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Abst ract:
This paper tests the dynamic implications of beta-convergence with time-series data from

the 48 contiguous U.S. states. The motivation for this paper rests with the interpretation of results
from cross-sectional growth regressions.  These results show that poor regions experience faster
per-capita income growth than rich regions.  This is interpreted as evidence of convergence. 
However, convergence is a dynamic adjustment process with testable implications in time-series
data, while the literature employs cross-sectional data to estimate this dynamic concept. A set of
strong assumptions must be made to jump from this cross-sectional correlation to its
interpretation as a speed of convergence. We find that the time-series properties of the data
appear to be inconsistent with beta-convergence dynamics.  Further, our analysis rejects the
assumptions necessary to interpret the cross-sectional correlation as a speed of convergence. 
Therefore, our results call into question the interpretation that has been placed on this important
cross-sectional finding.
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I.  Introduction

Cross-sectional growth regressions show that poor regions grow faster than rich regions

in per-capita income.  This result has been interpreted as evidence of convergence.  But, doesn’t

this cross-sectional result also imply that the richer a region becomes (i.e.: as the region

converges), its per-capita income growth rate will diminish over time?  In other words,

convergence is a dynamic process that should be observable in time-series data. That question

provides the motivation for this paper, which tests the dynamic implications of convergence with

time-series data.

The regression coefficient summarizing the cross-sectional relationship mentioned above

has been interpreted as the dynamic speed of adjustment to the steady state of a growth model

exhibiting diminishing returns to capital (exogenous as well as some endogenous growth

models).  By the definition of equilibrium, if a steady state exists, then differences from it must

diminish over time -- an adjustment process called conditional convergence.  With additional

assumptions a stronger form of convergence emerges -- convergence means that per-capita

incomes will converge to the same level across regions.  The strong form of convergence directly

predicts that poor regions will grow faster than rich regions.  But, if we are able to control for the

variation in steady states across regions, then even the weaker form of conditional convergence

predicts this cross-sectional result.

For these reasons, the convergence properties of growth models have been used to

explain cross-sectional results.  In contrast, endogenous growth models with non-diminishing

returns to capital cannot explain this result. Therefore, the estimated cross-sectional

relationships are taken to be direct evidence in support of convergence and against this class of

endogenous growth models.  This study addresses a deficiency in this interpretation. 

Convergence is a dynamic process of adjustment to a steady-state equilibrium.  Some very

restrictive assumptions are necessary in order to make the leap from cross-sectional correlation
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to interpretation as a dynamic speed of adjustment.

Because convergence is a dynamic concept, time-series information should contain

evidence of this adjustment process.  If time-series data display little evidence of convergence

dynamics, then we would conclude that the assumptions required to link dynamic adjustment

behavior to the observed cross-sectional correlation had been violated.  Furthermore, this finding

would call into question the interpretation of this important cross-sectional finding.  We perform

statistical tests of the assumptions using time-series data from the 48 contiguous U.S. states.  It

is generally presumed that distinctions between the weak form and the strong form of

convergence are unnecessary in these data.  We find that the time-series properties of the data

appear to be inconsistent with this presumption, the set of restrictive assumptions, and with the

presence of convergence dynamics.

The remainder of this paper is organized as follows.  In section II, we present a review of

the literature along with a regression that demonstrates cross-sectional convergence for the 48

U.S. states.  In section III, we present the dynamic framework for the convergence process that

has been labeled beta-convergence; contrast this with the cross-sectional implementation of the

model; and discuss the assumptions necessary to make them equivalent.  The results of the

statistical tests are presented in section IV.  We offer some concluding remarks in section V.

II.  Literature Review

Recent interest in the convergence hypothesis began with two papers by Moses

Abramovitz (1986) and William Baumol (1986).  Employing O.E.C.D productivity data from a

cross-section of countries that spans a century (1870 to 1979), Baumol (1986) noticed an inverse

correlation between initial productivity levels (c. 1870) and long-run productivity growth rates

averaged over this time span.  However, he also cautioned against taking this correlation too
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seriously and proceeded to list a whole series of caveats. 

Follow-up work by Wolff (1991), Dowrick and Nguyen (1989), and Mankiew, Romer, and

Weil (1992) focused on linking the empirical cross-section relationship to the convergence

properties of growth models.  Barro (1991), Barro and Sala-i-Martin (1991, 1992) also elaborate

this linkage.  Their work added a new twist.  Barro and Sala-i-Martin confirmed Baumol’s finding

that this cross-sectional correlation did not consistently appear in international data.  However,

they found that adding a few “conditioning” variables to the regression leads to an inverse partial

correlation that appears consistently.  They associated this partial correlation with the concept of

conditional convergence.

Barro and Sala-i-Martin (1991, 1992) showed that the cross-sectional relationship

between initial per-capita income and the per-capita income growth rate held consistently without

the use of conditioning variables in U.S. state-level data.  They assert that this relationship is

consistent with conditional convergence.  However, when conditioning variables are included in

their regressions, they found that their proxies for the steady state exhibited little variation across

the states. This suggests, albeit very cautiously, that the estimated cross-sectional relationship

may be consistent with unconditional convergence, hence the presumption that distinguishing

between conditional and unconditional convergence is unnecessary with U.S. state-level data. 

An example of this unconditional relationship using U.S. state-level data over the time period

from 1948 to 1996 is presented in Figure 1.

Recent work in the cross-sectional growth literature adds new conditioning variables

(Becsi (1996)), extends the model though sectoral disaggregation (Bernard and Jones (1996)),

tests for measurement error (Dowrick and Quiggen (1997)), and extends the analysis to

additional data sets (see the literature reviewed by Sala-i-Martin (1996)).



4

III.  Beta-Convergence: Theory and Critique

3.1 Theory and Critique

The concept underlying the interpretation of the cross-sectional correlation between initial

productivity levels and the long-run growth rate is the idea of a dynamically stable steady-state

equilibrium.  By definition, when a steady state is stable, non-steady-state productivity levels will

dynamically converge to the steady state through an equilibrating mechanism that results from

the existence of diminishing returns to capital.  Two different types of adjustment processes are

possible: deterministic or stochastic.  Beta-convergence is a deterministic adjustment process,

formally presented in equations (1a and 1b) and in (2a) 2. 

The adjustment process defined in equation (1) says that the instantaneous rate of

growth in productivity is the exogenous rate of technological change less a constant proportion of

the difference of productivity from the steady-state equilibrium.  The coefficient, β, is the speed of

adjustment and is also termed the speed of convergence.

In equation (1), y represents the log of productivity, y  represents the log of steady-state

productivity, and γ represents the exogenous rate of Harrod-neutral technical change.  If β is

positive, then the steady state is dynamically stable (i.e.: positive differences are forced to

converge downward toward the steady state, while negative differences are forced to converge

                                               
2 Convergence should be in levels rather than log-levels.  The time path of y(t) in levels (as given by equation (2a))
would be altered by geometric growth in ty rather than linear growth.  However, the time-series dynamics of the growth

rate (the variable of interest) is highly nonlinear, resulting in a complex expression for equation (2b).  For expositional
purposes, we employ the log-linear approximation used in the literature.  However, the arguments, results, and
conclusions expressed in this paper are unaffected by this difference (see Appendix 3).
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upward toward the steady state).  On the other hand, if β is negative, then the steady state is

dynamically unstable (i.e.: positive differences are forced to be larger and negative differences

are forced to be more negative, implying an ever-greater divergence from the steady state).

Equation (1) is a non-stochastic differential equation.  The solution to this differential

equation gives the non-stochastic dynamic time path of productivity.  The solution is given in both

log-levels and log first-difference forms in equations (2a and 2b) below.  These equations are

superscripted by (i) to denote being only one part of a multi-economy system.
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As before, y represents the log of productivity; y  represents the log of steady-state productivity;

and 0y represents the log of the initial period productivity level.  The dynamic convergence

process in equations (2a and b) is illustrated in Figure 2.  

The dynamic nature of these equations should be readily apparent.  For any individual

economy, equation (2b) shows that convergence dynamics are represented by a nonlinear,

deterministic time trend.  If we add a stochastic disturbance term to equation (2b), statistical

estimation of the convergence dynamics would require a time series of growth rates, a time

trend, and an estimate of the initial difference of productivity from its steady state -- in other

words, time-series rather than cross-sectional data.

Equation (2b) represents the weak form of conditional beta-convergence.  There are 2n

restrictions that must be imposed on equation (2b) in order for the strong form of unconditional

convergence in productivity or, equivalently, per-capita incomes to occur: all n economies must

have the same initial steady-state 0y  and the same exogenous growth rate of technological
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change, γ (see assumption [b] below).

Let’s contrast this with the cross-sectional equation estimated in the literature.  The

starting point is equation (2a), the dynamic time path of productivity in levels.  For a sample of T-

time periods (0,....,T), take the difference equation over the T periods and calculate its average,

dividing by T.  This average T- period difference is presented in equation (3a).
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The equation actually estimated in the literature is listed in equation (3b).  In order to estimate

beta from a cross-section of U.S. states, certain restrictions must be imposed on equation (3a) in

order to obtain the estimating equation (3b).  The two sets of restrictions are the following:

[a] The speeds of convergence are equal: ββ =i , ni ,,1�=∀ .

[b] Unconditional convergence occurs.  The initial steady states: 00 yyi = ,

and the exogenous growth rates are equal: γγ =i , ni ,,1�=∀ .

With these restrictions, 0* yb  can be subsumed into the constant term of the equation, yielding:
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One additional requirement is necessary in order to interpret estimated cross-sectional

relationships as evidence of convergence.  This requirement concerns the informational content

of the dependent variable.  If the convergence dynamics represented by equation (2b) occur,

then:

[c] The average rate of growth contains information on both a deterministic
adjustment process and  an exogenous rate of growth, so that:
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For a derivation of this expression, see Appendix 2.  This average growth rate is a

constant for each observation.  Let’s explore cross-sectional variation in the dependent variable

as well as the dynamic implications of this expression.  If we sample the cross-section at the

same point in time, but along different convergent paths (i.e.: ττ =i ), then as iy0  increases

across regions, the average growth rate becomes smaller—giving us the inverse correlation

found in the literature.  In this case, both assumption [a] and assumption [b] are necessary to

identify equation (3b) when estimating b.

The average growth rate expression also includes dynamic implications.  Assume that the

convergence path is the same for all observations.  Then cross-sectional sampling means that

we observe the economies at different points in time along this convergent path (i.e.: at different

iτ ’s).  As iy0  increases across regions, both the difference from steady state and the average

growth rate become smaller (due to the convergence dynamics) – which also gives us the

inverse correlation found in the literature.  In this case, all three requirements guarantee that

cross-sectional variation mimics the time-series dynamics, ensuring the proper interpretation of a

regression estimate of b as a speed of convergence.

Now let’s assume that deterministic convergence dynamics do not occur.  Because

0=β , then λ would equal zero, and the average growth rate measures the exogenous rate of

technological change along with some possible stochastic variation that may not have been

completely averaged out.  In this situation, cross-sectional regression estimates of b would be

spurious and could not be interpreted as the speed of convergence, β.
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3.2 Open Economy Considerations

The theory outlined in the previous section assumes that each region operates as a

closed economy.  For the U.S. states, this is obviously not a reasonable assumption.  In this

section, we discuss open economy considerations for the convergence model. 

Resource mobility has implications for convergence.  With identical technologies across

regions, if either physical capital or labor is perfectly mobile across regions, then unconditional

convergence is instantaneous.  Factor price equalization rather than diminishing returns to

capital provides the equilibrating force for convergence.  But, if capital or labor is partially

immobile, diminishing returns to capital continues to provide the equilibrating force for

convergence (see Barro and Sala-i-Martin (1995) for this conclusion).  However, openness

increases the speed of convergence.

Empirically, perfect resource mobility would devastate both cross-sectional and time-

series estimates of convergence dynamics from growth models.  With perfect mobility,

convergence via factor price equalization occurs immediately, so that time-series data would

exhibit no evidence of convergence dynamics.  Similarly, since convergence does not occur

through the growth model mechanism, cross-sectional data would violate the informational

requirements of the dependent variable, making any estimated relationship suspect.

What is the evidence on labor mobility?  Numerous studies (see Newman (1982),

Crandall (1988), Sahling and Smith (1983)) have confirmed the presence of significant regional

wage differentials that persist for very long periods of time, suggesting that labor is not perfectly

mobile.  However, the evidence concerning the reasons for the differentials is inconclusive. 

Some studies (Browne (1980), Gerking and Weirick (1983), Farber and Newman (1989))

conclude that regional wage differentials result from compensation of differences in regional

amenities.  When this is taken into account, regional wage differences are eliminated.  However,



9

other studies (Farber and Newman (1987), Krueger and Summers (1988), Dickens and Katz

(1987)), suggest that the differentials result from persistent inter-industry wage differentials, due

to regional specialization in different industries.  Barro and Sala-i-Martin (1991) and Braun (1993)

present evidence on the responsiveness of migration to regional income differentials, which

suggests sluggish movement.  On the whole, the evidence appears to imply less than perfect

labor mobility.

What is the evidence on capital mobility?  While financial capital is perfectly mobile within

national borders, it is not clear that physical capital is equally mobile.  The movement of physical

capital across regions occurs through investment.  Cross-state evidence of instantaneous

adjustment in investment behavior would provide indirect evidence on physical capital mobility. 

Rickman, Shao, and Treyz (1993) estimate a stock adjustment model of investment behavior, in

which investment results from a difference between actual capital stocks and optimal capital

stocks.  He estimates the model with pooled time-series cross-section data from the U.S. states.

 He finds a very small stock adjustment coefficient, suggesting high costs of adjustment. 

Adjustment costs would act as a barrier to the movement of capital across regions.  Barro,

Mankiw, and Sala-I-Martin (1992) provide some additional evidence that capital mobility is less

than perfect.  Therefore, the evidence suggests that open economy considerations would not

harm estimation of the convergence behavior of growth models with U.S. state-level data. 

IV.  An Empirical Test of the Assumptions

We start with a test of the informational content of the dependent variable.  Our strategy

is to test for the presence of a deterministic trend in the first differences of per-capita incomes.  If

this time-series is mean stationary, with no evidence of a trend, then the data stochastically vary

about the exogenous growth rate (γ) so that the informational requirement of assumption [c] has
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been violated.  However, equation (2b) shows that if beta-convergence dynamics are present,

then the first differences should contain a non-linear deterministic trend that asymptotically

approaches the exogenous growth rate.  In this situation, the first differences will not be mean-

stationary and will satisfy the informational requirement of assumption [c].  Because the initial

difference from the steady-state enters equation (2b) only as a scaling factor, a seemingly simple

test of this assumption [c] is whether the first differences of per-capita incomes are mean

stationary, or trend stationary.

The length of the data span is also important to the extent that finding assumption [c] to

be false may still be consistent with convergence, if beta-convergence had already taken place

prior to the sample period, or if convergence follows some alternative process.  Employing a

sufficiently long data span for this test should eliminate the possibility of beta-convergence

having occurred prior to the start of the sample.

While a simple test for a trend in the first differences of per-capita incomes on a long

enough data span may be sufficient to establish the presence of beta-convergence dynamics, it

is not able to differentiate between conditional and absolute beta-convergence. However, the test

of assumption [b] is dependent upon the results of the trend test of first differences.  If a trend is

present, the asymptotic value that is approached by the trend represents the exogenous growth

rate.  Finally, provided that a statistical test validates assumption [c], direct estimation of

equation (2b) using the entire panel of data along with a test of the restriction of equal betas

would be sufficient to establish assumption [a].

We first test the validity of assumption [c].   The results of our test of this assumption are

presented in Tables 1 and 2.  Table 1 presents unit root tests of the first differences of quarterly

per-capita incomes for each of the 48 contiguous U.S. states over the time period from 1948 to

1996, and for the U.S. as a whole over the time period 1890 to 1997.  Table 1 lists both Dickey-
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Fuller and augmented Dickey-Fuller t-tests of the AR(1) coefficient.3  These results strongly reject

the presence of a unit root, implying that the first differences are stationary.

Table 2 presents the results of three different tests for the presence of a deterministic

trend in the first differences of cyclically adjusted quarterly data.4  The columns list: (a) the

estimates of a linear trend, (b) the estimates of a nonlinear quadratic trend, and (c) the estimates

of a nonlinear hyperbolic trend.  The results in Table 2 are unable to reject the hypothesis of

mean stationary first differences.  Because of the possibility of a type II error, assumption [c] can

only be weakly rejected.  But, this rejection also suggests that we may not be able to interpret the

cross-sectional estimate of the relationship between initial per-capita income and the per-capita

income growth rate as a speed of convergence, when estimated over this time-span with these

data.

The rejection of assumption [c] implies that the time-series data are not consistent with

the presence of convergence dynamics, but this could be due to instantaneous convergence

occurring as a result of perfect resource mobility.  If convergence occurs through immediate

cross-border movement of resources, then per-capita income would always be at its steady-state

value.  Furthermore, in order for perfect resource mobility to explain this result we need to find

evidence that convergence is unconditional.  Therefore, a test of assumption [b] is particularly

relevant.

                                               
3 All results were estimated using quarterly per-capita personal income.  The BEA compiles a quarterly

personal income series.  The BLS collects population data on an annual basis.  We use per-capita incomes because
a sufficiently long series of productivity data using BEA’s GSP data is not available.  GSP data is considered to be
useful for periods after 1977 providing only seventeen years of information.  While the BEA also has annual per-capita
incomes starting in 1929, we do not include this longer period because of possible structural breaks during the Great
Depression (1929 to 1940) and World War II (1940 to 1945).

4 The data contain heteroscedasticity and cyclical variation.  The heteroscedasticity appears as shifts in
variance over time.  Cyclical variations are irregular with respect to amplitude and duration.  Since we are interested in
long-term properties, we cyclically adjust the data using a decomposition method.  The results in Table 2 are
estimated from the de-cyclicalized data.  Standard-errors and t-statistics are presented in heteroscedasticity
consistent form. Future versions of this paper anticipate correcting for heteroscedasticity and using an alternate
cyclical adjustment procedure: Hamilton’s markov regime-switiching method.
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The fact that the first differences are mean stationary suggests that growth of per-capita

income during this time period was determined either by the long-run process of exogenous

technical change, or by some endogenous growth mechanism.  Any convergence dynamics are

either the result of factor price equalization, or achieved through a relatively short-run stochastic

adjustment process.  Therefore, it does not matter whether convergence had already taken

place, or results from an alternative process.  The observed per-capita income levels would

contain information concerning the supposedly unobservable steady state, and simple trend

estimation in levels via either a linear deterministic trend or a stochastic trend will extract the

growth path of steady-state productivity levels. 

On the other hand, if convergence never takes place, then the process driving growth is

endogenous and concern about an unobservable steady state is misplaced.  Simple trend

estimation will show whether regions or states share the same endogenous growth paths and

whether or not leapfrogging rather than convergence to the same level is possible.

Since the choice in estimating a deterministic or stochastic trend concerns the issue of

whether the productivity levels are stationary, we do not concern ourselves with this issue here

(see Swaine (1998) for details on the stochastic convergence hypothesis).  To test assumption

[b], we estimate a deterministic linear trend in per-capita income levels.  The test for assumption

[b] is that these trends are common (i.e.: identical) across the cross-section. 

Table 3 presents the results from a panel estimation of a linear deterministic trend. 

These results strongly reject the equality restrictions of assumption [b] imposed on the

coefficients across the cross-section.  Therefore, two of the three assumptions that are

necessary to interpret the cross-sectional correlation between initial per-capita income and its

growth rate as a speed of convergence have been rejected, and with data for which unconditional

convergence is assumed most likely to exist.  Furthermore, with the rejection of assumption [b],
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we can reject perfect resource mobility as an explanation for the lack of convergence dynamics

in the time-series data.  If perfect resource mobility caused these results, then unconditional

convergence would occur instantaneously and we would be unable to reject the equality

restrictions of assumption [b].  Assumption [a] cannot be tested because with the rejection of

both assumptions [b and c] the data are not consistent with beta-convergence dynamics

occurring during this time span.

While we are unable to find the presence of beta-convergence dynamics in the post-war

state-level data, the qualifier a sufficiently long data span still hangs over our analysis. To

investigate the effect of this qualifier on our analysis, we present yet another test.  Baumol et al.

(1991) in Productivity and American Leadership: The Long View, provide an illustration of annual

U.S. productivity growth from 1890 to 1969 in their Figures 2.1 and 4.1.  These data, compiled by

John Kendrick, show productivity growth that averages 2 percent over this time span, with the

graph clearly showing no evidence of a trend.  These data are indexed so that 1958 is equal to

100.  We collect more current productivity data from the U.S. Bureau of Economic Analysis for

the years 1958 to 1997, and then multiply Kendrick’s data series by the 1958 value, in order to

create a very long productivity data series spanning 108 years from 1889 to 1997. 

The results of our analysis of this data, adjusted for two structural breaks (in 1934 and

again in 1974), are included in Tables 1 and 2.  These results span a period that includes the

long process of large-scale industrialization in the United States (with the exception of the first 20

years of industrialization from 1870 to 1890).  The results show that the data exhibit no

discernible trend and lend further weight to our state-level results that the time-series evidence is

inconsistent with the presence of beta-convergence dynamics.  Finally, to any skeptics who

object to adjusting for structural breaks, we present supplementary results in the Appendix, along

with a discussion of our analysis of these supplementary results.
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Because the time-series evidence is inconsistent with dynamic predictions from the beta-

convergence model, we conclude that deterministic convergence dynamics are unable to explain

the cross-sectional results reported in the literature (and the results that we presented for this

same data set in Figure 1).  For this reason, we conclude that the estimated cross-sectional

correlation should not be interpreted as a dynamic speed of convergence.  However, our results

do not necessarily reject the convergence hypothesis.  The time-series properties of our data

may be consistent with stochastic convergence (see Swaine (1998) for evidence on this

hypothesis).  On the other hand, the mean-stationary property exhibited by our data is also

consistent with the AK class of endogenous growth models (see Barro and Sala-i-Martin (1995)).

V.  Conclusions

In this paper we tested the assumptions that are necessary to interpret the cross-

sectional correlation between initial per-capita income and its growth rate as a dynamic speed of

convergence.  Our results suggest that the two most critical assumptions are the informational

content of the per-capita income growth rate, and whether or not the steady-state growth paths

are identical.  The informational content assumption determines whether the long-run growth rate

contains information concerning adjustment dynamics, or just a long-run exogenous growth

process.  Our test of this assumption suggests that the data are inconsistent with the presence of

beta-convergence dynamics.

Since adjustment dynamics, if any exist, are relatively short-run, then per-capita income

data in levels would contain information concerning the unobservable steady state.  Estimating a

trend in the levels should obtain the steady-state growth path.  A test for identical trend equation

coefficients (i.e.: a common trend) is also rejected for the U.S. states, violating the unconditional

convergence assumption.  This result also ensures that the test for informational content was not
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contaminated by perfect resource mobility.

The sum total of these results should call into question the appropriateness of interpreting

the estimated cross-sectional relationship as a speed of convergence.  Our results do not imply

that convergence does not occur, only that the time-series evidence appears to be inconsistent

with beta-convergence dynamics.  Therefore, beta-convergence dynamics may not be able to

explain this cross-sectional result.  We conclude that the cross-sectional correlation is just that: a

correlation -- and is still in search of an explanation.
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Appendix 1

U.S. Productivity Growth (1890 to 1997)

In this appendix we present supplementary results in support of our adjustment for two

structural breaks that we found to exist in the U.S. national productivity data.  First, we should

note that, a priori, three time periods could possibly contain structural breaks.  These are the

Great Depression, World War II, and the oil shocks of the 1970's.

To determine the presence of structural breaks, we first test for a non-stationary process.

 An augmented Dickey Fuller test including 4 lags cannot reject the presence of a unit root,

suggesting that structural breaks may be present.  Visual inspection of the data suggests two

possible structural breaks.  The first occurs in 1934 and lasts until the occurrence of the second

in 1973-1974.  To further investigate the presence of these breaks and their effects on any likely

trend, we formally test the possibilities over different time spans.

We first test for the presence of any trend behavior during the 1890 to 1928 period.  As

Appendix Table 1 shows, we find no evidence of a trend during this time span.  Next we examine

the 1890 to 1973 period, where visual inspection suggests a break in 1934 that lasts until 1973. 

We find the presence of a statistically significant positive trend over this period.  However, when

we include a dummy variable for 1934 to 1973 along with the trend, the slope of the trend

changes from positive to negative.  The coefficient on the dummy variable is statistically

significant, while the coefficient on the trend is not.  Therefore, we conclude that the positive

trend is picking up the effects of the structural break.  After adjustment for the break, we find no

evidence of a trend during this longer time span (1890 to 1973), which also happens to overlap

part of the period contained in our state-level data (1948 to 1996).

Finally, we examine the full period from 1890 to 1997.  With inclusion of the 1934 to 1973

dummy variable, we find the presence of a statistically significant negative trend over the time
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period from 1890 to 1997.  But, since this result is not present during the preceding time intervals

(1890 to 1973), then this trend must result from the well-documented productivity slowdown that

occurred after 1973.  Including a dummy variable for the 1974 to 1997 period in this regression

finds that both the trend and the dummy become statistically insignificant (but with negative

coefficients), implying that they are measuring the same thing.  Therefore, we estimate a

regression of productivity growth on the two dummy variables.  A unit root test of the residuals

from this regression strongly rejects non-stationary behavior (as shown in Table 1).  We employ

these residuals for the trend tests that are listed for the United States in Table 2.



Appendix Table 1 a

Trend Tests for US Productivity Data (1890 - 1997)

Dummy Dummy
Time Period Constant Trend 1933-1973 1974-1997

1890-1928 0.02055300 0.00002540
(1.979184) (0.056078)

1890-1973 0.01585700 0.00023800
(2.478771) (1.821964)

0.02241000 -0.00017700 0.02331100
(3.107940) (-0.690113) (1.870071)

1890-1997 0.02745700 -0.00012500
(4.749559) (-1.361189)

0.02335400 -0.00022100 0.02522100
(4.321908) (-2.530778) (4.464865)

0.02312800 -0.00020900 0.02465200 -0.00105800
(3.419365) (-0.882461) (2.118334) (-0.056048)

0.01842300 0.01586900 -0.01653200
(4.431006) (2.633827) (-2.362243)

a.  t-statistics are in parentheses.
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Appendix 2

Derivation of the informational Content of the Average Growth Rate

The proof of the expression contained in [c] is twofold.  First, the average growth rate is

identical to the average of the first differences.  The proof of this proposition is relatively simple

(for all y’s except Ty  and 0y there is both a positive and a negative value for each time period,

which cancel out in summation):
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Using this identity, the second part of the proof derives from equation (2b).
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If we apply assumption [a] and [b] to equation (2b), this reduces to:
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Finally, dividing by T and substituting for the first part of the derivation results in [c].
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Appendix 3

Convergence in Levels rather than in Log-Levels

For convergence in levels, the time path is given by a variant of equation (2a):
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In logs, this expression yields (because the log operator does not operate on a sum):
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Finally taking the first difference of this expression yields the growth rate:
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Although this expression is not reducible to a simpler form, simulations show that the first

differences (i.e.: growth rates) are a nonlinear deterministic function of time and approach the

exogenous growth rate γi asymptotically.  Therefore, results from an equation in levels are

unaffected by a switch to a log-linear approximation.



Table 1 a

Test for Per-Capita Income Growth Stationarity

State DF  t-test DF  T(r-1) ADF  t-test ADF  T(r-1)
Alabama -12.56 -169.23 -14.40 -184.63
Arizona -15.83 -210.59 -18.78 -173.40
Arkansas -17.69 -231.12 -24.22 -304.68
California -15.78 -210.23 -21.38 -205.74
Colorado -17.21 -225.19 -24.59 -258.91

Connecticut -13.34 -179.16 -10.24 -127.75
Delaware -15.17 -204.43 -16.12 -192.10
Florida -17.20 -225.59 -17.13 -154.09
Georgia -13.52 -182.17 -15.25 -180.23
Idaho -12.75 -172.31 -16.93 -217.20
Illinois -13.40 -181.01 -13.05 -169.11
Indiana -11.15 -147.53 -13.87 -178.80
Iowa -12.29 -166.08 -15.86 -210.27

Kansas -13.37 -180.24 -14.89 -191.16
Kentucky -13.75 -181.85 -17.01 -217.62
Louisiana -13.20 -178.01 -12.69 -162.65

Maine -10.50 -136.96 -11.30 -141.36
Maryland -14.01 -187.52 -12.95 -148.55

Massachusetts -12.84 -173.87 -9.47 -118.87
Michigan -11.82 -159.01 -13.06 -168.07
Minnesota -13.08 -176.56 -16.49 -207.36
Mississippi -19.50 -246.60 -19.63 -236.51
Missouri -13.51 -183.17 -10.78 -142.64
Montana -16.21 -216.05 -26.32 -337.33
Nebraska -12.69 -170.40 -14.32 -189.59
Nevada -16.70 -220.55 -16.68 -156.49

New Hampshire -12.84 -173.46 -10.47 -129.93
New Jersey -14.97 -200.98 -12.51 -156.24
New Mexico -14.83 -197.25 -28.32 -311.22
New York -19.35 -245.84 -14.54 -172.59

North Carolina -13.41 -180.73 -13.57 -177.01
North Dakota -13.38 -181.08 -15.19 -204.06

Ohio -11.93 -159.59 -13.46 -171.17
Oklahoma -15.69 -209.94 -18.56 -226.30

Oregon -13.88 -187.72 -18.14 -219.09
Pennsylvania -12.86 -173.72 -14.15 -184.56
Rhode Island -11.91 -160.39 -11.60 -151.28

South Carolina -13.98 -184.43 -17.50 -218.00
South Dakota -11.85 -159.40 -21.75 -277.53

Tennessee -12.73 -171.50 -15.69 -195.72
Texas -15.29 -203.79 -12.16 -131.02
Utah -16.33 -215.24 -31.74 -331.62

Vermont -12.16 -161.81 -10.57 -130.03
Virginia -14.72 -197.75 -11.90 -141.30

Washington -15.88 -212.11 -14.01 -162.04
West Virginia -15.96 -213.27 -19.10 -246.01

Wisconsin -12.88 -171.87 -15.13 -189.69
Wyoming -18.49 -219.64 -18.99 -213.76

United States -12.82 -130.18 -16.77 -162.65

a.  State per-capita income is a quarterly series running from 1948 to 1996.

     US productivity (GDP / employee hour) is an annual series running from 1890 to 1997,

      with correction for two structural breaks in 1934 and in 1974.

      Critical Value for the DF and ADF t-test at a 5% significance level: -2.89.

      Critical Value for the DF and ADF T(rho-1) test at a 5% significance level: -13.85 .



Table 2 a

Test for the Presence of Trend in the First Differences of Per-Capita Incomes

State                       (a)  Linear                 (b)    Quadratic            (c)            Hyperbola

Trend t-statistic Trend t-statistic Trend^2 t-statistic 1/Trend t-statistic

1 Alabama -6.28E-08 -0.039 -3.37E-07 -0.038 1.37E-09 0.036 0.001241 0.164

2 Arizona -1.45E-08 -0.010 -5.39E-07 -0.061 2.63E-09 0.065 0.002334 0.323

3 Arkansas -6.19E-07 -0.348 -2.80E-06 -0.242 1.08E-08 0.211 0.006376 0.574

4 California -2.09E-07 -0.167 6.31E-07 0.098 -4.22E-09 -0.147 0.001076 0.201

5 Colorado 3.42E-07 0.206 3.25E-06 0.343 -1.46E-08 -0.352 -0.001875 -0.210

6 Connecticut -2.03E-07 -0.133 -9.07E-07 -0.116 3.52E-09 0.101 0.002964 0.421

7 Delaware -2.64E-07 -0.158 -4.65E-07 -0.055 1.00E-09 0.027 0.002324 0.310

8 Florida -3.09E-07 -0.204 -3.76E-06 -0.492 1.73E-08 0.459 0.003901 0.769

9 Georgia -2.52E-07 -0.182 -1.36E-06 -0.185 5.64E-09 0.170 0.002787 0.565

10 Idaho -7.65E-07 -0.342 -4.09E-06 -0.331 1.69E-08 0.299 0.006478 0.712

11 Illinois -7.95E-08 -0.063 1.90E-07 0.029 -1.35E-09 -0.045 0.000552 0.106

12 Indiana -1.44E-07 -0.084 -1.22E-06 -0.122 5.37E-09 0.120 0.002356 0.272

13 Iowa 2.05E-08 0.011 4.37E-06 0.348 -2.13E-08 -0.362 -0.002582 -0.251

14 Kansas 6.13E-07 0.388 8.32E-06 0.845 -3.73E-08 -0.854 -0.008155 -0.911

15 Kentucky -6.09E-07 -0.380 -2.94E-06 -0.304 1.16E-08 0.275 0.006249 0.689

16 Louisiana -2.61E-07 -0.174 -1.86E-06 -0.270 8.04E-09 0.269 0.002574 0.458

17 Maine -3.03E-07 -0.219 -1.13E-06 -0.145 4.17E-09 0.117 0.002403 0.359

18 Maryland -2.11E-07 -0.144 -1.10E-06 -0.138 4.41E-09 0.128 0.002945 0.396

19 Massachusetts -8.52E-08 -0.065 -3.98E-07 -0.060 1.56E-09 0.052 0.001450 0.250

20 Michigan 5.80E-07 0.288 1.67E-06 0.148 -5.47E-09 -0.107 -0.003732 -0.376

21 Minnesota -6.38E-07 -0.577 -1.99E-06 -0.283 6.85E-09 0.199 0.004709 1.047

22 Mississippi -7.39E-07 -0.274 -5.94E-06 -0.419 2.63E-08 0.432 0.008067 0.708

23 Missouri -5.30E-07 -0.478 -2.49E-06 -0.367 9.73E-09 0.310 0.005613 0.961

24 Montana 7.99E-07 0.321 6.87E-06 0.511 -3.02E-08 -0.467 -0.006953 -0.772

25 Nebraska 2.17E-07 0.097 5.56E-06 0.463 -2.63E-08 -0.506 -0.003497 -0.318

26 Nevada -2.49E-07 -0.129 -1.28E-06 -0.134 5.13E-09 0.115 0.003878 0.504

27 New Hampshire 9.28E-08 0.077 -5.02E-07 -0.078 2.99E-09 0.096 0.000102 0.027

28 New Jersey -3.52E-08 -0.026 1.12E-06 0.176 -5.82E-09 -0.198 -0.000012 -0.002

29 New Mexico 7.72E-08 0.064 -5.83E-07 -0.095 3.29E-09 0.120 0.001140 0.202

30 New York 1.32E-07 0.090 2.47E-06 0.381 -1.18E-08 -0.375 -0.001924 -0.463

31 North Carolina 3.58E-07 0.294 3.67E-06 0.485 -1.60E-08 -0.462 -0.003830 -0.590

32 North Dakota 9.25E-09 0.002 7.39E-06 0.270 -3.69E-08 -0.280 -0.004383 -0.251

33 Ohio 1.77E-07 0.115 6.97E-07 0.089 -2.61E-09 -0.075 -0.000624 -0.097

34 Oklahoma -5.20E-07 -0.298 -1.15E-06 -0.128 3.15E-09 0.080 0.003215 0.432

35 Oregon -2.89E-07 -0.182 -9.38E-07 -0.110 3.24E-09 0.087 0.002663 0.354

36 Pennsylvania -9.39E-08 -0.067 -2.88E-07 -0.043 9.83E-10 0.034 0.001197 0.264

37 Rhode Island -1.68E-07 -0.115 -1.10E-06 -0.162 4.65E-09 0.145 0.002456 0.419

38 South Carolina -2.79E-07 -0.137 -2.51E-06 -0.218 1.12E-08 0.221 0.005191 0.488

39 South Dakota -1.85E-07 -0.053 3.92E-06 0.219 -2.05E-08 -0.253 -0.000937 -0.077

40 Tennessee 1.53E-08 0.014 -5.14E-07 -0.077 2.66E-09 0.086 0.000229 0.045

41 Texas -5.08E-07 -0.374 -2.62E-06 -0.409 1.07E-08 0.371 0.004591 0.904

42 Utah 1.42E-07 0.092 1.32E-06 0.165 -5.92E-09 -0.171 -0.000267 -0.039

43 Vermont -2.23E-07 -0.187 -1.38E-06 -0.241 5.87E-09 0.214 0.002613 0.722

44 Virginia -7.73E-09 -0.007 4.84E-08 0.008 -2.82E-10 -0.010 0.001142 0.217

45 Washington -2.95E-07 -0.248 7.07E-08 0.010 -1.84E-09 -0.056 0.001873 0.446

46 West Virginia -6.63E-07 -0.262 -5.39E-06 -0.471 2.39E-08 0.505 0.007548 0.854

47 Wisconsin 7.45E-08 0.053 4.30E-07 0.058 -1.79E-09 -0.054 0.000366 0.059

48 Wyoming 5.46E-07 0.269 4.55E-06 0.525 -2.01E-08 -0.517 -0.004566 -0.660

United States 3.61E-06 0.067 -8.39E-05 -0.343 8.03E-07 0.367 0.013836 0.240

a.  State per-capita income is a cyclically adjusted quarterly series running from 1949:1 to 1996:1.

    US productivity (GDP / employee hour) is an annual cyclically adjusted  series running from 1893 to 1994,

    and is also adjusted for two structural breaks in 1934 and in 1974.



        Table 3
Panel Trend Regression: 
Test for Same Growth Path

Alabama Alabama Colorado Colorado
coefficient coefficient coefficient coefficient

Constant 8.5116 8.980175633
Growth 0.00639523 0.005506907

 Fixed effects Differences Growth coefficient differences Fixed effect differences Growth coefficient differences
Alabama -0.4685 0.000888
Arizona 0.4074 -0.001694 -0.0611 -0.000806
Arkansas -0.0693 0.000066000** -0.5379 0.000954
California 0.7243 -0.002185 0.2557 -0.001296
Colorado 0.4685 -0.000888

Connecticut 0.7230 -0.001000 0.2545 -0.00011200**
Delaware 0.7724 -0.002499 0.3038 -0.001611
Florida 0.3148 -0.000504 -0.1538 0.000384
Georgia 0.1217 0.003116 -0.3468 0.001200
Idaho 0.3748 -0.001967 -0.0938 -0.001079
Illinois 0.7035 -0.002136 0.2350 -0.001248
Indiana 0.5116 -0.002036 0.0430 -0.001148
Iowa 0.4691 -0.001844 0.000523** -0.000956

Kansas 0.4388 -0.001298 -0.0298 -0.000410
Kentucky 0.1102 -0.000616 -0.3584 0.000272
Louisiana 0.1621 -0.000869 -0.3064 0.000020000**

Maine 0.2605 -0.001194 -0.2081 -0.000306
Maryland 0.5586 -0.000938 0.0873 -0.00005000**

Massachusetts 0.5338 -0.000779 0.0653 0.000109000**
Michigan 0.6137 -0.002192 0.1451 -0.001304
Minnesota 0.4110 -0.000729 -0.0575 0.000160
Mississippi -0.1882 0.000166 -0.6567 0.001054
Missouri 0.4546 -0.001671 -0.013974** -0.000782
Montana 0.5185 -0.003086 0.0499 -0.002198
Nebraska 0.4384 -0.001500 -0.0301 -0.000611
Nevada 0.7765 -0.002670 0.3079 -0.001781

New Hampshire 0.3619 -0.00008100** -0.1067 0.000807
New Jersey 0.6496 -0.000912 0.1810 -0.00002400**
New Mexico 0.2855 -0.001813 -0.1831 -0.000924
New York 0.6887 -0.001872 0.2202 -0.000984

North Carolina 0.1027 0.000089000** -0.3658 0.000978
North Dakota 0.2815 -0.001344 -0.1871 -0.000456

Ohio 0.5797 -0.002319 0.1112 -0.001431
Oklahoma 0.2536 -0.001035 -0.2150 -0.000147

Oregon 0.5576 -0.002391 0.0891 -0.001503
Pennsylvania 0.4985 -0.001684 0.0300 -0.000795
Rhode Island 0.4748 -0.001580 0.006222** -0.000691

South Carolina 0.007100** 0.000041000** -0.4614 0.000930
South Dakota 0.2658 -0.001362 -0.2027 -0.000474

Tennessee 0.0724 0.000122000** -0.3961 0.001010
Texas 0.3508 -0.000851 -0.1177 0.00003700**
Utah 0.3886 -0.002297 -0.0800 -0.001408

Vermont 0.2424 -0.000538 -0.2262 0.000351
Virginia 0.2778 0.000169 -0.1907 0.001058

Washington 0.5836 -0.001866 0.1151 -0.000978
West Virginia 0.1507 -0.001611 -0.3179 -0.000723

Wisconsin 0.4984 -0.001807 0.0299 -0.000919
Wyoming 0.5817 -0.002203 0.1132 -0.001315

** Denotes not statistically significant at 5% level.
      All other coefficients are significant at the 5% level.
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Figure 1
Beta Convergence Estimated across the U.S. States

Estimated Equation:
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Conditional Convergence to a Steady-State Growth Path
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