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1. Introduction

Macroeconomists often use state-level or regional data when national variation is insuf-

ficient or when a particular identification strategy is feasible only on a sub-national level.

A recent example is a careful and provocative paper by Robert Shimer (2001), who inves-

tigates the effects of demographic change on labor markets. The traditional demographic

adjustment for the unemployment rate assumes that aggregate unemployment moves me-

chanically along with the population shares of various demographic groups.1 For example,

the increase in young workers in the 1970s and 1980s is generally thought to explain part

of the increase in overall U.S. unemployment during that time, because young workers

experience higher unemployment rates than older workers.2 In his paper, Shimer uses data

from U.S. states to estimate — rather than assume — the effect that young workers have

on aggregate unemployment. Surprisingly, he finds that a state’s unemployment rate falls

when its youth share rises. This negative correlation is not driven by the migration of

young people to booming states. Using lagged birth rates to instrument for youth shares

generates even larger unemployment declines. Shimer gives two interpretations to his find-

ings. First, he concludes that firms want to locate in states with many young workers,

because these workers are likely to be mismatched in their current jobs and accept other

job offers. Second, the large number of vacancies posted by firms in “young” states lowers

unemployment among all demographic groups.3

In this paper, I illustrate a pitfall in the use of state-level data for macroeconomic

analysis, with the specific implication that the traditional model of demographic change in

labor markets is not rejected after all. Shimer’s sample period ends in 1996, but running

his regressions through 2005 generates much weaker results. In most of the specifications I

investigate, the absolute value of the youth-share coefficient falls by more than half when

1 A good example of this approach is Aaronson et al. (2006), who study how the aging of the baby
boom cohort would be expected to affect the national labor-force participation rate in the coming decades.
Jaimovich and Siu (2007) investigate the effect of young workers on the volatility (not level) of economic
activity across different countries.

2 See also Bleakley and Fuhrer (1997) and Shimer (1998) on this point.

3 In addition to the unemployment results, Shimer’s paper includes evidence from wages and from
manufacturing job creation and destruction rates that is also consistent with the predictions of the search-
based model. Shimer stresses that his model is appropriate only for state-level unemployment (as opposed
to national unemployment), because a constant cost of capital limits the amount of vacancy posting on
the national level. Foote (2002) accepts Shimer’s negative correlation as a fact, but argues that it is caused
by a youth-induced housing boom, not by search considerations. I discuss in the conclusion why Foote’s
paper also suffers from a spatial-correlation problem.
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using the updated data, in some cases by 70 to 90 percent. The reason, I argue below,

is not because of structural changes in the economy that have rendered Shimer’s search

model less appropriate in recent years. Rather, large changes in the estimated youth-share

effect should be expected, because the pre-1997 coefficients are not precisely estimated.

As is typical in macroeconomic studies using regional or state-level panel data, Shimer as-

sumed that the data from each state are independent draws from underlying distributions.

In reality, state boundaries are often arbitrary political designations that divide nearly

identical parts of the country. In some research designs, economic similarity across a state

border is a good thing. In Card and Krueger’s (1994) study of the effects of a change in

New Jersey’s minimum wage, Pennsylvania serves as a control state precisely because of

the assumed similarity in the other economic shocks that affect the two states. However,

in traditional panel regressions where both the outcome variable and the regressor of in-

terest are functions of state-level economic or social climates, spatial correlation can lead

to imprecise estimates and misleading standard errors.

The paper proceeds as follows: Section 2 illustrates how the estimated youth-share

coefficient changes when Shimer’s sample period is updated. The section also discusses

the adjustments needed for the standard errors when both spatial and serial correlation

are present. Importantly, for this macroeconomic problem, these adjustments are more

complicated than simply clustering the covariance matrix by state and year simultaneously,

as has been recommended in some microeconomic contexts with multi-way correlations.4

The methods I use generate standard errors that are several times larger than the ones that

Shimer reported, so that the pre-1997 estimates are no longer significant when the new

methods are used. I also discuss why the methods I use may be imperfect, so that the larger

standard errors I report may still be too small. In Section 3, I make some rough attempts

to control for both serial and spatial correlation in the estimation procedure, not just in

the calculation of the standard errors. Using data through 2005, these regressions generate

estimates of the youth-share effect that are not only positive but also very close to what a

mechanical model of demographic effects would imply. Unfortunately, the standard errors

4 Recent work by Bertrand, Duflo, and Mullainathan (BDM, 2004) and Kézdi (2004) has highlighted
the importance of accounting for serial correlation in panel data, following a line of research that goes back
to Nickell (1981), Bhargava, Franzini, and Narendranathan (1982), and Solon (1984). Using simulations,
BDM and Kézdi show that clustering the standard errors by state is usually adequate to account for serial
correlation in state-level data, because the number of clusters (50) is relatively large. Cameron, Gelbach,
and Miller (2006) and Thompson (2006) show that it is relatively simple to cluster in many dimensions
simultaneously, which can be useful when both serial and spatial correlation are present. These papers are
discussed in more detail below.
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remain large, so precise inference is impossible. Section 4 concludes with the two main

lessons of the paper. The specific lesson is that standard views on demographic change in

labor markets are not refuted by U.S. state-level data. A more general implication is that

macroeconomists should be wary of spatial correlation when testing theories with regional

or sub-national panel data, especially when identification is achieved using instrumental

variables.

2. Young Workers and Unemployment: 1973–2005

The basic regression in Shimer (2001) projects the state-level unemployment rate on

the youth share and fixed effects for both state and year:

lnURit = β lnyshareit + φi + φt + ǫit, (1)

where i ∈ (1 . . . N) indexes the state, t ∈ (1 . . . T ) indexes the year, lnUR is the natural log

of the unemployment rate, and lnyshare is the log of the share of the state’s working-age

population (ages 16-64) who are aged 16-24. If the youth share had only a mechanical effect

on the overall unemployment rate, then the expected value of β̂ is positive, in the neigh-

borhood of .30. To see this, assume constant, age-specific unemployment rates for 16-24

year olds (URyoung) and 25-64 year olds URold. Denote the difference between these rates

as ŨR. Then the relationship between the levels (not logs) of the overall unemployment

rate and the youth share is UR = (yshare · ŨR) + URold. Differentiating this expression

with respect to the youth share and performing some algebra to obtain an elasticity gives

∆UR

UR
=

[
ŨR

UR
· yshare

]
∆yshare

yshare
.

Using BLS data for both the population and the unemployment rate, the term in square

brackets averages .29 from 1973 to 1996.5 By contrast, Shimer’s OLS estimate of β, using

unbalanced panel data from 1970 to 1996, is a surprising -1.221, with a reported standard

error of .160.6

Shimer then addresses two potential problems with this estimate. The first is that both

unemployment rates and youth shares are positively serially correlated, so an OLS estimate

5 Note that this calculation assumes that people stop working at 65. In the data, the fraction of the
labor force corresponding to persons 65 and older never exceeds 3.5 percent during the sample period.

6 This estimate is found in Table I, Panel A, Column 1 of Shimer (2001). The AR1-corrected estimate
discussed in the next paragraph is found in the corresponding position in Panel B of the same table.
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is likely to be inefficient (though consistent) and the standard errors will be biased down.

Yet Shimer’s AR1-corrected point estimate is almost identical to that from OLS: -1.219,

with an standard error of .264. A second potential problem is endogeneity. Young people

are likely to migrate to states with relatively low unemployment rates, causing a spurious

negative correlation between low unemployment rates and high youth shares. To account

for this possibility, Shimer uses lagged birth rates as an instrument for the youth share.

This instrument is relevant, as Shimer shows that lagged birth rates account for a large

majority of the variation in state-level youth shares. The IV is also plausibly exogenous,

because current economic fluctuations can have no effect on birth rates 16–24 years in the

past. Yet the youth-share coefficient becomes even more negative when using IV.7

Revisiting the unemployment-youth share relationship

Table I provides some new estimates of Shimer’s regressions. Column 1 uses a sample

that ends in 1996, as Shimer’s did, while the sample for Column 2 ends in 2005.8 Each

of the four panels in Table I corresponds to a different estimation method. Panel A uses

OLS, Panel B uses the lagged birth rate to instrument for the youth share, Panel C uses

a Prais-Winsten AR1 correction, and Panel D uses both a Prais-Winsten correction and

IV (where all variables, including the birth-rate instrument, are quasi-differenced by the

Prais-Winsten procedure).9 The most striking feature of Table I is the large change in the

point estimates when the longer sample period is used. The absolute value of the OLS

point estimate in Panel A drops by more than 70 percent, from -1.55 to -.42. The decline

in the IV estimate in Panel B is an even steeper 90 percent, from -1.90 to -.19. The declines

in the AR1-corrected estimates are not as severe, but the IV-AR1 estimate in Panel D still

declines by more than half, from -1.68 to -.82.

7 Using a restricted sample period (1978 to 1996) and an AR1 correction, Shimer’s coefficient estimate
is -1.466 under OLS and -1.807 under IV. See his Table IIa on p. 980.

8 Column 1 is not meant to be a precise replication of Shimer (2001). My estimates differ slightly from
his owing primarily to a recent benchmark revision of the state-level unemployment rates by the Bureau
of Labor Statistics. In addition to slightly changing the unemployment data, this revision also allows a
balanced sample of states, starting in 1973, which I exploit throughout this paper. I also exclude Alaska,
Hawaii, and the District of Columbia and use updated measures of the youth share from SEER (2005);
these data are described in Ingram et al. (2003). In practice, these differences do not have material effects
when similar sample periods are used.

9 Nickell (1981) points out that there is a “short-T” bias when estimating dynamic, fixed-effects models.
Accordingly, for all the AR models in this paper, I use estimates of the AR parameters that are corrected
by the method of Hansen (forthcoming a).
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There are two potential explanations for these changes. One is that the earlier estimates

were close to the truth, but that structural changes in the way that workers match to jobs

have rendered Shimer’s model less appropriate in recent years. The other possibility is that

changes in the coefficients should be expected, because the pre-1997 coefficients are not

precisely estimated. In this scenario, the addition of more recent data brings the estimates

closer to the truth. The remainder of this section presents evidence in favor of the latter

explanation, by showing how accounting for spatial correlation increases the standard

errors and undermines the statistical significance of the pre-1997 coefficients.

Shimer (2001) reports unadjusted standard errors, which turn out to be nearly identical

to Huber-White “robust” errors. These errors account for heteroskedasticity in individual

residuals, but not for correlations across years and states:

VWhite = (X ′X)−1

( N∑

i=1

T∑

t=1

x′

itǫ̂
2
itxit

)
(X ′X)−1, (2)

where xit is the (1×K) vector of regressors for state i at time t, ǫ̂ is an estimated residual,

and X is the full data matrix.10 These errors are reported in the first row of standard errors

of each panel. For the pre-1997 sample, they imply very large t-statistics in all cases.

Under the assumption of serial but no spatial correlation, these errors are valid in Panels

C and D when the serial correlation follows an AR1 process. Because the estimators in

Panels A and B include no correction for serial correlation, they require standard errors

that are clustered by state when serial correlation is present. Let ǫ denote the full (NT ×1)

vector of errors and let ǫi denote the (T × 1) vector corresponding to state i. If the data

are sorted by state, so that ǫ′ = [ǫ′1 . . . ǫ′i . . . ǫ′N ], then state-clustering assumes that the

NT × NT matrix Ω = E(ǫǫ′) is block-diagonal, so that correlations exist only among

residuals corresponding to the same state. We can write

Ω = E(ǫǫ′) =




Σ11 0
. . .

Σii

. . .

0 ΣNN




,

10 Throughout this paper, I define covariance estimators using OLS formulas to provide intuition. Under
IV, the center matrices in these formulas would obviously involve the products of the instruments and the
error terms, not the regressors and the error terms.
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where Σii = E[ǫiǫ
′

i]. The state-clustered covariance matrix is then

Vstate = (X ′X)−1

( N∑

i=1

x′

iǫ̂iǫ̂
′

ixi

)
(X ′X)−1, (3)

where xi is the (T × K) matrix of regressors for state i. These errors are reported in the

second row of each panel. As expected, the use of state-clustered errors has the largest

effects in Panels A and B, where no AR1 corrections are performed. In all panels, however,

state-clustering generates t-statistics that remain significant at the 5 percent level in the

pre-1997 sample.

The effect of spatial correlation

The third set of standard errors in Table I are clustered by year rather than state. They

therefore account for spatial correlation, but not for serial correlation. The corresponding

covariance matrix is figured analogously to the state-clustered matrix, but sorts the data

by year rather than state: ǫ′ = [ǫ′1 . . . ǫ′t . . . ǫ′T ]. This gives

Vyear = (X ′X)−1

( T∑

t=1

x′

tǫ̂tǫ̂
′

txt

)
(X ′X)−1. (4)

Table I shows that these year-clustered errors are always larger than the state-clustered

ones, indicating that in this context, spatial correlation may be more damaging for inference

than serial correlation. The effect of year-clustering is biggest in the AR1-corrected panels,

where the errors more than double, to .73 in Panel C (OLS-AR1) and 1.02 in Panel D

(IV-AR1).

To get a sense of why the year-clustered errors are so large, Figure 1 presents choro-

pleth maps of spatial correlation in unemployment and youth shares among U.S. states for

a sample year (1985). In order to illustrate the variation that identifies a youth-share coef-

ficient in a regression with state and year fixed effects, both the unemployment rates and

the youth shares are deviates from their respective state and year means. The maps show

that the relative values of both variables for one state are generally close to corresponding

values in nearby states. For example, Panel A shows that when relative unemployment

rates were low throughout New England in 1985, the “Massachusetts Miracle” was ex-

perienced in Rhode Island and Connecticut, too. Similarly, Panel B shows that all New

England states, not just Massachusetts, experienced relatively high youth shares at the

same time.
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The maps illustrate spatial correlations for only one year. Cross-year comparisons in

the intensity of spatial correlation are facilitated by parameterizing this correlation with

the familiar spatial autoregressive model. For unemployment in state i in a single year,

this model is

lnURi = λWN lnUR + vi,

where WN is a known N × N spatial weighting matrix in which the (i, j)th element in-

dicates the “closeness” of state i to state j, and lnUR represents the N × 1 vector of

unemployment rates for all states in the given year. The scalar λ measures the intensity

of spatial correlation, and vi is a residual. Estimates of λ depend on the distance metric

assumed for the matrix WN . A common choice for WN is a first-order contiguity matrix,

where the (i, j)th element of WN equals one if state i and state j share a common border

and zero otherwise. Also, it is common to row-standardize the weighting matrix, so that

the sum of each row equals 1. When using a contiguity matrix for WN , row-standardization

allows an interpretation of (say) λ = 0.5 to mean that the unemployment rate for state i

equals one-half of the average unemployment rate of the states that surround it, plus an

idiosyncratic error term vit.

Figure 2 presents yearly estimates of λ for both unemployment and youth shares from

1973 to 2005. Also graphed are 95-percent confidence intervals. These estimates are gener-

ated by 33 separate maximum-likelihood regressions, one for each year of the data.11 For

most years, the estimates of λ are significantly different from zero. In the mid- to late-

1980s, spatial correlation in unemployment and youth shares was especially large, with

point estimates of λ exceeding 0.5 for both variables.12

High degrees of spatial correlation imply that clustering the covariance matrix by year

is a good idea, but this does not mean that we cannot cluster the errors by state as well.

Cameron, Gelbach, and Miller (2006) and Thompson (2006) point out that a multi-way

clustered covariance matrix can be constructed by adding the two clustered covariance

matrices together, then subtracting the relevant White matrix to avoid double counting.13

11 As Anselin (1988) explains, this model must be estimated by maximum likelihood rather than OLS. By
pre-whitening the data before running the individual MLE regressions, I ignore the incidental parameters
problem that arises in maximum-likelihood regressions with fixed effects.

12 Results were similar using an inverse-distance weighting matrix with a cutoff of 500 miles, rather than
the first-order contiguity matrix. The spatial regressions make extensive use of the MATLAB code available
on James LeSage’s website (www.spatial-econometrics.com).

13 The subtraction of the White matrix is required because both the Vstate and Vyear matrices involve
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In our case, the multi-way clustered matrix is

Vstate−year = Vstate + Vyear − VWhite. (5)

Standard errors generated by this method appear in the fourth rows of each panel in Table

I. As expected, adding Vstate to Vyear has the biggest effect in Panels A and B, where no

AR1 corrections are performed.

A goal of Table I is to show that accounting for wider covariance patterns among

residuals undermines the statistical significance of the youth-share coefficients in the pre-

1997 data. To some extent this goal is accomplished. The estimates in Panel D of Column

1 (IV-AR1) are no longer significant at the 10-percent level. However, even clustering by

state and year generates t-statistics that are significant at the 10-percent level or higher

in all the other panels. Moreover, the estimates remain strongly significant in A and B.

It turns out that the t-statistics in Table I are so resilient because even Vstate−year

does not account for all the problematic correlations in these data. In the Vstate−year

formula above, the presence of the Vstate matrix accounts for correlations belonging to

the same state, while that of the Vyear matrix does the same for errors belonging to the

same year. But nothing in Vstate−year accounts for the correlation between a state’s error

in one year and a nearby state’s error in the following year. This type of correlation is

likely to exist in macroeconomic panel data. A boom that generates low unemployment in

one state and year may contribute to favorable economic conditions in neighboring states

in following years. If this type of variation is also found in the right-hand-side variables,

then Vstate−year will not provide the appropriate standard errors. What is needed is an

estimate of the covariance matrix that is general enough to account for a wide variety of

error correlations, even those that span different states and years.

Driscoll and Kraay (1998)

There are currently at least three approaches to obtaining a consistent covariance matrix

for more general correlation structures. A paper by Driscoll and Kraay (DK, 1998) provides

not only a candidate solution but also a useful framework for thinking about the problem.

DK point out that the panel-data inference problem with general serial patterns and spatial

correlation can be thought of as a time-series problem in the cross-sectional means of

the term x′

it
ǫitǫ

′

it
xit.
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the products of the regressors and error terms. If these (K × 1) products are denoted

hit = x′

iteit, then the relevant cross-sectional mean for period t is ht = 1
N

∑N

i=1 hit. The

time-series behavior of these means must be accounted for when constructing the covariance

matrix, and DK provide the specific conditions where the standard Newey-West technique

can be applied.

Though DK do not make the connection, their estimator has a cluster interpretation.

Working with the cross-sectional means of hit is equivalent to clustering by year, and using

the Newey-West method to account for serial correlation in ht allows for correlations that

span different states and years. Denote

Vyear,l = (X ′X)−1

( T∑

t=l+1

x′

tǫ̂tǫ̂
′

t−lxt−l

)
(X ′X)−1, (6)

where the simple year-clustered matrix corresponds to l = 0.14 I show in the appendix that

the DK estimator can be written

VDK(m) = Vyear +
m∑

l=1

w(l, m)
(
Vyear,l + V ′

year,l

)
, (7)

where m is a maximal lag length over which serial correlation is allowed. DK’s method

reduces to year-clustered standard errors (m = 0) when spatial correlation is an issue

but serial correlation is not. When serial correlation is also present, DK’s method allows

for the off-diagonal blocks of the Ω matrix to be non-zero up to a maximal lag length

m, smoothing these estimated correlations with the linear weights w. As in the standard

Newey-West setup, m is assumed to grow with T , so the procedure is consistent for a

variety of correlation structures as T → ∞.

Table II includes standard errors for equation (1) using DK’s method. (The parameter

estimates and the state-year clustered errors in this table are reprinted from Table I for

ease of comparison.) The second and third rows of Table II are the DK errors with the

maximal lag length m set to one and three years, respectively. In general, the DK errors

are much larger than the simultaneous state-year cluster when m = 3. In Column 1 of

Panel A (OLS), the DK(1) standard error (.66) is only slightly larger than the state-year

14 One should think of the data as sorted by year here, so that ǫ′ = [ǫ′
1

. . . ǫ′t . . . ǫ′
T

]. As the appendix

illustrates, the cluster interpretation of the DK estimator follows from noting that ht = 1

N

∑N

i=1
x′

it
ǫit =

1

N
x′

tǫt.
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clustered error (.61), so that the corresponding coefficient estimate is still significant at

the 5-percent level. But the DK(3) error (.80) is more than 30 percent larger than the

state-year error, so that the significance level falls to the 10-percent level. In Panel B (IV),

the error rises from .82 using the state-year cluster to 1.09 using DK(3). In the last two

panels, the DK errors rise from .75 to .89 (OLS-AR1), and from 1.02 to 1.42 (IV-AR1).

DellaVigna and Pollet (2007)

The DK estimator is attractive for several reasons. It is not only easy to calculate15 but

also fully non-parametric, so it requires no specific assumptions for the serial or spatial

processes. But this flexibility comes at a price, because the standard Newey-West estimator

is likely to underestimate standard errors for persistent series in short samples (Andrews

1991). This drawback is likely to be substantial in panel data, where T is typically smaller

than in pure time-series applications. A second covariance estimator, due to DellaVigna and

Pollet (DVP, 2007), imposes a parametric assumption on the serial correlation in hopes of

obtaining a better estimate. Using DK’s notation, DVP essentially assume that ht follows

an AR1 process: ht = ρht−1 + νt. An estimate of ρ is easily obtained by regressing each

of the K elements of ht on once-lagged values. DVP show that with an estimate of ρ̂ in

hand, the covariance matrix has a simple form:

VDV P =

(
1 + ρ̂

1 − ρ̂

)
Vyear. (8)

The DVP errors are shown in the fourth rows of Table II.16 They are sometimes larger

and sometimes smaller than the DK estimates. The DVP errors are larger in Panels A and

B (no AR1 corrections). Because these regressions leave a great deal of serial correlation

in the residuals, the parametric AR1 assumption in the DVP errors may do a better job of

capturing this serial correlation than the Newey-West approach of DK.17 By contrast, in

15 The DK method is now available as the xtscc add-on to the Stata statistical package; see Hoechle
(2007). My implementation of the DK errors differs slightly from Hoechle and DK, because I normalize

the covariance matrix by
(

NT−1

NT−K

) (
T

T−1

)
. This is Stata’s small-sample normalization for a year-clustered

covariance matrix and quite close to the suggested normalization for the cluster in Hansen (forthcoming

b) in this context:
(

T
T−1

)
.

16 See the appendix for specific details on how the ρ̂’s used to construct these errors were estimated. The
method I employ differs slightly from the one in DVP’s original paper.

17 In Column 1, the estimated value for ρ in both Panel A (OLS) and Panel B (IV) is .79. This high
degree of correlation is likely to cause problems for a Newey-West estimator in a sample with short T .
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the AR1-corrected regressions (Panels C and D), the DVP errors are smaller than the DK

errors. In these regressions, a smaller estimate of ρ used to construct the DVP errors is to

be expected, because these regressions purge AR1 correlation from the data beforehand.18

The fact that DK errors are larger than the DVP errors in these bottom panels suggests

that additional serial correlation remains in the data even after the AR1 corrections, so

that the DVP errors are too small.

Thompson (2006)

Both the DVP and DK approaches account for serial correlation in hit within an individual

state only to the extent that this correlation affects the relationships among the cross-

sectional means ht. However, a state-clustered matrix is likely to account well for correlation

in hit if the number of clusters (states) is large enough. A third covariance estimator,

suggested in Thompson (2006), takes advantage of this fact by adapting the multi-way

cluster for correlations across different states and years. His estimator is

VThompson(m) = Vstate + Vyear − VWhite +

m∑

l=1

Vyear,l + V ′

year,l − VWhite,l − V ′

White,l, (9)

where, as with the Vstate−year matrix, the subtraction of the VWhite and VWhite,l matrices

is required to avoid double counting.19 In this expression, the presence of Vstate controls

for within-state correlation. Correlations that span different states and years are assumed

to follow an MA(m) process, dying off after m periods. There is no assumption (as in DK)

that m grows with T , in an attempt to capture arbitrary serial correlation processes.

The Thompson errors are presented in the last two rows of each panel of Table II, with

m = 1 and m = 3, respectively. Not surprisingly, the errors tend to be larger than the

DK errors. Unlike DK’s, Thompson’s errors include no smoothing weights on the Vyear,l

matrices. Moreover, the within-state cluster Vstate in the Thompson formula is likely to do

a better job of accounting for purely within-state serial correlation than the Newey-West

approach of DK. In Panels C and D, the Thompson errors are also larger than the DVP

errors. As noted in the previous paragraph, the AR1 corrections in these panels reduce the

effect of using DVP’s method, but Thompson’s method is able to capture more general

serial correlation patterns than AR1. In any case, using Thompson’s method with m = 3,

18 The estimated values of ρ using 1973–1996 data are only .08 and .10 in Panels C and D, respectively.

19 Note that VWhite,l = (X′X)−1(
∑N

i=1

∑T−l

t=1
x′

it
ǫ̂itǫ̂i,t−lxi,t−l)(X′X)−1

.
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none of the point estimates in the original sample period remain significant in any panel

of the table.

But even the Thompson(3) errors may still be too small if the cross-state correlations

do not die off after three years. If so, then we would have to increase m, but here again

we run into a short-T problem, as we did with DK. Figure 3 graphs the value of the

Thompson errors for values of m ranging from one to seven years. Each panel corresponds

to one of the four estimation methods we have examined so far (OLS, IV, OLS-AR1 or

IV-AR1).20 The darker lines in each of the four panels correspond to the errors from

the shorter sample period (1973–1996), where T = 24. The lighter lines correspond to

Thompson errors from the longer sample (1973–2005), where T = 33. Consider first Panels

A (OLS) and B (IV) in the top row, which correspond to the regressions without AR1

corrections. The darker lines are hump-shaped, indicating that in the shorter sample, the

Thompson errors actually get smaller when m exceeds three or four years. This is probably

due to the poor statistical properties that result when long correlations are estimated with

a short time series. Note that the gray lines in these same panels level off after three or

four periods, rather than decline. The larger T used for the gray lines no doubt does a

better job of capturing cross-state correlations at longer lags. It is hard to know whether

using a T that is even greater than 33 would cause the standard errors to continue to rise

for m > 3, indicating that correlations at lags greater than m should be included in the

Thompson procedure. The story is similar in Panels C and D of the bottom row, which

correspond to the AR1-corrected regressions. Here, the hump shape in the short-sample

errors is less pronounced; after rising when m changes from 0 to one, the short-sample

errors essentially flatten out. However, the longer-sample errors continue to rise smoothly

as m increases from zero to five or six. The long-sample pattern suggests that cross-state

correlations exist at longer values of m, but the short-sample results suggest that these

correlations cannot be estimated well with a T of only 24.

This bottom-row pattern shows how even the most careful researcher could be tripped

up by various correlations in the data. Consider a researcher who comes to these data know-

ing that both spatial and serial correlation are present. She might use an AR1 correction

in her regression to purge serial correlation in the estimation process. When calculating

the standard errors, she is concerned about serial correlation that remains after this AR

correction, as well as spatial correlation, causing her to cluster by both state and year,

20 Note that setting m = 0 corresponds to Vstate−year.
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using Vstate−year. Realizing that cross-state correlations may exist at lag lengths greater

than m = 0, she checks to see whether the Thompson errors at various values of m are

much larger than estimated errors from the state-year cluster (where m = 0.) If only the

shorter sample were available, this method would imply that choosing m = 1 essentially

“catches” all of the cross-state correlation. But this pattern could also result from using a

sample where T is too short to measure cross-state correlations at long lags, so that the

resulting standard errors are deceptively small.

3. New Estimates with Additional Regressors

Given the difficulty of accounting for both serial and spatial correlation in these data, it

is worthwhile to control for as much of it as possible in the regression, using additional

covariates. The added regressors should soak up spatial correlation in the errors (to im-

prove precision) but should also be exogenous with respect to innovations in state-level

unemployment rates (to preserve identification). One possibility is the “shift-share” mea-

sure of state-level labor demand that was originally suggested by Timothy Bartik (1991).

Bartik’s goal was to create a measure of state-level labor-demand shocks that would not be

contaminated by innovations in state-level labor supply. His measure is a weighted average

of national, industry-level growth rates, using state-specific industry weights from a given

base year. With fixed state-level weights, time-series variation in this variable is gener-

ated solely by fluctuations in industry growth rates on the national level. The variable is

therefore exogenous to innovations in state-level youth shares. The inclusion of the Bartik

variable in equation (1) will soak up some spatial correlation if the industry weights are

spatially correlated (for example, if most U.S. automobile production were concentrated

in the Upper Midwest). Of course, spatial correlation is likely determined by a host of fac-

tors besides industry mix, so this method is likely to leave much of the spatial correlation

unaddressed.

An additional, “brute force” way of accounting for spatial correlation is simply to in-

teract the yearly dummies with dummies corresponding to given geographical areas, such

as the country’s four Census regions or its nine Census divisions.21 While easy to imple-

ment, this method is also imperfect. First, the interactions assume that the spatial effect is

21 The Census divisions are New England (CT, ME, MA, NH, RI, and VT), Middle Atlantic (NJ, NY,
and PA), East North Central (IN, IL, MI, OH, and WI), West North Central (IA, KS, MN, MO, NE, ND,
and SD), South Atlantic (DE, FL, GA, MD, NC, SC, VA and WV), East South Central (AL, KY, MS, and
TN), West South Central (AK, LA, OK, TX), Mountain (AZ, CO, ID, NM, MT, UT, NV, and WY), and
Pacific (CA, OR, and WA). The Northeast Region consists of the New England and the Middle Atlantic
divisions, the Midwest Region comprises the East North Central and West North Central divisions, the
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constant within each particular region for a given year. The larger the region, the less ap-

propriate this assumption will be. But choosing smaller regions worsens a second problem:

bordering states may be assigned to different regions, even though the true correlation in

their errors is large.

Table III presents estimates of the unemployment equation using the additional vari-

ables and the longer sample period (1973–2005). When all variables are included, the

regression is

lnURit = β lnyshareit +

3∑

p=0

γp Bartiki,t−p + φi + φrt + ǫit, (1′)

where Bartikit denotes the shift-share labor-demand variable and φrt denotes either region-

year or division-year interactions. The first column of Table III replicates the regression

from Tables I and II without the additional variables and is included for comparison. The

Bartik variable and three lags are introduced in Column 2. These regressors have modest

effects on the point estimates, moving them from -.42 to -.29 (OLS in Panel A) and from

-.19 to -.21 (IV in Panel B). Interestingly, the inclusion of these variables reduces the

year-clustered and Thompson standard errors by appreciable margins, suggesting that the

variables are indeed adding precision to the regression. Column 3 adds (4 - 1) × (33 - 1) = 96

region-year interactions. These variables generally reduce the year-clustered and Thompson

standard errors further. More importantly, however, the inclusion of these variables moves

the IV point estimate to almost exactly what we would expect with a mechanical model

(.30). Unfortunately, the standard errors remain too large to take a precise stand on this

coefficient. Column 4 replaces the region-year interactions with (9 - 1) × (33 - 1) = 256

division-year interactions. The year-clustered and Thompson errors decline further under

OLS but are generally unaffected under IV. The IV point estimate rises slightly, to .35.

Finally, Columns 5 and 6 impose AR1 and AR2 corrections, respectively. These corrections

reduce IV point estimates somewhat, to .21 and .30, but the estimates remain positive and

in the neighborhood of what we would expect with a standard model. The AR corrections

have a much larger effect on the OLS estimates, making them more negative (-.51 and

-.58).

All in all, the last few columns of Table III are consistent with traditional approaches

to measuring demographic change in labor markets. The IV estimates in the lower panel

South Region is the South Atlantic, East South Central, and West South Central divisions, and the West
Region is made up of the Mountain and Pacific divisions.
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suggest that exogenous increases in a state’s youth share will raise its unemployment rate

by about as much as a mechanical model would predict. By contrast, the OLS point es-

timates are negative, suggesting that young people do indeed move to states with low

unemployment rates, causing a spurious negative correlation between youth shares and

unemployment on the state level. Indeed, the OLS estimate in the full model of Columns 5

and 6 is even more negative than in the initial model of Column 1.22 Unfortunately, these

point estimates are only suggestive, because the standard errors in Table III remain very

large.23 In short, there is simply not enough spatially independent variation in unemploy-

ment and youth-shares across U.S. states to test formal theories about demographic effects

on labor markets with these data, even with the longer sample period and the inclusion of

regressors to absorb spatial correlation in the errors.24

4. Conclusions

This paper makes two main points. The first is that spatial correlation has a profound

effect on the precision of these estimates, so that evidence against mechanical effects of

demographic change in labor markets is not as strong as it first appears. The cleanest

way to quantify this effect of spatial correlation is to compare spatially corrected errors in

well-identified (that is, IV) regressions to those that would be valid if no spatial correlation

were present. In Panel B of Table II, (IV), the Thompson(3) error of 1.26 is about 2.5 times

as large as the corresponding state-clustered error in Table I (.53). In Panel D of Table II

(IV-AR1), the Thompson(3) error is 1.52 in the 1973–1996 data, more than three times

22 One can test directly for the youth-migration effect by regressing the youth share on unemployment
and the lagged birth rates, using the Bartik variables to instrument for unemployment. Doing so generates
significantly negative coefficients on the unemployment rate, suggesting that young people are more likely to
move to low-unemployment states than are older people (so that the youth share rises when unemployment
falls). The estimates coefficients, however, are small and account for little of the variation in youth shares.

23 Estimating the regressions of Table III on pre-1997 data also results in insignificant coefficients, but all
of the IV estimates remain negative. Specifically, using division-year dummies and the Bartik variables in
the IV-AR2 regression of Column 6 generates a point estimate of -.45, as compared with the corresponding
estimate of .30 in Table III. However, this estimate is still much different from the IV estimates of -1.90
and -1.68 from Table I, suggesting that the attempts to soak up some spatial correlation are moving the
estimate in the right direction.

24 In recent years a number of authors have devised dynamic panel estimators that account for spatial
correlation using a formal weighting matrix rather than geographic interactions. See, for example, Elhorst
(2003a, 2003b, 2003c), Yu, DeJong, and Lee (2006), Lee and Yu (2007) and Su and Yang (2007). These
estimators may well prove more efficient than the regressions I estimate here. A disadvantage of using these
more formal spatial estimators is that they assume that the intensity of spatial correlation is constant over
time. In our data, that assumption may be contradicted by the top panel of Figure 2, which shows that
the estimate of λ fluctuates from .87 (in 1988) to .02 (in 2002).
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the size of the Huber-White standard error in the first row of Panel D in Table I (.44).

Moreover, the spatially corrected errors are also multiples of the first-order youth-share

effect that we should expect if the mechanical model were true, and they leave none of the

parameter estimates significant.

A second, more general lesson is that macroeconomists should be careful when using

state-level or regional panel data, because cross-sectional units may not generate adequate

independent variation, and accounting for cross-state correlations at long lags is difficult

when T is short. In recent years, the use of cluster estimators has grown as applied re-

searchers have come to discover their key desirable property: as long as there are enough

clusters, the method can control for arbitrary correlation structures.25 In this context,

however, we have seen that while clustering helps with some issues, the problem of corre-

lations that span different states and years does not have a simple “cluster fix.” Assuming

that cross-correlations die off after three years in our data was enough to render pre-1997

estimates insignificant using Thompson’s method, but even these standard errors may be

too small, given the small number of years available to estimate correlations at longer lags.

The use of instrumental variables adds an interesting wrinkle to this issue. IV ap-

proaches obviate the need for formal models of the error term, as long as the instrument

is both exogenous and relevant. But these conditions imply only that with infinite data,

the sampling distribution of the IV estimator collapses to a spike at the coefficient’s true

value. With finite data, there will be some variance to this sampling distribution, which

must be estimated. During the past decade, a great deal of research has focused on the

problem of estimating this distribution when instruments are only weakly correlated with

the regressors. Our application does not have a weak-instruments problem, because lagged

birth rates are strongly correlated with subsequent youth shares. Our problem is that using

only youth shares as a regressor leaves a great deal of other influences in the error term.

These influences are both spatially and serially correlated, as is the regressor of interest.

As a result, the researcher may be forced to make (and test) some parametric assumptions

about the nature of these correlations to insure adequate inference, even if the instrument

itself fulfills all of the usual requirements.

Even more problematic is the use of data from adjoining cross-sectional units to con-

struct instruments. Indeed, if Shimer (2001) commits an econometric misdemeanor by

25 See Hansen (forthcoming b) for a discussion of how the cluster estimator might be useful even with a
“small” number of clusters.
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ignoring spatial correlation, then Foote (2002) commits a felony. Foote accepts the nega-

tive coefficients in Shimer’s original paper as informative, but he argues that they stem

from youth-induced housing booms, not from search-model considerations. To support

this claim, Foote adds a measure of state-level housing construction to equation (1), to see

whether it knocks out the youth-share coefficient. Because construction is endogenous with

respect to the unemployment rate, he needs another instrument, which he defines (for each

state) as the weighted average of lagged birth rates in “nearby” states.26 The significance

of the youth-share coefficient is sharply reduced when the construction measure is entered,

but the additional, geographically determined instrument is seriously compromised if the

errors are spatially correlated.

26 The additional instrument will be relevant if young people in nearby states also put pressure on the
home state’s housing market. “Nearness” of state j to state i is defined as the share of in-migrants to state
i that is accounted for by state j, not as the physical distance between states i and j.
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5. Appendix

Driscoll-Kraay (1998) as a cluster estimator

Consider the sampling error of equation (1),

(β̂ − β) =

(
X ′X

NT

)
−1(

X ′ǫ

NT

)
, (10)

where the fixed effects φi and φt are omitted for clarity. Define the product of regressors

and residuals for state i at time t as hit = x′

itǫit. This gives

(β̂ − β) =

(
X ′X

NT

)
−1(

ΣN
i=1Σ

T
t=1hit

NT

)
.

DK collapse the covariance-estimation problem into the time-series dimension by working

with the cross-sectional means of hit, denoting 1
N

ΣN
i=1hit = ht. Making this substitution

into (10) and multiplying both sides by
√

T gives

√
T (β̂ − β) =

(
X ′X

NT

)
−1

·
√

T

(
ΣT

t=1ht

T

)
. (11)

This expression involves
√

T times the average (over T ) of ht, so under standard regularity

conditions, the limiting distribution of this vector will be mean 0 with variance VT =

Q−1ST Q−1, where Q is the probability limit of (X′X
NT

) and

ST =
1

T

T∑

t=1

T∑

s=1

E(hths

′

). (12)

In the absence of serial correlation, E(hths

′

) will equal 0 for all t 6= s. The matrix ST then

simplifies to ST = 1
T

ΣT
t=1E(htht

′

). When serial correlation is present, then ST does not

simplify. Specifically, if Γl = E(htht−l

′

), then

ST = Γ0 +

∞∑

l=1

[Γl + Γ′

l].

DK provide the general restrictions on ht where the assumptions in Newey and West (1987)

hold, so that ST can be estimated with

ŜT = Γ̂0 +

m∑

l=1

w(l, m)[Γ̂l + Γ̂′

l],
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with Γ̂l = 1
T

∑T

t=l+1 htht−l

′

and w(l, m) = 1 − l
m+1 defining linear smoothing weights for

covariances at lag l and maximal bandwidth m. The estimated asymptotic variance of (11)

is then V̂T = Q̂−1ŜT Q̂−1.

To see the relationship of this estimator with the standard year-cluster estimator, note

that ht = 1
N

∑N

i=1 x′

itǫit = 1
N

x′

tǫt, so that

Γ̂l =
1

T

T∑

t=l+1

htht−l

′

=
1

T

T∑

t=l+1

(
1

N
x′

tǫt

)(
1

N
x′

t−lǫt−l

)
′

=
1

T

1

N2

T∑

t=l+1

x′

tǫtǫ
′

t−lxt−l.

Applying this result to the estimated covariance matrix for β, VDK(m) = V̂T

T
, we can write

1

T
V̂T =

1

T
Q̂−1{ŜT }Q̂−1

=
1

T

(
X ′X

NT

)
−1

{
1

T

1

N2

[ T∑

t=1

x′

tǫ̂tǫ̂
′

txt +
m∑

l=1

w(l, m)

( T∑

t=l+1

x′

tǫ̂tǫ̂
′

t−lxt−l +
T−l∑

t=1

x′

t−lǫ̂t−lǫ̂
′

txt

)]}

(
X ′X

NT

)
−1

= (X ′X)−1

{[ T∑

t=1

x′

tǫ̂tǫ̂
′

txt +
m∑

l=1

w(l, m)

( T∑

t=l+1

x′

tǫ̂tǫ̂
′

t−lxt−l +
T−l∑

t=1

x′

t−lǫ̂t−lǫ̂
′

txt

)]}
(X ′X)−1.

It is easy to see that this expression reduces to

VDK(m) = Vyear +

m∑

l=1

w(l, m)
(
Vyear,l + V ′

year,l

)

when we define

Vyear = (X ′X)−1

( T∑

t=1

x′

tǫ̂tǫ̂
′

txt

)
(X ′X)−1

and

Vyear,l = (X ′X)−1

( T∑

t=l+1

x′

tǫ̂tǫ̂
′

t−lxt−l

)
(X ′X)−1

as we do in equations (4) and (6) in the text.
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Estimating the AR1 parameter in DellaVigna and Pollet (2007)

As noted in the text, the DellaVigna-Pollet standard errors in Table II are generated by

scaling up the year-clustered covariance estimator Vyear by
(

1+ρ̂
1−ρ̂

)
, where ρ̂ is estimated

from the regression:

ht = ρht−1 + νt. (13)

With T years in the data and K elements of ht, this AR1 regression will involve K(T − 1)

observations. This regression is slightly different than one that DVP use for the application

in their paper. They recover ρ with a pooled regression of each element of hit (not ht) on

its corresponding lagged value:

hit = ρhi,t−1 + νit, (14)

which will involve NK(T−1) observations. However, the assumptions they use to derive the

simple form of their estimator would suggest that using equation (13) is also appropriate.

Specifically, DVP assume that

E



(

N∑

i=1

hi,t−p

)′(
N∑

i=1

νit

)
 = 0

for all p > 0. This orthogonality condition allows ρ to be recovered with equation (13)

above, since it concerns the behavior of the sums of hit and νit over i (that is, Nhs and

Nνt), not the hits and νits themselves. From a theoretical standpoint, there is also an

advantage to using equation (13) rather than equation (14) to estimate ρ. Aggregating

hit = x′

itǫit across states before running the regression allows any correlations that span

different states and years to directly inform the estimate of ρ.27 As a practical matter

for this paper, using equation (13) to recover ρ tends to generate larger values of ρ̂, and

therefore larger standard errors, than using equation (14).

27 Consider a correlation between Michigan’s value of hit in 1979 and Indiana’s value in 1978. This

correlation can affect the estimate of ρ in equation (13), because Michigan’s hit contributes to ht while

Indiana’s contributes to ht−1. This is not the case in equation (14), because both right-hand-side and
left-hand-side variables correspond to the same state.
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Table I: Estimates of the Youth-Share Effect on State-Level Unemployment

(1) (2)

Sample Period 1973–1996 1973–2005

Panel A: OLS -1.55 -.42

Robust Standard Error (.18)** (.14)**

Clustered by state (.39)** (.26)

Clustered by year (.50)** (.41)

Clustered by State and year (.61)** (.46)

Panel B: IV -1.90 -.19

Robust Standard Error (.25)** (.17)

Clustered by state (.53)** (.31)

Clustered by Year (.68)** (.48)

Clustered by state and year (.82)** (.54)

Panel C: OLS-AR1 -1.36 -1.02

Robust Standard Error (.31)** (.26)**

Clustered by state (.36)** (.29)**

Clustered by year (.73)* (.55)*

Clustered by state and year (.75)* (.56)*

Panel D: IV-AR1 -1.68 -.82

Robust Standard Error (.44)** (.32)**

Clustered by state (.45)** (.41)**

Clustered by year (1.02) (.78)

Clustered by state and year (1.02) (.81)

Notes to Table I: The table presents various estimates of the youth-share coefficient from Equation (1) of

the text, along with alternative standard errors. The dependent variable for each regression is the natural

log of the unemployment rate for state i in year t. The coefficients in the table correspond to the natural

log of the share of persons aged 16-64 who are aged 16-24, according to the SEER data (2005), which are

adjustments of Census counts. All regressions include state and year dummies. The number of states in

all regressions is 48 (AK, HI, and DC are always omitted). The data are balanced, so Column 1 has 24

years × 48 states = 1152 observations while Column 2 has 33 × 48 = 1584 observations. The instrument

used for the youth share in Panels C and D is the log of the sum of lagged birth rates 16 to 24 years ago,

as described in Shimer (2001). The AR1 parameters used to quasi-difference the data in Panels C and

D are corrected by the method of Hansen (forthcoming a). In each regression in Panel D, the birth-rate

instrument is also quasi-differenced. An asterisk (*) denotes significance at the 10% level; two asterisks

(**) denote significance at 5%.
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Figure 1: Spatial Correlation in Unemployment and Youth Shares in 1985. The data in each

panel correspond to 1985 deviations from state and year means of the log of the unemployment rate (top

panel) or the log of the youth share (bottom panel). The means are taken over the years 1973 to 2005 (the

sample for Column 2 in Tables I and II).
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Figure 2: Spatial Correlation in Unemployment and Youth Shares: 1973–2005. Each panel

presents estimates of the spatial correlation parameter (λ) from 33 separate spatial autocorrelation regres-

sions. For a variable X from state i in a single year, this model is Xi = λWNX + vi, where X is the

N × 1 vector of Xi for all states, and the N ×N weighting matrix WN is a first-order contiguity matrix,

with the (i, j)th element equal to 1 if states i and j share a common border. The weighting matrix is

row-normalized so that each row sums to 1. The data are deviated from state and year means before the

separate spatial autocorrelation models are run. Dotted lines correspond to 95% confidence intervals.



Table II: Estimates of the Youth-Share Effect

on State-Level Unemployment Allowing for Error Correlations

Spanning Different States and Years

(1) (2)

Sample Period 1973–1996 1973–2005

Panel A: OLS -1.55 -.42

Clustered by state & year ( .61)** ( .46)

Driscoll-Kraay, 1 lag ( .66)** ( .56)

Driscoll-Kraay, 3 lags ( .80)* ( .71)

DellaVigna & Pollet (1.45) (1.24)

Thompson, 1 lag ( .81)* ( .67)

Thompson, 3 lags ( .94) ( .82)

Panel B: IV -1.90 -.19

Clustered by state & year ( .82)** ( .54)

Driscoll-Kraay, 1 lag ( .89)** ( .65)

Driscoll-Kraay, 3 lags (1.09)* ( .83)

DellaVigna & Pollet (1.99) (1.46)

Thompson, 1 lag (1.09)* ( .78)

Thompson, 3 lags (1.26) ( .97)

Panel C: OLS-AR1 -1.36 -1.02

Clustered by state & year (.75)* ( .56)*

Driscoll-Kraay, 1 lag (.83) ( .62)

Driscoll-Kraay, 3 lags (.89) ( .70)

DellaVigna & Pollet (.80)* ( .60)

Thompson, 1 lag (.89) ( .67)

Thompson, 3 lags (.94) ( .78)

Panel D: IV-AR1 -1.68 -.82

Clustered by state & year (1.02) ( .81)

Driscoll-Kraay, 1 lag (1.25) ( .93)

Driscoll-Kraay, 3 lags (1.42) (1.08)

DellaVigna & Pollet (1.12) ( .88)

Thompson, 1 lag (1.40) (1.03)

Thompson, 3 lags (1.52) (1.21)

Notes to Table II: The table presents various estimates of the youth-share coefficient in Equation (1)

from the text (as does Table I), along with alternative standard errors. The coefficient estimates and the

state-year clustered errors in the first row of each panel are taken directly from Table I; see the Notes to

that table for a description of the variables used and the regression specification. An asterisk (*) denotes

significance at the 10% level; two asterisks (**) denote significance at 5%.
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Figure 3: Effect of Raising Maximal Lag Length on Thompson Standard Errors. The lines in each panel

correspond to the standard errors for the youth share coefficient in the state-level unemployment regression from Tables

I and II. The darker lines correspond to the 1973–1996 sample (used for Column 1 of Tables I and II) while the lighter

lines correspond to the 1973–2005 sample (used for Column 2). The value of m corresponds to the maximal lag length

for which cross-state correlations are allowed to exist. A value m = 0 corresponds to standard errors clustered by state

and year alone.



Table III: Estimates of the Youth-Share Effect

on State-Level Unemployment: 1973–2005

(1) (2) (3) (4) (5) (6)

Bartik Variables Included

as Regressors? No Yes Yes Yes Yes Yes

Geographic Interactions None None Reg-Yr Div-Yr Div-Yr Div-Yr

AR Correction None None None None AR(1) AR(2)

Panel A: OLS -.42 -.29 -.04 -.17 -.58 -.51

Robust (.14)** (.12)** (.13) (.14) (.27)** (.27)*

Clustered by state (.26) (.23) (.26) (.25) (.26)** (.25)**

Clustered by year (.41) (.33) (.24) (.20) (.35) (.35)

Clustered by state & year (.46) (.38) (.33) (.29) (.35)* (.34)

Thompson, 1 lag (.67) (.55) (.41) (.34) (.39) (.38)

Thompson, 3 lags (.82) (.65) (.49) (.38) (.40) (.39)

Panel B: IV -.19 -.21 .30 .35 .21 .30

Robust (.17) (.15) (.17)* (.21)* (.45) (.44)

Clustered by state (.31) (.29) (.40) (.44) (.53) (.50)

Clustered by year (.48) (.39) (.33) (.34) (.61) (.61)

Clustered by state & year (.54) (.46) (.49) (.51) (.67) (.66)

Thompson, 1 lag (.78) (.65) (.60) (.58) (.70) (.69)

Thompson, 3 lags (.97) (.78) (.68) (.64) (.76) (.77)

Notes to Table III: The table presents various estimates of the youth-share coefficient from equation

(1’) of the text, estimated on the 1973–2005 sample. See the notes to that table for descriptions of the

variables used and the regression specification. Panel B uses the birth-rate instrument from Tables I and

II as an IV for the youth-share. The Bartik variable used in Columns 2–6 is constructed by weighting

national industry-level growth rates by state-specific industry weights from various base years. The “Reg-

Yr” interactions correspond to interactions between dummy variables for (three of the) four Census regions

of the country; the “Div-Yr” interactions are similarly constructed using the nine Census divisions. The

AR parameters used to quasi-difference the data in Columns 5 and 6 are corrected by the method of Hansen

(forthcoming a). The birth-rate instrument is also quasi-differenced in the Columns 5 and 6 of Panel B.

An asterisk (*) denotes significance at the 10% level; two asterisks (**) denote significance at 5%.




