widely studied financial market characteristics. Among
the questions addressed by these studies are the following: Is the

return on common stocks normally distributed, as much finance theory
assumes? How many stocks should be included in a portfolio if it is
to achieve most of the benefits of diversification? How has the volatility
of stock returns changed over time? How is the distribution of returns
affected by past returns? What influence do calendar events have on the
return distribution (for example, the January effect, the Monday effect)?

The performance of stock prices during breaks in trading has also
received considerable attention in recent years, especially since the
advent of “circuit breakers” designed to create stability when markets are
chaotic. Some studies have focused on performance surrounding periods
of unscheduled trading breaks, such as trading halts in individual stocks
and triggering of exchange-wide circuit breakers. These studies hope
to establish whether a trading break during the “fog of battle” helps to
stabilize the stock market.

Other studies look at performance around periods of scheduled
trading breaks (holidays, weekends). Some of these are designed to
obtain insight into whether trading breaks serve to stabilize or destabilize
markets. Other studies in this genre are designed to determine whether
there are financial market anomalies associated with days of the week.

This study examines the distribution of daily returns on five popular
stock price indices, with a special emphasis on the difference between
returns over weekends and returns over adjacent intraweek trading days.
We revisit the “weekend effect” in common stock returns, focusing on
two characteristics of differential returns over intraweek trading days and
over weekends: the “drift” and the “volatility.”

Section I of this article describes the simple diffusion model of stock
returns, upon which much of modern finance rests. It also describes the
jump diffusion model, upon which this paper rests. Section II summarizes



the literature on the weekend effect, reporting on the
evidence supporting its existence and on some possi-
ble explanations grounded in economic theory. Sec-
tion III discusses the estimation methods used, while
section IV discusses the data used in this paper.
Section V reports the results, which are summarized
just below. The article concludes with a summary.

The volatility of stock returns
over weekends is much smaller
than could be predicted from
intraweek volatility. In short,
holding stocks over weekends

gives low and perhaps negative
returns, but also provides

relatively low risk.

We find that a jump diffusion model is superior
to a simple diffusion model, and that the jump diffu-
sion model of stock returns provides strong support
for the weekend effect. For large-cap indices, like the
Dow 30 and S&P 500, the normal return (or “drift”)
over weekends is positive but significantly less than
the intraweek drift. For small-cap stock price indices,
like the Russell 2000 and the Nasdaq Composite, the
weekend drift is actually negative. Thus, much of the
tendency for price declines over weekends is confined
to stocks of small companies.1

The volatility of stock returns over weekends is
much smaller than could be predicted from intraweek
volatility. In short, holding stocks over weekends
gives low and perhaps negative returns, but also
provides relatively low risk. We also find that the
difference between intraweek and weekend drift is
smaller after October 1987 than before. Indeed, for
large companies the difference disappears! This sug-
gests that the poor performance of common stocks
over weekends in the 1980s was a financial anomaly
that was mitigated over time as investors incorporated

it into the timing of their transactions. For example,
shifting the timing of sales to Fridays and of purchases
to Mondays would tend to equalize the weekend and
intraweek returns on stocks. However, for small-cap
stocks the 1980s pattern continued into the 1990s.

We found no change in the relative volatility of
stock returns over weekends after October 1987. Thus,
the observation that weekends are periods of low vola-
tility appears to be true today as well as decades ago.

I. Modeling the Return on Common Stocks

Any analysis of stock returns rests upon a model
of the evolution of those returns. The standard model
of stock returns is the diffusion model. A simple
diffusion model (see Box 1) assumes continuous time
(that is, time is not separated into discrete intervals
such as days or weeks). The rate of return at any
instant of time, called the “instantaneous rate of re-
turn” is modeled as a constant, denoted by a, plus a
random “surprise” with a zero mean and a constant
standard error, denoted by s and called the asset’s
instantaneous volatility. Formally, the diffusion model
states that

dS/S 5 adt 1 (s=dt) dz (1)

where S is the asset’s price at instant t (including
any accumulated cash dividends), dt is the infinitesi-
mally small interval of time over which the stock’s
return is measured, dz is a random variable with a
standard normal distribution,2 and dS/S is the instan-
taneous rate of return. The instantaneous return over
the interval dt will be normally distributed with a mean
of adt, a variance of s2dt and a volatility of s=dt.

While the theoretical model is defined in contin-
uous time, the data we have available are measured in
discrete intervals of time. Returns over discrete inter-
vals of time are typically measured by the logarithm
of the price relative over that interval. If S(t) is the
price at time t (including accumulated dividends),
the price relative over the subsequent T periods is
defined as S(t 1 T)/S(t). The rate of growth over
the T periods is measured by the log price relative,
ln[(S(t 1 T)/S(t)], where ln denotes “logarithm.” If the
deviation of instantaneous returns from the mean of a

1 The capitalization of a company is often measured by the
market value of the company’s equity. The Dow 30 and S&P 500
indices are for large companies with a median equity value of
$50 billion and $6 billion, respectively. The median equity values for
the Russell 2000 and Nasdaq Composite indices are $500 million
and $42 million, respectively. See Fortune (1998, Table 1).

2 A standard normal random variable is normally distributed
with a zero mean and unit standard error. Any normally distributed
random variable can be converted to a standard normal random
variable by deducting the mean and dividing the result by the
standard error. Thus, if x is normally distributed with mean m and
standard error s, then (x 2 m)/s is a standard normal variable.
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is normally distributed with zero mean and standard
deviation s, then the log price relative over T periods,
ln[(S(t 1 T)/S(t)], is normally distributed with mean
growth rate of (a 2 1⁄2s2)T and growth rate volatility
s=T; that is, the log price relative is normally distrib-
uted with a trend growth rate (“drift”) of (a 2 1⁄2s2)T
and a standard error (“volatility”) of s=T. Thus, the
rate of return over a time interval of length T is
described by

ln[(S(t 1 T)/S(t)] 5 (a 2 1⁄2s2)T 1 (s=T) dz. (2)

The average rate of return over T periods is the
log price relative divided by T, or ln[(S(t 1 T)/S(t)]/T.
From the growth formula (2), it can be seen that the
average rate of return over T periods is normally
distributed with a mean rate of return of (a 2 1⁄2s2)
and a standard deviation of s/=T. The mean rate of
return is positive because investors will not hold risky
securities if there are no returns to compensate for
risk, so we expect a . 1⁄2s2.

The relationship between the instantaneous rate

Box 1: The Simple Diffusion Model of Asset Prices

The simple diffusion model is a formal statement
of the random walk model of stock prices, in which
the price of an asset grows at a constant rate with
vibrations around the trend that get smaller as time
passes.

Let S(t) be the price of an asset at time t and a be
the instantaneous mean rate of capital appreciation
of the asset’s price. Over an infinitesimally small
time interval, dt, the asset’s price changes by dS. If
the asset is riskless, the instantaneous rate of return
will be dS/S 5 adt. If the asset’s return is uncertain,
it will deviate from the mean return.

Suppose that dz is a normally distributed ran-
dom variable with zero mean and unit variance,
and that the standard deviation of the instanta-
neous return, also called the asset’s instantaneous
volatility, is denoted by s. A simple diffusion model
of the instantaneous return on the asset is

dlnS 5 adt 1 (s=dt) dz, (B1.1)

where ln denotes a logarithm and the definition
dlnS 5 dS/S is used. According to the simple diffu-
sion model, the instantaneous return on the asset is a
normally distributed random variable with mean (or
“drift”) a and standard deviation (or “volatility”) s.

Equation (B1.1) is a stochastic differential equa-
tion describing the probability distribution of in-
stantaneous returns. The mathematically inclined
can show that the logarithm of the “price rela-
tive,” S(t 1 T)/S(t), over a discrete interval of time
with length T, is normally distributed with mean
(a 2 1⁄2s2)T and volatility s=T; that is,

ln[(S(t 1 T)/S(t)] ; N[(a 2 1⁄2s2)T, s=T], (B1.2)

from which the distribution of the average return
over T periods is

ln[(S(t 1 T)/S(t)]/T ; N[(a 2 1⁄2s2), s/=T].

(B1.29)

Thus, the log price relative increases in propor-
tion to the passage of time, but the standard error
of deviations around the trend increases only
with the square root of elapsed time. Note that
while the mean instantaneous return is a, the mean
average return over T periods is (a 2 1⁄2s2). The
deduction for volatility arises from the nonlinearity
of the transformation from the price relative to its
logarithm.

Equation (B1.29) can be used to answer ques-
tions about the average return. For example,
we might want to know what the probability is
that the average return over 10 years will be
less than the riskless rate of interest, denoted
by r. We know from a simple diffusion model that
[R 2 (a 2 1⁄2s2)]/[s/=T] is a standard normal
random variable, where R 5 ln[(S(t 1 T)/S(t)]/T is
the average return. We want to know Prob{R , r},
which is equivalent to

Prob{w , [r 2 (a 2 1⁄2s2)]/[s/=T]}, (B1.3)

where w is a standard normal variable.
Suppose that for our asset we have a daily return

with mean a 5 0.0010 and daily volatility s 5 0.025.
Suppose also that the riskless rate is 0.0003 per
day. Plugging these numbers into (B1.3) and setting
T 5 3650 days tells us that we want to find
Prob(w , 2.94). This is easily found in tables of
the standard normal distribution. The answer is
Prob(w , 2.94) 5 0.30; this asset has a 30 percent
probability of a 10-year average return that is less
than the riskless rate.
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of return at an instant of time, dS/S, and the average
rate of return, ln[S(t 1 T)/S(t)], over a discrete interval
of time, is often a source of confusion that requires
some explanation. The mathematics of finance tells us
that if the mean instantaneous return is a, the average
return over T periods is (a 2 1⁄2s2). But why should
the average of instantaneous returns be less than the
mean instantaneous return? And why should the
reduction in average return be related to the volatility?

We can think of the log price relative as the return
associated with a given value of the price relative.
The average return over an interval of time (say, a
week) is the average of the returns associated with the
(say, daily) price relatives that occur. The nonlinearity
introduced by the transformation from price relatives
to log price relatives ensures that the average return
associated with several price relatives will be less than
the return associated with the average price relative.
Thus, when returns vary over time, the average return
(average log price relative) will be below the return
associated with the average price relative. Further-
more, the gap will widen as return volatility increases.

Demonstrating this mathematically is extremely
tedious,3 but it can be shown through a simple dia-
gram. In Figure 1 the horizontal axis measures the
price relative and the vertical axis measures the loga-
rithm of that price relative. The curved line, concave
from below, shows the relationship of the log price
relative to the price relative. The vertical distance from
any St1T/St on the horizontal axis to its associated
ln(St1T/St) on the curve measures the rate of return
associated with that price relative. Suppose that s* is
the price relative. The log price relative at s* will be x1,
and this will be the return. If exactly the same price
relative applied to each instant of time, the return
would be x1 in each instant and the average return
would be x1. But only in this case of identical returns
in each period will the average return be equal to the
mean instantaneous return!

Now suppose that the price relative is uncertain,
reflecting variation in the returns, but the average
price relative remains at s*. Will the average return
remain at x1? To see that it will not, assume that there
is an equal probability that the price relative will be
either s0 or s1. The geometry of probability theory
ensures that the expected log price relative will be on

the line segment AB that connects the log price relative
at s0 with the log price relative at s1. The exact position
on AB will depend on the probability that s1 materi-
alizes. Under the assumption that both outcomes are
equally likely, the mean return will be at the midpoint
of AB. The average price relative is still s*, but now the
average return is x2, at the midpoint of AB. The
average return will be less than the original return (x1)
because of the nonlinearity: A decline in the price
relative to s0 reduces the return by more than it would
be increased by a rise from s* to s1. Thus, the intro-
duction of uncertainty about the return has reduced
the average rate of return even though the expected
price relative and the mean instantaneous return have
not changed.

Suppose now that the volatility of the price rela-
tive increases so that the two possible price relative
outcomes are s00 or s11, each equally likely. The
expected log price relative will be at the midpoint of
the red line A9B9. The expected price relative will still
be s*, but the expected log price relative will fall to x3.
Thus, the greater the variability in the price relative,
the lower will be the expected log price relative.
The nonlinearity of the transformation from price
relative to average return means that the average
return will fall as variability increases. In this way, a
mean instantaneous return of a becomes an average
return of a 2 1⁄2s2.

3 Statisticians have long known that if X is a random variable
with mean m and standard error s, then ln X will be a random
variable with mean (a 2 1⁄2s2) and standard error s. Thus, the use
of X or lnX in financial analysis affects the mean, or drift,
of a random variable, but not its variability around the mean.
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This simple diffusion model is a two-parameter
model of asset price evolution. The only parameters
are the mean instantaneous growth rate, a, and the
instantaneous volatility, s. If the random component
of instantaneous returns is normally distributed, and
if the parameters do not change over time, forecasts
of future prices, and statements about probability of
pricing errors, such as confidence intervals, can easily
be formed. Further, these applications can be extended
to a multiple asset model if correlations among instan-
taneous returns are known and constant. In this case,
the well-known Capital Asset Pricing Model of the
structure of asset returns can be derived.

The simple diffusion model is the core model of
asset price dynamics in financial theory. Unfortu-
nately, it fails to incorporate a number of known
features of stock price behavior. If returns were nor-
mally distributed, the distribution would be symmet-
rical around the mean, that is, the frequency of large

It is widely known that stock
returns tend to be skewed

downward, that is, below-normal
returns are more frequent than

above-normal returns.

price increases would be the same as the frequency
of equally large price declines. However, it is widely
known that stock returns tend to be skewed down-
ward, that is, below-normal returns are more frequent
than above-normal returns. This is particularly pro-
nounced in the extreme tails of the distribution: Large
price declines, such as the October 1987 break, are
more frequent than are equally large price increases.

In addition, stock returns are leptokurtic, mean-
ing that the distribution is excessively peaked in the
middle. A larger proportion of returns are in the
middle of the distribution than are in the tails, and
the tails are “fat,” indicating a higher-than-normal
frequency of big price changes.

The Jump Diffusion Model

Proposed by Press (1967) and popularized by
Merton (1976) and by Cox and Ross (1976) in the
context of option pricing, the jump diffusion model
incorporates some of the known characteristics of

stock prices that are not consistent with the simple
diffusion model, such as skewness and fat tails in the
returns distribution.

In recent years, papers have emerged that involve
direct estimation of the parameters of this stochastic
process. For example, Johnson and Schneeweis (1994)
estimated a jump diffusion model to examine the
impact of macroeconomic news on foreign exchange
rates. Kim, Oh, and Brooks (1994) estimated the pa-
rameters of a jump diffusion model for individual
stocks in the Major Market Index.

The jump diffusion model builds on the simple
diffusion model. The jump diffusion model, described
in Box 2, postulates that the instantaneous return is
generated by a simple diffusion model with an addi-
tional source of variability in returns. This source is
the jump process, in which a discrete number of
shocks affect returns at any instant. Each shock is
assumed to be a normally distributed random variable
with a fixed mean effect, denoted by u, and a fixed
standard error, denoted by d. The model for returns,
assuming exactly x shocks, each shock having effect
si (i 5 0, . . . , x), is

dlnS 5 adt 1 (s=dt) dz 1 O
i51

x

si

dz ; N(0, 1) si ; N(u, d2). (2)

Note that if there are no shocks (x 5 0), the last
term in (2) disappears and the simple diffusion model
of instantaneous returns applies. Also, if the number
of shocks is positive but fixed, the jump diffusion
process and simple diffusion process are “observa-
tionally equivalent.” This means that while the five
parameters of a jump diffusion model might be dis-
tinguished in theory, only two parameters can be
estimated, just as if the simple diffusion model ap-
plied. In short, if the number of shocks, x, is fixed, the
jump diffusion process “looks like” the simple diffu-
sion process. In this case the instantaneous return for
the jump diffusion process is normally distributed,
with mean (a 1 xu) and variance (s2 1 xd2). Because
x is fixed, we can estimate these two composite
parameters but we cannot separate out the values of
the components a, u, s, d, and x.

The key to distinguishing between the jump dif-
fusion model and the simple diffusion process is to
allow the number of jumps experienced at any instant
to vary. At some times, there are few shocks, but at
other times there are many shocks. Each shock has an
effect that is variable, described by a normal distribu-
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tion with mean u and standard error d. The jump
diffusion model postulates that x, the number of
shocks in an instant, is described by a Poisson distri-
bution, with l, the Poisson parameter, being the
expected number of jumps. Thus, the number of
shocks at any instant can be as few as zero or as many
as an infinite number (x 5 0, 1, 2, . . .), and l is the
mean number of shocks. If l is very low, there are few
shocks on average, but occasionally there might be
many shocks. If l is very high, there are many shocks
on average, but occasionally there will be instants with
few shocks.

The jump diffusion model (see Box 2) has five
parameters: the simple drift (a), the simple volatility

(s), the mean shock effect (u), the standard devia-
tion of the shock effect (d), and the mean number of
shocks (l). The total drift and total volatility, defined
to include the mean effect of jumps, are a 1 lu and
Îs2 1 ld2, respectively.

This simple extension of a diffusion process has
some rich implications. The most important is that
the distribution of stock returns will no longer be a
normal distribution. In addition to the mean and
variance of returns, which are the only characteristics
of a normal distribution, there can also be skewness
when u is not zero (u . 0 implies an above-normal
number of high returns, while u , 0 implies an
above-normal frequency of large negative returns).

Box 2: The Jump-Diffusion Model

The jump diffusion model builds on the simple
diffusion model. Rather than having all variability
reflected in a normally distributed “surprise,” the
jump diffusion model has a second source of vari-
ability in asset returns. This is the effect of a random
number of “jumps,” either upward or downward,
in stock returns. The jump diffusion model of the
log price is

dlnS 5 adt 1 (s=dt) dz 1 dv dz ; N (0,1) (B2.1)

in which the first two terms are the simple diffusion
model and dv is the variability due to the jump
process.

The jump part of the model, dv, is the sum of
x normally distributed “shocks.” The number of
shocks at any instant, x, is a random variable,
distributed as a Poisson process with parameter l.
The number of shocks can range between zero
and infinity, and l is the mean number of shocks
at any instant. The size of each shock, denoted by s,
is normally distributed with mean u and standard
deviation d. The mathematical description of the
jump part of (B2.1) is, then,

dv 5 O
i 5 0

x

si si ; N(u,d) x ; PO(l) x 5 0, 1, 2, . . .

(B2.2)

If the number of jumps were fixed, dv would be
the sum of x normally distributed random vari-
ables, hence it would also be normally distributed.
In this case, dv and dz are both normally distrib-

uted, and their sum is normally distributed; the
simple diffusion model applies. Thus, it is the
variability in the number of shocks that gives the
jump diffusion model its power.

It can be shown that the moments for the distri-
bution of total return, ln(ST/S0), over T periods
under a jump diffusion model are

Mean (a 2 1⁄2 s2)T

Standard Deviation [s2 1 l(u2 1 d2)]1/2 =T

Skewness
l[u(u2 1 3d2 )/[s2 1 l(u2 1 d2)]3/2/=T

Kurtosis
l[(3d4 1 6d2 u2 1u4)/[s2 1 l(u2 1 d2)]2/T.

Note that if l 5 0, these parameters reduce to the
simple diffusion model having zero skewness and
zero kurtosis. When there are shocks, that is, when
l . 0, both skewness and kurtosis can exist.

The direction of skewness in stock returns de-
pends solely on the mean effect of a shock. In
particular, when the mean shock is negative (u , 0),
the distribution of stock returns will be skewed to
the left; when the mean shock is positive (u . 0), the
distribution of stock returns will be skewed to the
right.

Whenever shocks have a mean effect or a variable
effect, the distribution of total returns will be lep-
tokurtic, that is, the distribution will exhibit an
above-normal frequency of returns around the
mode.
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II. The Weekend Effect

The “weekend effect” refers to a difference in the
behavior of stock returns over weekends and over
intraweek trading days. This might seem vacuous at
first blush, because stock markets in the United States
are closed over weekends and an analysis of prices
over periods with no trading seems oxymoronic.
However, investors do receive and process informa-
tion during periods when markets are closed, and the
information processed over a weekend will affect
the price at and after the opening on Monday. If the
information arriving per day over weekends is of the
same quantity and consequence as intraweek news,
the implicit price movements over weekends should
be the same as the explicit movements during the
week. Thus, if the volatility over a day from close to
close during a week is s, then the volatility from close
to close over a three-day interval during the week
should be s=3, and the same volatility should apply
to a weekend from Friday’s close to Monday’s close.
Furthermore, as we have already seen, if a is the mean
daily return during intraweek trading, then the mean
daily return over a weekend should be (a 2 1⁄2s2). In
short, if a weekend were just like an intraweek day
except for its length, the return volatility over week-
ends would be 1.73 times the daily intraweek volatil-
ity, and the daily drift over weekends would be less

than the daily intraweek drift by an amount equal to
1⁄2s2.

Table 1 (below) shows the descriptive statistics for
the sample period used in this paper. For the S&P 500
(for example) the intraweek mean daily values sug-
gest a 5 .000618 (.0618 percent) and s 5 .008685
(.8685 percent). The implied drift over weekends is
(a 2 1⁄2s2) 5.00058 per day and the daily volatility on
weekends should be s 5 .008685. However, the week-
end drift and volatility are .000115 and .005791, re-
spectively. The mean drift over weekends is, therefore,
less than during the week, and the daily volatility on
weekends is less than the intraweek daily volatility.

Thus, over weekends the drift should be, and is,
less than the drift found during the trading week.
While this is a partial explanation of the lower returns
over weekends than during the week, the weekend
effect goes beyond a lower average daily return over
weekends. Data from the 1970s and 1980s show that
the weekend volatility is less than predicted from
weekday returns data, and that the weekend drift is
negative! Cross (1973) found that stock prices actually
tend to decline over weekends in the three-day inter-
val from Friday’s close to Monday’s close. At first this
was attributed to a “Monday effect” but Rogalski
(1984) found that the entire decline occurred between
Friday’s close and Monday’s open and that the open-
to-close returns on Mondays were non-negative. Har-

Table 1
Descriptive Statistics for Daily Returns
January 3, 1980 to January 29, 1999 Excluding October 1987

S&P 500 Dow 30 Wilshire 5000 NASDAQ Russell 2000

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Number 3,753 877 3,753 877 3,753 877 3,753 877 3,753 877
Days per year 196 138 196 138 196 138 196 138 196 138

Mean Return (Percent)
per day .0618 .0115 .0491 .0251 .0701 2.0034 .1084 2.0355 .0942 2.0397
per year 12.87 1.60 10.99 3.52 14.72 2.47 23.66 24.78 20.27 25.33

Standard Deviation (Percent)
per day .8685 .5791 .9035 .5984 .8015 .5420 .8483 .5974 .7118 .5028
per year 12.16 6.80 12.65 7.03 11.22 6.37 11.88 7.02 9.97 5.91

Skewness 2.224* 21.114* 2.258* 2.926* 2.250* 21.279* 2.498* 21.554* 2.877* 21.295*
Kurtosis 3.833** 6.599** 4.554** 5.810** 4.372** 7.555** 4.869** 10.437** 6.335** 7.140**

The daily returns are measured by the logarithm of relative closing prices. Weekend returns are measured as three-day log price relatives divided by 3 to
convert to daily equivalents. The mean annual return and the annual standard deviation are computed as (1 1 m)n 2 1 and s=n, where m and s are the
daily mean and standard deviation and n is the number of intraweek trading days (196) or weekend days (138) in a year.
*Indicates that skewness is significantly negative at a 5 percent significance level.
**Indicates that kurtosis is significantly greater than 3.0 (the value for a normal distribution) at a 5 percent significance level.
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ris (1986) further refined this, showing that prices
tended to decline during the first 45 minutes of
Monday trading but that early losses were recouped
over the remainder of Monday. Dyl (1988), using S&P
500 futures prices, found that significant price changes
are more likely to occur over weekends than during
the trading week, and that price declines were more
likely over weekends than intraweek. Thus, these
studies created the conventional wisdom that stock
prices in the United States tend to decline over week-
ends, an observation that became known as the “week-
end effect.”

The conventional wisdom has
been that stock prices in the
United States tend to decline
over weekends, an observation

that became known as the
“weekend effect.”

The second part of the weekend effect, the “week-
end volatility effect,” is that the daily volatility of
returns over weekends is less than the volatility over
contiguous (intraweek) trading days. French and Roll
(1986) examined the descriptive statistics for returns
on all common stock traded on the New York Stock
Exchange (NYSE) and the American Stock Exchange
(AMEX). They found that the volatility over entire
weekends was only about 10 percent greater than the
intraweek daily volatility. This translated to a per day
weekend volatility well below the intraweek daily
volatility. Thus, even though information might be
arriving during Saturday and Sunday, either the fre-
quency of its arrival or the volatility of returns that
resulted was so low that prices behaved as if investors
ignored any weekend information, treating Monday
as if it were simply the day following Friday. French
and Roll concluded that trading induces volatility and
that when markets are particularly volatile a trading
halt might reduce volatility.

Explanations for the Weekend Effect

The weekend drift effect has received the most
attention in the literature. Miller (1988) attributes the
negative returns over weekends to a shift in the

broker-investor balance in decisions to buy and sell.
During the week, Miller argues, investors are too busy
to do their own research and tend to follow the
recommendations of their brokers, recommendations
that are skewed to the buy side. However, on week-
ends, investors, free from their own work as well as
from brokers, do their own research and tend to reach
decisions to sell. The result is a net excess supply at
Monday’s opening. Miller’s hypothesis is supported
by evidence showing that brokers do tend to make
buy recommendations,4 by evidence that odd-lot
transactions tend to be net sales, and by data showing
that odd-lot volume is particularly high and institu-
tional volume is particularly low on Mondays. Thus,
individual investors tend to sell on Mondays when the
lack of institutional trading reduces liquidity. Ziemba
(1993) provides evidence that the same phenomenon
exists in Japanese stock prices.

Another explanation for the negative weekend
effect is that stock prices close “too high” on Fridays or
“too low” on Mondays. One variant attributes unusu-
ally high Friday closing prices to settlement delays.
With the current T 1 3 settlement schedule, settlement
occurs on the third business day after the trade date.
Buyers on Mondays and Tuesdays must pay during
the same week (on Thursday or Friday), but buyers on
Wednesday through Friday need not pay for five days
because a weekend occurs before the settlement day;
they get an extra two days of interest-free credit from
brokers before settlement. Monday prices must be
lower than Friday prices to compensate those inves-
tors who delay purchases until Monday. This hypoth-
esis is supported by the intraweek behavior of volume
and returns: Friday is the day with the greatest vol-
ume and with the most positive stock returns.

However, there are several reasons for discount-
ing the influence of settlement delays. First, calcula-
tions of the value of the interest earned over two days
gives too small a number to account for the size of
the observed negative weekend drift. Second, prior to
June 7, 1995, the settlement of common stocks was on
T 1 5, that is, buyers paid for their shares on the fifth
trading day following the purchase. Thus, under the
settlement practices in place at the time the weekend
effect was most actively studied, it made no difference
on which day the purchase was made because all
purchases were paid for on the seventh business day;
every settlement period included a weekend.

4 Groth et al. (1979) found that about 87 percent of 6,000 broker
recommendations were to buy, leaving only 13 percent on the sell
side.
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A second variant, the dividend exclusion hypothe-
sis, argues that ex-dividend dates tend to cluster on
Mondays and that at least part of the decline from
Friday to Monday reflects the payments of dividends.
Because virtually all studies of the weekend effect
(including the present study) ignore dividend pay-
ments when calculating daily returns, there is a bias
toward stock price decline over weekends if ex-divi-
dend dates do cluster around Mondays. Any ex-
dividend effects would be realized very early on
Monday, after which positive returns would occur on
the rest of Monday. The evidence cited above suggests
some support for this pattern.

We should not ignore the
hypothesis that a negative

weekend drift is an anomaly that
was hidden from the eyes of

investors but brought to light by
the data mining of academics.

According to yet another hypothesis, the informa-
tion release hypothesis, information released during
the week tends to be positive and information released
over weekends tends to be negative. A firm with good
news will release it quickly so investors can bid the
stock price up, but bad news is an orphan, hopefully
hidden from investor scrutiny by release after the
Friday close. The result is that weekends are periods of
absorbing bad news.

Abraham and Ikenberry (1994) find support for a
serial correlation hypothesis, according to which Mon-
day’s price performance is conditioned on Friday’s
performance: A strong Friday tends to be followed by
positive weekend returns; a weak Friday is followed
by negative weekend returns. While only one-third of
the Fridays in their sample show price decreases, these
dominate the Monday results, suggesting that bad
Fridays are given heavy weight in Monday trades.
This observation is consistent with small investors
who initiate Monday morning trades being particu-
larly sensitive to poor performance on Fridays.

We should not ignore a final hypothesis: There is
no economic rationale to justify the persistence of a
negative weekend drift. Rather, it is an anomaly that
was hidden from the eyes of investors but brought to

light by the data mining of academics. If this is the
case, the weekend effect should have disappeared
after its discovery and diffusion, as investors learned
to reap profits by selling short on Friday and covering
their positions on Monday.

III. Estimating Jump Diffusion Models

The first estimation of a jump diffusion model,
Press (1967), relied on the “method of cumulants,” a
method used more recently by Beckers (1981). This
method involves calculating the first six moments of
the sample distribution of stock returns. From these
six moments, the parameters of the jump diffusion
model can be estimated. While this method can be
useful in developing initial estimates to be used in an
iterative estimation process, it suffers from two short-
comings. First, the method is underidentified, that is,
it allows several possible parameter vectors to be
associated with the same distribution. Second, there
are no statistical tests that would allow us to deter-
mine how reliably we can accept or reject hypotheses
about the distribution of stock returns.

This study uses a more direct approach, the
method of maximum likelihood. The likelihood func-
tion describing the probability of obtaining the ob-
served sample of returns is derived from the under-
lying theory. This likelihood will depend upon the five
jump diffusion parameters. The method of maximum
likelihood, described more fully in Box 3, involves
writing a computer program to calculate the likeli-
hood associated with any specific values for the five
parameters. An initial set of values is given, and the
program then searches over the possible values of the
parameters to find the values that maximize the like-
lihood. These are the maximum likelihood estimates
of the jump diffusion model’s parameters. We have
estimated the parameters of this likelihood function
using a Gauss program written by, and available from,
the author.

IV. The Data

The focus of this paper is on differences in stock
market returns within the week and over weekends.
Because the returns on “the market” are not uniquely
measured by any single stock price index, we have
used five popular stock price indices: the Dow 30, the
S&P 500, the Wilshire 5000, the Nasdaq Composite,
and the Russell 2000. Fortune (1998) examined the

September/October 1999 New England Economic Review 11



properties of these five indices and found that the
indices can be put into two groups. The Dow 30, the
S&P 500, and the Wilshire 5000 are highly correlated,
suggesting that they measure very similar segments of

the market. The Nasdaq Composite and the Russell
2000 are also highly correlated with each other but are
less correlated with returns from the first three indices.
The returns derived from the Dow 30, the S&P 500,

Box 3: Estimating Jump Diffusion Parameters Using Maximum Likelihood

We want to derive the likelihood function as a
function of the parameters in the jump diffusion
model. Let g(Rx) be the probability density func-
tion for the return, conditional on the number of
shocks at that instant; it is a function showing the
probability that a specific value of R will be ob-
served when there are exactly x shocks. Also let h(x)
be the probability density function for the number
of shocks; this is a function showing the probability
of each possible number of shocks. Then basic
statistical theory tells us that the joint distribution
of return and number of shocks is f(R,x) 5
g(Rx)h(x) and that the marginal probability for
returns will be

p(R) 5 O
x 5 0

`

f (R, x).

The probability of observing a specific set of n
values of R (assuming each is independently drawn
from an identical distribution) will be the likelihood
function

L(R1, R2, . . . , Rn) 5 P
i 5 1

n

p(Ri ) 5 P
i 5 1

n F O
x 5 0

`

f (Ri , x)G
5 P

i 5 1

n F O
x 5 0

`

g(Ri x)h(x)G, (B3.1)

and the logarithm of the likelihood function is

ln(R1, R2, . . . , Rn) 5 O
i 5 1

n

ln F O
x 5 0

`

g(Ri x)h(x)G.

(B3.2)

In order to estimate the parameters of the jump
diffusion model we must have specific functions for
g(Rix) and for h(x). We assume that these are
normal and Poisson, respectively. Noting that the
jump diffusion model for one time period can be
written

R 5 a 1 sw 1 O
x 5 1

`

si

where w ; N(0,1) and si ; N(u,d2), (B3.3)

the specific probability functions are

g(Ri x) 5 [2p(s2 1 xd2)]21/2e21/2[R2(a1xu)]2/(s21xd2)

and h(x) 5 e2llx/x. (B3.4)

Substituting these functions into the probabil-
ity statement (B3.2) yields the likelihood function,
which depends upon the values of the five pa-
rameters.

lnL(a, s, l, u, d) 5 O
n 5 1

N

ln O
x 5 0

`

{[e(2l)(l)x/x!]

z @2p~s2 1 xd2!#21/2 (B3.5)

z e{21⁄2{[R 2 (a 1 xu)]2/(s2 1 xd2)}}}J.

The five parameters of interest (a9, s, l, u, and
d) can be directly estimated by finding the values
that maximize the likelihood of occurrence of the
observed sample of returns. If the sample is for
3-day breaks (as for a weekend) the per-weekend
values of a, s, and l over weekends can be
computed as 3a, s=3, and 3l, respectively.a

Estimation of the jump diffusion model’s pa-
rameters is done using a Gauss program that is
available from the author.

aThe maximum likelihood method requires a summation
over all possible values for the number of jumps at each
iteration. Since the number of possible jumps is infinite, exact
estimation using the method of maximum likelihood is not
possible. Honore (1998) suggests a modified approach to deal
with this, but we have simply summed over a large number of
jumps, so that very little of the upper tail of the Poisson
distribution is discarded.

H
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and the Wilshire 5000 had a beta coefficient of less
than 1.0, while the Nasdaq Composite and Russell
2000 had beta coefficients above 1.0. Thus, the Dow,
S&P, and Wilshire indices measure roughly the same
segment of the broad market, a segment with less
systematic risk than the portfolios measured by the
Nasdaq Composite and Russell 2000.

Our returns data are calculated as the log price
relatives for daily closing values of the five indices
cited above. Thus, we use close-to-close prices of a
market-capitalization-weighted index of returns
rather than close-to-close or open-to-close prices for
individual stocks. The data are for the period January
3, 1980 through January 29, 1999, excluding October
1987. There are 3,753 daily intraweek returns in our
sample. Intraweek returns are the log relatives for
closing prices on adjacent trading days (Monday and
Tuesday, Tuesday and Wednesday, and so on). Week-
end returns are the returns experienced over the
three-day break of a normal weekend. There are 877
weekend returns in our sample period, an average of
46 in each year.5

Table 1 reports the descriptive statistics for our
daily returns data. These support the conventional
wisdom regarding the distribution of stock returns.
For each of the five stock indices the daily value of the
weekend return has both a lower mean and less
variability than the intraweek daily returns. While
weekend returns for the Dow 30 and the S&P 500 are
positive (though smaller than intraweek returns), the
weekend returns for the Nasdaq and Russell indices
are both negative. These results are consistent with the
French–Roll finding that weekends are periods of
lower (perhaps negative) growth as well as of low
variability. However, the larger-capitalization stocks
in the S&P 500 and Dow 30 do not suffer as badly over
weekends as do the small-capitalization stocks in-
cluded in the Nasdaq Composite and the Russell 2000.
Note that the Wilshire 5000 takes an intermediate
position, with only a slight tendency to decline over
weekends.

As noted above, French and Roll (1986) found that
the volatility of returns over a three-day weekend was
only about 10 percent greater than the daily volatility
during the week; if weekends were simply three-day
periods, volatility should be 73 percent greater over
weekends. Our descriptive statistics support the
French–Roll view that weekend volatility is especially

low. For example, for the S&P 500 our sample shows
a weekend volatility of 1.003 (calculated as the per day
volatility times =3). This is about 15 percent greater
than the intraweek daily volatility. This is true of the
other four indices. Thus, we see that the volatility is
especially low over weekends.

For both intraweek and weekend samples, and
for all five indices, the distribution of returns is
negatively skewed, showing a tendency toward larger
price declines vis-à-vis large price increases. Skewness
is much more negative over weekends, reflecting an
increase in the chance of large price declines over
weekends than during the week.

The value of the kurtosis statistic for a normal
distribution is 3. Our sample shows that, for each
index, the kurtosis is above the normal distribution’s
level, and it is higher over weekends than during the
trading week. This means that the distribution of
returns shows a tendency toward “peakedness,” with
a scarcity of returns in the middle-distance around the
mean, and a greater frequency both in the extremes
(the “fat tails” result) and near the mean.

Thus, our sample indicates that the returns to
common stocks are not normally distributed, and that
they tend both to be skewed downward and to show
a high frequency of extreme values. Each of these
characteristics is more pronounced over weekends
than during the week, indicating that weekends are
different in many respects. While something smooths
out the bumps over weekends, the mean weekend
bump is both larger and more negative than is found
during the week. Weekends are safer, but news over
weekends tends to arrive in bigger chunks and to be
more negative.

V. The Results

The descriptive statistics in the previous section
are a very rough guide to the differences between
intraweek and weekend stock returns. In this section
we report the results of an explicit estimation of the
jump diffusion model’s parameters, using the method
of maximum likelihood. This estimation is done using
all 4,630 returns in our sample, with the 877 weekend
returns treated as single events rather than as daily
returns. Because October 1987 was such an unusual
month, we have excluded it from our analysis.

In order to investigate differences between in-
traweek and weekend parameter values, each param-
eter is allowed to be different over weekends than over
intraweek periods. This difference is captured using

5 The remaining six weekends in a year are “long” weekends
associated with Monday holidays. These are excluded from our
sample as are mid-week one-day holidays.
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dummy variables. Thus, if we select for attention the
parameter for the mean effect of a shock, u, then the
model is estimated using a parameter defined as
u 5 u0 1 u1D1, where D1 is a dummy variable defined
as zero for intraweek observations and 1 for weekend
observations. The intraweek value of the parameter is
u0 and the weekend value is u0 1 u1. The existence of
a weekend effect on the parameter can be determined
by assessing the statistical significance of u1. The same
dummy variable is attached to the other four param-
eters (a, s, l, and d).

Table 2a reports the results. The “intraweek”
columns show the estimated values and the associated
t-statistics for the parameters a0, s0, l0, u0, and d0. The
“weekend” columns show the parameter estimates for
a01 a1, s0 1 s1, l01 l1, u0 1 u1, and d0 1 d1, but the
t-statistics for the weekend columns are for tests of
whether the weekend effect is significant, that is,
whether the second part of each parameter (a1, s1, l1,
u1, and d1) is significantly different from zero. If not,
there is no difference between the weekend and in-
traweek values of the parameter.

The results support the jump diffusion model. For
every index, the mean jump frequency (l) and the
standard deviation of the jump effect (d) are both

significantly greater than zero, showing that jumps do
occur and that their effect is variable. For the large-cap
indices (the Dow 30 and the S&P 500) and for the
Wilshire 5000, the mean intraweek jump effect (u) is
not statistically significant and the coefficients have
mixed signs. However, for these indices—and for the
two small-cap indices—the mean jump is significantly
negative over weekends. Thus, a negative weekend
effect on u is found for all indices. What is surprising
is that the Nasdaq Composite and the Russell 2000
show negative values of u during the week as well
as over weekends. In fact, the small-cap indices have
a smaller negative shocks size over weekends than
over weekdays. It appears that the conventional wis-
dom that weekends are a particularly bad time to
hold stocks is peculiar to the more popular large-cap
indices.

The weekend results show smaller volatility over
entire weekends than experienced over single week-
days. The reason is twofold. First, the weekend mean
jump frequency is less than the intraweek mean fre-
quency, a difference that is statistically significant. For
example, the S&P 500 gets about 1.125 shocks on a
typical weekday but only 0.405 shocks over a three-
day weekend. Thus, weekends have fewer shocks than

Table 2a
Jump Diffusion Parameters for Daily Returnsa

Joint Estimation with Weekend Dummy Variables
January 3, 1980 to January 29, 1999, excluding October 1987

Parameters

S&P 500 Dow 30 Wilshire 5000 NASDAQ Russell 2000

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Simple Drift (a) .0399 .0433 .0526 .0512 .0888 .0305 .1866 .0028 .1775 2.0006
(13.19)* (1.25) (14.78)* (2.10) (19.27)* (25.26)* (116.9)* (215.6)* (124.4)* (220.4)*

Simple Volatility (s) .4023 .1937 .5841 .2104 .4490 .1723 .5070 .2089 .4400 .1663
(130.9)* (214.7)* (159.4)* (232.7)* (150.4)* (225.2)* (149.6)* (226.7)* (159.3)* (231.0)*

Jump Frequency (l) 1.1250 .4050 .4778 .3693 .6826 .3987 .3985 .2751 .3339 .3034
(168.9)* (222.0)* (148.8)* (27.04)* (162.1)* (212.2)* (140.7)* (26.34)* (141.5)* (21.74)*

Mean Jump (u) .0199 2.0793 2.0007 2.0713 2.0273 2.0813 2.1851 2.1423 2.2463 2.1294
(11.48) (25.39)* (2.40) (23.27)* (21.71) (22.68)* (211.2)* (12.22)* (212.5)* (15.46)*

Jump Standard
Deviation (d)

.7134 .4103 .9793 .4337 .7865 .3935 1.0204 .4935 .9121 .4015
(148.5)* (218.5)* (62.6)* (241.3)* (150.2)* (225.7)* (170.5)* (232.2)* (147.5)* (233.9)*

Number of
Observations 4630 4630 4630 4630 4630

aReturns are measured as 100 times the daily log price relative, that is, in percent. Intraweek returns have one day between closings. Weekend returns are
three-day returns, measured from close on Friday to close on Monday.
T-statistics are in parentheses. The t-statistic for the intra-week parameters is for the null hypothesis that the parameter is equal to zero. The t-statistic for
the weekend parameter value is for the null hypothesis that it is different from the parameter value over intraweek intervals. An asterisk indicates rejection
of the null at 5% significance.
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do intraweek days, even though a weekend is three
days long. Second, in all five indices the variability of
a shock’s effect is smaller over weekends.

Investors are unlikely to care about the individual
parameters affecting the evolution of stock prices.
Rather, they are more concerned with the mean re-
turns and the volatility of returns. Table 2b summa-
rizes those by calculating the “total drift” and “total
volatility” implied by the parameter estimates in Table
2a. The “total drift” is defined as the mean instanta-
neous return in a simple diffusion model plus the
expected change from jumps, or a 1 lu. It measures
the normal returns that investors experience between
weekdays or over weekends. The intraweek total drift
is positive for all five indices, and it is smaller over
weekends than during weekdays; weekends are peri-
ods of lower returns than weekdays. Whether week-
ends are periods of price decline depends on the index
chosen: Total drift is negative on weekends for the
small-cap indices (Nasdaq Composite and Russell
2000), positive for the large-cap indices (S&P 500 and
Dow 30), and very small for the very broad Wilshire
5000.

The “total volatility” is the standard error of a
simple diffusion model plus the contribution of jumps,
or =(s2 1 ld2). As noted above, total volatility is
lower over weekends than would be predicted from
weekday data. But the differences are much more
dramatic than the French–Roll study suggests. For
example, the S&P 500’s intraweek daily volatility is
0.8570 and the estimated weekend total volatility is
only 0.3251. Weekend volatility is only about 37 per-

cent of intraweek daily volatility, a great contrast with
the French–Roll conclusion that weekend volatility
was only 10 percent greater than intraweek volatility.
In short, volatility is much lower over weekends than
during weekdays. This is true for all five indices.

Table 2b also shows that the jump process is a
very important part of stock returns. The proportion
of total volatility accounted for by jumps ranges from
a low of 76 percent to a high of 88 percent. Thus, at
least three-fourths of stock price variability is due to
jumps, strong support for a jump diffusion process.

Parameter Changes over Time

In the preceding section we treated the parame-
ters as fixed over the entire period, with a different
value over weekends than during the week. However,
there are strong reasons for viewing parameters of the
diffusion process as varying over time. The nature
of both microeconomic and macroeconomic shocks
changes over time, and this should affect the relative
returns on different stock portfolios. The types of firms
included in an index also change over time. For
example, the S&P 500 has larger and more technology-
oriented companies than it once had. Furthermore,
investor behavior should lead to changes in relative
returns. Also, efficient markets theory predicts that if
an anomaly is identified that allows informed inves-
tors to make above-normal profits, the anomaly
should disappear over time as investors take advan-
tage of the opportunities. This will lead to a restora-
tion of normal risk-adjusted returns. Thus, if the

Table 2b
Drift and Volatility of Daily Returns
Joint Estimation with Weekend Dummy Variables
January 3, 1980 to January 29, 1999, excluding October 1987

Values

S&P 500 Dow 30 Wilshire 5000 NASDAQ Russell 2000

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Intra-
week

Week-
end

Total Drifta .0623 .0112 .0523 .0249 .0701 2.0019 .1128 2.0363 .0953 2.0399

Total Volatilityb .8570 .3251 .8812 .3372 .7898 .3024 .8197 .3326 .6866 .2767
Percent of Volatility

Due to Jumpsc 88.3 80.3 76.8 78.2 82.3 82.2 78.6 77.8 76.8 79.9
aTotal drift is (a 1 lu). The weekend total drift is for the three-day close-to-close period. Weekend total drift can be converted to a daily basis for direct
comparison with weekday total drift by dividing by 3.
bTotal volatility is =(s2 1 ld2). The weekend total volatility is for the three-day close-to-close period. Weekend total volatility can be converted to a daily basis
for direct comparison with weekday total volatility by dividing by =3.
cThe proportion of total volatility due to jumps is =(ld2)/=(s2 1 ld2).
Source: Table 2a.

September/October 1999 New England Economic Review 15



weekend effect of the 1980s is a true anomaly, it
should disappear in the 1990s as investors change the
timing of their trades, selling before weekends and
buying on Monday’s opening.

In order to investigate this possibility, we have
split our sample into two parts: the period 1980 to
September 1987 (Pre 10/87) and the period November
1987 through January 1999 (Post 10/87). A dummy
variable (D2) was formed for the Post 10/87 period;
this had a zero value in the first period and a unit
value in the second period. The weekend dummy
variable (D1) was also used. Each of the five parame-
ters was constructed as (using u as an example)
u 5 u0 1 u1D1 1 u2D21 u3 (D1 p D2). Note the
interaction between the weekend dummy and the Post
10/87 dummy. This allows us to estimate a separate
weekend effect after October 1987 from that before
October 1987.

As a result, each of the basic five parameters is
now replaced by four parameters, creating a total of 20
parameters to be estimated. For each of the parameters
the results shown below can be identified.

Pre 10/87 (D2 5 0)
Post 10/87 (D2 5 1)

Intraweek
(D1 5 0)

u0
u0 1 u2

Weekend
(D1 5 1)
u0 1 u1

u0 1 u1 1 u2 1 u3

Thus, prior to October 1987, u0 is the intraweek value,
u0 1 u1 is the weekend value, and u1 is the contribu-
tion of a weekend to the parameter’s value. Similarly,
during the week u0 is the value prior to October 1987,
u0 1 u2 is the value after October 1987, and u2 is the
change in the parameter after October 1987.

Table 3a reports the maximum likelihood esti-
mates of the jump diffusion model using both the
weekend and Post 10/87 dummy variables. Table 3b
summarizes the implications of these parameters
for total drift (a 1 lu) and total volatility =(s2 1 ld2).
Rather than discuss the individual parameters re-
ported in Table 3a, we will focus on the summary
parameters in Table 3b.

For each of the five indices, the total intraweek
drift declined after October 1987, though it remained
positive. Prior to October 1987 the total drift was
negative on weekends, especially for small-cap stocks,
a confirmation of the “weekend drift” effect found in
the 1980s. However, after October 1987 the weekend
drift results changed. Large-cap stocks (S&P 500 and
Dow 30) exhibited about the same total drift on
weekends as during the week, indicating that for them
the weekend drift effect disappeared after 1987. Small-
cap stocks, on the other hand, continued to experience

a negative weekend drift after 1987, though it was less
than prior to October 1987. For all five stock indices,
the difference between intraweek and weekend drift
declined after October 1987. In short, it looks as if the
weekend effect disappeared for large-cap stocks, and
became smaller for small-cap stocks, a result consis-
tent with the dynamics associated with a financial
anomaly: identification followed by disappearance as
smart investors take advantage.

While there were substantial changes in drift after
1987, total volatility did not change much. For exam-
ple, the S&P 500’s total intraweek volatility was about
0.85 both before and after October 1987, but its week-
end volatility was much lower (about 0.32). As found

The drift portion of a weekend
effect may have been an anomaly.

The weekend volatility story is
persistent, suggesting stability in

the intraweek and weekend
differences in information arrival

and information effects.

in previous sections, the total daily volatility was
considerably smaller over weekends than during in-
traweek trading. In most cases, volatility is not very
different after 1987 than before, and in all cases the
weekend volatility is much less than could be pre-
dicted from the intraweek volatility.

These results suggest that, particularly for large-
cap stocks, the drift portion of a weekend effect may
have been an anomaly with no basis in economics.
Rather, it was an artifact of investor ignorance that
was eliminated when investors became aware of the
anomaly. The weekend volatility story is persistent,
suggesting stability in the intraweek and weekend
differences in information arrival and information
effects.

VI. Summary

During the 1980s a flood of academic research on
stock market anomalies washed over the efficient
markets hypothesis. At the time, the question was
whether these anomalies had an economic founda-
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tion, so they did not reflect opportunities for profit
and could be expected to be persistent, or whether
they were real anomalies arising from investor igno-
rance that would be eliminated as investors became
aware of them and took advantage of profitable op-
portunities.

This paper revisits the weekend effect, interpret-
ing the conventional wisdom as having two parts.
First, stock returns are normally positive during the
week but are negative over weekends. There are a
number of hypotheses suggesting that this arose from
variation across the week in the risks and rewards of
investing in stocks. If, on the other hand, this pattern
is simply a financial anomaly, we would expect inves-
tors to eliminate it over time by shifting their sales

toward Fridays and their purchases toward Mondays.
Second, stock returns are less volatile over weekends
than they should be, given intraweek volatility. This
pattern has been interpreted by some as suggesting
that trading itself promotes volatility, with the impli-
cation that trading halts can be a stabilizing force
when markets are chaotic.

We have revisited these weekend effects by di-
rectly estimating the parameters of the probability
distribution of stock returns. These propositions are
tested using daily close-to-close data for the S&P 500
from January 1980 through January 1999. Unlike pre-
vious studies that were based on descriptive statistics
from a large number of individual stocks, this paper is
based on the explicit estimation of the parameters of

Table 3a
Jump Diffusion Parameters for Daily Returnsa

Joint Estimation with Weekend and Post ’87 Dummy Variables
January 3, 1980 to January 29, 1999, excluding October 1987

Parameters

S&P 500 Dow 30 Wilshire 5000 NASDAQ Russell 2000

Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87

Drift (a)
IntraWeek .0138 .0578 .0048 .0760 .0697 .0977 .1834 .1835 .1739 .1766

(11.09) (14.19) (1.37) (15.44) (15.93) (18.42) (116.6) (113.0) (116.3) (116.9)

WeekEnd .0218 .0505 .0107 .0634 .0097 .0388 2.0354 .0357 2.0312 .0241
(11.69) (15.56) (1.75) (16.38) (1.81) (14.53) (23.72) (13.31) (23.26) (13.11)

Volatility (s)
IntraWeek .5232 .4144 .6409 .5912 .5421 .4401 .5112 .5373 .4918 .4130

(138.9) (126.5) (15.0) (139.8) (142.0) (131.8) (148.0) (138.2) (145.5) (138.7)

WeekEnd .2381 .1745 .3078 .1920 .2163 .1516 .2105 .2063 .1867 .1416
(118.9) (12.3) (126.1) (121.3) (118.5) (119.3) (125.0) (117.3) (119.0) (122.5)

Jump Frequency (l)
IntraWeek .9446 .8479 .4673 .3398 .6461 .5158 .1916 .4531 .2430 .3550

(164.8) (148.4) (138.6) (128.1) (146.3) (133.8) (125.8) (131.1) (127.7) (28.2)

WeekEnd .4721 .3460 .2194 .2831 .4059 .3645 .1389 .3705 .2648 .4073
(129.1) (120.6) (118.1) (117.1) (127.6) (120.0) (114.4) (118.2) (119.4) (119.7)

Mean Jump (u)
IntraWeek .0749 2.0136 .1344 2.1181 .0311 2.0799 2.2764 2.1957 2.1955 2.2917

(14.56) (2.66) (19.00) (25.06) (11.70) (23.53) (214.9) (27.24) (210.4) (212.1)

WeekEnd 2.0885 2.0487 2.0497 2.0746 2.0973 2.0578 2.2643 2.1236 2.1420 2.1070
(23.76) (21.59) (21.96) (22.07) (24.18) (22.10) (2.74) (23.28) (25.46) (23.85)

Jump Std Dev (d)
IntraWeek .7132 .8049 .9162 1.1271 .7400 .8946 1.0906 1.0882 .9411 .9341

(142.5) (137.8) (147.6) (145.2) (14.1) (137.2) (158.1) (142.6) (146.6) (137.0)

WeekEnd .3319 .4540 .3294 .5120 .3508 .4165 .4515 .4767 .3955 .3667
(114.4) (117.3) (113.0) (115.1) (113.8) (114.1) (116.3) (112.9) (114.8) (112.5)

aReturns are measured as 100 times the daily log price relative, that is, in percent. Intraweek returns have one day between closings. Weekend returns are
three-day returns, measured from close on Friday to close on Monday. T-statistics are in parentheses. All t-statistics are for the null hypothesis that the
parameter is equal to zero.
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the distribution of returns on stock indices. We have
used five indices: two large-cap indices (the S&P 500
and the Dow 30), two small-cap indices (the Nasdaq
Composite and the Russell 2000), and one very broad
index (the Wilshire 5000).

Our results are derived from maximum likeli-
hood estimation of the five parameters of a jump
diffusion model of stock returns. The five parameters
are the instantaneous mean return and volatility of a
simple diffusion process (a and s, respectively) and
the three parameters of the jump process: the mean
frequency of a shock (l), the mean size of a shock’s
effect on returns (u), and the standard deviation, or
volatility, of a shock’s effect on returns (d). The results
suggest strong support for the jump diffusion model.
Not only are the instantaneous mean return and
volatility estimates sensible, but the parameters asso-
ciated with the jump part of the process are also
sensible and significant.

Our analysis of parameter estimates (Tables 2a
and 2b) strongly supports the jump diffusion model of
stock returns: At least 75 percent of total volatility is
attributable to the jump part of the diffusion model.
We also find strong support for the weekend volatility
effect. If weekends were the same as weekdays, vola-
tility would be about 73 percent greater over three-day
weekend periods than during weekdays. But we find

that volatility over an entire three-day weekend is
only about 40 percent of the volatility during a single
intraweek trading day. The lower weekend volatility
occurs for two reasons. First, the arrival rate of new
shocks (l) is much lower over weekends than over
weekdays: We estimate for the S&P 500 that there are
about 1.2 shocks per day during the week, but only
about 0.4 shocks per three-day weekend. Second, the
standard error of the impact of a shock on a weekend
is only about half the weekday standard error. In
short, weekends have less new information, and the
variability of the effect of a bit of new information is
smaller over weekends. These results are of the same
order for all five stock indices.

The weekend drift effect is more mixed. For all
five indices, the normal return, or drift, over weekends
is smaller than during weekdays. However, the major
finding of the 1980s literature—that weekend returns
are actually negative—is not found for indices con-
taining large-capitalization stocks (the S&P 500 and
the Dow 30). The negative weekend drift is a phenom-
enon confined primarily to small-cap stocks, such as
those in the Nasdaq Composite and the Russell 2000,
but these indices also show a negative drift during the
week!

Thus, weekends do provide smaller returns than
weekdays, but they also have smaller return volatility.

Table 3b
Drift and Volatility of Daily Returns
Joint Estimation with Weekend and Post ’87 Dummy Variables
January 3, 1980 to January 29, 1999, Excluding October 1987

Values

S&P 500 Dow 30 Wilshire 5000 NASDAQ Russell 2000

Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87 Pre 9/87 Post87

Total Drifta

IntraWeek .0846 .0462 .0677 .0359 .0898 .0565 .1305 .0949 .1264 .0730
Weekend 2.0200 .0336 2.0002 .0422 2.0298 .0177 2.0721 2.0101 2.0688 2.0194

Total Volatilityb

Intraweek .8684 .8491 .8961 .8838 .8048 .7788 .6994 .9083 .6760 .6931
Weekend .3297 .3190 .3443 .3333 .3110 .2936 .2695 .3560 .2762 .2735

Percent of Volatility
Due to Jumpsc

Intraweek 79.8 87.3 69.9 74.3 73.9 82.5 68.2 80.6 68.6 80.3
Weekend 69.2 83.7 44.8 81.7 71.9 85.6 62.4 81.5 73.7 85.6

aTotal drift is (a 1 lu). The weekend total drift is for the three-day close-to-close period. Weekend total drift can be converted to a daily basis for direct
comparison with weekday total drift by dividing by 3.
bTotal volatility is =(s2 1 ld2). The weekend total volatility is for the three-day close-to-close period. Weekend total volatility can be converted to a daily basis
for direct comparison with weekday total volatility by dividing by =3.
cThe proportion of total volatility due to jumps is =(ld2)/=(s2 1 ld2).
Source: Parameter estimates in Table 3a.
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The mystery of a negative weekend drift seems to
have resolved itself for large-cap stocks, but it remains
for small-cap stocks. For all five stock indices, the
difference between weekday and weekend perfor-
mance has narrowed as time has passed, suggesting
that the weekend drift effect is a financial anomaly that
will ultimately correct itself.

For all five stock indices, the
difference between weekday and

weekend performance has
narrowed as time has passed,

suggesting that the weekend drift
effect is a financial anomaly that

will ultimately correct itself.

Table 3b reports the drift and volatility results
when the estimates are split into Pre-October ’87 and
Post-October ’87 periods. The volatility differences
between weekdays and weekends that were reported
above remain; that is, the ratio of weekend-to-week-
day volatility is about the same after 1987 as before.
But the weekend drift effects are different after 1987. In

particular, after 1987 the weekend drift is about the
same as the weekday drift for the large-cap indices,
and, though still negative, the weekend drift is closer
to the weekday drift for small-cap stocks.

This is consistent with a diminution or elimina-
tion of the weekend effect in the 1990s, and it suggests
that the 1980s efforts to provide an economic rationale
for negative returns over weekends in terms of eco-
nomics might have ignored the possibility that inves-
tors are typically ignorant of subtleties about stock
returns. Once made aware of anomalies through the
data mining of financial economists, investors behave
in ways that eliminate the newfound anomaly.

The sharp decrease in volatility over weekends is
consistent with the view that active trading actually
increases volatility, so that a close in trading will be
consistent with a reduction in volatility. However,
important differences between trading halts under
circuit breakers and trading halts for weekends sug-
gest that a volatility decline in the latter might not
occur in the former. A weekend is a scheduled event,
while a circuit-breaker halt is an unscheduled event,
resulting from chaos in markets and excessive price
variations. The scheduled event of a weekend might
simply reduce the rate of new information flow,
creating a decline in volatility, while a sudden halt in
trading from a circuit breaker might eliminate all
information flow from price discovery, creating an
environment that elicits the volatility it is designed to
mitigate.
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