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Abstract

This paper presents new, computationally e�cient algorithms for solution and estimation

of nonlinear dynamic rational expectations models. The innovations in the algorithms

are as follows: (1) The entire solution path is obtained simultaneously by taking a small

number of Newton steps, using analytic derivatives, over the entire path; (2) The terminal

conditions for the solution path are derived from the uniqueness and stability conditions

from the linearization of the model around the terminus of the solution path; (3) Unit

roots are allowed in the model; (4) Very general models with expectational identities and

singularities of the type handled by the King-Watson (1995a,b) linear algorithms are also

allowed; and (5) Rank-de�cient covariance matrices that arise owing to the presence of

expectational identities are admissible. Reasonably complex models are solved in less than

a second on a Sun Sparc20. This speed improvement makes derivative-based estimation

methods feasible. Algorithms for maximum likelihood estimation and sample estimation

problems are presented. (JEL E52, E43)
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For a variety of reasons, nonlinear models for macro- and micro- eco-

nomics have grown in popularity in recent years. In macroeconomics, the

recognition that most linear models cannot capture turning points in busi-

ness cycles, the inherent nonlinearity in the consumer's budget constraint

with time-varying interest rates, the presence of nonlinear adjustment costs

in investment, and the nonlinearity of the convex production function all

require some accommodation of nonlinearity.

Researchers have employed a number of alternate strategies for computing

the solutions to nonlinear models. Their approaches may be separated into

three broad categories.

1. Linearize or log-linearize the system as in Kydland and Prescott (1982).

In this case, one can apply the techniques developed for linear models.

2. Solve a reduced form version of the system by numerical integration and

iteration using dynamic programming or the �nite-element method, as

in Christiano (1990) and McGrattan (1996), respectively.

3. Numerically solve for the model-consistent path of expectations (in the

case of certainty equivalence) from an initial guess, as in Fair and Taylor

(1983).

Linearizing models involves approximations that can be evaluated only

for simple, analytically tractable cases. Dynamic programming techniques

generally require considerably more computing time, often several orders of

magnitude greater than linear methods. This paper presents a method that

provides a compromise between these two extremes, in the spirit of Fair and

Taylor. The method directly solves the nonlinear functions that make up the

model. However, it solves a perfect-foresight version of the functions, and

thus does not fully incorporate the stochastic features of the model into the

solution technique.

The algorithm presented here uses Newton's method to jointly solve for

the full time-path of nonlinear equations in the model. It utilizes the spar-

sity of the system to economize on computations (and storage). The method

achieves a computational speed that makes derivative-based estimation meth-

ods feasible. The results discussed in section 2.3 suggest that, at least for
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some canonical nonlinear models, the omission of the stochastic features of

the model is of second- or third-order importance in solution accuracy. How

good an approximation the perfect-foresight nonlinear method is for other

models remains a question for further research; we discuss some methods for

improving the accuracy of the approximation.

The rest of the paper is organized as follows. Section 1 presents the solu-

tion algorithm. In section 2, we apply the solution technique to a nonlinear

sticky-price model and also to the stochastic growth model. We also com-

pare our solution of the stochastic growth model with results from dynamic

programming. Section 3 describes the maximum likelihood estimation proce-

dure using our method, and includes an example. Section 4 suggests several

avenues of future research. Section 5 concludes.

1 The Solution Algorithm

In an unpublished paper, Anderson and Moore (1986) sketch a solution al-

gorithm for nonlinear dynamic rational expectations models. This section

describes a solution algorithm that is related to the work of Anderson and

Moore and to undocumented work by Brian Madigan of the Federal Reserve

Board.

Consider a nonlinear rational expectations model characterized by the

system of equations

F (x�; x; E(x)) = � (1)

where x is an n-vector of endogenous variables, where dependence of the

function on lagged x is summarized in x�, where E() denotes the expectation

operator,1 and � is an ne-vector of structural shocks to the system; n is not

necessarily equal to ne, although ne cannot exceed the number of observed

variables in the system.2

The solution methods discussed in this paper will be, in essence, perfect-

foresight solution methods. That is, the structural shocks are linearly sepa-

1The viewpoint date for the expectation operator is considered in detail below.
2If the number of structural shocks exceeds the number of observable variables, the

Jacobian of transformation will not be full rank.
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rable from the nonlinear structure of the economy. The estimation methods

discussed in the second half of the paper will maintain this assumption. Other

than this restriction, however, the form of the nonlinearities admitted by the

technique can be quite general. In this regard, the solution method follows

the spirit of Fair and Taylor's (1983) work.

The solution method seeks a sequence of expectations Et�v(xt+j); j =

1; : : : ; T such that, given initial conditions, terminal conditions, and these

expectations, the function values for every period in the solution trajectory

are zero:

F (xt; E(xt+)
�jxt�) = 0 8t :

Now consider a solution path that extends from periods t to T . For any

time period s, the Newton step that determines the change in the solution

value of x from iteration k to iteration k + 1 may be written3

�xk+1;s = J�1k F (xk; s) (2)

where Jk is the Newton Jacobian matrix, i.e. the matrix of partial derivatives

of the functions F with respect to the vector of variables x. However, one

can solve for the entire time path s = t; : : : T of solution vectors at once by

writing the stacked set of Newton equations for iteration k as

�Xk+1 = S�1k F (Xk) (3)

where Sk is the Newton-Jacobian matrix for the entire solution path as of

iteration k, and Xk is the vector of endogenous variables over the entire

solution path. F (Xk) is likewise the vector of function values for the entire

solution path, evaluated at the last value of X.

3The classical de�nition of a Newton step for solving a set of nonlinear equations begins

with the �rst-order Taylor expansion of the functions F around the vector xk

F (xk) = F 0(xk)(xk+1 � xk)

and then solves for xk+1 by inverting the expansion.
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1.1 The Structure of the Sk matrix

De�ne the maximum lag in the structural model by � and the maximum lead

by �. We will denote by Hs
j the matrices that contain the derivatives of the

set of equations in F with respect to the variables x at lag or lead j evaluated

at time period s. Most of the Sk matrix will be composed of Hs
j matrices

evaluated at di�erent periods s.

The structure of Sk will then be a sparse band-diagonal matrix, with

number of bands equal to n(� + � + 1):

Sk =

2
664
H t
�� : : : H t

�1 H t
0 H t

1 : : : H t
� 0 0 : : :

0 H t+1
�� : : : H t+1

�1 H t+1
0 H t+1

1 : : : H t+1
� 0 : : :

...

3
775 (4)

For example, consider the simple set of nonlinear equations

yt = �x2t�1 + (1� �)Etx
2
t+1

xt = �xt�1

Then the Hs
j matrices for s = t and j = �1; 0; 1 would be

H t
�1 =

"
0 2�xt�1
0 �

#

H t
0 =

"
�1 0

0 �1

#

H t
1 =

"
0 2(1� �)xt+1
0 0

#

and to form the Sk matrix, they would stack up as in equation 4:

Sk =

2
666666664

0 2�xt�1 �1 0 0 2(1� �)xt+1 0 0 0 : : :

0 � 0 �1 0 0 0 0 0 : : :

0 0 0 2�xt �1 0 0 2(1� �)xt+2 0 : : :

0 0 0 � 0 �1 0 0 0 : : :
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

3
777777775

4



1.2 Initial and Terminal Conditions

It is convenient to fold the initial and terminal conditions for the solution

into the Newton problem. The initial conditions are simply the lagged data

[xt�� ; : : : ; xt�1]. Thus including an n� identity matrix in the upper left corner

of Sk will assure that these initial conditions hold exactly throughout the

solution iterations.4

The equations require n� terminal conditions for the � leads that \over-

hang" the end of the solution trajectory. These conditions are obtained by

using the stability conditions for the linearized model to solve out for the

leads in terms of previous solution values. The stability conditions come

from the method of Anderson and Moore (1985) for linear models. That

algorithm computes the solution to a linear rational expectations model of

the form
0X

i=��

Hixt+i +
�X

i=1

HiEt(xt+i) = �t : (5)

The algorithm stores the stability conditions in a matrix Q, which satis�es

Qx+ = 0 (6)

where x+ = [xt��+1; : : : ; xt; xt+1; : : : ; xt+�] and Q is a n� by n(� + �) matrix

that solves for [xt+1; : : : ; x�] in terms of [xt�� ; : : : ; xt].
5 Thus we can write

the Newton iteration for the terminal conditions as

Q�xk+ = Qxk�1+ : (7)

4The Newton equation for these conditions is simply I�xt� = 0; given starting values

for the initial conditions, they will not change over the iterations.
5A model linearized about its steady state might no longer tend to that steady state.

We therefore modify the linearized model to insure that the linearized terminal conditions

imply the correct steady state. To do this, we �rst compute the steady state, x�t+i, of

the model and compute the Hi matrices. (The stationary variables are set to their steady

states and the unit-root variables are set to levels consistent with the stationary variables.)

We then adjust the additive constants in the linearized model such that
P�

i=�� Hix
�

t+i = 0.

This insures that the linearized model will attain the same steady state as the nonlinear

model.
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The Newton step for the full set of nonlinear equations, incorporating

initial and terminal conditions, is de�ned by

2
66666666664

In�� 0 0 0 0 0 0 : : :

H t
�� : : : H t

�1 H t
0 H t

1 : : : H t
� 0 0 : : :

0 H t+1
�� : : : H t+1

�1 H t+1
0 H t+1

1 : : : H t+1
� 0 : : :

: : : : : : : : : :

: : : : : : : : : :

0 0 0 : : : Q

3
77777777775

2
66666666666666666666664

�xt��
...

�xt�1

�xt

�xt+1
...

�xT

�xT+1
...

�xT+�

3
77777777777777777777775

=

2
66666666666666664

0
...

0

F (xt)

F (xt+1)
...

F (xT )

Qx+

3
77777777777777775

:

(8)

1.3 Iteration

For initial guesses of the solution vector X0, one can compute the function

values F (X0), the derivative matrices Hs
j that compose the main body of Sk,

and the stability conditions Q that determine the initial conditions. Solu-

tion of the Newton step equation 8 yields a new value of X. The derivative

matrices, stability conditions, and function values are updated, and the pro-

cess is iterated until numerical convergence is achieved.6 For most problems,

the convergence criterion is that the maximum of the absolute value of the

function values not exceed a critical limit.

1.4 Computational E�ciency Considerations

Three elements of the solution algorithm provide substantial gains in com-

putational e�ciency:

6A Newton step might place you outside the domain of the function being solved. In

such cases, we implemented a line-search algorithm along the direction of the Newton step.
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1. The derivative matrices Hs
j are computed analytically, rather than nu-

merically, so that fast functions can be called to evaluate them at each

solution iterate, rather than computing them numerically at each iter-

ate;

2. The algorithm keeps track of time-varying and constant elements of

the derivative matrices, evaluating only the time-dependent elements

at each iteration;

3. The sparsity of the Sk matrix is taken into account, so that the speed

of solution of the sparse linear Newton equation is improved by orders

of magnitude.

The last improvement alone increases the speed for each iteration by more

than two orders of magnitude for a model with 10 equations and solution

path of length 50.7

2 Examples and Benchmarking

In this section, we apply the solution technique to two models with nonlinear

structure. The �rst model, discussed in 2.1, contains a nonlinear term struc-

ture equation and a boundary at zero on the nominal interest rate in the

monetary policy reaction function. Next, in 2.2, we present two stochastic

growth models which are substantially \more" non-linear. When evaluating

the e�ect of a single shock and using the steady state as the initial solu-

tion path, these models solve very quickly (in under one second) on a Sun

Sparc20.

7We have coded the nonlinear solution algorithm in Matlab. In addition, we have

developed a modeling language in which one can express a general nonlinear rational ex-

pectations model. Our software parses the model, takes analytic derivatives of the model

equations, and writes out Matlab functions that evaluate the derivatives and equation

residuals. We have also developed software for likelihood function evaluation and maxi-

mum likelihood estimation (described later), which we link to one of Matlab's optimizers

to �nd the maximum of the constrained likelihood.
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In all cases, we de�ne the convergence criterion to be as above, i.e.

max(abs(F )) � tol, and a convergence tolerance of 1 � 10�6 ensures that

we �nd very near-zeros of all the functions.

2.1 A Nonlinear Sticky-Price Model

We use a simple sticky-price macro model to illustrate the solution algorithm.

The model is nearly identical to the model used in Fuhrer and Madigan

(1994), and for a full description, the reader is referred to that paper.

The two equations with nonlinearities include the real term structure

equation that equates the ex ante holding period return to a real consol bond

paying real interest rate �t to the real holding period return on a short-term

bond, which is just the nominal coupon it less expected in
ation �t+1

�t �
1

�t+1
[�t+1 � �t] = it � �t+1; (9)

where �t is the backward �rst di�erence of the log price level. A conventional

linear approximation to this equation is the constant-duration approximation

that reduces equation 9 to a �rst-order linear equation.

The (economically) more important nonlinearity arises in the equation

that de�nes the policy response of the federal funds rate to deviations of the

monetary authority's ultimate goal variables from their targets. A simple

way of imposing a non-negativity constraint on the nominal interest rate is

to write the policy reaction function as

log(it)� log(it�1) = ��(�t � ��) + �y(yt � y�) + �it : (10)

The remaining equations, summarized below, are linear and describe the be-

havior of sticky prices (due to contracting), aggregate demand, and potential

output.

~yt = �y1 ~yt�1 + �y2 ~yt�2 � ��(�t�1 � ��) + �yt (11)

pt =
3X

i=0

fixt�i
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vt =
3X

i=0

fi(xt�i � pt�i)

xt � pt =
3X

i=0

fiEt(vt+i + 
~yt+i) + �xt

=
3X

i=1

�i(xt�i � pt�i) +
3X

i=1

�iEt(xt+i � pt+i) + 
�
3X

i=0

fiEt(~yt+i) + �xt

The �rst equation de�nes the aggregate demand curve, which makes the

output gap ~yt a function of two of its own lags and of the lagged long-term

real interest rate. The second equation de�nes the price index pt as the

weighted sum of current and past contract prices xt�i, where the weight on

contract prices previously negotiated and still in e�ect is denoted fi, and

fi = :25 + (1:5 � i) s; 0 < s � 1=6; i = 0; : : : ; 3. The third de�nes the real

contract price index vt as a weighted average of current and past real contract

prices. The last two equations express the fundamental contracting equation

of the model presented in Fuhrer and Moore (1995b). The convoluted weights

�i and 
� in the last two equations are de�ned as

�i =
3X

j=0

fjfi+j

1�
P3

j=0 f
2
j

(12)


� =



1�
P3

j=0 f
2
j

The number of equations for this model is 7, the maximum lag is 3,

and the maximum lead is 3. The model has a well-de�ned steady state

characterized by in
ation at its target (� = ��), output equal to potential,

real rates at their long-run equilibrium, and nominal rates obeying the Fisher

identity.

To solve this model, we set the initial conditions to a 4 percent in
ation

steady state.8 The symbolic derivatives of the model equations with respect

8Note that the variables that de�ne the price index and the contract price have unit

roots; the steady-state initial conditions have all of these nominal levels growing at the

in
ation rate.
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to the endogenous variables are computed,9 and functions are written to

compute the time-varying and non-time-varying derivatives given the current

values of the endogenous variables and the parameters. The steady-state

in
ation parameter in the model is set to 0, so that the simulation will

depict the e�ects of an unanticipated disin
ation from 4 to 0 percent. For

this simulation, we assign the remaining parameters of the model as follows:

Parameter Value

IS Curve

�y1 1.25

�y2 -.42

�� .3

�� .03

Reaction Function

�� 1

�y 1.5

Contracting

s .08


 .005

The initial solution path is computed from the model linearized about the

new steady-state values. For a solution horizon of 50 periods, the solution

converges in three Newton steps, taking a total of 1:1 seconds. Figure 1

displays the solution trajectories for the disin
ation simulation. As the �gure

illustrates, the variables are quite near their new steady-state values at the

end of the solution trajectory, so the �rst-order approximation to the model

at that point should be good, and the stability conditions that pin down the

terminal conditions should be quite accurate for the model.

2.2 Two Stochastic Growth Models

The �rst growth model that we examine is the simple single-input stochastic

growth model studied in Taylor and Uhlig (1990). The concave production

9The Maple kernel, called from Matlab, performs these symbolic operations.
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function f employs end-of-period capital, kt�1, augmented by the technology

level, zt, to produce current output, yt:

yt � f(kt�1; zt) = zt k
�
t�1 : (13)

The log of the technology is assumed to be �rst-order autoregressive

ln(zt) = � ln(zt�1) + "t : (14)

Current-period utility is isoelastic, ut = c
1�

t =(1 � 
), and total utility is

time-separable and discounted at a rate �:

Ut =
1X
t=0

�t c
1�

t

1� 

: (15)

Total income comprises the sum of consumption and net investment, yielding

the familiar identity

yt = ct + kt � (1� �) kt�1 : (16)

By taking the derivative of the utility function with respect to kt, we derive

the also-familiar �rst-order condition:

Uct = �Uct+1 (fk;t+1 + 1� �) :

When � is less than one in absolute value, the model implies a stationary

steady state for the two state variables kt and zt. Evaluating equations 14, 13,

and 16 in the steady state, we obtain steady-state solutions for the technology

shock, capital, and consumption:

z� = 1 ;

k� =

 
1=� � (1� �)

� z�

! 1

��1

;

c� = z� k�� � �k� :

To compute a solution path for the model, we set the parameters as shown

in the table below, shock the technology by 10 percent, and use the steady

state for the model as the initial solution path. We compute a 50-period

solution path for the model.
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Parameter � � 
 � �

Value 0.99 0.33 0.5 0.1 0.9

The solution path converges in 3 Newton steps with the largest function devi-

ation 1:8� 10�11 in 0.17 seconds. The solution paths for capital, technology,

and consumption are displayed in �gure 2.

The second model is the canonical RBC model examined in McCal-

lum (1989). A labor{leisure choice is now included, and utility thus de-

pends on consumption and leisure. The income identity and technology shock

evolve as in equations 16 and 14 above. Output is produced according to a

two-factor Cobb-Douglas production function:

yt � f(kt�1; nt; zt) = zt k
�
t�1 n

1��
t : (17)

Period t utility depends on consumption, ct, and leisure, de�ned as 1 � nt;

the following Cobb-Douglas utility function is assumed

ut = c


t (1� nt)

1�

: (18)

Taking derivatives, we construct �rst-order conditions with respect to capital

and labor:

uc;t = �uc;t+1 (fk;t+1 + 1� �) ; (19)

un;t = uc;t fn;t :

Because we chose Cobb-Douglas functional forms, the �rst derivatives of the

utility and production functions can be conveniently written:

uc;t =
(1� 
)ut

ct
(20)

un;t =
�(1� 
)ut

(1� nt)

fk;t+1 =
�yt

kt+1

fn;t =
(1� �)yt

nt
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Again, for values of � less than one in absolute value, the model implies a

stationary steady state. The analytic solutions for the steady-state values of

the state variables are

z� = 1 (21)

n� =

(1� �)

1� 
� +
���(
�1)

1��(1��)

k� = n�
1=� � (1� �)

�

1

��1

We compute a 50-period solution path for the model, setting the param-

eters in the model as shown in the table below, shocking technology by 10

percent, and using the steady state for the model as the initial solution path.

Parameter � � 
 � �

Value 0.99 0.33 0.5 0.1 0.9

The path converges in 3 Newton steps with a maximum function deviation

of 2:2� 10�10 in 0:44 seconds. A 20-period solution solves in 3 Newton steps

to the same accuracy in 0:18 seconds. The solution paths for capital, labor,

technology, and consumption are displayed in �gure 3.

2.3 Comparison with Results from Dynamic Program-

ming

We compare our results with similar ones summarized in Taylor and Uh-

lig (1990) and a simple dynamic programming (DP) exercise. We use as a

benchmark the simple stochastic growth model with capital and consump-

tion trade-o� only. This model is presented in detail at the beginning of

Section 2.2.

Di�erences between our results and the previous work using dynamic

programming come from two sources:

1. Dynamic programming methods use a �nite-sized grid as an approxi-

mation to the state-space, whereas our method works with continuous

variables (within machine precision).
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2. Our method does not account for the e�ect of the distribution of future

shocks on today's expectations, whereas dynamic programming explic-

itly (albeit approximately) incorporates this into the value function

iteration.

We will address these di�erences each in turn.

To test the error introduced by the discretization of the state space, we

compare deterministic solution paths generated by both methods, for a large

shock to technology. Our solution is as described in section 2.2.

Our application of dynamic programming to the stochastic growth model

follows Christiano (1990). The standard value function iteration is

V (kt�1; zt) = max
fkt3ct�0g

(u(c(kt�1; kt; zt)) + �EtV (kt; zt+1)) ; (22)

where consumption, ct, is implicitly de�ned by the budget constraint, and

the state-space variables, k and z, are discretized onto a grid. In this exercise

the technology level follows a deterministic path and it reverts to its steady

state, i.e. ln (zt+1) = � ln (zt) exactly. We take advantage of this property

and set the grid for z to be the path followed for 101 periods starting from

z0 = 1:6. The capital grid is set up such that k 2 [3; 30]. The grid is divided

intoN elements each of spacing 27=N . Therefore, the value function iteration

becomes

V (kt�1; zt) = max
fkt3ct�0g

(u(c(kt�1; kt; zt)) + �V (kt; z
�
t )) : (23)

We iterate the value function equation for di�erent values of N until the

value function changes less than 10�7 per iteration. The last period, T , of

the path is assumed to be close enough to the steady state that we iterate it

upon itself, e.g.

V (kT ; zT ) = maxkT (u(cT ) + �V (kT ; zT )):

Following case 1 in Taylor and Uhlig, the depreciation rate is zero. The

parameters and steady state of the model are as follows:

Parameter � � 
 � �

Value 0.95 0.33 0.5 0 0.9
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The solution of the stochastic growth model using DP is asymptotically

equivalent to our method. As the grid becomes �ner, the DP solution matches

our solution more closely. In �gure 4, we display solution paths from our

method and two DP exercises: one with a capital grid with N = 100 ele-

ments, and another with N = 500 elements. The solution path from DP

closely matches the path from our method, when the DP grid has enough

elements.

This convergence is also illustrated in Table 1, which displays the root-

mean-squared di�erence between our solution path and the DP solution for

various N . As we make the DP grid �ner, the solution path deviates less

from our method.

Table 1

Root Mean Square Di�erence

Between Solution Paths from

Dynamic Programming and Nonlinear AIM

DP grid size 75 100 200 300 500

RMS Di�. 0.59 0.45 0.21 0.13 0.07

The computation of the deterministic solution path using DP requires

hours, whereas our method requires a few tenths of a second. Of course, once

the decision rules are computed for a given set of parameters, generating a

new solution path is computationally trivial. However, if we are also inter-

ested in estimating parameters, recomputing decision rules by value-function

iteration becomes very time-consuming. Therefore, for deterministic solution

of the stochastic growth model, our method computes the solution path more

accurately and in much less time than dynamic programming.

We now compare the two solution techniques for a stochastic simula-

tion. Here we expect weaker correspondence because our method does not

account for the distribution of future shocks in the formation of expecta-

tions. For the stochastic growth model, our method assumes instead that

Et(u(ct+1)) = u(Et(ct+1)), an assumption which is plainly false for concave
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utility and non-zero shock variance. However, in this case this assumption

makes little apparent di�erence for the decision rules.

To model the stochastic growth model when it is genuinely stochastic, we

make one additional assumption. Recall the equation governing the technol-

ogy level in this model: ln(zt) = � ln(zt�1) + "t. Following case 2 in Taylor

and Uhlig, we simply assume that "t � N(0; �"). This assumption changes

nothing about our solution, but changes the way expectations are computed

in the value function iteration for DP.

In computing the decision rules we use the grid of initial conditions from

Taylor and Uhlig:

kt�1 2 f5; 10; 15; 20; 25g

zt 2 f:4; :7; 1; 1:3; 1:6g

We estimate decision rules from our method by solving for the solution paths

for each initial condition. As a benchmark, the dynamic programming results

presented by McGrattan (1996) are used. Parameter settings correspond to

Taylor and Uhlig's \case 2," i.e.

Parameter � � 
 � � �"

Value 0.95 0.33 1.5 0.1 0.95 .1

It is of note is that �" implies that the technology shock will exceed 10 percent

in absolute value about one third of the time. This represents an implausibly

large variance for technology.

Despite the noisy technology, consumption decision rules from both meth-

ods are nearly identical. The computed consumption choice di�ers by less

than 1 percent at every point in the grid. Table 2 presents these results.

In each case, DP computes decision rules for consumption that are slightly

lower than those computed by our method. These results conform to a

rough intuition about this simple model. One might expect the optimal

consumption path under uncertainty to lie below the path under certainty

equivalence due to a precautionary savings motive. As predicted, the decision

rules for consumption di�er for this rather noisy technology; however, the

di�erences are quite small.
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Table 2

Decision Rules for Consumption

Computed by

Dynamic Programming and Our Method

zt

kt�1 .40 .70 1.00 1.30 1.60

Our Method

5 0.86 1.12 1.35 1.58 1.79

10 1.33 1.65 1.94 2.22 2.48

15 1.73 2.10 2.43 2.74 3.04

20 2.09 2.50 2.87 3.21 3.53

25 2.44 2.88 3.27 3.64 3.98

Dynamic Programming

5 0.86 1.11 1.34 1.57 1.78

10 1.32 1.64 1.93 2.20 2.46

15 1.71 2.09 2.41 2.72 3.01

20 2.08 2.49 2.85 3.19 3.50

25 2.42 2.86 3.25 3.61 3.95

McGrattan (1996) also presents consumption decision rules computed us-

ing the so-called �nite-element method (FEM). These consumption decisions

correspond to those computed by our method. Figure 5 displays the con-

sumption decision rules computed by both methods. The decision rules for

the FEM method lie extremely close to those obtained using our method. 10

Taking these comparisons with two conventional solution methods to-

gether, we conclude that our solution method as applied to the standard

10Perhaps of note is that the FEM consumption decisions are not always lower than those

from our method. This is somewhat odd given that the FEM approximation incorporates

information about the distribution of future shocks, whereas our method represents the

case of certainty equivalence. As noted above, one might therefore expect the FEM solution

for consumption to be lower than ours at every point.
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stochastic growth models is fast (orders of magnitude faster), accurate, and

straightforward. Ignoring the e�ect of the distribution of errors on expecta-

tions appears to be an acceptable approximation in these cases.

3 Maximum Likelihood Estimation

Using our solution method, maximum likelihood estimation for many non-

linear models is now computationally feasible. For this purpose, greater

precision is required in the description of the nonlinear equations. Several

distinctions are of importance:

1. The expectations viewpoint date is now important;

2. The variables that are not data, i.e. that are de�ned by expectational

and other identities, must be distinguished from those variables that

are data;

3. The equations that are stochastic, i.e. are shocked by a random error

term, must be distinguished from those that are not.

Thus it will be useful to express one nonlinear equation in the system as

f(x�; x
D; xN ; Ek(x+)) = � (24)

where the vector of current data variables is denoted xD, the vector of not-

data variables by xN , the lagged data (initial conditions) are denoted x�,

and the expectations viewpoint date by the subscript k attached to the ex-

pectations operator, Ek.

The computation of the likelihood value is detailed in the next subsec-

tion. The following subsections describe the constraints imposed upon the

likelihood and the procedure for maximizing the likelihood.

3.1 Evaluating the Likelihood Function

Following the standard derivation for simultaneous equations in, for example,

Amemiya (1983), we write the likelihood as two components: the (determi-

nant of the) residual covariance matrix, and the Jacobian of transformation
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from the residuals to the observable variables. Both retrieving the residuals

that de�ne the covariance matrix and computing the Jacobian of transfor-

mation involve the computation of solution paths for the expectations in the

model, which is described above.

Note that in some earlier linear rational expectations model estimation,

notably Sargent (1978), the restricted reduced-form was estimated directly,

thus bypassing the need to compute a Jacobian of transformation. In models

that include non-trivial identities, this simpli�cation is not possible, as the

residual variance-covariance matrix for the reduced-form model is not full

rank. Here, obtaining a closed-form solution for the reduced-form model

is not possible in general. Even in cases where it can be obtained, however,

when the model includes identities that render the variance-covariance matrix

singular, the \structural" approach must be taken.

3.1.1 Retrieving the structural residuals

The t�1-period expectation viewpoint case. The procedure comprises

three steps: (1) Solve for the path of expectations for all the variables in the

model, from periods t + 1 to the maximum horizon, given information up

to and including period t � 1; (2) Given the initial conditions, the period-t

data, and the expectations, compute values of the not-data variables that are

consistent with the function de�nitions; (3) Given initial conditions, expec-

tations, period-t data and period-t not-data variables, compute the residuals

of the functions, i.e.,

�t = f(x�; x
D
t ; x

N
t ; x

e) : (25)

Step (1) is just the computation of a solution path, as described above, with

initial conditions for periods t� � to t� 1. Step (2) solves the functions for

the values of the not-data variables xNt that are consistent with the t�period

data and the expectations. Step (3) computes the residuals by evaluating

the functions at the solved values for xN and xe.

The t�period expectation viewpoint case. In the t � 1-period view-

point case, the determination of expectations and the determination of not-

data variables can be separated into two steps, because the expectations are
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formed (by de�nition) without regard to the t�period realizations of the

not-data (or the data) variables. In the t�period case, this cannot be so.

Now expectations must be consistent with data up to and including period

t, which must include solutions for the t�period not-data variables.

As a result, a relatively small modi�cation in the algorithm is required.

The solutions for the path of expectations and for the not-data variables are

computed simultaneously. In practice, for every iteration in the expectations

solution step, the not-data variables that are consistent with that step's

expectations, lagged data, and current data are recomputed. The process

is considered to converge when both expectations and not-data variables

have converged.

3.1.2 Computing the Jacobian

The Jacobian of transformation from residuals to observables, Jt, is simply

Jt =
@�t

@xDt
: (26)

We know of no way to compute this Jacobian analytically, so the derivatives

are computed numerically, using two-sided �nite di�erences to approximate

the analytical derivative. Each column of the Jacobian matrix is computed

by perturbing one data variable in period t, and recomputing the vector of

residuals that arises. In the t� 1-period viewpoint case, this simply involves

re-solving for the not-data variables and recomputing the residuals, since

the expectations are not altered when a t�period variable is perturbed. In

the t�period viewpoint case, the expectations must be recomputed for a

perturbed t�period data value, and the residuals recomputed, to obtain the

derivative estimate.

In general, the Jacobian will vary over time, so that the Jacobian must

be computed for each period in the sample. In practice, for t�period expec-

tations this would increase computation time by a factor equal to twice the

number of data variables, since each computation would entail computing

the residuals for the covariance matrix and twice again for each derivative

required for the Jacobian. As implemented, the algorithm computes the Ja-

cobian at the beginning and end of the sample and averages those estimates.
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When the Jacobian does not vary too much over the sample, this approxi-

mation will do little harm to the precision of the likelihood function.11

3.2 The Likelihood Function

Once both residual covariance matrix and Jacobian are computed, the con-

centrated log-likelihood is de�ned conventionally as

$ = T log(kJk)� :5 � log(j
j) : (27)

3.3 Numerical Maximization of the Log-Likelihood

In the discussion above, the dependence of the functions f on the parameters

of the model has been suppressed for simplicity. Expressing the likelihood

function's dependence on the parameter set �,

$ = $(x; �) : (28)

The task of the maximum likelihood estimator is to �nd values of � that max-

imize equation (28). To do so, we use a sequential quadratic programming

algorithm from the Matlab optimization toolbox. As implemented, the algo-

rithm uses numerical two-sided derivatives for both the likelihood gradient

and the constraint gradient.

Practical considerations. The evaluation of the likelihood entails many

solutions of the model, and therefore we endeavour to reduce the time re-

quired for solution. An initial guess for the solution path should be as \solv-

able" as possible. To this end, we adopted several strategies. In many cases,

initializing the solution path with the steady state of the model was ade-

quate. Some time savings were realized by using an initial path computed

with the linearized model.12 For the model in the estimation example, it is

11Fair (1984) successfully implements this Jacobian approximation method. For the test

example described below, recomputing the Jacobian for every period had a trivial e�ect

on the value of the likelihood function.
12See Anderson and Moore (1985) for details on this method or Fuhrer and Moore

(1995a) for a detailed application.
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necessary to use the linearization about the steady state when initializing the

path and computing the terminal conditions, although this is not generally

true.

Since the likelihood evaluation consists of many solution paths generated

sequentially from the data, we use information from the (T � i)th period's

expectations to aid in e�ciently computing the solution for period (T�i+1).

We use the converged expectations path from T � i as an initial guess for

T � i + 1, in the hope that the expectations are not changed enormously

by the information update. We also reduce the length of the solution path

(shorten the horizon) if the system moves close to the steady state well before

end of the horizon in the previous period.

Finally, a solution path may be di�cult to �nd in some regions of the

parameter space. Therefore, we have found that limits on the parameters

are often helpful for the initial estimations.

3.3.1 Constraints Imposed on the Maximization Problem

In implementing a maximum likelihood estimator for linear problems, Fuhrer

and Moore impose a \root constraint" on the estimator.13 For the linear

model, the solution will not be unique and stable unless the parameters imply

the correct number of roots of modulus greater than one. For the nonlinear

model, this condition should hold in a linearization about the steady-state.

In practice, we impose the root condition for the linearization of the model

about the endpoint of the expectation solution path.

The total number of required stability conditions for a model with n equa-

tions and � leads is n�. In general, a set of \auxiliary" stability conditions

that arise from singularities in the lead blocks of the equations will provide

some number ns of the required stability conditions.14 The remainder come

from the spanning vectors (in most cases the eigenvectors) associated with

the large roots in the model. For given parameter values, one can compute

the number of auxiliary stability conditions ns. For the same parameters,

one can compute the roots of the transition matrix for the model, and sort

13See Fuhrer and Moore (1995b) for an application of this estimation strategy.
14See Anderson and Moore (1985) and King and Watson (1995a) for details.
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them from small to large. The location of the smallest large root will be

n��ns, and the location of the largest small root will be one more than this.

We set the numerical de�nition of a large root to be a number slightly larger

than one, in most cases 1 + 1� 10�6. Denoting the upper bound by U , the

numerical tolerance for the constraint by t, and the vector of the modulus of

the roots by �, the constraint may be expressed as

min(U � �(n� � nsr + 1); �(n� � nsr)� U � t) > 0 : (29)

This ensures that at the expected break point, the smallest large root is t

greater than the upper bound U and that the largest small root is less than

or equal to U .

The augmented Lagrangian optimization method allows the constraint to

be violated during optimization; the constraint Jacobian always points the

solution vector back in the direction of the feasible range, and a converged

solution always satis�es the constraint.

3.3.2 Standard Errors

The standard errors for the estimated parameters may be obtained from an

estimate of the inverse Hessian. The standard errors may be computed as

�q
�Ĥ�1

�
i;i

;

the square-root of the diagonal elements of the negative of the inverse Hessian

matrix. The optimization algorithm that we employ returns a Hessian esti-

mate based on the BFGS updating algorithm (see Gill, Murray, and Wright

(1981)). In practice, a more accurate estimate of the local curvature of the

likelihood surface may be obtained from direct numerical second derivatives

of the likelihood function.

3.4 A Maximum-Likelihood Estimation Example

While models of the type explored in the solution section can be solved quite

rapidly, computing the likelihood for this class of models is solution-intensive.
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Each evaluation of the likelihood requires at least N solutions, where N is

the number of observations in the sample.

We estimate the parameters [��; �y; ��; ��; ��; 
] of the model described in

section 2.1 on a sample from 1965:QI to 1990:QIV. We use as starting values

the estimates from a linear version of the model that employs the constant-

duration approximation for the term structure equation 9,

�t �D[�t+1 � �t] = it � �t+1 ;

where D is Macaulay's (1938) duration. The data are as described in Fuhrer

and Moore (1995b).15

The routine converges after 71 steps and 805 function evaluations with a

feasible solution. The maximum-likelihood estimates of the parameters are

presented in Table 3. The improvement in the likelihood is extremely signif-

icant: The likelihood ratio test for the restriction that holds the parameters

at their initial values takes the value 134:44, a �2 random variable with 6

degrees of freedom with a p-value of 10�24.16

Estimating a potentially misspeci�ed model on real data is a high hurdle

for any estimation technique to clear. A somewhat easier task is to estimate

the parameters for a data set for which we know the true model. Thus,

we generate a simulated data set using the model of this section and the

initial parameter values displayed in column 1 of the above table. We then

run the FIML procedure on this data set. We initialize the parameters at

some distance from their \true" values. The converged values are presented

in Table 4 below.17 The parameter estimates from this exercise generally

15We set �y1 = 1:25 and �y2 = �:42, which are estimated for the linear version of the

model by Fuhrer and Moore (1995b).
16Grid searches, Monte Carlo parameter selection, and genetic methods yield similar

results for the example described above. However, the likelihood function examined is

apparently smooth enough that derivative-based search methods are most e�cient.
17We create a series of shock vectors, �t = [�it; �yt; �xt]

T
. These shocks are normally

distributed with the following variance-covariance matrix:


 =

2
4 0:7589 0:2652 �0:0589

0:2652 0:8096 �0:1367

�0:0589 �0:1367 0:2030

3
5� 10�4

24



Table 3

FIML Estimation Results,

U.S. Quarterly Data 1965:QI{1990:QIV

Initial Lower Upper Converged Standard t-stat,

Parameter Value Bound Bound Value Errors (H0 : p = 0)

�� 0.5 0.001 5 0.303 0.238 1.27

�y 0.5 0.005 0.2 0.679 0.378 1.80

�� 0.03 0.001 5 0.0412 0.0307 1.34

�� 0.79 0.001 1 0.202 0.0925 2.18

�� 0.032 0.005 0.2 0.0559 0.0203 2.75


 0.00455 10�7 0.3 0.00139 0.00116 1.20

Likelihood

value: 1475.65 1542.87

lie close to the true values. The estimated standard errors imply that only

for the �� parameter could we reject the true value, as indicated in the

last column of the table. Thus, for this nontrivial model and data set, the

estimator performs quite well.

4 Future Studies

We suggest further research into the approximation error introduced by our

method's treatment of expectations. In section 2.3, we show that, for the

stochastic growth model with noisy technology, our results closely match

This is the variance-covariance structure of shocks in the linear version of this model,

estimated by Fuhrer and Moore (1995b).

We simulate the model with these shocks, using the t � 1-period viewpoint date for

expectations. (See Appendix A.) So that the initial conditions do not have undue in
uence

on the estimate, and the \faux" sample begins 100 periods after the initial period.
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Table 4

FIML Estimation Results,

Simulated Quarterly Data 1965:QI{1990:QIV

\Truth" Initial Lower Upper Converged Standard t-stat,

Parameter (p�) Value Bound Bound Value Errors (H0 : p = p�)

�� 0.5 1 0.001 5 0.432 0.034 -1.97

�y 0.5 1.5 0.005 0.2 0.503 0.038 0.08

�� 0.03 0.04 0.001 6 0.0298 0.0021 -0.11

�� 0.79 0.3 0.001 1 0.361 0.233 -1.83

�� 0.032 0.04 0.005 0.2 0.0358 0.0030 1.16


 0.0045 0.005 0.001 0.3 0.0104 0.00722 0.81

Likelihood

value: 1839.1 1713.35 1844.26

those from dynamic programming despite the fact that we use a certainty

equivalence approximation. For some models, this approximation may not

be so accurate. In these cases it will be necessary to take into account the

distribution of future errors in forming model expectations. We now discuss

several proposed methods for doing this. Each method involves applying a

certain amount of \brute force" to the problem because we must numerically

integrate over the probability density of future shocks.

The most brutish of the brute force methods would be to use our method

as a starting point for dynamic programming. In particular, value and de-

cision functions computed by our method would be the initial guess for the

value function equation. Presumably the certainty equivalence solution will

be a decent �rst approximation and the number of value function iterations

required for convergence will be low.

In looking for an alternative to dynamic programming methods, we note

that Fair and Taylor (1983) propose a Monte Carlo integration method
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for evaluating expectations with stochastic errors using an extended path

method. In particular, many sets of expectations are computed using random

draws from the shock distribution over the entire path. These conditional

expectations are then averaged to form the unconditional expectation. In

e�ect, this method numerically integrates over the probability distribution

of shocks for the entire extended path.

We view this as a backhanded way to evaluate the multiple integrals

over the distribution of shocks. An important aspect of the formation of

expectations is that a given shock in period t+ i could be followed by many

di�erent shocks in t+i+1. Each of these could be followed by many di�erent

shocks in t+ i+2, and so on. For discrete shocks, these possibilities resemble

the branches of a tree. This simulation method, however, takes a single set

of shock realizations each time and solves for the expectations conditional on

those realizations. The branching phenomenon will only be represented with

a very large number of random shocks. While this method asymptotically

approximates the unconditional expectation, it is not clear to us that it would

converge very quickly.

Instead, we propose a \hybrid" method which would approximate the

unconditional expectations without completely sacri�cing computational ef-

�ciency. We would discretize the shocks into k possible realizations for n

periods ahead. All remaining shocks would be set equal to their expected

value (presumably zero). For a speci�c combination of shock realizations,

we would solve for the conditional expectations. This last step would be re-

peated until we have integrated over all the possible combinations of discrete

shocks. For more accuracy, one could expand the number of levels of the

nested integral. However, in order to numerically integrate over k possible

shock values per period in n periods, we would need to generate kn solutions.

It remains to be seen which of these methods are best suited to various

nonlinear models. Future research could better articulate the trade-o� be-

tween the computational e�ciency of the solution method and the numerical

accuracy of the unconditional expectations. In the meantime, our solution

method can be safely applied to models for which substantial accuracy is not

lost because of the certainty equivalence approximation.
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5 Conclusion

This paper has developed computationally e�cient algorithms for solution

and estimation of nonlinear dynamic rational expectations models. The al-

gorithms yield accurate solutions for the models studied here, even when

compared to dynamic programming techniques that explicitly account for

the distribution of future shocks. The algorithm obtains solutions rapidly,

in part by taking advantage of signi�cant sparsity in the structure of the

fundamental Newton step. The algorithm also accommodates models with

unit roots and with singularities of the type addressed for linear models in

Anderson and Moore (1985) and King and Watson (1995a,b).

An important advantage of the rapid solution algorithm is that it makes

derivative-based estimation methods feasible. A single computation of the

likelihood function might take hours using existing methods; with our algo-

rithm a likelihood evaluation takes on the order of one minute for moderate-

sized models and data sets. This allows a researcher to estimate a nonlinear

rational expectations model via maximum-likelihood estimation in hours,

rather than days or more. Our hope is that this will allow more extensive

empirical analyses of many classes of nonlinear rational expectations models.
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Appendix A: Stochastic Dynamic Simulation

In section 3.4, we use stochastic simulations to generate \faux" data to test

the estimator. This appendix describes the computations required for a

stochastic simulation using our solution method. The simulation method

di�ers somewhat depending upon the viewpoint date of the expectations.

We perform the simulation sequentially, shocking and solving for the t-

period, incorporating the solution for xt into the initial conditions for the

(t + 1)-period, and so on. In the case of the t-period viewpoint date, our

method forms expectations based on the x's up to t � 1 and conditional on

�t. (The realizations of xt and �t are, of course, not independent.) This is

functionally equivalent to taking the conditional expectations using the t�1-

period information and given �t. In particular, instead of solving for the zeros

of F (xt�; xt; E(xt+)), we �nd xt and E(xt+) that satisfy F (xt�; xt; E(xt+)) =

�t. Therefore the full Newton step is now

2
66666666664

In�� 0 0 0 0 0 0 : : :

H t
�� : : : H t

�1 H t
0 H t

1 : : : H t
� 0 0 : : :

0 H t+1
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1 : : : H t+1
� 0 : : :

: : : : : : : : : :

: : : : : : : : : :
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3
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0
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0

F (xt)� �t

F (xt+1)
...

F (xT )

Qx+

3
77777777777777775

:

Note that it is equivalent to the original Newton step (equation 8) except for

the t-period shock.

Performing a dynamic simulation using the t � 1-period information set

requires additional modi�cation to our solution method. In this case, the

expectations, E(xt+), are formed prior to the realization of the shock, �t. We

compute these using our usual method (as in section 1), with xt� as initial

conditions.
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The period t \data" are generated by �nding the xt that solves the equa-

tion F (xt�; xt; E(xt+)) = �t, taking the expectations and shock as given. To

do this, we use a single-period Newton's method solution. The t � 1 expec-

tations are held �xed, inducing an n� � n� identity matrix in the bottom

block of the Jacobian. There is one \stack" of H t
i derivative matrices, since

we are solving for xt. The shock is fed into the system as a function residual

as above. The full Newton step is, therefore,

2
664

In��n� 0 0 0 0

H t
�� : : : H t

�1 H t
0 H t

1 : : : H t
�

0 0 0 : : : In��n�

3
775

2
666666666666664

�xt��
...

�xt�1

�xt

�xt+1
...

�xt+�

3
777777777777775

=

2
666666666666664

0
...

0

F (xt)� �t

0
...

0

3
777777777777775

:
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One−Sector Stochastic Growth Model:
10% Technology Shock to Steady State Levels
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Two−Sector Stochastic Growth Model:
10% Technology Shock to Steady State Levels
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Our Method versus Dynamic Programming
Deterministic Solution Path

60% Initial Technology Shock
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Consumption Decision Rules
for the One−Sector Stochastic Growth Model:

Finite Element versus Our Method


