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Gravity-Defying Trade

Abstract

Although economists have long been aware of Jensen’s inequality, many econo-

metric applications have neglected an important implication of it: estimating

economic relationships in logarithms can lead to significant biases in the pres-

ence of heteroskedasticity. This paper explains why this problem arises and

proposes an appropriate estimator. Our criticism to conventional practices

and the solution we propose extends to a broad range of economic applica-

tions where the equation under study is log-linearized. We develop the ar-

gument using one particular illustration, the gravity equation for trade, and

use the proposed technique to provide novel estimates of this equation. Three

results stand out. First, contrary to general belief, income elasticities are sig-

nificantly smaller than 1. Second, standard estimators greatly exaggerate the

roles of distance and colonial links. Finally, bilateral trade between countries

that have signed a free-trade agreement is 30 percent larger than that be-

tween other countries, a magnitude remarkably different from that predicted

by conventional methods (above 100 percent).

Key words: Gravity equation, Free-trade agreements, Heteroskedasticity, Pois-

son regression.

JEL Codes: C21, F10, F11, F12, F15.
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1. Introduction

Economists have long been aware of Jensen’s inequality. In particular, it is well known

that E(ln y) 6= lnE(y), i.e., the expected value of the logarithm of a random variable is

different from the logarithm of its expected value. This basic fact, however, has been ne-

glected in many econometric applications. Indeed, one important implication of Jensen’s

inequality is that, in the presence of heteroskedasticity, the standard practice of using

least squares to estimate economic relationships in logarithms (instead of levels) can lead

to significant biases. This paper shows how this problem arises and proposes an appro-

priate estimator. We develop the argument using one particular illustration: the gravity

equation for trade. However, our criticism to the conventional practice and the solution

we propose extends to a broad range of economic applications where the equations un-

der study are log-linearized, or, more generally, transformed by a non-linear function. A

short list of examples includes the estimation of Mincerian equations for wages, production

functions, and Euler equations, which are typically estimated in logarithms.

There is a vast theoretical and empirical literature on the gravity equation for trade,

initiated by the pioneering work of Jan Tinbergen (1962). Theories based on different

foundations for trade, including endowment and technological differences, increasing re-

turns to scale, and “Armington” demands, all predict a gravity relationship for trade

flows analogous to Newton’s “Law of Universal Gravitation.”1 In its simplest form, the

gravity equation for trade states that exports from country i to country j, denoted by

Tij, are proportional to the product of the two countries’ GDPs, denoted by Yi and Yj,

and inversely proportional to their distance, Dij, broadly construed to include all factors

that might create trade resistance. That is,

Tij = α0Y
α1
i Y α2

j Dα3
ij , (1)

1See, for example, Anderson (1979), Helpman and Krugman (1985), Bergstrand (1985), Davis (1995),

Deardoff (1998), and Anderson and van Wincoop (2003). A feature common to these models is that they

all assume complete specialization: each good is produced in only one country. However, Haveman and

Hummels (2001), Feenstra, Markusen, and Rose (1999), and Eaton and Kortum (2001) derive the gravity

equation without relying on complete specialization.
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where α0, α1, α2, and α3 are parameters to be estimated.

The analogy between trade and the physical force of gravity, however, clashes with the

observation that there is no set of parameters for which equation (1) will hold exactly.

To account for deviations from the theory, stochastic versions of the equation are used in

empirical studies. Typically, the stochastic version of the gravity equation has the form

Tij = α0Y
α1
i Y α2

j Dα3
ij ηij, (2)

where ηij is an error term with E(ηij|Yi, Yj, Dij) = 1, assumed to be statistically indepen-

dent of the regressors.

There is a long tradition in the trade literature of log-linearizing (2) and estimating the

parameters of interest by ordinary least squares (OLS) using the equation

ln (Tij) = ln (α0) + α1 ln (Yi) + α2 ln (Yj) + α3 ln (Dij) + ln
¡
ηij
¢
. (3)

The validity of this procedure depends critically on the assumption that ηij, and there-

fore ln
¡
ηij
¢
, are statistically independent of the regressors. It is very unlikely, however,

that the variance of ηij will be independent of the countries’ GDPs and of the various

measures of distance between them. In other words, the error term ηij will, in general, be

heteroskedastic. This implies that the standard estimation method will generate incon-

sistent estimates. To see why this is so, notice that the expected value of the logarithm of

a random variable depends both on its mean and on higher-order moments of the distrib-

ution. Hence, whenever the variance of the error term ηij in equation (1) depends on Yi,

Yj, or Dij, the expected value of ln
¡
ηij
¢
will also depend on the regressors, violating the

condition for consistency of OLS.2 Clearly, in this instance, homoskedasticity is critical

not only for the efficiency of the estimator, but also for its consistency.

A related problem with the analogy between Newtonian gravity and trade is that grav-

itational force can be very small, but never zero, whereas trade between several pairs of

2As an illustration, consider the case in which ηij follows a log-normal distribution, with

E(ηij |Yi, Yj ,Dij) = 1 and variance σ2ij = f(Yi, Yj ,Dij). The error term in the log-linearized repre-

sentation will then follow a normal distribution, with E
£
ln
¡
ηij
¢ |Yi, Yj ,Dij

¤
= −12 ln(1 + σ2ij), which is

also a function of the covariates.
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countries is literally zero. These observations pose an additional problem to the use of

the log-linear form of the model, and the empirical literature developed after Tinbergen

has either ignored it or addressed it in unsatisfactory ways.

To address these issues, we suggest the use of a simple pseudo-maximum likelihood

estimation technique. Besides estimating the gravity equation in its multiplicative form,

this method provides great efficiency gains relatively to the standard non-linear least

squares estimator (NLS). Using Monte Carlo simulations, we compare the performance of

our estimator with that of OLS (in the log-linear specification) and NLS. The results are

striking. In the presence of heteroskedasticity, the estimation methods used in empirical

applications of the gravity equation can be severely biased, generating highly distorted

estimates of the model. These biases might be critical for the comparative assessment of

competing theories underlying the gravity equation, as well as for the use of the gravity

equation as a framework to evaluate the effects of different policies on trade.3 In contrast,

our method is robust to different patterns of heteroskedasticity and, in addition, it provides

a natural way to deal with zero values of the dependent variable.

We next use the proposed method to provide new estimates of the gravity equation

and, in particular, to reassess the impact of free-trade agreements on the volume of inter-

national trade. Our estimation method paints a very different picture of the determinants

of international trade. The coefficients on GDP are clearly not, as generally believed,

close to 1. Instead, they are significantly smaller, calling for modifications to the simple

gravity models.4 Incidentally, the smaller estimated elasticities help reconcile the gravity

equation with the observation that the trade-to-GDP ratio decreases with total GDP (or,

3Examples of empirical studies framed on the gravity equation include the evaluation of trade pro-

tection (e.g., Harrigan, 1993), regional trade agreements (e.g., Frankel, Stein, and Wei, 1995; Frankel,

1997), exchange rate variability (e.g., Frankel and Wei, 1993; Eichengreen and Irwin, 1995), and currency

unions (e.g., Rose, 2000; Frankel and Rose, 2002; and Tenreyro and Barro, 2002). See also the various

studies on “border-effects” influencing the patterns of intranational and international trade, including

McCallum (1995), and Anderson and van Wincoop (2003), among others.
4Note that a more complex — and complete — model of gravity, like the one proposed by Anderson

and van Wincoop (2003) can rationalize our results, as their model is consistent with smaller income

elasticities.
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in other words, that smaller countries tend to be more open to international trade). In

addition, OLS greatly exaggerates the roles of colonial ties and geographical proximity.

Perhaps more interesting, we find that, on average, bilateral trade between countries that

have signed a free-trade agreement is 30 percent larger than trade between pairs without

agreement, in contrast to the 117 percent predicted by OLS regressions. This striking

contrast in estimates suggests that inferences drawn on the standard regressions used in

the literature can produce misleading conclusions and confound policy decisions.

The remainder of the paper is organized as follows. Section 2 studies the economet-

ric problems raised by the estimation of gravity equations and introduces the pseudo-

maximum likelihood estimator. Section 3 presents the Monte Carlo simulations. Section

4 provides new estimates of the gravity equation, revisiting the role of free-trade agree-

ments in international trade. Section 5 contains concluding remarks.

2. The econometrics of gravity equations

Despite their immense popularity, and even after the recent interest on the appropriate

specification of gravity equations (see Mátyás, 1997 and 1998; Egger, 2000 and 2002; and

Cheng and Wall, 2002), there are still important econometric flaws in empirical studies

involving gravity equations. This section examines how the deterministic gravity equation

suggested by economic theory can be used in empirical studies of the determinants of trade.

2.1 The gravity equation in a stochastic context

In their non-stochastic form, the relationship between the multiplicative model and its

log-linear additive formulation is trivial. The problem, of course, is that the gravity

equation for trade flows does not hold with the accuracy of the physical law. All that

can be expected is that it holds on average. Indeed, we interpret the gravity equation

as the expected value of trade for a given value of the explanatory variables. That is,

denoting the volume of trade by y and the set of covariates by x, the gravity equation is

interpreted as the conditional expectation of yi given x, denoted E [yi|x] (see Goldberger,
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1991, p. 5). Because trade between any pair of countries is necessarily non-negative and

the explanatory variables are all positive (measures of distance and size), the multiplicative

form of the gravity equation is well suited to describe E [yi|x], which must be positive.
A multiplicative model with positive covariates can always be written in the exponential

form, leading to E [yi|x] = exp (xiβ), which emphasizes that E [yi|x] is always positive.5
Since the gravity law holds on average, but not for each pair of countries, there is

an error term associated with each observation, which is defined as εi = yi − E [yi|x].6
Therefore, the stochastic model for trade can be formulated as

yi = exp (xiβ) + εi, (4)

with yi ≥ 0 and E [εi|x] = 0.
As we mentioned in the introduction, the standard practice of log-linearizing equation

(4) and estimating β by OLS is inappropriate for a number of reasons. First of all, yi

can be zero, in which case log-linearization is unfeasible. (In spite of this, most authors

have opted for dropping the zeroes out of the sample, and estimated β from the truncated

sample.) Second, even if all observations of yi are strictly positive, the expected value of

the log-linearized error will in general depend on the covariates and hence OLS will be

inconsistent. To see the point more clearly, notice that equation (4) can be expressed as

yi = exp (xiβ) ηi,

with ηi = 1+ εi/ exp (xiβ) and E [ηi|x] = 1. Assuming for the moment that yi is positive,
the model can be made linear in the parameters by taking logarithms of both sides of the

equation, leading to

ln (yi) = xiβ + ln (ηi) . (5)

To obtain a consistent estimator of the slope parameters in equation (4) estimating (5)

by OLS, it is necessary that E [ ln (ηi)|x] does not depend on xi.7 This condition is met
5Using the notation in the introduction, the multiplicative gravity relationship can be written as the

exponential function E(Tij |Yi, Yj ,Dij) = exp [ln (α0) + α1 ln (Yi) + α2 ln (Yj) + α3 ln (Dij)] .
6Whether the error term enters additively or multiplicatively is irrelevant for our purposes, as explained

below.
7Consistent estimation of the intercept would also require E [ ln (ηi)|x] = 0.
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only if εi can be written as εi = exp (xiβ) νi, where νi is a random variable statistically

independent of xi. In this case, ηi is also statistically independent of xi, implying that

E [ ln (ηi)|x] is constant and the conditional variance of yi (and εi) is proportional to

exp (2xiβ). Thus, the log-linear representation of the gravity equation is only useful as a

device to estimate the parameters of interest under very specific conditions on the error

term.

Economic theory provides no information on the variance of εi, but we can infer some of

its properties from the characteristics of trade data. Because yi is non-negative and can be

zero with positive probability, when E [yi|x] approaches zero, the probability of yi being
positive must also approach zero. This implies that V [yi|x], the conditional variance of
yi, tends to vanish as E [yi|x] passes to zero.8 On the other hand, when the expected

value of trade is far away from the lower bound of the dependent variable, it is possible to

observe large deviations from the conditional mean in either direction, leading to greater

dispersion. Thus, in practice, εi will generally be heteroskedastic but there is no reason to

assume that V [yi|x] is proportional to exp (2xiβ). Therefore, in general, regressing ln (yi)
on xi by OLS will lead to inconsistent estimates of β.

It may be surprising that the pattern of heteroskedasticity and, indeed, the form of

all higher-order moments of the conditional distribution of the error term can affect the

consistency of an estimator, rather than just its efficiency. The reason is that the non-

linear transformation of the dependent variable in equation (5) changes the properties of

the error term in a non-trivial way since the conditional expectation of ln (ηi) depends on

the shape of the conditional distribution of ηi. Hence, unless very strong restrictions on

the form of this distribution are imposed, it is not possible to recover information about

the conditional expectation of yi from the conditional mean of ln (yi) simply because

ln (ηi) is correlated with the regressors. Although this problem has been neglected in the

8Heuristically, when E [yi|x] is close to its lower bound (i.e., for pairs of small and distant countries), it
is unlikely that large values of trade are observed since they cannot be offset by equally large deviations

in the opposite direction simply because trade cannot be negative. Therefore, for these observations,

dispersion around the mean tends to be small.
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literature on international trade, and indeed in most econometric studies and textbooks, it

has been recognized by a small group of authors (see, for example, Manning and Mullahy,

2001).

In short, even assuming that all observations on yi are positive, it is not advisable to

estimate β from the log-linear model. Instead, the non-linear model has to be estimated.

2.2 Estimation of the non-linear model

Although most empirical studies in international trade use the log-linear form of the grav-

ity equation, some authors (e.g., Frankel and Wei, 1993) have estimated the multiplicative

gravity equation using non-linear least squares (NLS), which is an asymptotically valid

estimator for (4). However, the NLS estimator can be very inefficient in this context, as

it ignores the heteroskedasticity that, as discussed before, is characteristic of this type of

model.

The NLS estimator of β is defined by

β̂ = argmin
b

nX
i=1

[yi − exp (xib)]2 ,

which implies the following set of first order conditions:

nX
i=1

h
yi − exp

³
xiβ̂
´i

xi exp
³
xiβ̂
´
= 0. (6)

These equations give more weight to observations where exp
³
xiβ̂
´
is large because that

is where the curvature of the conditional expectation is more pronounced. However, these

are generally also the observations with larger variance, which implies that NLS gives more

weight to noisier observations. Thus, this estimator may be very inefficient, depending

heavily on a small number of observations.

If the form of V [yi|x] was known, this problem could be eliminated using a weighted

NLS estimator. However, in practice, all we know about V [yi|x] is that, in general, it
goes to zero as E [yi|x] passes to zero. Therefore, an optimal weighted-NLS estimator
cannot be used without further information on the distribution of the errors. A possible
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way of obtaining a more efficient estimator is to follow McCullagh and Nelder (1989) and

estimate the parameters of interest using a pseudo-maximum likelihood estimator based

on some assumption on the functional form of V [yi|x].9
Among the many possible specifications for the conditional variance, the hypothesis

V [yi|x] = E [yi|x] is particularly appealing. This hypothesis is characteristic of the Pois-
son regression model which is often used to describe count data.10 Like trade data, counts

cannot be negative and they have a positive probability of being zero. (Additionally,

counts are necessarily integers, but that is not strictly required to use Poisson regression.)

In Poisson regressions, it is customary to specify E [yi|x] = V [yi|x] = exp (xiβ), and,
under the assumptions of the model, β can be estimated by maximum likelihood. This

estimator is defined by

β̃ = argmax
b

nX
i=1

{yi (xib)− exp (xib)} ,

which is equivalent to solving the following set of first order conditions:

nX
i=1

h
yi − exp

³
xiβ̃
´i

xi = 0. (7)

The form of (7) makes clear that all that is needed for this estimator to be consistent

is for the conditional mean to be correctly specified, i.e., E [yi|x] = exp (xiβ). Therefore,
the data do not have to be Poisson at all and, what is more important, yi does not

even have to be an integer, for the estimator based on the Poisson likelihood function to

be consistent. This is the well-known pseudo-maximum likelihood result first noted by

Gourieroux, Monfort and Trognon (1984).

Comparing equations (6) and (7), it is clear that, unlike the NLS estimator, the Poisson

estimator gives the same weight to all observations, rather than emphasizing those for

which exp (xiβ) is large. This is because, under the assumption that E [yi|x] = V [yi|x] ,
all observations have the same information on the parameters of interest as the additional

9See also Manning and Mullahy (2001). A related estimator is proposed by Papke and Wooldridge

(1996) for the estimation of models for fractional data.
10See Cameron and Trivedi (1998) and Winkelmann (2000) for more details on the Poisson regression

and on more general models for count data.
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information on the curvature of the conditional mean coming from observations with large

exp (xiβ) is exactly offset by their larger variance. Even if E [yi|x] is not equal to V [yi|x],
the Poisson estimator is likely to be more efficient than the NLS estimator when the

heteroskedasticity increases with the conditional mean.

Of course, if V [yi|x] is a function of higher powers of E [yi|x], a more efficient estimator
could be obtained down-weighing even more the observations with large conditional mean.

However, in the case of trade data, this class of models may have an important drawback.

Trade data for larger countries (as gauged by GDP per capita) tend to be of higher quality

(see Frankel and Wei, 1993, and Frankel 1997); hence, models assuming that V [yi|x] is
a function of higher powers of E [yi|x] might give excessive weight to the observations
that are more prone to measurement errors.11 The Poisson regression emerges as a rea-

sonable compromise, giving less weight to the observations with larger variance than the

standard NLS estimator, without giving too much weight to observations more seriously

contaminated by measurement error.

The implementation of the Poisson pseudo-maximum likelihood estimator is straight-

forward since there are standard econometric programs with commands that permit the

estimation of Poisson regression, even when the dependent variables are not integers. Of

course, because the assumption E [yi|x] = V [yi|x] is unlikely to hold, this estimator does
not fully account for the heteroskedasticity in the model and all inference has to be based

on an Eicker-White (Eicker, 1963; and White, 1980) robust covariance matrix estimator.

11Frankel and Wei (1993) and Frankel (1997) suggest that larger countries should be given more weight

in the estimation of gravity equations. This would be appropriate if the errors in the model were just

the result of measurement errors in the dependent variable. However, if it is accepted that the gravity

equation does not hold exactly, measurement errors account for only part of the dispersion of trade data

around the gravity equation.
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2.3 Zero Gravity

A well-known characteristic of trade data is that the value of trade flows between some

pairs of countries, or regions within a country, is zero. This can happen at the aggregate

level or, very typically, at the sectoral level.

In many cases, these zeros occur simply because some pairs of countries did not trade

in a given period. For example, it would not be surprising to find that Tajikistan and

Togo did not trade in a certain year.12 These zero observations pose no problem at all for

the estimation of gravity equations in their multiplicative form. In contrast, the existence

of observations for which the dependent variable is zero creates an additional problem for

the use of the log-linear form of the gravity equation. A number of methods has been

developed to deal with this problem (see Frankel, 1997, for a description of the various

procedures). The approach followed by the large majority of empirical studies is simply

to drop the pairs with zero trade from the data set and estimate the log-linear form by

OLS. This truncation, however, makes the OLS estimator of β inconsistent. The severity

of the problem will depend on the particular characteristics of the sample and model used,

but there is no reason to believe that it will always be negligible.

Naturally, there are other reasons for observing pairs of countries with zero trade. For

example, zeroes may be the result of rounding errors. If trade is measured in thousands

of dollars, it is possible that for pairs of countries for which bilateral trade did not reach a

minimum value, say $500, the value of trade is registered as zero. If these rounded-down

observations were partially compensated by rounded-up ones, the overall effect of these

errors would be relatively minor. However, because there is a large number of pairs of

countries for which the value of bilateral trade is expected to be very small, it is likely that

the rounding down will not be totally offset. Moreover, the rounding down is more likely

to occur for small or distant countries and, therefore, the probability of rounding down

12The absence of trade between small and distant countries might be explained, among other factors,

by large variable costs (e.g., bricks are too costly to transport) or large fixed costs (e.g., information

on foreign markets). At the aggregate level, these costs can be best proxied by the various measures of

distance and size entering the gravity equation.
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will depend on the value of the covariates, leading to the inconsistency of the estimators.

Finally, the zeros can just be missing observations which are wrongly recorded as zero.

This problem is more likely to occur when small countries are considered and, again,

measurement error will depend on the covariates, leading to inconsistency.

Besides the problems mentioned above, trade data can suffer from many other forms of

errors, as described in Feenstra, Lipsey, and Bowen (1997). Of course, in any empirical

study, the quality of the results will largely depend on the richness of the data. Therefore,

these measurement problems are not specific to the models of trade and they do not play

an important role in the choice of the form of the gravity equation. However, as discussed

before, they were important in the choice of the particular pseudo-maximum likelihood

estimator adopted here. The Poisson pseudo-maximum likelihood estimator will also be

affected by the presence of errors in the data, but the consequences of this problem, as

we will show in the next section, are likely to be less severe than for estimators based on

log-linear versions of the gravity equation. In Section 3, we investigate the robustness of

various estimators in the presence of heteroskedasticity and rounding errors.

3. A simulation study

This section reports the results of a small simulation study designed to assess the per-

formance of different methods to estimate the gravity equation in the presence of het-

eroskedasticity and rounding errors. These experiments are centered around the following

multiplicative model:

E [yi|x] = µ (xiβ) = exp (β0 + β1x1i + β2x2i) , i = 1, . . . , 1000. (8)

Since, in practice, gravity models often include a mixture of continuous and dummy

variables, we replicate this feature in our experiments: x1i is drawn from a standard

normal and x2 is a binary dummy variable that equals 1 with a probability of 0.4.13 The

two covariates are independent and a new set of observations of all variables is generated
13Examples of continuous variables (which are all strictly positive) include income and geographical

distance. In equation (8), x1 can be interpreted as (the logarithm of) one of these variables. Examples of
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in each replication using β0 = 0, β1 = β2 = 1. Data on y are generated as

yi = µ (xiβ) ηi, (9)

where ηi is a log-normal random variable with mean 1 and variance σ
2
i . As noted before,

the slope parameters in (8) can be estimated using the log-linear form of the model only

when σ2i is constant. That is, when V [yi|x] is proportional to µ (xiβ)2.
We studied the performance of the following estimators:

PML: The Poisson pseudo-maximum likelihood estimator;

NLS: Standard non-linear least squares estimator;

OLS: Ordinary least squares estimator of the log-linear model.

To assess the performance of the estimators under different patterns of heteroskedas-

ticity, we considered the four following specifications of σ2i :

Case 1: σ2i = 1; V [yi|x] = µ (xiβ)
2;

Case 2: σ2i = µ (xiβ)
−1; V [yi|x] = µ (xiβ);

Case 3: σ2i = exp (x2i) + µ (xiβ)
−1; V [yi|x] = µ (xiβ) + exp (x2i)µ (xiβ)

2;

Case 4: σ2i = µ (xiβ); V [yi|x] = µ (xiβ)
3.

Case 1 is the special case in which OLS estimation of the log-linear model is consis-

tent for the slope parameters of (8). Moreover, in this case the log-linear model corrects

the heteroskedasticity in the data, and, because ηi is log-normal, it coincides with the

maximum likelihood estimator. In Case 2, the conditional variance of yi equals its con-

ditional mean, as in the Poisson distribution. The pseudo-likelihood approach based on

the Poisson distribution is optimal in this situation. Case 3 is the only one in which the

conditional variance does not depend exclusively on the mean. The variance is a quadratic

binary variables include dummies for free-trade agreements, common language, colonial ties, contiguity

and access to land.
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function of the mean, as in Case 1, but it is not proportional to the square of the mean.

Finally, in Case 4 the variance is a cubic function of the mean, generating highly dispersed

data for µ (xiβ) > 1, but very little dispersion for small values of µ (xiβ). Notice that the

standard NLS estimator is not optimal in any of the cases considered. For this estimator

to be optimal, the variance of εi would have to be constant, which, as argued before, is

unlikely in models of bilateral trade.

We carried out two sets of experiments. The first set was aimed at studying the per-

formance of the estimators of the multiplicative and the log-linear models under different

patterns of heteroskedasticity. The second set studied the estimators’ performance in the

presence of rounding errors in the dependent variable. For that purpose, a new random

variable was generated rounding to the nearest integer the values yi obtained as before.

This procedure mimics the rounding errors in official statistics and generates a large num-

ber of zeros, a typical feature of trade data. Because the model considered here generates

a large proportion of observations close to zero, rounding down is much more frequent

than rounding up. As the probability of rounding up or down depends on the covariates,

this procedure will necessarily bias the estimates, as discussed before. The purpose of the

study is to gauge the magnitude of these biases. Naturally, the log-linear model cannot

be estimated in these conditions because the dependent variable equals zero for some ob-

servations. Following what is the usual practice in these circumstances, estimation using

the log-linear model was performed dropping the observations for which the dependent

variable equals zero.

The biases of the three estimators of β were estimated with 10, 000 replicas of the

simulation procedure described above. The results are displayed in Table 1.14 The first

three columns report the biases in the absence of rounding errors; the last three report

the biases when rounding errors are present.

14Results for the variance of the different estimators were also obtained and these results are available

from the authors on request.
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Table 1: Estimated Bias under Different Patterns of Heteroskedasticity.

Without rounding error With rounding error

Estimator: PML NLS OLS PML NLS OLS

Case 1: V [yi|x] = µ (xiβ)
2

β0 −0.00314 −0.92062 −0.50046 −0.06697 −0.93359 0.30732

β1 −0.00493 0.27306 0.00016 0.02379 0.27701 −0.41019
β2 −0.00153 0.11522 0.00033 0.02900 0.12065 −0.41152
Case 2: V [yi|x] = µ (xiβ)

β0 −0.00106 −0.00338 −0.40323 −0.04898 −0.01031 0.25750

β1 0.00010 0.00057 0.21095 0.02216 0.00272 −0.24408
β2 0.00050 0.00146 0.19964 0.02394 0.00446 −0.23868
Case 3: V [yi|x] = µ (xiβ) + exp (x2i)µ (xiβ)

2

β0 −0.00198 −1.10371 −0.60117 −0.06096 −1.13154 0.35092

β1 −0.00620 0.32746 0.13279 0.02112 0.33734 −0.45187
β2 −0.00602 0.13104 −0.12524 0.01904 0.13484 −0.46131
Case 4: V [yi|x] = µ (xiβ)

3

β0 0.00356 −5.43860 −0.40330 −0.06881 −5.81393 0.28541

β1 −0.03638 1.66370 −0.28932 −0.00340 1.77359 −0.49566
β2 −0.02024 0.40587 −0.29992 0.01407 0.45870 −0.49279

As expected, the estimator based on the log-linear model only performs well in Case 1

when no rounding error is present.15 In all other cases, this estimator is clearly inadequate,

being often badly biased. Moreover, the sign and magnitude of the bias vary considerably.

Thus, these results clearly indicate that estimation based on the log-linear model cannot

be recommended, except under very special circumstances. Otherwise, the estimates

obtained provide very little information on the parameters of interest.

15Notice that only the results for β1 and β2 are of interest in this case since it is well know that the

estimator of β0 is inconsistent.
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One remarkable result of this set of experiments is the extremely poor performance of

the standard NLS estimator. Indeed, when the heteroskedasticity is more severe (cases

1, 3, and, especially, 4) this estimator leads to very poor results because of its erratic

behavior.16 Therefore, it is clear that the loss of efficiency caused by some of the forms

of heteroskedasticity considered in these experiments is strong enough to render this

estimator useless in practice.

As for the performance of the Poisson pseudo-maximum likelihood estimator, the results

are very encouraging. In fact, when no rounding error is present, its performance is reason-

ably good in all cases, and it does not deteriorate markedly as one moves away from Case

2, in which it is an optimal estimator.17 Of course, under extreme heteroskedasticity (Case

4) its performance is less satisfactory, but even in this instance, it clearly outperforms its

competitors. Moreover, the results obtained with rounded data suggest that the Poisson

based pseudo-maximum likelihood estimator is relatively robust to this form of measure-

ment error of the dependent variable. Indeed, the bias introduced by the rounding-off

errors in the dependent variable is relatively small and, in some cases, it even compen-

sates the bias found in the first set of experiments.

Obviously, the sign and magnitude of the bias of the estimators studied here depend on

the particular specification considered. Therefore, the results of these experiments cannot

serve as an indicator of what can be expected in other situations. However, it is clear

that, apart from the pseudo-maximum likelihood method, all estimators are potentially

very misleading.18

16Manning and Mullahy (2001) report similar results.
17These results are in line with those reported by Manning and Mullahy (2001).
18We also studied the performance of Tobit models (with constant and estimated cut-off points as

well as the semi-logarithmic Tobit), and OLS models with alternative transformations of the dependent

variable, finding very poor results. The outcome of these experiments is available at request.
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4. The gravity equation and the role of free-trade

agreements

In this section, we use the Poisson method to quantitatively assess the determinants of

bilateral trade flows, uncovering significant differences in the roles of various measures of

size and distance from those predicted by the “logarithmic tradition.” We focus particular

attention on the role of free-trade agreements, since this policy instrument has been the

object of intense debate (see, for example, Frankel, 1997, and Bhagwati and Panagariya,

1996).

4.1 The data

The analysis covers a cross section of 137 countries in 1990. Hence, our data set consists

of 18, 632 observations of bilateral export flows (137 × 136 country pairs). The list of
countries is reported in Table A1 in the Appendix. Information on bilateral exports

comes from Feenstra et al. (1997). Data on real GDP per capita and population come from

the World Bank’s World Development Indicators (2002). Data on location and dummies

indicating contiguity, common language, colonial ties, and access to water are constructed

from the CIA’s World Factbook. Bilateral distance is computed using the great circle

distance algorithm provided by Andrew Gray (2001). Remoteness — or relative distance

— is calculated as the (log of) GDP-weighted average distance to all other countries (see

Wei, 1996). Finally, information on free-trade agreements come from Frankel (1997),

complemented with data from the World Trade Organization.19 Table A2 in the Appendix

provides a description of the variables and displays the summary statistics.

19The free-trade agreements existing in 1990, the year of our cross section, include EEC, US-Canada,

EFTA, US-Israel, CACM, CARICOM, and CER. We also include SPARTECA, as this preferential-trade

agreement went very far in the process of trade liberalization. There are some custom unions — stronger

forms of free-trade agreement with common external barriers — for which data on trade are consolidated

(e.g., the countries in the Southern African Custom Union and Belgium-Luxembourg) and, hence, the

effect of these arrangements cannot be captured by our free-trade dummy.

17



4.2 Results

Table 2 presents the benchmark estimation outcomes resulting from OLS and Poisson

regressions. The first column reports OLS estimates using the logarithm of trade as the

dependent variable; as noted before, this regression leaves out pairs of countries with zero

bilateral exports (only 9, 637 country pairs, or 52 percent of the sample, exhibit positive

export flows). For comparison, the second column reports Poisson estimates using only

the subsample of positive-trade pairs. Finally, the third column shows the Poisson results

for the whole sample (including zero-trade pairs).

The first point to notice is that Poisson-estimated coefficients are remarkably similar us-

ing both the whole sample and the positive-trade subsample.20 However, most coefficients

differ — oftentimes significantly — using OLS. This suggests that in this case, heteroskedas-

ticity (rather than truncation) can distort results in a material way. Poisson estimates

reveal that the coefficients on importer’s and exporter’s GDPs are not, as generally be-

lieved, close to 1. The estimated GDP elasticities are just above 0.7 (s.e.= 0.03). OLS

generates significantly larger estimates, especially on exporter’s GDP (0.94, s.e.= 0.01).

These findings suggest that the simpler models of gravity equation (those that predict

unit-income elasticities typically as a result of specialization in production and homo-

thetic preferences) should be modified to feature a less-than-proportional relationship

between trade and GDP.21 (See Anderson and van Wincoop (2003), who provide a model

consistent with smaller elasticities). It is worth pointing out that unit-income elasticities

in the simple gravity framework are at odds with the observation that the trade-to-GDP

ratio decreases with total GDP, or, in other words, that smaller countries tend to be more

open to international trade.22

20The reason why truncation has little effect in this case is that observations with zero trade correspond

to pairs for which the estimated value of trade is close to zero. Therefore, the corresponding residuals

are also close to zero and their elimination from the sample has little effect.
21This result holds when one looks at the subsample of OECD countries. It is also robust to the

exclusion of GDP per capita from the regressions.
22Note also that Poisson predicts almost equal coefficients for the GDPs of exporters and importers.
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Table 2. The Gravity Equation. OLS and Poisson Estimations

OLS
Poisson
Trade > 0

Poisson

Log of exporter’s GDP 0.944** 0.721** 0.732**
(0.012) (0.027) (0.027)

Log of importer’s GDP 0.806** 0.731** 0.741**
(0.011) (0.027) (0.027)

Log of exporter’s per capita GDP 0.183** 0.142* 0.147**
(0.016) (0.055) (0.056)

Log of importer’s per capita GDP 0.081** 0.121** 0.126**
(0.017) (0.043) (0.044)

Log of distance −1.165** −0.785** −0.788**
(0.033) (0.053) (0.053)

Contiguity dummy 0.297* 0.158 0.153
(0.128) (0.096) (0.096)

Common-language dummy 0.678** 0.778** 0.775**
(0.067) (0.128) (0.129)

Colonial-tie dummy 0.370** −0.046 −0.036
(0.070) (0.151) (0.151)

Landlocked-exporter dummy −0.061 −0.754** −0.748**
(0.062) (0.136) (0.136)

Landlocked-importer dummy −0.660** −0.585** −0.581**
(0.060) (0.131) (0.131)

Exporter’s remoteness 0.478** 0.722** 0.719**
(0.077) (0.120) (0.121)

Importer’s remoteness −0.193* 0.625** 0.621**
(0.083) (0.117) (0.118)

Free-trade agreement dummy 0.776** 0.264** 0.262**
(0.128) (0.081) (0.080)

Constant −28.787** −32.668** −33.245**
(1.054) (1.881) (1.837)

Observations 9637 9637 18632
RESET test, p-values 0.000 0.909 0.286

Note: In the OLS regression, the dependent variable is ln(trade). In the Poisson estimation,

the dependent variable is trade (the gravity equation is estimated in its multiplicative form).

Results for the restricted sample (with positive trade) and the whole sample are reported.

The equations use data for 1990. Rejection of the RESET tests indicates that the model

is misspecified (see text). Robust standard errors in parentheses. * significant at 5%; **

significant at 1%
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The role of geographical distance as trade deterrent is significantly larger under OLS;

the estimated elasticity is −1.17 (s.e. = 0.03), whereas the Poisson estimate is −0.79
(s.e. = 0.05). Our lower estimate suggests a smaller role for transport costs in the

determination of trade patterns. Furthermore, Poisson estimates indicate that, after

controlling for bilateral distance, sharing a border does not influence trade flows, while

OLS, instead, generates a substantial effect: It predicts that trade between two contiguous

countries is 35 percent larger than trade between countries that do not share a border.23

We control for remoteness to account for the hypothesis that larger distances to all other

countries might increase bilateral trade between two countries.24 Poisson regressions sup-

port this hypothesis, whereas OLS estimates suggest that only exporter’s remoteness in-

creases bilateral flows. Access to water appears to be important for trade flows, according

to Poisson regressions; the negative coefficients on the land-locked dummies can be in-

terpreted as an indication that ocean transportation is significantly cheaper. In contrast,

OLS results suggest that whether or not the exporter is landlocked does not influence

trade flows, whereas a landlocked importer experiences lower trade; this asymmetry is

hard to interpret. We also explore the role of colonial heritage, obtaining, as before,

significant discrepancies: Poisson indicates that colonial ties play no role in determining

trade flows, once a dummy variable for common language is introduced. OLS regressions,

instead, generate a sizeable effect (countries with a common colonial past trade almost

45 percent more than other pairs). Language is statistically and economically significant

under both estimation procedures.

Strikingly, free trade agreements play a much smaller — although still substantial — role

according to Poisson regressions. OLS estimates suggest that free-trade agreements rises

expected bilateral trade by 117 percent, whereas Poisson estimates indicate an average

enhancement effect of 30 percent. The contrast in estimates suggests that the biases

23The formula to compute this effect is (ebi − 1)× 100%, where bi is the estimated coefficient.
24To illustrate the role of remoteness, consider two pairs of countries, (i, j) and (k, l), and assume that

the distance between the countries in each pair is the same Dij = Dkl, however, i and j are closer to

other countries. In this case, the most remote countries, k and l, will tend to trade more between each

other because they do not have alternative trading partners. See Deardoff (1998).

20



generated by standard regressions can be substantial, leading to misleading inferences

and, perhaps, erroneous policy decisions.25

Free-trade agreements might also cause trade diversion; if this is the case, the coefficient

on the free-trade dummy will not reflect net effect of free-trade agreements. To account

for the possibility of diversion, we include an additional dummy, “openness,” similar to

that used by Frankel (1997). This dummy takes the value 1 whenever one (or both) of

the countries in the pair is part of a free-trade agreement and, thus, it captures the extent

of trade between members and non-members of a free-trade agreement. The sum of the

coefficients on the free-trade agreement and the openness dummies give the net effect of

free-trade agreements. We report the new results in Table 3. Consistently, both OLS and

Poisson regressions provide no significant evidence of trade diversion. However, the point

estimates are larger under the Poisson method. Hence, on average, the Poisson method

estimates a smaller, yet significant, effect of free-trade agreements.

To check the adequacy of the estimated models, we performed a heteroskedasticity-

robust RESET test (Ramsey, 1969). This is essentially a test for the correct specification

of the conditional expectation, which is performed by checking the significance of an addi-

tional regressor constructed as (x0b)2, where b denotes the vector of estimated parameters.

The corresponding p-values are reported at the bottom of the tables. In all OLS regres-

sions, the test rejects the hypothesis that the coefficient on the test variable is zero. This

means that the models estimated using the logarithmic specification are inappropriate.

In contrast, the models estimated using the Poisson regressions pass the RESET test,

i.e., the RESET test provides no evidence of misspecification of the gravity equations

estimated using the Poisson method.

25It is interesting to remark that there is a pattern in the direction of the bias generated by OLS.

The bias tends to be positive for the coefficients on variables that relate to larger volumes of trade and,

presumably, to larger variance. It tends to be negative for variables that deter trade and, possibly, reduce

the variance.
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Table 3. The Gravity Equation.
OLS and Poisson Estimations Accounting for Trade Diversion.

OLS
Poisson
Trade > 0

Poisson

Log of exporter’s GDP 0.944** 0.720** 0.732**
(0.012) (0.027) (0.027)

Log of importer’s GDP 0.806** 0.731** 0.740**
(0.011) (0.028) (0.027)

Log of exporter’s per capita GDP 0.188** 0.153** 0.155**
(0.017) (0.053) (0.054)

Log of importer’s per capita GDP 0.087** 0.131** 0.133**
(0.018) (0.045) (0.045)

Log of distance −1.162** −0.762** −0.772**
(0.034) (0.052) (0.052)

Contiguity dummy 0.295* 0.175 0.166
(0.128) (0.100) (0.100)

Common-language dummy 0.680** 0.786** 0.781**
(0.067) (0.131) (0.132)

Colonial-tie dummy 0.371** −0.031 −0.025
(0.070) (0.148) (0.148)

Landlocked-exporter dummy −0.060 −0.752** -0.747**
(0.062) (0.136) (0.136)

Landlocked-importer dummy −0.659** −0.583** -0.579**
(0.060) (0.131) (0.130)

Exporter’s remoteness 0.469** 0.667** 0.679**
(0.078) (0.131) (0.130)

Importer’s remoteness −0.201* 0.570** 0.582**
(0.084) (0.117) (0.116)

Free-trade agreement dummy 0.787** 0.277** 0.272**
(0.129) (0.080) (0.078)

Openness dummy −0.045 −0.133 −0.097
(0.051) (0.129) (0.127)

Constant −28.683** −31.937** −32.728**
(1.063) (2.080) (1.982)

Observations 9637 9637 18632
RESET test, p-values 0.000 0.815 0.262

Note: In the OLS regression, the dependent variable is ln(trade). In the Poisson estimation,

the dependent variable is trade (the gravity equation is estimated in its multiplicative form).

Results for the restricted sample (with positive trade) and the whole sample are reported.

The equations use data for 1990. Rejection of the RESET tests indicates that the model

is misspecified (see text). Robust standard errors in parentheses. * significant at 5%; **

significant at 1%
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5. Conclusions

In this paper, we argue that the standard empirical methods used to estimate gravity

equations are inappropriate. The basic problem is that log-linearization (or, indeed, any

non-linear transformation) of the empirical model in the presence of heteroskedasticity

leads to inconsistent estimates. This is because the expected value of the logarithm of a

random variable depends on higher-order moments of its distribution. Therefore, if the

errors are heteroskedastic, the transformed errors will be generally correlated with the

covariates. An additional problem of log-linearization is that it is incompatible with the

existence of zeroes in trade data, which led to several unsatisfactory solutions, including

truncation of the sample (i.e., elimination of zero-trade pairs) and further non-linear

transformations of the dependent variable.

To address the various estimation problems, we propose a simple pseudo-maximum

likelihood method and assess its performance using Monte Carlo simulations. We find

that the standard methods, in the presence of heteroskedasticity, can severely bias the

estimated coefficients, casting doubt on previous empirical findings. Our method, instead,

is robust to different patterns of heteroskedasticity and, in addition, provides a natural

way to deal with zeroes in trade data.

We use our method to re-estimate the gravity equation and document significant dif-

ferences from the results obtained using the log-linear method. Among other differences,

income elasticities are systematically smaller than those obtained with log-linearized OLS

regressions. In addition, OLS estimation exaggerates the role of geographical proximity

and colonial ties. Finally, and perhaps more interesting, bilateral trade between countries

that have signed a free-trade agreements is, on average, 30 percent larger than that be-

tween pairs of countries without agreement, in contrast to the 117 percent predicted by

OLS regressions. Our results suggest that heteroskedasticity (rather than truncation of

the data) is responsible for the main differences.

Log-linearized equations estimated by OLS are of course used in many other areas

of empirical economics and econometrics. Our Monte Carlo simulations and the regres-
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sion outcomes indicate that in the presence of heteroskedasticity this practice can lead

to significant biases. These results suggest that, at least when there is evidence of het-

eroskedasticity, the pseudo maximum likelihood estimator should be used as a substitute

for the standard log-linear model.
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Appendix

Table A1: List of countries.
Albania Djibouti Korea Rp. Saudi Arabia
Algeria Dominican Rp. Laos P. Dem. Rp. Senegal
Angola Ecuador Lebanon Seychelles
Argentina Egypt Madagascar Sierra Leone
Australia El Salvador Malawi Singapore
Austria Eq. Guinea Malaysia Solomon Islands
Bahamas Ethiopia Maldives South Africa
Bahrain Fiji Mali Spain
Bangladesh Finland Malta Sri Lanka
Barbados France Mauritania St. Kitts and Nevis
Belgium-Luxemburg Gabon Mauritius St. Helena
Belize Gambia Mexico Sudan
Benin Germany Mongolia Suriname
Bhutan Ghana Morocco Sweden
Bolivia Greece Mozambique Switzerland
Brazil Guatemala Nepal Syrian Arab Rp.
Brunei Guinea Netherlands Tanzania
Bulgaria Guinea-Bissau New Caledonia Thailand
Burkina Faso Guyana New Zealand Togo
Burundi Haiti Nicaragua Trinidad and Tobago
Cambodia Honduras Niger Tunisia
Cameroon Hong Kong Nigeria Turkey
Canada Hungary Norway Uganda
Central African Rp. Iceland Oman United Arab Em.
Chad India Pakistan U.K.
Chile Indonesia Panama U.S.A.
China Iran Papua New Guinea Uruguay
Colombia Ireland Paraguay Venezuela
Comoros Israel Peru Vietnam
Congo Dem. Rp. Italy Philippines Yemen
Congo Rp. Jamaica Poland Zambia
Costa Rica Japan Portugal Zimbabwe
Cote D’Ivoire Jordan Romania
Cyprus Kenya Russian Federation
Denmark Kiribati Rwanda
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Table A2. Summary Statistics.

Variable Mean
Standard
Deviation

Trade 169620.7 1815440

Log of trade 8.42509 3.27013

Log of GDP 23.22588 2.40468

Log of per capita GDP 7.51025 1.63485

Log of distance 8.78662 0.74276

Contiguity dummy 0.01932 0.13766

Common-language dummy 0.21168 0.40851

Colonial-tie dummy 0.17293 0.37820

Landlocked dummy 0.15328 0.36027

Remoteness 8.94763 0.26323

Free-trade agreement dummy 0.01524 0.12252

Openness dummy 0.51052 0.49990

Note: N = 18, 632 for the whole sample and 9, 632 for the sub-

sample of positive trade.
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