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1 Introduction

Economies at early stages of the development process are often shaken by

abrupt changes in growth rates. In his influential paper, Lucas (1988) brings

attention to this fact, noting that “within the advanced countries, growth

rates tend to be very stable over long periods of time,” whereas within

poor countries “there are many examples of sudden, large changes in growth

rates, both up and down.” This negative relationship between the volatility

of growth rates and the level of development is illustrated in Figure 1, which

plots the standard deviation of annual growth rates against the level of real

GDP per capita for a large cross section of countries.

In an attempt to understand the sources of volatility, Koren and Tenreyro

(2004) quantify the contribution of various factors at different stages of devel-

opment, finding that the high volatility in poor countries is due to 1) higher

levels of sectoral concentration, 2) higher levels of sectoral risk (that is, poor

countries not only specialize in few sectors, but those sectors also tend to

bear particularly high risk), and 3) higher country-specific macroeconomic

risk. A volatility accounting exercise carried out by these authors indicates

that approximately 50 percent of the differences in volatility between rich

and poor countries can be accounted for by differences in the sectoral com-

position of the economy (higher concentration and sectoral risk), whereas

the other 50 percent is due to country-specific risk. These characteristics of

the development process, as we later explain, are inconsistent with previous

theoretical explanations of the dynamics of volatility and development. The

purpose of this paper is to provide an alternative theory that is in line with

the empirical evidence.

To that end, we develop an endogenous growth model of technological

diversification. The key idea of the model is that firms using a larger variety

of inputs can mitigate the impact of shocks affecting the productivity of

individual inputs. This takes place through two channels. First, with a

larger variety of inputs, each individual input matters less in production,

and productivity becomes less volatile by the law of large numbers. Second,

whenever a shock hits a particular input, firms can adjust the use of the

other inputs to partially offset the shock. This second channel operates even
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if production exhibits an extreme form of complementarity (as in Kremer

(1993)’s O-ring technology). Both channels make the productivity of firms

using more sophisticated technologies less volatile.

The idea can be illustrated with an example from agriculture: Growing

wheat with only land and labor as inputs renders the yield vulnerable to

idiosyncratic shocks (for example, weather shocks such as a severe drought).

In contrast, using land and labor together with artificial irrigation, fertilizers,

pesticides, etc., makes wheat-growing not only more productive but also

less risky, because farmers have more options to react to external shocks.

Figure 2 provides a graphical illustration of this example. It displays the

volatility of wheat yield (calculated as the standard deviation of percentage

deviations from the country’s average yield) of the 20 biggest wheat producers

against their level of GDP per capita.1 Yield volatility falls sharply with

development. This remains true if we control for differences in climate across

countries, including the volatility of rainfall and temperature (see Table 1).

The shocks affecting individual inputs or individual production techniques

may come from various sources. Another example of such a shock could be

a sudden change in the price of a major input of a production technique.

Countries with a diverse set of available techniques can cope better with the

shock. For instance, the types of power plants that countries rely on to gen-

erate electricity vary with development. Small and less-developed countries

have only a few plants very highly concentrated on one particular technique

of electricity production (employing either traditional thermal or hydroelec-

tric plants). Developed countries, on the other hand, have access to nuclear

and renewable-resource plants and are typically more diversified. Firms in

these countries will react differently to oil price shocks. Table 2 reports how

the electricity production of countries responds to oil price changes. The

electricity production of less-developed and small countries concentrated on

few types of power plants is significantly more sensitive to oil price shocks

1Note that agricultural technology varies substantially with development. For example,

of the top 20 wheat producers, India uses 2.3 tractors per 1,000 acres of arable land; this

number is 128.8 for Germany. Fertilizer use also varies hugely. India uses 21.9 tons of

nitrogenous fertilizers per acre; Germany uses 183.8 tons. We take the level of development

as an overall indicator of agricultural sophistication.
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than that of countries with a diverse set of plants. More specifically, while

the electricity production of countries concentrated on a single energy source

drops by about 1 percent after a 30 percent oil price hike, there is no such

drop for diversified countries. Firms in countries with diverse sources of elec-

tricity can mitigate the negative impact of an oil price shock by substituting

away from oil. The share of oil in total energy consumption falls by 0.3 per-

cent after a 30 percent oil price hike, whereas no substitution takes place in

concentrated countries.

We next turn to the questions of what determines technological diversifi-

cation and why poorer countries specialize in less sophisticated sectors. We

extend the model to allow for international mobility of goods and for cross-

country differences in endowments. Much as in models of endogenous growth

and directed technical change, the technological complexity of a sector in a

given country evolves endogenously in response to the incentives of the cre-

ators and users of new technologies. In particular, more input varieties will be

directed towards sectors in which the country has a comparative advantage,

making them more complex and less volatile. The stage of development of

the country will also matter, because inventing and/or using the new inputs

is subject to increasing returns to scale. Countries accumulate new inputs as

they develop, which brings about a gradual decline in their volatility. The

speed of development, and hence the speed with which volatility declines,

may be influenced by the initial level of volatility. If investment risk is harm-

ful for growth, which is the case for a range of plausible parameter values

in our model, then poor and volatile countries will develop more slowly and

will remain highly volatile for long periods.2

The model delivers clear-cut predictions about the relationship among

technological diversification, volatility, and productivity. Using sector-level

data for a broad sample of countries, we provide empirical support for these

predictions. First, any given sector is less volatile in developed countries.

This result holds if we control for the quality of institutions which may facil-

2See Angeletos and Calvet (2001) and Angeletos (2004) for a discussion of how volatility

affects investment. Note, however, that in these papers there is no explanation for why

volatility is higher in the first place. See also Ramey and Ramey (1995) on the empirical

evidence.

3



itate a smoother response to external shocks, such as financial development

and the flexibility of the labor market. Second, within a given country, large,

skill intensive sectors using complex technologies are less volatile. This is

consistent with our model which says that new inputs/technologies will be

directed towards such sectors, thus reducing volatility. These two mech-

anisms lead to a decline in aggregate volatility as a country develops: The

economy experiences less volatility in each sector and resources move towards

relatively safer sectors.

The link between volatility and development has been studied before by

Acemoglu and Zilibotti (1997), Greenwood and Jovanovic (1990), Saint-Paul

(1992), and Obstfeld (1994), who describe the technology choice as a portfolio

decision: In order to reap the benefits of high productivity and high growth,

an economy has to bear more risk. The risk tolerance typically relates to the

level of development and the financial structure of the economy. Acemoglu

and Zilibotti (1997)’s model also features increasing returns to scale: Early

in the development process diversification opportunities are limited, owing

to the scarcity of capital and the indivisibility of investment projects. This

feature can explain the high levels of sectoral concentration observed in poor

countries. However, all these models predict that at early stages of develop-

ment countries will tend to specialize in safer (even if less productive) sectors

as a way of seeking insurance. This prediction is not borne out by the data:

Koren and Tenreyro (2004) document that poor countries are highly con-

centrated in sectors that bear particularly high volatility. In addition, these

authors find that most developing countries are inside the “mean-variance

frontier,” being highly prone to specialize in high-variance, low-mean sec-

tors. These findings contradict the predictions of the portfolio-based models

and suggest that important constraints must be at play, preventing develop-

ing countries from investing in safer and, at the same time, more productive

assets.3

3Kalemli-Ozcan, Sørensen and Yosha (2003) and Imbs and Wacziarg (2003) document

that, for highly developed countries, industrial specialization tends to increase with de-

velopment. However, as we later show, this does not result in higher aggregate volatility

because these sectors tend to be technologically diversified and are hence more stable than
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Our model departs from the portfolio view of the world that features a

necessary trade-off between volatility and performance at the sector level.

It can then naturally accommodate the fact that poor countries tend to

exhibit high sectoral concentration and also that the high concentration falls

mainly on high-risk sectors. In addition, unlike in previous contributions,

the volatility of individual sectors in our model is endogenous: It depends on

the level of development and the comparative advantage of the country.4

Our paper is related to previous work by Kraay and Ventura (2001). As

in their paper, the open-economy version of our model features the predic-

tion that rich countries have a comparative advantage in less-volatile sectors.

The difference lies in the way this result is achieved. In Kraay and Ventura

(2001), high-skill sectors, which are prevalent in developed countries, enjoy

less-elastic product demand. Markups can then serve as a buffer against pro-

ductivity shocks, reducing the volatility of high-skill sectors. For example,

a drop in output of a differentiated product makes that product more ex-

pensive in the world market. This terms of trade improvement partly offsets

the original shock. On the other hand, no such “terms-of-trade insurance” is

taking place for homogenous products that poor countries specialize in.

There are, however, empirical objections to the mechanism proposed by

Kraay and Ventura (2001) and its implications. The model predicts a nega-

tive relationship between productivity shocks and terms-of-trade fluctuations

(particularly negative for developed countries). That is, negative productiv-

ity shocks should be associated with an improvement in the terms of trade.

In the data, however, the relationship between fluctuations in labor produc-

tivity and the terms of trade is somewhat positive, and there is no difference

between rich and poor countries in terms of this relationship.5

the rest of the economy. The fact that the higher specialization of rich countries does not

increase their aggregate risk has also been shown by Koren and Tenreyro (2004).
4As Koren and Tenreyro (2004) have shown, differences in the sectoral composition of

developed and less-developed countries account for about 50 percent of the difference in

volatility.
5It is possible that other factors are at play, blurring the predicted relationship; at this

point, nonetheless, we can say that the extent of countercyclicality in the terms of trade

is not the prima facie mechanism behind the negative relationship between development

and volatility.
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Finally, our model builds on a vast literature on endogenous growth mod-

els in which the development of new varieties of goods enhances productivity.

(See for example, Romer (1990) and Grossman and Helpman (1991).) The

contribution of our paper is to provide a unified framework for the explana-

tion of development and volatility. We provide sectoral evidence for a broad

cross-section of countries that confirms the predictions of the model.

The remainder of the paper is organized as follows. In Section 2 we

present the model. In Section 3 we discuss the empirical implications and

offer novel evidence in support. We summarize and conclude in Section 4.

2 A Model of Technological Diversification

2.1 Technological diversification, productivity, and volatil-

ity

In this section, we introduce a production process that features technological

diversification: Input varieties contribute not only to higher productivity but

also, because inputs are subject to imperfectly correlated shocks, to lower

volatility.

Output Y is produced using a composite of “machine varieties” with a

constant-elasticity-of-substitution (CES) technology,

Y =

[

n
∑

i=1

Xσ
i

]1/σ

, (1)

where Xi is capital services from capital variety i , n denotes the number

of working machines and 1/(1 − σ) ∈ (0,∞) is the elasticity of substitution

across varieties.6

Machines can fail randomly, in which case they irreversibly cease to con-

tribute to production. We assume that failure occurs independently across

6As usual in endogenous growth models, we assume that σ > 0, that is, machines are

gross substitutes. Appendix B considers an example when this is not the case. Introducing

additional (scarce) factors of production would not change our qualitative results, it would

just make the returns to variety more decreasing.

6



machines and time periods with probability γ dt. That is, the lifetime of a

machine is exponentially distributed with parameter γ. For our argument

we need only that failures are imperfectly correlated. We take the extreme

assumption of independence for expositional clarity. The assumption that

random failures turn the machine completely useless makes the model more

tractable, since we need only keep track of the number of working machines.

However, technological diversification would still take place with less termi-

nal shocks: Appendix B considers an example where there is only a partial

drop in productivity after a machine failure.

In an open-economy context, changes in the world price of the input

or sudden disruptions of trade could also be an important source of input-

specific shocks. Technological diversification can mitigate the impact of such

shocks.

Using machines in production involves increasing returns to scale: Ma-

chines are indivisible. This means that anyone operating a machine has to

buy one unit of the machine beforehand. This minimum scale requirement

limits the scope of diversification across machine varieties.7

Since we are interested in the inner workings of a sector and how tech-

nology choice affects volatility, we posit increasing returns at the input level.

Indivisibility and minimum scale requirements are inherent characteristics

of many an input used in technologically advanced sectors. Note that in-

creasing returns are also a feature of the use of the machines, not only their

invention or production. That is, we assume that machines can be produced

and bought in any quantity but only a full unit is productive.

The setup of a machine requires κ units of the final good. Once the

machine is set up, the owner gains monopoly power over its services. This

monopoly lasts until the machine (exogenously) becomes obsolete, that is,

the lifetime of the “patent” is the same as the lifetime of the machine and is

exponentially distributed with parameter γ.

7Note that there is no incentive to install two or more units of a single machine variety,

both because the production function features a “love of variety” and because machines are

subject to idiosyncratic shocks. A similar assumption is made by Acemoglu and Zilibotti

(1997) who work with minimum scale requirements at the industry level.
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We assume that the machine can be used with different intensities by em-

ploying “operators.”Machine i can provide twice as much service if operated

by twice as many workers.8 Producing a unit of capital service requires one

unit of labor (by appropriate definition of labor units).

Formally, the services of machine i at time t are:

Xit =

{

lit, if Ki0 = κ and t < Ti;

0, otherwise;
(2)

where Ki0 is the amount of capital devoted to machine variety i, lit is the

number of operators, and Ti is the exponentially distributed lifetime of the

machine.

Consider the output of a firm, using n types of machine services, with Xi

units of each,

Y = n1/σXi. (3)

As is apparent from (3), productivity is increasing in the number of varieties

holding the amount of each individual variety fixed. This is the usual “love of

variety” effect of many endogenous growth models (Romer 1990, Grossman

and Helpman 1991). The effect is stronger the lower is σ, that is, the less

substitutable machines are. Intuitively, if machines are highly substitutable,

any additional variety is less needed.

As Xi also denotes the number of operators working on machine i, the

overall number of machine operators working at the firm is L = nXi. Hence

(3) can be rewritten as

Y = n1/σ−1L. (4)

8This is a way of capturing endogenous capacity utilization which is recently empha-

sized in business cycle studies. Allowing for capacity constraints or decreasing returns to

capacity utilization would not alter our setting qualitatively. First, capacity constraints

would not bind in equilibrium. Economic growth takes place via the expansion of machine

varieties while the services of an individual variety shrink. Second, investors will be inter-

ested in the total, not the marginal profit when deciding whether to build a machine. This

will remain positive even with decreasing returns to scale. Moreover, if the cost function

were isoelastic, the share of profit in total revenue would be constant, just as in the present

formulation.
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Productivity is also increasing in the number of machines if we hold the total

number of operators (L) constant (since σ < 1). The dependence is weaker

than in (3), because any new machine requires operators taken away from

old machines.

This implies that we have two alternative definitions of productivity, one

holding the operators per machine constant, the other holding the total num-

ber of operators constant. We think both measures are useful, since the

adjustment across different machine varieties can take place relatively fast

within the firm (in particular, no hiring or firing of workers or capital instal-

lation is needed).9

Given that the number of machines is a random variable (individual ma-

chines fail at random and there is a finite number of machines), productivity

will be random, too. What happens to output when a machine fails? First,

the number of machines becomes n − 1, making output lower for any given

Xi. However, the demand for the services of an individual machine will also

change. Again, it will be important to distinguish between the two mea-

sures of productivity. First, if we hold the number of operators per machine

constant, productivity drops from n1/σ to (n − 1)1/σ. However, if we al-

low operators to be reallocated evenly among the remaining machines, the

drop in output will be smaller, because we have allowed the firm to adjust

the capacity utilization of the remaining machines in response to the shock.

Productivity drops from n1/σ−1 to (n − 1)1/σ−1, so the proportional drop is

smaller.

The variance of productivity changes declines with the number of ma-

chines for both productivity measures. In the first case, this is just an ap-

plication of the law of large numbers: Since output is an average (more

precisely, a CES aggregate) of imperfectly correlated individual machine ser-

9The effectiveness of this margin depends on how quickly and how efficiently machine

operators can switch between different machines. Our assumption that any worker can

operate any machine captures the extreme case when such a switch is immediate and fully

efficient. In reality, of course, we would see less than perfect flexibility. However, as the

skills needed to work with advanced technology are very diverse (for example, Autor, Levy

and Murnane (2003) document that computerization increased the demand for non-routine

cognitive tasks), we believe that such adjustment is important in practice.
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vices, proportional changes in productivity become less and less volatile as

the number of machines increases. The second case displays an additional

effect: The more machine varieties the firm uses, the better they can re-

spond to shocks by employing the remaining inputs at different intensities.

Qualitatively, both effects imply that volatility declines with “technological

complexity” (n). However, important differences arise when individual in-

puts are complements rather than substitutes of each other (such as in the

O-ring production function of Kremer (1993)). Then the law of large num-

bers does not apply, because aggregate productivity is no longer an average

of individual productivities. Still, as we demonstrate in Appendix B, volatil-

ity will fall with technological complexity if we allow for the second margin,

variable capacity utilization.

To derive the variance of productivity formally, let a denote the log of

productivity when the number of operators per machine (Xi) is held constant.

a = y − xi =
1

σ
ln n.

(Lower-case letters denote logarithms.) On the other hand, if we hold the

total number of operators constant at L, we have ã, the log of productivity,

allowing for variable capacity utilization (VCU).

ã = y − l = φ lnni,

where we have introduced the notation φ = 1/σ − 1.

Our measures of volatility will be the variance of the changes in these two

TFP variables:

Vol = Var(dy|n, Xi) = Var(da|n) =

(

1

σ

)2

Var(dln n|n),

VolVCU = Var(dy|n, L) = Var(dã|n) = φ2 Var(dln n|n).

Let us for the moment assume away growth in the number of machines

and study what happens to existing machines over time. (We introduce

growth in the next section). The number of machines, in the absence of
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investment, changes because machines break at random.10 Given that ma-

chine lifetimes are exponentially distributed with parameter γ and lifetimes

are independently distributed, the first failure comes after an exponentially

distributed time with parameter ntγ.

Tk ∼ exp(γ),

Tmin = min
k=1,...,n

{Tk} ∼ exp(ntγ).

The first failure reduces the number of machines by one, so

nt+h =

{

nt if h < Tmin,

nt − 1 otherwise.

The probability of no machine failure over a period of length h is 1− e−ntγh.

The expected change in the number of machines is

E(nt+h − nt|nt) = −e−ntγh,

whereas the variance of the change is

Var(nt+h − nt|nt) = e−ntγh
(

1 − e−ntγh
)

.

If we take h → 0, we get the instantaneous mean and variance of the number

of machines,

E(dnt|nt) = −γnt dt,

Var(dnt|nt) = γnit dt.

More formally, in the absence of investment, the number of machines follows

a continuous-time, discrete-space Markov process known as a “pure death”

10Investment in new machines also changes the number of machines, but only gradually,

because only a finite flow of investment will be allocated to new machines at any point in

time. That is, investment does not contribute to the volatility of the number of machines.

Formally, investment follows a bounded variation process. Even if we allowed for “jumps”

in the number of new machines (say, investors could borrow a whole machine abroad), we

are interested in the productivity shock before such an investment response takes place.

Note that we are also assuming away integer problems of investment here. See Appendix

A for a formal treatment of the number machines as a discrete-state Markov process.
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process with death rate γnt. Such a process can be well approximated by an

Itô process if nt is large. (See Appendix A.) That is, for large nt, the changes

in the number of machines in a dt period of time will be approximately

normal. This is just a version of the central limit theorem for discrete-space

Markov processes. In the next section we allow for growth in the number of

machines. The economy will then exhibit long-run growth in nt, implying

that the approximation will get better and better over time.

Consequently, abstracting from growth, we can express the evolution of

nt using the following stochastic differential equation,

dnt = −γnt dt +
√

γnt dz,

where dz is the increment of a standard Wiener process. Given this approx-

imation for dnt, we can use Itô’s lemma to write dln nt as follows:

dln nt = −γ(1 + 0.5/nt) dt +
√

γ/nt dz.

What is important here is that the volatility of the log number of machines

declines with the existing number of machines. Even though as nt gets big,

the first failure gets more and more likely, the proportional (that is, log) drop

in the number of machines it induces is less and less important. As is standard

in statements of the law of large numbers, the second effect outweighs the

first one. In other words, diversification across several machines makes log

productivity less volatile.

Given that nt measures the number of inputs subject to different shocks,

we take it as an index of technological complexity. It is clear from (3) and

the discussion above that technological complexity both increases average

productivity and reduces the volatility of productivity. In the next section, we

endogenize the investment in new machines, and consequently, the resulting

level of technological complexity.

2.2 Endogenous technological complexity

What determines the level of technological complexity in the long run? In

this section we endogenize the decision to invest in machines. Much as in
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models of endogenous growth (Romer 1990, Grossman and Helpman 1991,

Aghion and Howitt 1992), machine owners will be attracted by greater profit

opportunities.

We first look at a one-sector economy to bring out the relationship be-

tween volatility and development clearly. In Section 2.3, we introduce mul-

tiple sectors and investigate how the relative complexity of sectors evolves

endogenously. As we have documented in Koren and Tenreyro (2004), in-

trinsic volatility differences across sectors together with countries’ different

patterns of specialization are responsible for an important portion of the dif-

ference in output volatility between rich and poor countries. As in other

multi-sector models of endogenous technology, we will have directed techni-

cal change (Acemoglu 2002, Caselli and Coleman 2000). Profits per machine

variety will depend on the size of the sector (number of available operators),

its relative wage, the degree of competition (number of existing machines),

and trade openness.

Technology will be the same as in (1), which results in the following

aggregate production function for the final good (4):

Y = nφL.

The economic environment is characterized as follows. The final good

sector is perfectly competitive, that is, firms take output and input prices as

given. In contrast, machine providers act as monopolistic competitors, that

is, they are price setters for their own machine but take the overall price of

the composite machine varieties as given.11

There is a continuum of symmetric consumers/investors with unit mass.

Each consumer has access to the well-diversified mutual fund of all machines.

They can trade the share of this mutual fund freely, instantly, and in any

11Note that this is a valid assumption even if there is a finite number of different machine

varieties. First, the market share of each machine owner falls at the rate 1/n, whereas

the standard deviation of output is of order 1/
√

n. That is, even if n is large enough

to make monopolistic competition a realistic assumption, we still have positive aggregate

volatility. Second, volatility falls with the number of independent machine varieties, which

may be smaller than the number of machine owners if some of the machines are subject

to common shocks or if there are interactions across machine-operating firms.
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quantity (even shorting is allowed). This will ensure that the mutual fund

is priced by the consumer’s stochastic discount factor. In other words, we

assume no frictions in the domestic financial market. Note that there is

no positive supply of a riskless asset in the economy, in other words, every

production technology is risky.12 Each consumer supplies L units of labor

inelastically in the labor market. Consumers decide how much to consume

and how much to invest in the mutual fund of machines, taking the rate of

return and wage rate as given.

Time is continuous and consumers maximize lifetime expected utility over

consumption with constant relative risk aversion, θ,

Ut = Et

∫

∞

t

e−ρ(s−t) C1−θ
s

1 − θ
ds, (5)

subject to a standard intertemporal budget constraint,

dai = [(µP + D/P )ai + wL − Ci] dt + σP ai dz.

The change in the asset holding of consumer i, dai, comes from capital gains

(µP ) and dividend yield (D/P ) on the asset and from labor income (wL)

minus consumption (Ci). As we later show, stock prices follow a diffusion

process, so asset holdings of consumer i will also follow a diffusion with

instantaneous volatility σP ai. The mean and variance of the rate of return on

machines generally depend on the state of the economy, that is, the number

of machines.

To derive the equilibrium of the economy, let us first consider the pricing

decisions of firms. The demand for machine variety i is

Xi =
χ
−1/(1−σ)
i

∑n
j=1 χ

−σ/(1−σ)
j

Y,

which is decreasing in the variety’s own price (χi), increasing in competitors’

prices (
∑n

j=1 χ
−σ/(1−σ)
j ) and the final good output (Y ). Taking the price

index
∑n

j=1 χ
−σ/(1−σ)
j and final demand Y as given, the machine owner faces

a constant elasticity demand curve with elasticity 1/(1 − σ).

12Alternatively, the rate of return on a riskless asset (for example, storage) is so low

that investors do not demand a positive amount.
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She will hence follow a constant markup rule when pricing its services.

The optimal monopoly price of each capital service will be

χi = w/σ,

where w is the wage rate. Final good prices are, in turn, determined from the

price of the services of an individual machine and the number of machines.

Profit maximization implies that price equals marginal cost in the final

good sector. We normalize the final good price to unity:

1 =

(

n
∑

i=1

χ
σ/(σ−1)
i

)1−1/σ

= n−φw.

This implies that wages increase in productivity:

w = nφ.

Labor market equilibrium requires that the number of operators exhausts

the (exogenous) labor supply,

n
∑

i=1

Xi = nXi = L.

The markup rule also implies that profits are a constant, (1/σ − 1) = φ,

share of wages. Total wages are wL, hence the wage costs of a single machine

operating firm are wL/n (by symmetry), implying that profits are

πi = φwL/n. (6)

The owner of a machine uses this profit flow to calculate the lifetime cash-

flow of the machine. Investors take the number of installed capital varieties,

the wage rate, capital prices, and the return on equity as given.

We assume free entry into the machine market. This means that any

investor can buy κ units of final good and install a new machine variety.

As long as there is positive entry, this pins down the value of a machine at

V = κ.13 We further assume that the sunk cost required to install a machine

13If V < κ, no new machines are built and the growth rate is zero. We will later verify

that this is not an equilibrium.
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is falling with the level of technological progress, n, because of spillovers

or learning-by-doing externalities. In particular, it falls at a rate φ − 1 to

ensure balanced growth. Expanding variety growth models usually make a

similar assumption to ensure long-run growth (Grossman and Helpman 1991,

Chapter 3). Alternatively, one could set φ = 1 by restricting the elasticity of

substitution across varieties to be 2. Barro and Sala-i-Martin (1995, Chapter

6) put restrictions on the elasticity of substitution across input varieties.

Either assumption delivers balanced growth and qualitatively similar results.

Also, we assume that fixed costs are proportional to the overall size of the

economy, L. This assumption ensures that the growth rate is not dependent

on country size. (See Jones (1995) on the “scale effect” of endogenous growth

models.) Recall that κ measures the unit of a machine variety that is subject

to variety specific shocks. Arguably, bigger countries use more capital of each

variety and therefore require a bigger investment. Our main results are not

sensitive to this assumption. The only result that would change without this

assumption is that large countries would develop faster.

Formally,

κ = κ0Lnφ−1. (7)

The dividend yield on a machine is

πi

V
= φ

wL

nκ
=

φ

κ0
, (8)

where we have used w = nφ and κ = κ0Lnφ−1. The dividend yield is higher

the higher the profit rate and the lower the fixed cost of installing a machine.

The assumption of falling fixed costs ensures that the dividend yield does not

vanish as n increases. If the dividend yield tended to zero as n became large,

we would obtain a steady-state distribution of n instead of an ever-growing

economy.

Note that even if the dividend yield on a machine is constant, the rate

of return is random, because there are random capital losses due to machine

failures. This results in an average depreciation rate (and hence capital

loss) γ∆t over a period ∆t, but this capital loss is random even as we take

∆t → 0. We next turn to characterizing the stochastic process driving the

value of machines.
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Let Pts denote the period-s value of all the machines installed at time t.

At the time of installation, Ptt = ntV . However, after an exponential lifetime

the first machine fails and Pts becomes (nt − 1)V . The first failure occurs

with probability 1 − e−γnh over an interval h. Taking h → 0, we get the

following mean and variance for the change in the value of the machines

E(dPt) = −γntV dt = −γPt dt,

Var(dPt) = γntV
2 dt = γP 2

t /n dt.

We use the same arguments put forward before for the number of machines

and approximate the value of machines by a diffusion process:

dP/P = −γ dt +
√

γ/ndz. (9)

Once we know the rate-of-return process for stocks (which, recall, are the

only form of investment), we can use the Euler equation to determine the

optimal consumption/saving policy.

The continuous-time equivalent of the fundamental asset pricing equation,

p = E(Mx), is

E

[

M
D

P
dt + d(MP )

]

= 0,

where M is marginal utility, Mt = e−ρtC−θ
t , D is the dividend on an asset,

and P is its price. This holds whenever investors can freely trade the asset

(as is assumed here).

Because of complete domestic financial markets, both marginal utility

and the stock price follow a geometric diffusion process driven by the same

shock dz. The asset pricing equation then simplifies to

µM + D/P + µP + σMσP = 0,

where µM is the proportional drift and σ2
M is the proportional variance of

marginal utility (for example, Cox and Huang (1989)). The expected change

in the discounted asset price (inclusive of dividends) can be zero only if the

sum of all drift terms is zero.

Applying Itô’s lemma for marginal utility, Mt = e−ρtC−θ
t ,

dM/M =

[

−ρ − θµc +
θ(θ + 1)

2
σ2

c

]

dt − θσc dz,
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where µc and σ2
c refer to the proportional drift and diffusion of C, respectively.

Marginal utility declines with impatience and with the mean consumption

growth rate and increases with consumption volatility (that is, the convexity

of marginal utility gives rise to precautionary saving motives). Substituting

this formula in the asset pricing equation results in the following continuous-

time Euler equation

µc(n) =
1

θ
[r(n) − ρ] − σc(n)σP (n) +

θ + 1

2
σ2

c (n), (10)

where r(n) refers to the sum of dividend yield and mean price decrease of

stocks.

The mean growth rate of consumption depends positively on the mean

rate of return, with a coefficient equal to the elasticity of intertemporal sub-

stitution, 1/θ. At the same time, because the consumer’s portfolio is risky,

its covariance with consumption will make saving less attractive and will

hence result in lower consumption growth. Given that we have complete

markets, in other words, there is only one source of uncertainty in the econ-

omy, the instantaneous correlation between stock prices and consumption

is 1, so the covariance is σcσP . Finally, since future consumption is risky,

prudent consumers have precautionary savings depending on the volatility of

consumption and the degree of prudence, (θ + 1)/2.

Recall that the mean return on the portfolio of machines is

r(n) =
φ

κ0
− γ,

and the volatility of stock price is

σ2
P = γ/n.

In general, consumption also depends on the state of the economy, n. Let C =

v(n) be the policy function that describes the optimal amount of consumption

given the number of machines in the economy. Then by Itô’s lemma,

dC =

[

v′(n)nµn +
1

2
v′′(n)n2σ2

n

]

dt + v′(n)nσn dz,
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and the Euler equation becomes

µn
v′n

v
+

1

2
σ2

n

v′′n2

v
=

1

θ
(r − ρ) − σ2

n

v′n

v
+

θ + 1

2
σ2

n

(

v′n

v

)2

, (11)

where we have omitted the argument n from v(n) for brevity.

The growth rate of machines, µn, depends on investment, which, in turn,

depends on the consumption policy. By equilibrium in the final good market,

Y = nφL = v(n) + (µn + γ)nκ = v(n) + (µn + γ)nφκ0L. (12)

Total output has to equal the value of consumption plus investment. In-

vestment is the sum of net investment (µn) and the replacement of broken

machines (γ).

Equations (11) and (12) together with σ2
n = γ/n define a second-order

ordinary differential equation for v, which has two linearly independent solu-

tions. We therefore need two boundary conditions to pin down the optimal

policy function, v(n). One is that no consumption takes place without capi-

tal, v(0) = 0. The other one comes from the fact that as n becomes arbitrarily

large, σ2
n becomes zero and the economy resembles a non-stochastic Ramsey

model. Consumption growth in the non-stochastic Ramsey model is given

by µ̃c = (r − ρ)/θ, so we should have

lim
n→∞

µn
v′n

v
= µ̃c = (r − ρ)/θ.

To obtain an analytical solution, we put restrictions on the CRRA and the

elasticity of substitution across machine varieties and assume that θφ = 1.14

Whether this is plausible depends on how broadly we interpret machine va-

rieties. If these are different intermediate inputs necessary to produce a

14For other values of relative risk aversion, numerical techniques can be applied to solve

(11). If θ < 1/φ, then the saving rate is increasing in n. Intuitively, low-θ consumers are

less prudent, so the precautionary motive is relatively small. This means that risk aversion

dominates and saving declines with volatility. In this case, poor countries develop slowly

because their excess volatility discourages investment. The reverse is true for θ > 1/φ.

Similarly to Angeletos (2004), we have the cutoff at an IES less than one (RRA greater

than one) because capital does not exhaust all income as long as φ < 1.
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particular good, the inputs may be strong complements, in which case the

elasticity is less than one. This would lead to a negative φ which we have

ruled out (but see Appendix B for an example of such a production func-

tion). However, if we think of machine varieties as representing alternative

production techniques that can highly substitute each other, then higher elas-

ticities are more plausible. For example the elasticity of substitution across

goods produced in different countries (within a narrow product category) is

estimated to be around 4–7 (Hummels 2001). Estimates based on the time

series of U.S. imports are usually lower, in the range of 1–2 (Gallaway, Mc-

Daniel and Rivera 2003). For an intermediate range of 3–4, the value of φ is

1/2–1/3, resulting in a θ of 2–3. This is plausible both as a measure of rel-

ative risk aversion and as an inverse elasticity of intertemporal substitution

(Vissing-Jørgensen 2002).

Proposition 1. If θφ = 1, the optimal policy function, v(n) takes the form

v0n
φ, where v0 is given by

v0 = (1 − φ)L + ρκ0L. (13)

Proof. Direct substitution reveals that whenever v0 satisfies (13), v0n
φ

satisfies (11). For this policy function, v′′n2/v = φ(φ − 1), v′n/v = φ, and

µn is independent of n. Since v0n
φ also satisfies the boundary conditions, it

is a unique solution. Q.E.D.

Defining the value of all the machines as K = nκ, equation (13) can be

rewritten in terms of aggregate variables as

Y − C = φY − ρK = (φ − ρκ0) Y,

since the capital output ratio in this economy is nκ0Lnφ−1/(nφL) = κ0. In-

vestors save (and invest) a constant fraction of current output. The saving

rate is increasing in the profit rate (φ) and decreasing in the degree of impa-

tience (ρ) and sunk cost of investment (κ0).

From (12), we can express the growth rate of the number of machines as

µn = φ/κ0 − γ − ρ,
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resulting in an output growth rate of

φµn = φ (φ/κ0 − γ − ρ) .

This completes the characterization of the dynamic equilibrium of this econ-

omy. Countries with high profit rates and low investment costs will develop

faster, implying both a faster growth of output and a faster fall of volatility.

In the next section, we extend the model in two directions in order to account

for the differences in specialization patterns between rich and poor countries.

2.3 A two-sector model of technological diversification

In this section, we allow for a richer characterization of the economy, by ex-

tending the model to a two-sector economy. The sectors differ in the extent

of skill intensity. We introduce a multi-country setup, allowing for cross-

country differences in endowments and compare the results for closed and

open economies. Allowing for international trade, as we later show, can

explain the observation that poor countries specialize in less sophisticated

sectors. In fact, comparative advantage magnifies the differences in volatil-

ity between poor and rich countries through its effect on the patterns of

specialization.

Let us assume that there are two sectors, one producing a capital good

Yk, the other producing a consumption good Yc:

Yk =

[

nk
∑

i=1

Xσ
i

]1/σ

,

Yc =

[

nk+nc
∑

i=nk+1

Xσ
i

]1/σ

.

Both sectors use the same CES technology, but they have access to a different

set of machines. In particular, the number of machines in the two sectors will

(endogenously) be different. The owner of each machine will decide which

sector to operate in. The total number of machines nk + nc is denoted by n.

We assume that machines in the capital good sector are operated by

skilled labor, whereas those in the consumption good sector are operated
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by unskilled labor.15 Note that machines are a metaphor for technology in

our model so this amounts to assuming that some technologies are skilled

labor intensive, whereas others are unskilled labor intensive. Autor, Katz

and Krueger (1998) show that computerization has increased the demand for

skilled labor. However, previous technological advances such as the indus-

trial revolution and the introduction of the production line relied more on

unskilled rather than skilled workers (James and Skinner 1985, Goldin and

Katz 1998). In this paper, we think of the skilled-labor intensive sector as a

technologically advanced sector, and the unskilled-labor intensive sector as a

less technologically complex one.16

More formally,

Xit =















hit, if i ≤ nk, Ki0 = κ and t < Ti;

lit, if nk < i ≤ n, Ki0 = κ and t < Ti;

0, otherwise.

(14)

Here hit denotes the number of skilled operators and lit the number of un-

skilled operators of variety i, and κ and Ti are defined, as previously, as the

fixed cost of building a machine and the random lifetime of machine i.

Let H denote the overall stock of skilled labor in the economy and L

the stock of unskilled labor. If the labor markets are in equilibrium, the

production functions can be rewritten as

Yk = nφ
kH,

Yc = nφ
c L.

Similarly to the one-sector case, the productivity of a firm in sector i will

be increasing in the number of machines. This also causes the volatility of

productivity to decline with the number of machines:

Volk = Var(dln Yk|nk, H) = φ2γ/nk, (15)

Volc = Var(dln Yc|nc, L) = φ2γ/nc. (16)

15Any positive difference in skill intensity is sufficient for our results; we assume this

extreme difference in skill intensity for tractability.
16In Section 3 we discuss how we identify technological complexity in the data.
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Both sectors are perfectly competitive. Each producer takes the wage rate

and the set of machine varieties available to the sector as given.

What determines the allocation of machines across the two sectors? Again,

investors will maximize profits and move toward sectors with better profit

opportunities. The price of machine service i will be marked up over the

skilled wage in the capital good sector and over the unskilled wage in the

unskilled sector:

χi =

{

wH/σ, if i ≤ nk;

wL/σ, if nk < i ≤ n,

where wH denotes skilled, wL denotes unskilled wages. This makes profit per

machine a constant φ fraction of wages per machine:

πi =

{

φwHH/nk, if i ≤ nk;

φwLL/nc, if nk < i ≤ n.

In long-run equilibrium, the rates of return on machines in the two sectors

have to be equal. Since the values of a machine are the same in each sector,

so is the dividend (that is, profit per machine), implying

nk

nc
=

ωH

L
, (17)

with ω = wH/wL denoting the skill premium.

The number of machines in a sector is proportional to the total wage bill

of the sector. Whenever (17) fails to hold, that is, one of the sectors has

relatively few machines, that sector has more profits per machine than the

other one. Investors will then move machines across sectors (if machines are

movable), or invest only in the more profitable sector until the equality is

resolved.

We assume that machines are freely and instantly movable across sectors.

This assumption ensures that rk = rc at any time in any state of the world,

implying that (17) holds at any point in time.17 Since (17) would always hold

in the long run, we only need this assumption to simplify the transitional

17Formally, the present discount value of a machine is pkκ in both sectors. If the

dividend yield in one sector is higher than in another, an investor could buy one unit
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dynamics: If machines can instantly adjust across sectors then the economy

will immediately jump to its balanced-growth path. Because the machines

are movable across sectors, the single state variable is the total number of

machines, n.

Equation (17) describes a version of directed technical change, as in Ace-

moglu (2002) or Caselli and Coleman (2000): Machine varieties are directed

towards the sector with a higher share in employment. On the one hand, this

is a size effect: if there are many operators in a sector, it is more profitable

to operate machines there and hence more machines will move towards this

sector. On the other hand, there is also a relative price effect: If the skill

premium is high, the relative price of the capital good is high, so profits are

higher in the capital good sector.

Since the final good sectors are competitive, the relative price of the

capital good will equal the relative marginal cost:

pk = ω

(

nk

nc

)

−φ

. (18)

If there are more machines allocated to the capital sector, it becomes more

productive, and its relative price falls.

2.3.1 The closed economy

In a closed economy, the relative price is determined by the relative supply

and demand of the two goods. Suppose that the demand for the two goods

takes the isoelastic form,
Yk

Yc
= Ap−ε

k ,

where A is a constant and ε is the elasticity of substitution between capital

and consumption goods. Then, the skill premium is endogenously determined

as

ω = pk

(

nk

nc

)φ

= A1/ε

(

H

L

)

−φ/ε(
nk

nc

)φ(1−1/ε)

, (19)

of high-dividend stock and short one unit of low-dividend stock. Since the prices of the

two stocks always move in parallel, this strategy presents an arbitrage opportunity with

positive net dividends in all future periods and no price risk. Absence of arbitrage hence

implies the equalization of dividend yields.
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nk

nc
= A

1
ε1−φ+φ

(

H

L

)
ε−φ

ε(1−φ)+φ

. (20)

As we will show, the nominal saving rate in the economy is constant,

which means that pkYk/Yc is constant. This implies that the relative demand

for the consumption and the capital good has unitary elasticity, ε = 1. Then

equation (20) simplifies to

nk

nc

= A

(

H

L

)1−φ

. (21)

Since we have assumed 0 < φ < 1, the relative number of machines is in-

creasing in the relative amount of skilled labor in the economy. However, a 1

percent increase in skill abundance induces a less than 1 percent increase in

the relative number of machines in the capital good sector. This is because

the abundant factor (more precisely, the good that uses the abundant factor

intensively) becomes cheaper and hence less profitable for machine owners.

This relative price effect has been pointed out by Acemoglu (2002).

The fixed cost required to build a machine is assumed to arise in capital

goods. In terms of consumption goods, the fixed cost is pkκ. The mean rate

of return on machines is the same in both sectors, so let us take the capital

good sector:

r =
πi

V
− γ = φ

wHH/nk

pkκ
− γ = φ

(nk

n

)φ−1 H/L

κ0
− γ, (22)

where we have made use of the facts that capital good prices equal marginal

costs (wHn−φ
k ) and that the sunk cost is falling at the rate φ−1, κ = κ0Lnφ−1.

Relative to (8), the important difference is that the rate of return is falling in

the relative complexity of the capital good sector. The number of machines

affects profitability in two ways. First, more machines make the capital sec-

tor more productive and hence more profitable (productivity is proportional

to nφ
k). Second, competition increases in the number of machines, because

machines compete for a scarce supply of operators (H). This second effect

lowers profits proportionally with n, so it dominates the first for φ < 1.

The relative demand for capital and consumption goods will be deter-

mined by the consumption-saving decision. Since the mutual fund holds all
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machines in both sectors, the Euler equation of the consumer is the same as

in (11), but the growth rate of machines and the return on machines may be

different.

The mean growth rate of the number of machines, n is

µn =
Yk

nκ
− γ =

H/L

κ0

(nk

n

)φ

− γ. (23)

As before, we conjecture that optimal consumption is given by v0n
φ, which,

by the equilibrium in the consumption good market, implies

nc

n
=
(v0

L

)1/φ

, (24)

nk

n
= 1 −

(v0

L

)1/φ

. (25)

The Euler equation simplifies to µn = r−ρ. Substituting from (22) and (23),

we see that v0n
φ is indeed a solution as long as

H/L

κ0

[

1 −
(v0

L

)1/φ
]φ

= φ
H/L

κ0

[

1 −
(v0

L

)1/φ
]φ−1

− ρ. (26)

Note that v0 does not depend on n, implying that the allocation of machines

across sectors as well as the relative prices are independent of development.

In other words, the economy exhibits balanced growth. This also means that

the saving rate is constant as previously claimed.

2.3.2 A small open economy

Suppose instead that the country is a small open economy freely trading the

output of the two final good sectors at an exogenously given world relative

price. We assume that the individual machine varieties cannot be traded.

In other words, investors can buy foreign capital goods and install them in

their own country as machines, but the physical machines installed abroad

cannot contribute to production.18 This assumption ensures that countries

cannot circumvent the fixed costs of machine operation by importing machine

18If we interpret machine varieties as different techniques of production, this amounts

to very costly imitation and no technology spillovers across countries. Comin and Hobijn
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services from abroad and hence cannot fully diversify instantly. The number

of machines in the country will hence be a state variable that can only be

adjusted gradually. At any given point in time, the number of available

machines and hence overall technological complexity is given. In the long

run, investment in new machines will determine technological complexity,

economic development, and volatility.

Trade is balanced at any point in time, ruling out international borrowing

and lending. This also means that investment is finite (growth in the number

of machines is gradual) in every instant, because the country has only finite

flow output to offer in exchange for foreign capital goods. In contrast, if we

allow for borrowing, investors can immediately borrow to replace a broken

machine, smoothing out some of the shock to productivity. We assume away

such consumption smoothing behavior because the current accounts of coun-

tries (especially those of less-developed ones) do not seem to act as buffers

against productivity shocks.19

Let p̃k denote the world price of capital. We then have from (18)

p̃k = ω

(

nk

nc

)

−φ

,

which results in conditional factor price equalization,

ω = p̃k

(

nk

nc

)φ

. (27)

Conditional on the levels of productivity in the two sectors, the world relative

price of the two goods completely determines the relative wage. All else equal,

a higher relative price of the capital good (high p̃k) leads to a higher relative

wage of the factor which is used intensively in that sector (high ω). This is

the FPE part. At the same time, the more productive the capital good sector

(2004) document a relatively slow adoption of leading technologies developed elsewhere.

A positive but finite cost of technology adoption could be modeled such that machine

varieties already in use abroad have a lower installation cost κ̃ < κ. A κ̃ > 0 would be

sufficient to deliver qualitatively similar results.
19Kalemli-Ozcan et al. (2003) show that the beta coefficient of consumption response to

output shocks of countries is close to one.
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is relative to the consumption good sector, the higher the relative wage of

skilled labor.

Note that, as standard in small open-economy models with free trade, the

production structure is independent of demand considerations. Relative de-

mand for the two sectors (in our case, the consumption/investment decision)

will matter only for the patterns of trade. Since p̃k is exogenously given, we

can substitute (27) into (17):

nk

nc
= p̃

1/(1−φ)
k

(

H

L

)1/(1−φ)

. (28)

Notice that, similarly to the closed economy case, (21), the relative number

of machines in the capital sector increases in skill abundance. However, the

dependence on skill abundance is stronger, 1/(1 − φ), because we no longer

have an offsetting relative price effect. This is just the Rybczynski theorem

applied to directed technical change.

The impact is also greater than in the case of pure factor price equaliza-

tion. The reason for this is that machines flow towards the sector that already

has a comparative advantage, making it relatively more productive. This be-

comes an additional source of comparative advantage. In other words, the

initial comparative advantage gets magnified by directed technical change.

Our model says that even small human capital differences can account for

large differences in specialization patterns and, hence, in the relative volatil-

ities of sectors.

2.4 Extension to multiple sectors

Suppose now that there are S sectors, each using the same CES technology

but requiring different levels of skill for machine operation. In particular,

sector s requires that each operator possesses at least hs amount of human

capital, and we order sectors such that hS > hS−1 > ... > h1. The output of

machine i in sector s is

Xis =

{

hslit, if Ki0 = κ, and t < Ti;

0, otherwise,

28



where lit is the number of workers on machine i who are “qualified” to operate

the machine in the sense that they have a level of human capital higher than

hs.

There are altogether L workers in the economy, and their human capital

endowment is distributed according to a cumulative distribution function

F (h). The number of workers capable of operating machines in sector s is

hence [1 − F (hs)]L. The two-sector case of Section 2.3 is a special case of

this framework, with a fraction of people having high human capital (skilled

workers) and the rest having low human capital (unskilled workers).

Given the number of machines in each sector, (n1, n2, ..., nS), labor market

equilibrium requires that each worker be employed on machines that require

the highest skill level that this worker can supply.20

This implies that a fraction 1−F (hS) of workers is employed in sector S,

and a fraction F (hs+1) − F (hs) in sector s. The output of sector s is hence

Ys = nφ
s hsαsL,

where αs is defined as the share of workers in sector s, F (hs+1) − F (hs)

(defined for all s with h0 = 0, hS = ∞). Profits per machine are a constant,

(1 − σ), fraction of revenues per machine,

πs = (1 − σ)p̃sn
φ−1
s hsαsL,

where p̃s is the price of product s determined in world markets. Directed

technical change will equate per-machine profits across sectors, πs = πz, so

the relative number of machines in any two sectors is given by

ns

nz

=

{

p̃shsαs

p̃zhzαz

}1/(1−φ)

. (29)

A sector will use relatively more machines if it is producing an expensive

good, it is skill intensive, or has a bigger pool of workers with matching

20To prove this, suppose there exists a worker with human capital level hj ≥ hs+1 (that

is, capable of working in sector s + 1) working in sector s. This worker is not willing to

switch to sector s + 1 because ws+1 < ws. But all workers in sector s + 1 are capable of

operating sector s machinery, and they would earn higher wages in that sector. Hence this

cannot be an equilibrium.
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skills. Such sectors are also more productive and less volatile. In other words,

given the overall number of machines, n = n1 + n2 + ... + nS, technological

complexity and productivity are increasing, while volatility is decreasing in

the sector’s skill intensity and its share in total employment.

The variance of sector s in country i is φ2γ/nis, so we can write the log

variance as

lnVaris = 2 ln φ+ln γ− ln nis = νi− [ln p̃s +ln hs +ln(Lis/Li)]/(1−φ), (30)

where νi is a country fixed effect.

This is a key equation for our empirical exercise. While we can measure

a sector’s skill intensity and its share in employment, we do not observe

p̃s, the price of the sector’s output in world markets. Instead, we interpret

it broadly as an unobserved sector-specific variable that affects the level of

complexity, capturing not only variations in the value of output but also, for

example, technological differences across sectors. Note that this variable is

common across countries within a given sector, so we can control for it using

either sector fixed effects or observing technological complexity in any given

country.

3 Productivity, Volatility, and Technological

Complexity: The Empirical Evidence

The model developed in the previous sections leads to a set of predictions

concerning the relationships among productivity, volatility, and technological

diversification. We discuss these predictions in light of the empirical evidence.

Prediction 1. GDP volatility declines with development.

This is one of the stylized facts in the literature and the main motivation

of this paper. There are large cross-country differences in volatility. The

standard deviation of annual GDP growth during the period 1970 through

2000 ranges from 1.4 percent to 21.8 percent (a factor of 15) across 167

countries. The most volatile decile of countries had a standard deviation of
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GDP growth of 12.9 percent. This is seven times as high as the volatility

of the least volatile decile (1.8 percent). This cross-country variation in

volatility is highly correlated with the cross-country variation in the level of

development, gauged by real GDP per capita. More specifically, as shown in

Table 4, the elasticity of GDP variance with respect to GDP per capita is

−0.326 (with a robust standard error of 0.066).21

In the model, investment in new machines brings about development and

a gradual decline in volatility. Countries that have few machines are both

less developed and more volatile. In the multi-sector version, our model pro-

poses two channels to explain this negative association. First, a within-sector

channel, whereby a given sector exhibits higher technological complexity in

more-developed countries. This, in turn, implies that a given sector is both

more productive and less volatile in developed countries. Second, a compo-

sitional channel, whereby poor countries specialize in relatively less complex

sectors. This implies that poor countries concentrate in sectors with (abso-

lute) lower productivity and higher variance. In what follows, we check the

empirical consistency of the predictions associated with these two channels.

Prediction 2. For any given sector, poor countries utilize less complex tech-

nologies. This implies that for any sector, a) poor countries are both less pro-

ductive and more volatile and b) productivity and volatility are negatively

correlated.

• For a given sector, poor countries utilize less complex technologies.

Various studies have explored the process of technology diffusion across

countries. For example, Caselli and Coleman (2000), document that the

adoption of computers depends heavily on the level of development of the

country, and, more specifically, on the level of human capital. Caselli and

Wilson (2004) show that this result extends to a broader set of high-technology

equipment (where the extent of technology embodied in capital equipment is

measured as the R&D content).

Our model implies that these cross-country differences in technology are

also present within sectors. Since directed technical change equates the rates

21Table 3 presents the list of countries included in the computation.
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of return on machines in all sectors, poor countries will use proportionately

fewer machines in all sectors, holding comparative advantage patterns con-

stant.

The two examples mentioned in the introduction suggest important cross-

country technological differences for a given sector: Developed countries tend

to use more agricultural machinery, fertilizers, and pesticides in agriculture

and have access to more types of power plants in the energy sector. Re-

cent empirical studies provide additional support for this observation. For

example, Comin and Hobijn (2004) document how specific technological in-

novations have spread across countries. Many of these innovations are rele-

vant only to certain sectors (for example, mule spindle, blast oxygen furnace,

internal combustion engine, aviation). The authors show that most innova-

tions originated in developed countries and spread gradually to less-developed

countries. This implies that in any given year, in all relevant sectors, poor

countries use less sophisticated production techniques than rich ones.

• For a given sector, poor countries are both less productive and more

volatile.

In the context of our model, the previous finding, in turn, implies that a

given sector is both less productive and more volatile in poor countries. We

test this prediction using sectoral data from the United Nations Industrial

Development Organization (UNIDO, 2002). The UNIDO data set covers

all manufacturing at the 3-digit level of aggregation from 1963 to 1998 for

a sample of 64 countries, providing information on employment and value

added on an annual basis. Table 3 indicates the countries for which the data

are available and Table 5 reports the index of technological diversification

for each sector, with the corresponding (average) size of the sector in man-

ufacturing. We compute the sample average of labor productivity for each

country and sector. As a measure of volatility, we use the 5-year variance of

labor productivity (value added per worker) growth.

To check the consistency of the prediction, we first regress the (log of) sec-

toral labor productivity on the level of development, proxied by the (log of)

real GDP per capita of the country, controlling for sector-specific dummies.
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The regression yields a positive and significant coefficient: As shown in the

first column of Table 6, the point estimate for the elasticity is 0.70 (with a

country-clustered standard error of 0.07). This means that, on average, any

given sector is significantly less productive in poor countries.

Similarly, we regress the (log of) sectoral variance on the level of devel-

opment, including sector-specific dummies. We obtain a negative and signif-

icant coefficient, displayed in the second column of Table 6. The estimated

elasticity is −0.30 (with a country-clustered standard error of 0.10), implying

that, on average, every sector is significantly more volatile in poor countries.

• For a given sector, productivity and volatility are negatively correlated.

Because poor countries use less complex technologies for any given sec-

tor, this implies that the within-sector relationship between volatility and

productivity should be negative. To check this implication, we regress the

(log) level of volatility on the (log) level of labor productivity, controlling for

sectoral dummies. The estimated coefficient, reported in Table 7, is negative

and significant: We obtain an elasticity of −0.29 (with a country-clustered

standard error of 0.10).

Prediction 3. More complex sectors are both more productive and less

volatile. A mean-variance frontier might not exist.

• More complex sectors are both more productive and less volatile.

This is a direct prediction of production with “technological diversifica-

tion.” To test this prediction, we use the measures of labor productivity and

volatility computed from the UNIDO data set we referred to before.

Central to this test is the construction of a measure of technological com-

plexity. Following Clague (1991), we measure the technological complexity

of a sector by the diversity of inputs it uses. A sector is more complex if it

uses more varieties of capital goods. There are two practical shortcomings

with this measure of complexity. First, there are no comprehensive data

on sector-level input usages for most countries in the sample. Second, even

if the data were available, the actual extent of complexity observed would
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respond endogenously to the level of development of the country and the

relative abundance of skilled labor.

To address these issues, we use the approach followed by Clague (1991)

and Rajan and Zingales (1998) and calculate the complexity measures for sec-

tors in the U.S. There are two key assumptions for the validity of the test we

will perform: First, there are technological reasons why some industries de-

mand a relatively larger number of capital goods than others. Second, these

technological differences persist across countries, leading to a positive corre-

lation between the rankings of technological complexity in the United States

and any other given country.22 More formally, as discussed after equation

(30), we treat these complexity measures as a proxy for unobserved techno-

logical complexity that is not explained by the sector’s skill intensity and

relative size.

To calculate our measure of technological diversity, we use the 1997 Capi-

tal Flow Tables of the Bureau of Economic Analysis. This table distinguishes

180 capital good categories (structures, equipment, and software), each usu-

ally corresponding to a 6-digit 1997 NAICS category. We then measure tech-

nological diversification as the inverse of the Herfindahl index of investment

expenditure shares. Table 5 reports the (log) technological diversification

index for each of the sectors in our sample.

The simple correlation between (log of) labor productivity and our index

of technological diversity is positive and statistically significant (without and

with country-specific dummies). However, one might argue that this strong

positive correlation might be driven by other determinants. For example,

capital intensity is likely to be correlated with the level of technological di-

versification and also to influence productivity. Incidentally, our model also

predicts that the skill intensity of the sector also influences the productivity

of the sector. The first column in Table 8 shows the within-country regres-

sion results, after controlling for the additional potential determinants of

labor productivity. We control for the share of materials in the sector, its

22A measure of technological complexity based on the U.S. is a noisy measure of the

complexity of a sector in other countries. As Raddatz (2003) argues, to the extent that

the noise corresponds to classical measurement error, the coefficients we are interested in

will be biased towards zero, against the hypothesis of our study.
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skill and capital intensity (measured by the share of skilled or semi-skilled

workers in production and the value of equipment per worker, respectively),

and the relative size of the sector. The regression shows that technological

diversification is significantly and positively correlated with the level of labor

productivity. A one-standard-deviation increase in the measure of techno-

logical diversification is associated with a 3 percent increase in the level of

productivity. Also in line with our predictions, skill intensity raises produc-

tivity.

The same considerations stated before lead us to include a similar set

of controls in the regression of (log) variance on the extent of technological

diversification. The results are summarized in the second column of Ta-

ble 8. Technological diversification is significantly and negatively associated

with sectoral volatility. A one-standard-deviation increase in technological

diversification is associated with a 4 percent decrease in the volatility of the

sector. Volatility also decreases with skill intensity and, as we later document

in more detail, the size of the sector.

• There is no evidence of a mean-variance frontier.

As discussed before, portfolio-view models predict a positive correlation

between mean productivity and variance. However, in the data, the simple

correlation between volatility and productivity is negative (−0.10 and signif-

icantly different from zero). Controlling for sectoral size, and country- and

sector-specific effects yields no positive relationship between the two vari-

ables. Using a different approach, Koren and Tenreyro (2004) also reject the

notion that countries move along a mean-variance frontier in the data.

Our model is consistent and, in fact, predicts the absence of a mean-

variance frontier: As countries develop, they use more sophisticated tech-

nologies, which leads both to higher productivity and lower variance.

Prediction 4. Poor countries have a comparative advantage in less com-

plex and hence riskier sectors. Consequently, poor countries specialize in

less technologically complex sectors. This also implies that poor countries

specialize in more volatile sectors.
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• Poor countries have a comparative advantage in less complex and hence

riskier sectors. Consequently, poor countries specialize in less techno-

logically complex sectors.

As seen in Sections 2.3 and 2.4, skill intensive sectors will endogenously

become more complex. This implies that skill abundant countries have a

comparative advantage in complex sectors. Note that even a small difference

in skill abundance can result in a large comparative advantage because of

directed technical change.

That poor countries have a comparative advantage in less complex sec-

tors was first documented by Clague (1991). He finds that poor countries

are relatively less efficient in industries with a lower index of technological

complexity (where complexity is measured similarly to the method employed

in the present paper).

This pattern of comparative advantage, according to the model, implies

that poor countries should specialize in less complex sectors. We checked this

implication, by examining the sectoral composition of the economy. Using

the UNIDO data set, we regressed the (log) average sectoral shares on a) the

index of technological diversification of the sector; b) the level of development,

proxied by the (log) level of GDP of the country; and c) the interaction

between sectoral variance and the level of development. According to the

model, the interaction term should be positive: As countries develop, they

should move to more complex sectors. The results are displayed in Table

9. The interaction term is positive and significantly different from zero,

consistent with the model.

• Poor countries specialize in more volatile sectors.

To check whether the pattern of comparative advantage might also imply

that poor countries specialize in relatively more volatile sectors, we regress

the (log) average sectoral shares on i) the variance of the sector; b) the (log)

of GDP of the country; and c) the interaction between sectoral variance

and the level of development. As the model predicts, the regression yields

a negative and significant coefficient for the interaction term, implying that

more developed countries tend to specialize in lower-variance sectors. The
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results are displayed in Table 10, which shows the regressions without and

with country-fixed effects.

Prediction 5. Larger sectors, in which the country has a comparative ad-

vantage are less volatile.

Profits for an individual machine owner are larger in large sectors (with

more machine operators), ceteris paribus. Hence more machines will be at-

tracted toward large sectors, making them less volatile. (See equation (30).)

The size of the sector, in turn, is determined by its comparative advantage,

implying that sectors with a comparative advantage are less volatile than

sectors with comparative disadvantage.

Table 11 shows that sectors with a larger share of employment are less

volatile even when controlling for country and industry fixed effects. This

remains true of we control for other sectoral characteristics such as capital

and skill intensity, and technological complexity (Table 8).

Canning, Amaral, Lee, Meyer and Stanley (1998) explored the relation-

ship between GDP volatility and the size of the economy, finding that vari-

ance falls with size with an elasticity of about 1/6. We find very similar

elasticities for the size of a sector. Note that if all risks are idiosyncratic to

individual workers or machines, the fall in volatility should be faster, with

an elasticity of 1. Canning et al. argue that interactions across economic ac-

tors magnify the aggregate importance of idiosyncratic risk. An alternative

explanation for why idiosyncratic shocks are important in the aggregate is

provided by Gabaix (2004). He shows that if the size distribution of firms

has an infinite variance (such as, for example, a Pareto distribution), the

decay of idiosyncratic risk with respect to size is slower. In our model, we

can account for the slow decay of volatility with size if we assume that each

machine has a random productivity drawn from a Pareto distribution. Then,

we will have few very productive machines employing many operators. Id-

iosyncratic shocks to these machines then have a large effect on aggregate

productivity.

In our model, the size of a sector is endogenously determined by compara-

tive advantage: sectors that use the abundant factor intensively are relatively

larger. Instead of identifying all the necessary factors of production for each
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sector, we measure the “revealed” comparative advantage (Balassa 1965) of

sectors as

RCAis =
Xis/Xi

Xws/Xw

,

where Xis/Xi is the share of sector s in total manufacturing exports of coun-

try i and Xws/Xw is the same sectoral share for the world. We use exports

data from the Trade and Production Database of the World Bank, which

merges product-level trade flow data from UN Comtrade with sector level

production data from UNIDO. World export is measured as total exports of

the 64 countries for which trade data exist in all 28 manufacturing sectors.

Table 12 reports the results of regressing log variance of sectoral pro-

ductivity on the log of its revealed comparative advantage. Comparative

advantage is associated with significantly lower volatility even when control-

ling for country and sector fixed effects. A one-standard-deviation increase

in revealed comparative advantage leads to 8 to 14 percent lower variance.

3.1 Robustness

In this section, we conduct a number of robustness checks for our empiri-

cal results. First, some institutions may facilitate the response to external

sectoral shocks. Since rich countries have better institutions, this may con-

tribute to lower output volatility. We therefore look at the role of financial

development and labor market flexibility in reducing volatility.

Financial development makes raising capital cheaper and faster. Hence if

firms are hit by liquidity shocks, they can borrow the necessary funds without

significantly disrupting production. This can make the productivity of firms

smoother, especially over shorter horizons. Aghion, Angeletos, Banerjee and

Manova (2004) show how the liquidity needs of long-term investments make

output volatile in financially underdeveloped countries. Empirically, Braun

and Larrain (forthcoming) and Larrain (2004) have shown that financial de-

velopment makes output less volatile, especially in highly finance dependent

sectors.

Our model can easily incorporate the pattern that volatility declines with

financial development. The development of new inputs requires financing, be-
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cause initial development/installation costs have to be covered up front. The

value of new machines will hence be higher in financially developed countries

where the cost of capital is lower, making these countries less volatile. Across

sectors, differences in financing needs (“external finance dependence”) lead

to similar predictions.

Column 2 of Table 13 reports the regression of sectoral variance on the

level of GDP and the degree of financial development, gauged by private

credit over GDP. We control for sector-specific fixed effects. Financial de-

velopment leads to significantly lower volatility, but the effect of general

economic development also remains significantly negative.

Our measure of volatility is the variance of labor productivity (value

added per worker) growth. This may be higher in countries with rigid la-

bor markets, because firms are less able to react to demand shocks. For

example, if the demand for the product of a particular firm falls, optimally it

would downsize its workforce. However, firing costs and regulations make this

costly, so the firm retains its workers in the hope that the shock is transitory.

In the data we would observe this shock as if it were a negative productivity

shock; less output is produced with the same number of workers.

To see whether this measurement problem contaminates our results, we

control for the costs of modifying and terminating employment contracts

across countries, as compiled by Botero, Djankov, La Porta, Schleifer and

Lopez-de-Silanes (2004). As Column 3 of Table 13 shows, labor market

rigidities significantly increase the volatility of labor productivity within any

given sector. However, this does not alter our prediction that volatility de-

clines with development; in fact, the point estimate of the coefficient of GDP

is greater in absolute value. Intuitively, some highly developed countries have

rather rigid labor markets (notably European countries) but are still highly

stable in terms of labor productivity.

In Column 4, we control for both financial development and labor market

rigidities. The effect of overall economic development is still highly significant

with a coefficient very similar to our benchmark estimates.

An alternative explanation for the decline of volatility with development is

that high-income countries specialize in differentiated products, which are
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subject to idiosyncratic demand and supply shocks. This could result in

lower volatility because idiosyncratic shocks wash out when aggregated over

many products. Also, if sectors producing multiple differentiated products

use a wider variety of inputs, then “output diversification” is correlated with

“input diversification,” which potentially biases our results on technological

diversification.

To test for the presence of output diversification, the use of firm-level

data would be desirable. Lacking such data, however, we can use data on the

number of establishments reported by UNIDO. If products are differentiated

by producer firms and these products are subject to idiosyncratic demand or

supply shocks, the volatility of a sector should decline with the number of

firms.

Our model also predicts that larger sectors should be less volatile. The

distinction between the two theories relies in the margin through which this

takes place. Output diversification takes place across firms, hence volatil-

ity declines with the number of firms (extensive margin) but not with the

average size of firms (intensive margins). In our model, larger firms attract

proportionately more machines, and hence both margins are equally impor-

tant.

To test the relative importance of the extensive and intensive margins,

we decompose the size of sector s in country i, Lis, into the number of firms

and the average size of firms,

ln Lis = lnNis + ln(Lis/Nis).

We then regress the log variance of a sector on the log number of firms and the

log of their average size, controlling for both country- and industry-specific

fixed effects. The output diversification would suggest that the number of

firms decreases volatility while firm size does not. Table 14 reports our re-

sults. Both the extensive and the intensive margins of sector size contribute

to lower volatility, and, in line with our theory, there is no significant dif-

ference in the importance of the two. Moreover, when we only focus on

“complex” sectors, where product differentiation may be more prevalent,

there are still no significant differences. This suggests that “output diversi-

fication” does not significantly contribute to the decline in volatility.
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4 Conclusion

This paper proposes a model in which the production process makes use of

different input varieties, which are subject to imperfectly correlated shocks.

As in other expanding variety growth models, technological progress takes

place as an expansion in the number of input varieties, increasing productiv-

ity. The new insight we develop is that the expansion in varieties also leads

to lower volatility of production via two channels. First, as each individual

variety matters less and less in production, the contribution of idiosyncratic

fluctuations to overall volatility declines. Second, each additional input pro-

vides a new adjustment margin in response to external shocks, making pro-

ductivity less volatile.

In the model, the number of varieties evolves endogenously in response to

profit incentives. The consequent change in volatility associated with changes

in the number of varieties feeds back into the investment and savings decisions

of producers.

The model yields empirical predictions concerning the relationships among

productivity, volatility, technological complexity, and comparative advan-

tage. We discuss these predictions in light of the existing empirical evidence

and provide novel findings supporting the results.
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A Approximating the Discrete State Space

Markov Process with a Diffusion

In this section we formalize the diffusion approximation for the number of

machines, relying on limit theorems for birth and death processes in Stone

(1963) and Iglehart (1965).
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Let n follow a continuous-time birth and death process with birth rate A

and death rate bn. That is, we assume that a new machine is finished after

an exponential time, with arrival parameter A measuring the investment into

new machines. Making the arrival of machines random takes care of potential

integer problems: since the arrival of a finished machine only depends on the

current intensity of investment, we do not need to track how much investors

have invested since the building of the last machine. In what follows, we

assume A is constant.

The instantaneous mean and variance of this process are

E(dn) = (A − bn) dt,

Var(dn) = (A + bn) dt.

Let ξA = (n − A/b)/
√

A denote a transformed Markov process. Obviously,

E(dξA) = −b dt,

Var(dξA) =

(

2 +
b√
A

ξA

)

dt.

What happens as A tends to infinity? The process ξA weakly converges in

the Markov sense to a diffusion process

dξ∞ = −b dt +
√

2 dz.

Proof. This requires (Stone 1963) that, in any compact interval of R, (1)

the state space of ξA becomes dense and (2) the instantaneous mean and

variance of ξA converge uniformly to −b and 2.

(1) Let [I1, I2] ⊂ R be a compact interval and x ∈ [I1, I2] an arbitrary point

in the interval. For each A there exists an integer kA for which

(kA − A/b)/
√

A ≤ x < (kA + 1 − A/b)/
√

A.

The distance of x to the closest element of the state space of ξA is hence

smaller than 1/
√

A. That is, for any ε > 0, there exists an element of

the state space in the ε-neighborhood of x as long as A > 1/ε2. This

proves that the state space becomes dense in [I1, I2] as A → ∞.
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(2) Clearly, the instantaneous mean and variance of ξA converge to −b and

2, we just need to establish uniformity. Let ξa ∈ [I1, I2]. Then, for any ε

there exists an A0 = (bI2/ε)
2 such that |bξa/

√
a| < ε as long as a > A0.

Q.E.D.

Note that if ζA is a diffusion process described by

dζA = (A − bn) dt +
√

A + bn dz,

its transformation (ζA − A/b)/
√

A also weakly converges to ξ∞.

That is, for large enough A, the birth and death process will be well

approximated by a diffusion process with corresponding instantaneous mean

and variance.

B An Example with Fixed-Coefficients Tech-

nology

In the benchmark model we assume that σ ∈ (0, 1), that is, the elasticity

of substitution across machine varieties is bigger than 1 (the machines are

gross substitutes). This is a standard assumption in the expanding variety

literature and is needed to ensure that the varieties not yet invented (or

installed) are not essential in production.

However, complementarities across different inputs (or tasks) may be an

important feature of the development process. As Kremer (1993) points out,

many production processes feature an “O-ring” technology: even if a single

input fails, it may jeopardize the whole outcome. (Also see Young (1993)

and Grossman and Maggi (2000) on the importance of complementarities

for productivity patterns.) We hence consider an example in which all the

machine varieties are essential in production. We show that even in the

extreme form of complementarity (O-ring), technological diversification may

still take place via variable capacity utilization.

In particular, the production function takes the Leontief form:

Y = min
i=1,...,n

{xi}.
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The services of individual machine varieties are produced as before, with

skilled operators, xi = hi. We assume, however, that the failure of the

machine does not render it completely useless (otherwise log output would

become minus infinity), but, rather, makes it more expensive to operate. In

particular, while good machines require 1 unit of skill labor, broken machines

require δ > 1 units.

Let us first focus on the case without variable capacity utilization, that

is, when the number of operators per machines is constant at h. This implies

that when the first machine fails, output drops from h to h/δ. (Further

failures have no impact on output.) So the change in log output is

∆ ln Y = − ln δ.

Since the first failure arrives after an exponentially distributed working time

with an arrival rate of γn, the instantaneous variance is

Var(dln Y )/ dt = (ln δ)2γn.

This is in fact increasing in n; the more complex the technology, the more

likely a machine failure is. We do not have an offsetting effect from the law

of large numbers because the working machines do not substitute for the

broken one.

Consider now the case with variable capacity utilization. In this case, we

let firms reshuffle operators across machine varieties, only holding the total

number of operators fixed at H = nh. If a machine “fails,” the firm allocates

more operators to that machine to partially offset this negative productivity

shock. With free reallocation of operators, it is optimal to equalize the

services of each machine variety at, say, x. This requires δx operators on the

broken machine and (n − 1)x operators on the rest. The total number of

operators is unchanged, so

δx + (n − 1)x = nh.

The change in log output is hence

∆ ln Y = ln n − ln(n − 1 + δ),

48



which is negative; that is, output still drops but it drops by less than without

VCU. The firm can successfully mitigate some of the impact of the shock with

VCU.

The instantaneous variance in this case is

Var(dln Y )/ dt = [ln n − ln(n − 1 + δ)]2γn.

The first part decreases with n. The more machine varieties there are, the

more possibilities there exist to reshuffle operators without affecting output

too much. The second part is increasing in n because more complex tech-

nologies fail more often. In general the effect of technological complexity on

volatility is hence ambiguous. Nonetheless, as complexity increases without

bound (n → ∞), the first effect dominates and volatility goes to zero,

lim
n→∞

Var(dln Y )/ dt = 0.

To see this, use the intermediate value theorem to rewrite [ln n−ln(n−1+δ)]

as (δ−1)/[n+ξn(δ−1)], where ξn ∈ [0, 1]. Since ξn is bounded, [ln n− ln(n−
1 + δ)]2 = O(n−2) and γn = O(n) .

In summary, the ability to vary capacity utilization can make more com-

plex technologies less volatile even in the case of fully complementary inputs.

C Data Appendix

Variable Definitions

GDP per capita GDP per capita of the country in 1997, measured in 1995

international dollars. [WDI, PWT]

Population Population of the country in 1997. [WDI]

Yield volatility Variance of the log of annual wheat yield. [FAOSTAT]

Rainfall volatility Variance of cumulated log changes in precipitation. Pre-

cipitation data are recorded monthly at several meteorological stations

within a country. Because many stations do not report data in all
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months, we take the average of year-on-year changes for all months

and all stations within the country. We cumulate these changes to ob-

tain the country’s deviation from long-run precipitation trends. [Global

Historical Climatology Network]

Temperature volatility Variance of cumulated changes in temperature,

calculated in the same way as rainfall volatility. [Global Historical

Climatology Network]

Change in oil price Two-year change in the U.S. CPI-deflated price of

West Texas Intermediate oil.

Diverse powerplants dummy Takes the value of one if the concentration

of powerplants by type (conventional, hydroelectric, nuclear, renew-

able) in the country is below the median. [International Energy An-

nual]

Technological Diversification The log of the inverse of the Herfindahl

index of concentration of equipment purchases across different varieties

of capital goods. A sector has a high Technological Diversification index

if it purchased many different capital goods. [1997 Capital Flow Tables]

Average Share in Manufacturing The sector’s share in manufacturing

employment, averaged across the sample period, 1963–1998. [UNIDO]

Labor Productivity Value added per worker in 1995 dollars, averaged

across the sample period, 1963–1998. [UNIDO]

Variance of Productivity The variance of 5-year growth of value added

per worker in 1995 dollars across the sample period, 1963–1998. [UNIDO]

Skill Intensity The fraction of production workers in the 3-digit ISIC sector

that are employed in skilled or semi-skilled occupations. [Occupational

Employment Statistics]

Share of Materials The share of intermediate inputs in total sales. [NBER-

CES Manufacturing Industry Database]
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Equipment per Worker, Structure per Worker [NBER-CES Manufac-

turing Industry Database]

Revealed Comparative Advantage The share of sector s in country i’s

manufacturing export relative to the world average. [Trade and Pro-

duction Database]
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Table 1. Yield Volatility and Development         

  Variance of wheat yield   

GDP per capita – 0.4004*** 
 (0.1189) 

– 0.3731*** 
(0.1291) 

– 0.3862*** 
(0.1325) 

    
Population   0.0634 

(0.1041) 
 

 
    

Temperature volatility     – 0.2413 
(0.1480) 

    Rainfall volatility 
    

0.0319 
(0.1159) 

Observations 20  20  20  
Adjusted R–squared 0.3524   0.329   0.377   
       
Notes: Standard errors are in parentheses. *, **, *** denote significance at 10, 5, 1%. All 
variables are in logs. Dependent variable is the variance of log wheat yield per acre. (Source: 
FAOSTAT, Food and Agriculture Organization of the UN.) Temperature volatility is the 
variance of annual temperature changes. Rainfall volatility is the variance of percentage annual 
rainfall changes. (Source: Global Historical Climatology Network.) 
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Table 2. Power Plant Diversity and Energy Production   

  
Electricity 
production 

Share of oil in 
energy 

Change in oil price – 0.0235* 
(0.0121) 

0.0003 
(0.0038) 

Change in oil price ×          
Diverse power plant types 

0.0400** 
(0.0169) 

– 0.0103** 
(0.0053) 

Time trend – 0.0021*** 
(0.0005) 

0.0007*** 
(0.0002) 

Observations 4169 4164 
Country Fixed Effects 217 217 
Adjusted R–squared 0.089 0.017 
     
Notes: Standard errors are in parentheses. *, **, *** denote significance at 10, 
5, 1%. Dependent variables are (1) the log change in electricity production in 
kWh, (2) the %point change in the share of oil consumption in total energy 
consumption (in British thermal units). Oil price change is the 2– year change in 
U.S. CPI– deflated price of West Texas Intermediate oil. The concentration of 
power plants is measured as the Herfindahl index of shares of power generation 
techniques (conventional, nuclear, hydroelectric, renewable) in total electricity 
production of the country. Countries with “diverse power plant types” are those 
with below-median concentration. (Source: International Energy Annual 2002, 
Energy Information Administration.) 
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Table 3. List of Countries. Development and Size 

Country 

Real 
GDP 
per 

capita 

Population 
(thousands) 

Sectoral 
Data   Country 

Real 
GDP per 

capita 

Population 
(thousands) 

Sectoral 
Data   Country 

Real 
GDP 
per 

capita 

Population 
(thousands) 

Sectoral 
Data 

Albania 2789 3339 No  Gambia, The 1489 1186 No  Niger 729 9770 No 
Algeria 4798 29000 No  Georgia 2130 5431 No  Nigeria 830 118000 No 
Angola 1853 12000 No  Germany 22636 82100 Yes  Norway 27782 4404 Yes 
Antigua and Barbuda 9624 66 No  Ghana 1767 18000 No  Pakistan 1802 128000 Yes 
Argentina 12342 35700 Yes  Greece 14382 10500 No  Panama 5478 2719 Yes 
Armenia 2124 3786 Yes  Grenada 5823 96 No  Papua New Guinea 2379 4761 No 
Australia 22967 18500 Yes  Guatemala 3549 10500 Yes  Paraguay 4625 5085 No 
Austria 23471 8072 Yes  Guinea 1862 6922 No  Peru 4667 24400 Yes 

Azerbaijan 2103 7838 No  
Guinea– 
Bissau 926 1126 No  Philippines 3872 71300 Yes 

Bahamas 15190 289 No  Guyana 3969 749 No  Poland 7703 38700 Yes 
Bahrain 14561 620 No  Haiti 1420 7492 No  Portugal 15103 9945 Yes 
Bangladesh 1388 124000 No  Honduras 2471 5939 Yes  Romania 6512 22600 Yes 
Barbados 13590 265 No  Hong Kong 23734 6502 Yes  Russian Federation 7184 147000 No 
Belarus 6073 10100 No  Hungary 10244 10200 Yes  Rwanda 798 7895 No 
Belgium 24151 10200 No  Iceland 25557 272 No  Samoa 4213 167 No 
Belize 4810 217 No  India 2034 962000 Yes  Saudi Arabia 11033 19200 No 
Benin 897 5794 No  Indonesia 3217 200000 Yes  Senegal 1341 8777 No 
Bhutan 1239 737 No  Iran 5416 60900 Yes  Sierra Leone 511 4726 No 
Bolivia 2309 7767 Yes  Ireland 21287 3670 Yes  Singapore 20560 3794 Yes 
Botswana 6552 1533 No  Israel 18382 5836 No  Slovak Republic 9902 5383 No 
Brazil 7065 164000 No  Italy 21499 57500 Yes  Slovenia 14586 1986 No 
Brunei 17086 313 No  Jamaica 3563 2554 No  Solomon Islands 2279 404 No 
Bulgaria 4860 8312 Yes  Japan 25405 126000 Yes  South Africa 8978 40700 Yes 
Burkina Faso 874 10500 No  Jordan 3899 4459 Yes  Spain 16623 39300 Yes 
Burundi 575 6418 No  Kazakhstan 4713 15300 No  Sri Lanka 3041 18600 Yes 
Cambodia 1345 11200 No  Kenya 1038 28000 Yes  St. Kitts and Nevis 10937 41 No 
Cameroon 1535 13900 Yes  Korea, Rep. 15295 46000 Yes  St. Lucia 5358 150 No 
Canada 24557 30000 Yes  Kuwait 15748 1809 Yes  St. Vincent 4779 112 No 
Cape Verde 4091 404 No  Kyrgyzstan  2403 4681 No  Sudan 1465 29300 No 
Central African Rep. 1077 3529 No  Lao PDR 1384 4919 No  Suriname 3669 412 No 
Chad 839 7086 No  Latvia 5793 2469 Yes  Swaziland 4038 960 No 
Chile 8740 14600 Yes  Lebanon 4276 4146 No  Sweden 21231 8849 Yes 
China 3152 1230000 Yes  Lesotho 1865 1945 No  Switzerland 25973 7088 No 
Colombia 5891 40000 Yes  Lithuania 6530 3706 No  Syria 3265 15000 No 
Comoros 1618 518 No  Luxembourg 36355 422 No  Tajikistan 941 6017 No 
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Table 3 continued.  

Country 

Real 
GDP 
per 

capita 

Population 
(thousands) 

Sectoral 
Data   Country 

Real 
GDP 
per 

capita 

Population 
(thousands) 

Sectoral 
Data   Country 

Real 
GDP 
per 

capita 

Population 
(thousands) 

Sectoral 
Data 

Congo, Dem. Rep. 791 46800 No  Macao, China 18970 418 No  Tanzania 484 31300 No 
Congo, Rep. 997 2767 No  Macedonia 4433 1997 No  Thailand 6591 59400 Yes 
Costa Rica 6993 3577 Yes  Madagascar 784 14100 No  Togo 1526 4135 No 

Cote d'Ivoire 1617 14700 No  Malawi 575 9665 Yes  
Trinidad and 
Tobago 7417 1278 Yes 

Croatia 7140 4447 No  Malaysia 8562 21700 Yes  Tunisia 5481 9215 No 
Cyprus 17560 744 Yes  Maldives 6316 256 No  Turkey 6626 62500 Yes 
Czech Republic 13265 10300 No  Mali 723 10100 No  Turkmenistan 2620 4779 No 
Denmark 24897 5284 Yes  Malta 14355 383 No  Uganda 1078 20400 No 
Dominican Republic 4903 7968 No  Mauritania 1601 2415 No  Ukraine 3408 50700 No 

Ecuador 3273 11900 Yes  Mauritius 8425 1148 No  
United Arab 
Emirates 20561 2580 No 

Egypt, Arab Rep. 3141 60400 Yes  Mexico 7839 93900 Yes  United Kingdom 21006 59000 Yes 
El Salvador 4135 5911 No  Moldova 2261 4312 No  United States 30123 272000 Yes 
Equatorial Guinea 3478 421 No  Mongolia 1619 2331 No  Uruguay 8850 3265 Yes 
Eritrea 821 3773 No  Morocco 3335 27300 Yes  Uzbekistan 2137 23700 No 
Estonia 8087 1427 No  Mozambique 705 16600 No  Vanuatu 2778 179 No 
Ethiopia 629 59800 Yes  Namibia 5778 1648 No  Venezuela 6211 22800 Yes 
Fiji 4716 783 No  Nepal 1221 21400 No  Vietnam 1711 75500 No 
Finland 20979 5140 Yes  Netherlands 22464 15600 Yes  Yemen 773 16100 No 
France 21647 58200 Yes  New Caledonia 22241 202 No  Zambia 784 9443 No 
French Polynesia 20541 224 No  New Zealand 18256 3761 Yes  Zimbabwe 2810 11900 No 
Gabon 6535 1137 No   Nicaragua 2138 4680 No           

The list includes all countries used in the analysis. The sectoral– data column indicates the countries for which sectoral data are available 
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Table 4. Volatility and Development 

  
Variance of 
GDP growth 

(log) 

Variance of 
GDP growth 

(log) 
– 0.2952*** – 0.3259*** GDP per capita  

(1995 international dollars, log) (0.0699) (0.0655) 
 – 0.1353*** Population (log)  (0.0376) 

– 3.6316*** – 1.2573 Constant (0.5968) (0.8663) 
Observations 167 167 
Adjusted R–squared 0.10 0.15 

Notes: Robust standard errors are in parentheses. * Significant at 10%; ** significant 
at 5%; *** significant at 1%.  
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Table 5. List of Sectors. Technological Diversification Index and Average Share in 
Manufacturing 

ISIC 
code Description 

Index of 
Technological 
Diversification 

Average Share in 
Manufacturing 

311 Food products 2.898 0.1581 
313 Beverages 2.975 0.0282 
314 Tobacco 2.666 0.0148 
321 Textiles 1.733 0.1210 
322 Wearing apparel, except footwear 2.303 0.0818 
323 Leather products 3.278 0.0089 
331 Wood products, except furniture 2.368 0.0345 
332 Furniture, except metal 2.909 0.0223 
341 Paper and products 2.433 0.0242 
342 Printing and publishing 2.340 0.0371 
351 Industrial chemicals 2.835 0.0235 
352 Other chemicals 2.808 0.0342 
353 Petroleum refineries 2.726 0.0099 
354 Miscellaneous petroleum and coal products 2.726 0.0023 
355 Rubber products 2.217 0.0167 
356 Plastic products 1.847 0.0251 
361 Pottery, china, earthenware 3.006 0.0065 
362 Glass and products 3.006 0.0093 
369 Other non– metallic mineral products 3.006 0.0438 
371 Iron and steel 2.618 0.0297 
372 Non– ferrous metals 3.111 0.0117 
381 Fabricated metal products 2.849 0.0589 
382 Machinery, except electrical 2.817 0.0662 
383 Machinery, electric 2.487 0.0637 
384 Transport equipment 2.722 0.0548 
385 Professional and scientific equipment 2.999 0.0116 

    
Notes: Sectors correspond to the 3-digit manufacturing sectors from Revision 2 of the International Standard 
Industrial Classification of all Economic Activities (ISIC). Technological diversification measures the diversity of 
capital goods a sector purchases in the U.S. Average share is the sector’s share in manufacturing employment 
averaged across countries. (See Data Appendix.) 
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Table 6. Productivity, Volatility and Development 

  Log 
Productivity 

Log        
Variance 

0.7047*** – 0.3005***GDP per capita (log) 
(0.0690) (0.1020) 

Sector Fixed Effects Yes Yes 
Observations 1429 1429 
Adjusted R–squared 0.73 0.14 

Notes: The regressions use sectoral data at the 3– digit level and include 
sector–specific effects. Mean labor productivity and variance of labor 
productivity growth rates correspond to the period 1963– 1998. Robust 
standard errors are adjusted for country clustering. * Significant at 10%; 
** significant at 5%; *** significant at 1%.  

 
 

Table 7. Productivity and Volatility within 
Sectors 

  Log 
Variance 

– 0.2871*** Labor productivity (log) 
(0.1049) 

Sector Fixed Effects Yes 
Observations 1521 
Adjusted R–squared 0.13 

Notes: The regression uses sectoral data at the 3– digit level 
and include sector–specific effects. Mean labor productivity 
and variance of labor productivity growth rates correspond to 
the period 1963– 1998. Robust standard errors are adjusted 
for country clustering. * Significant at 10%; ** significant at 
5%; *** significant at 1%.  
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Table 8. Productivity, Volatility and Technological Diversification 

  Log 
Productivity 

Log 
Variance 

0.0660*** – 0.0999** Technological Diversification 
(0.0234) (0.0448) 
0.2351*** – 0.3005*** Sectoral Skill Intensity (log) 

(0.0441) (0.0919) 
0.2155*** 0.0289 Share of Materials in 

Production (log) (0.0634) 0.0939 
0.4613*** 0.0062 Equipment per Worker (log) 

(0.0184) 0.0211 
– 0.0532*** – 0.1727*** Labor Share (Log) 
(0.0151) (0.0240) 

Country Fixed Effects Yes Yes 
Observations 1535 1535 
Adjusted R–squared 0.81 0.56 
 
Notes: The equations use sectoral data at the 3– digit level and include country– 
specific effects. Mean labor productivity and variance of labor productivity growth 
rates correspond to the period 1963– 1998. Technological diversification measures the 
diversity of capital goods a sector purchases in the U.S. Skill intensity is the share of 
skilled and semi-skilled workers. Material share is the ratio of material costs to total 
shipments. Labor share is the sector’s share in manufacturing employment. (See Data 
Appendix.) Robust standard errors are adjusted for country clustering. * Significant at 
10%; ** significant at 5%; *** significant at 1%.  
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Table 9. Sectoral Shares, Technological Diversification, and Development 

  Sectoral 
Share 

Sectoral 
Share 

0.0083* 0.0089** Technological Diversification  × 
Real GDP per capita (Log) (0.0044) (0.0044) 

– 0.1015** – 0.1075*** Technological Diversification  
(0.0404) (0.0408) 

– 0.0248**  Real GDP per capita (Log) 
(0.0115)   

Country Fixed Effects No Yes 
Observations 1429 1429 
Adjusted R–squared 0.05 0.12 
 
Notes: The equations use sectoral data at the 3– digit level. The dependent variable is the share of the 
sector in total manufacturing employment, averaged over 1963–1998. The second column includes 
country– specific effects. Technological diversification measures the diversity of capital goods a sector 
purchases in the U.S. (See Data Appendix.) Robust standard errors clustered by country are shown in 
parentheses. * Significant at 10%; ** significant at 5%; *** significant at 1%.  

 

Table 10. Sectoral Shares, Volatility, and Development 

  Sectoral Share Sectoral Share 

– 0.0006*** – 0.0015*** Sectoral Variance ×  
Real GDP per capita (Log) (0.0002) (0.0004) 

– 0.0075 – 0.0018 Sectoral Variance  
(0.0061) (0.0060) 

– 0.0064***  Real GDP per capita (Log) 
(0.0014)   

Country Fixed Effects No Yes 
Observations 1429 1429 
Adjusted R–squared 0.04 0.10 

Notes: The equations use sectoral data at the 3– digit level. The dependent variable is the 
share of the sector in total manufacturing employment, averaged over 1963–1998. The 
second column includes country– specific effects. Variance of labor productivity growth 
rates correspond to the period 1963– 1998. Robust standard errors clustered by country 
are shown in parentheses. * Significant at 10%; ** significant at 5%; *** significant at 
1%.  
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Table 11. Relative Size and Volatility 

  Log        
Variance 

Log        
Variance 

Log        
Variance 

– 0.1554*** – 0.1743*** – 0.1893*** Labor Share 
(0.0256) (0.0233) (0.0293) 

Country Fixed Effects No Yes Yes 
Sector Fixed Effects No No Yes 
Observations 1521 1521 1521 
Adjusted R–squared 0.03 0.55 0.59 

Notes: The equations use sectoral data at the 3– digit level. Labor share is the sector’s share in total 
manufacturing employment, averaged over 1963–1998.  Robust standard errors are adjusted for country 
clustering. * Significant at 10%; ** significant at 5%; *** significant at 1%.  

 

Table 12. Comparative Advantage and Volatility 

  Log        
Variance 

Log        
Variance 

Log        
Variance 

– 0.0893*** – 0.0721*** – 0.0557*** Revealed Comparative Advantage 
(log) (0.0215) (0.0149) (0.0148) 
Country Fixed Effects No Yes Yes 
Sector Fixed Effects No No Yes 
Observations 1621 1621 1621 
Adjusted R–squared 0.01 0.43 0.47 
Notes: The equations use sectoral data at the 3– digit level. Revealed comparative advantage (Balassa 
1965) is the country’s export share in the given sector relative to the world average export share. Robust 
standard errors are adjusted for country clustering. * Significant at 10%; ** significant at 5%; *** 
significant at 1%.  
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Table 13. Other Institutions Reducing Volatility 

  Log Variance 

Real GDP per capita (log) –0.264*** 
(0.082) 

–0.163* 
(0.092) 

–0.350*** 
(0.111) 

–0.256** 
(0.120) 

Private credit / GDP –0.523* 
(0.289) 

–0.473 
(0.330) 

Labor market rigidities   
 

  
 

0.846** 
(0.420) 

0.819* 
(0.431)  

Sector Fixed Effects Yes Yes Yes Yes 
Observations 1607 1607 1319 1319 
Adjusted R–squared 0.11 0.12 0.16 0.17 

Notes: Robust standard errors (in parentheses) allow for clustering within countries. * Significant at 
10%; ** significant at 5%; *** significant at 1%. Complex sectors are those with above median 
investment good diversification. Labor market rigidities are measured by an index that combines the 
costs of firing workers and changing employment terms (Botero, Djankov, La Porta, Schleifer and 
Lopez–de–Silanes, 2004). 

 

Table 14. Output versus Input Diversification  

  Log Variance      
(all sectors) 

Log Variance   
(complex sectors) 

–0.1140*** –0.1357*** Number of firms (log) (0.0382) (0.0487) 

–0.1550*** –0.1887*** Average size of firms (log) (0.0516) (0.0603) 
Country Fixed Effects Yes Yes 
Sector Fixed Effects Yes Yes 
Observations 1586 932 
Adjusted R–squared 0.48 0.43 

Notes: Robust standard errors (in parentheses) allow for clustering within countries. * 
Significant at 10%; ** significant at 5%; *** significant at 1%. Complex sectors are those with 
above-median investment good diversification. 
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Figure 1. GDP Volatility and Development 
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Figure 2. Wheat Yield Volatility and Development 
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