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1 Introduction

Many of our everyday decisions such as working on a project, getting a flu shot, or

buying insurance require an estimate of probabilities of future events: the probability of

a project’s success, of falling sick, or of being involved in an accident. In assessing these

probabilities, decision makers tend to be optimistically biased, where optimism bias is

defined as the tendency to overestimate the likelihood of favorable future outcomes and

to underestimate the likelihood of unfavorable future outcomes (Irwin 1953; Weinstein

1980; Slovic, Fischoff, and Lichtenstein 1982; Slovic 2000). A young woman drinking

at a bar thinking it will be safe for her to drive home is an example; an entrepreneur

who starts a new business, confident that she is going to succeed where others have

failed is another. Indeed, one can argue that although statistics for these events are

well-documented, each of these persons has private information concerning her individual

tolerance for alcohol and entrepreneurial ability, respectively. Hence, each woman may

have good reasons to believe that overall empirical frequencies do not apply to her. The

common feature in these examples is that decision makers have some freedom in choosing

their probabilistic beliefs, and they are often optimistic–they appear to choose beliefs

that are biased towards favorable outcomes.

Optimism bias is not merely a hypothetical bias–it translates into both microeconomic

and macroeconomic activity. For example, optimism bias influences high-stakes decisions,

such as startup investment, investment behavior, and merger decisions. It was found

that 68 percent of startup entrepreneurs believe their company is more likely to succeed

than similar companies, while in reality only 50 percent of startup companies survive

beyond three years of activity (Baker, Ruback, and Wurgler 2006 and references therein).

Malmendier and Tate (2005) find that CEOs who are optimistic regarding their firm’s

future performance are more sensitive to investment cash flow, which leads to distortions

in investment decisions. Malmendier and Tate (2008) find that the optimistic CEOs

are 65 percent more likely to complete mergers, are more likely to overpay for those

target companies, and are more likely to undertake value-destroying mergers. On the

macroeconomic level, Robert Shiller in his book Irrational Exuberance (2000; 2005), now

a contemporary classic, defines irrational exuberance as "wishful thinking on the part of

investors that blinds us to the truth of our situation," and makes the case that irrational

exuberance contributes to generating bubbles in financial markets. Shiller points out

several psychological and cultural factors that affect individuals’ beliefs and consequently

the investment behavior that leads to real macro-level effects. Many of these factors can

be summarized as optimistically biased beliefs.

Optimism bias is inconsistent with the independence of decision weights and payoffs

found in models of choice under risk, such as expected utility, subjective expected utility,

and prospect theory. Hence, to explain the evidence suggesting that agents are optimisti-

cally biased, we suggest an alternative model of risky choice where decision weights–which

we label affective or perceived risk–are endogenized. More specifically, we consider two
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systems of reasoning, which we label the rational process and the emotional process. The

rational process decides on an action, while the emotional process forms a perception of

risk and in doing so is optimistically biased. The two processes interact to yield a deci-

sion. This interaction is modeled as a simultaneous-move intrapersonal potential game,

and consistency between the two processes, which represents choice, is the equilibrium

outcome realized as a pure strategy Nash equilibrium of the game.

This novel formulation of optimism bias, by employing a simultaneous choice of action

and beliefs and where tradeoff is done by a game, is the first contribution of our pa-

per. This formulation may be viewed as a model of the specialization and integration of

brain activity considered in recent neuroscience studies that identify distinct brain mod-

ules that specialize in different activities. For instance, the amygdala is associated with

emotions, while the prefrontal cortex is associated with higher-level deliberate thinking

(e.g., Reisberg 2001). Our model is also consistent with the psychology literature that

draws a distinction between analytical and intuitive, or deliberate and emotional, process-

ing (Chaiken and Trope 1999). However, in both neuroscience and psychology, behavior

is thought to be a result of the different systems interacting (for example, Sacks 1985;

Damasio 1994; Epstein 1994; LeDoux 2000; Gray, Braver, and Raichle 2002 Camerer,

Loewenstein, and Prelec 2004; Pessoa 2008). For example, Gray, Braver, and Raichle

(2002) conclude that "at some point of processing, functional specialization is lost, and

emotion and cognition conjointly and equally contribute to the control of thought and

behavior." More recently, Pessoa (2008) argues that "emotions and cognition not only

strongly interact in the brain, but [that] they are often integrated so that they jointly

contribute to behavior," a point also made in the specific context of expectation forma-

tion.

Although the evidence on modular brain and the dual-processes theory cannot typ-

ically be pinned down to the formation of beliefs, given that beliefs formation is partly

affected by the beliefs we would like to have–that is, by affective considerations–decision

making under risk maps naturally to the interplay between the two cognitive processes,

as proposed by Kahneman (2003). That is, decision making under risk can be modeled as

a deliberate process that chooses an optimal action, and an emotional cognitive process

that forms risk perception.

Formally, the rational process coincides with the expected utility model, where for a

given risk perception (meaning the affective probability distribution), the rational process

chooses an action to maximize expected utility. The emotional process forms a risk per-

ception by selecting an optimal risk perception that balances two contradictory impulses:

(1) affective motivation and (2) a taste for accuracy. This is a definition of motivated

reasoning, a psychological mechanism where emotional goals motivate agent’s beliefs (see

Kunda 1990), and is a source of psychological biases, such as optimism bias. Affective

motivation is the desire to hold a favorable personal risk perception–optimism–and in

the model it is captured by the expected utility term. The desire for accuracy is modeled

as a mental cost the agent incurs for holding beliefs in lieu of her base rate probabilities
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given her desire for favorable risk beliefs. The base rate probabilities are the beliefs that

minimize the mental cost function of the emotional process, i.e., the risk perception that

is easiest and least costly to justify–in many instances, one can think of the baseline

probabilities as the empirical, relative frequencies of the states of nature.

As an application of affective decision making we present an example of the demand

for insurance in a world with a bad state and a good state. The relevant probability

distribution in insurance markets is personal risk; hence, the demand for insurance may

depend on optimism bias. Affective choice in insurance markets is defined as the insurance

level and risk perception that constitute a pure strategy Nash equilibrium of the affective

decision making (ADM) intrapersonal potential game.

The systematic departure of the ADM model from the expected utility model shows,

consistent with consumer research (Keller and Block 1996), that campaigns intended to

educate consumers on the magnitude of the potential loss they face in the unfavorable state

may have the unintended consequence that consumers purchase less, rather than more,

insurance. Hence, the ADM model suggests that the failure of the expected utility model

to explain some datasets may be due to systematic affective biases. Furthermore, the

ADM intrapersonal game is a potential game–where a (potential) function of a penalized

subjective expected utility (SEU) form defines the best response dynamic of the game.

This property has the natural interpretation of the utility function of the composite agent,

or the integration of the two systems, and allows for the second contribution of this paper,

discussed next.

Deviations from the basic rational choice models often raise the concern that the theory

lacks the discipline imposed by a clear paradigm, and, as a result, "anything goes." This

concern arises in the ADM model since we allow agents to choose both actions and beliefs.

To investigate this concern we present an axiomatic characterization of ADM potential

maximizers which subsumes the class of ADM models with a unique equilibrium. This

shows that choosing both actions and beliefs in the ADM model does not per se imply

that anything goes.

The remainder of the paper is organized as follows: In section 2 we discuss the related

literature, and in section 3 we present the demand for insurance in a world with two

states of nature. Section 4 presents an analysis of ADM potential games in a world with

K-states of nature using a formal definition of optimistic preferences in the general case.

In section 5 we present an axiomatic foundation of the ADM potential maximizers, and

in the final section of the paper we discuss our results and the relationship between the

axiomatized class of optimistic preferences and ambiguity attitudes. All proofs are in the

Appendix.

2 Related Literature

Recent literature in economic theory recognizes the possibility that agents might choose

their beliefs in a self-serving or optimistic way; see Akerlof and Dickens (1982), Bodner and
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Prelec (2001), Bénabou and Tirole (2002), Yariv (2002), Caplin and Leahy (2004), Brun-

nermeier and Parker (2005), and Kosze̋gi (2006). Likewise, the dual-processes hypothesis

was recently recognized in economic modeling, specifically in models of self-control and

addiction such as Thaler and Shefrin (1981), Bernheim and Rangel (2004), Loewenstein

and O’Donoghue (2004), Benhabib and Bisin (2005), Fudenberg and Levine (2006), and

Brocas and Carrillo (2008). Existing models are restricted in the sense that the choice of

beliefs and the choice of action are not made in tandem and in that the models assume

that an agent chooses beliefs strategically to resolve a tradeoff between a standard in-

strumental payoff and some notion of a psychologically based belief utility1. The existing

models of dual processes are restricted in that the two systems, or decision modes, are

conceived as mutually exclusive.

Although there are cases where a descriptive model seems to require mutually ex-

clusive systems, as in the case of self-control and addiction, there are other cases where

a descriptive model seems to require several different processes that together determine

observed choice. We provide such a formulation: in this paper one process chooses action

while the other forms perceptions, and both are necessary for decision making.

As mentioned, the ADM intrapersonal game is a potential game with a potential func-

tion defined as a penalized SEU model. This characterization allows us to axiomatize the

set of ADM potential maximizers, which includes the class of unique equilibrium ADM

models. More importantly the axiomatic foundation suggests an alternative interpreta-

tion of the ADM model as one that describes ambiguity-seeking behavior, an additional

difference between this paper and the existing literature. In particular, the model in the

literature that comes closest to optimistic preferences as described in the ADM intraper-

sonal game is the optimal expectations model of Brunnermeier and Parker (2005). The

optimal expectations model considers an agent who chooses both beliefs and actions in a

dynamic setting where beliefs are chosen in period one for all future periods, thus trading

off greater anticipated utility against the cost of making poor decisions due to holding

optimistic beliefs. Hence, optimal expectations are optimistic beliefs not constrained by

reality. In contrast, ADM is a static model where beliefs and actions mutually deter-

mine observed choice, and where beliefs trade off greater anticipated utility against the

mental cost of distorting beliefs–costs that are a function of reality. This captures the

fact people do not hold arbitrary beliefs even in the absence of an action they can take

based on their beliefs, in contrast to the optimal expectation model’s prediction. More-

over, the ADM model’s simultaneous framework, where cost is based solely on beliefs, is a

parsimonious model consistent with cognitive dissonance, with differences between report

and choice tasks, with integration of processes in the brain, and has a utility function

for the composite agent that will allow future welfare analysis. This formulation allows

further, as mentioned above and presented in section 5, axiomatic characterization of the

ADM potential maximizers which then lead to an alternative interpretation of the ADM

model as a model of ambiguity-seeking behavior. Both the model’s axiomatic characteri-

1The axiomatic foundation for this is provided by Caplin and Leahy (2001) and Yariv (2001) 
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zation and its alternative interpretation as an ambiguity-seeking model are not shared by

Brunnermeier and Parker (2005) or the other dual-process models.

3 The ADM Model of the Demand for Insurance

In this section we present a model of affective choice in insurance markets where probabil-

ity perceptions are endogenous. We use a simple example of an agent facing two possible

future states of the world; in section 4 we show that analogous results of this two-states

case hold for  states of the world.

Consider an agent facing two states of the world, ad andood with associated wealth

levels  and  , where   . The agent has a strictly increasing, strictly concave

smooth utility function of wealth, () with lim→−∞() =∞ lim→∞() = 0.2

Risk perception is defined as the perceived probability  ∈ [0 1] of the ad state occurring
For simplicity we allow the agent to purchase or sell insurance  ∈  at the fixed insurance

premium rate,  ∈ (0 1) The intuition and results for the case where the agent can only
buy insurance are easily derived from this analysis.

The rational process chooses an optimal insurance level (∗) to maximize expected

utility given a perceived risk . Specifically, the rational process maximizes the following

objective function:



{( + (1− )) + (1− )( − )} 

The emotional process chooses an optimal risk perception (∗) given an insurance

level  to balance the agent’s affective motivation and taste for accuracy. Specifically,

the emotional process maximizes the following objective function:



{( + (1− )) + (1− )( − )− ∗(; 0)} .

Affective motivation is captured by the expected utility term–the agent would like to

assign the highest possible weight to her preferred state of the world. Taste for accuracy

is modeled by introducing a mental cost function ∗ (; 0) that is nonnegative, strictly

convex, and reaches a minimum at  = 0 where 0 is the baseline probability. 
∗ (; 0)

is essentially smooth–smooth on (0 1) with lim→0|∗(; 0)| = lim→1|∗(; 0)| =
+∞–and it’s limit lim→0∗(; 0) = lim→1∗(; 0) = +∞ See Figure 1.

2All qualitative results remain the same for the case of lim→0() =∞ lim→∞() = 0.
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Why this U-shape? The psychology literature argues that individuals tend to use men-

tal strategies such as bias search through memory to find justification for their desired

beliefs (Kunda 1990). As the desired beliefs are further distanced from some baseline odds

0–the odds that immediately come to mind and are easiest to justify (these could be

the empirical relative frequency of the state of nature or available statistics like mortality

tables)–the search costs are likely to increase. That is, it would be increasingly more

difficult for the agent to come up with justifications and find anecdotes to support the

optimistic view. This is exactly what the the mental cost captures. In addition, the be-

havior at the extreme is a formal description of a well-known phenomenon, namely, that

decision makers assign a special quality to certain situations: getting $100 for certain is

qualitatively different from a lottery with a 99 percent chance to win $100 (Kahneman and

Tversky 1979). In the current simple settings, certainty corresponds to the two extreme

beliefs  ∈ {0 1} and the behavior at the extremes captures the dramatic difference be-
tween certain, "safe", and risky events. Hence, the psychology literature is consistent with

a mental cost ∗() that is strictly convex, and essentially smooth on the interior of the

probability simplex ∆. Moreover, since in situations that are inherently risky people do

not hold beliefs that reflect certainty, we demand that in the limit, as the probability ap-

proaches zero or one, the cost function approaches infinity faster than the utility function

does. This requirement implies that the insurance level desired by the rational process

as the probability approaches a boundary is not sufficient for the emotional process to

support these beliefs; hence, one would never hold beliefs  ∈ {0 1}.
The fact that the mental cost is a function solely of probability is appealing as well.

The mental cost formally reflects the psychological description of reasoning and gives rise

to a special and important property of the intrapersonal game–our model of interaction

between the rational and emotional processes. More specifically, the intrapersonal game

is a potential game, and as such, this type of mental cost is consistent with integration

of the two cognitive processes, a property supported by findings in psychology and recent

research in neuroscience. Moreover, section 4 shows that, surprisingly, the psychological
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description of the mental cost function is in fact necessary and sufficient for optimistic pref-

erences, where optimistic preferences are such that the assigned probabilities are skewed

towards the good state and away from the bad state.

We now consider the interaction of the two processes in decision making. We model

this interaction as an intrapersonal simultaneous-move game, a choice that reflects a recent

view in cognitive neuroscience which holds that both processes mutually determine the

performance of the task at hand (Damasio 1994).

Definition 1 An intrapersonal game is a simultaneous-move game with two players,

namely, the rational and the emotional processes. The strategy of the rational process

is an insurance level,  ∈ , and the strategy of the emotional process is a risk perception

 ∈ (0 1) The payoff function for the rational process is  : (0 1)×  →  is ( ) ≡
( + (1− )) + (1− )( − ). The payoff function for the emotional process is

Θ : (0 1) ×  →  is ( ) − ∗() where ∗(·) is the mental cost function of holding
belief  which reaches a minimum at 0.

Proposition 2 below indicates that the intrapersonal game described in definition 1 is

a potential game. Potential games are a class of strategic games introduced by Monderer

and Shapley (1996), where all players have a common goal and therefore the game can

be represented with one global common payoff function. This global payoff function is

called the potential function of the game, and is used by each player to determine her best

response. In the case of individual choice, since the players are decision processes and the

game is a model of decision making, the potential function can be intuitively interpreted

as a utility function of the composite agent. Below is the formal proposition:

Proposition 2 The intrapersonal game is a potential game in which the emotional process’s

objective function is the potential function of the game. Because the potential function is

strictly concave in each variable (risk perception and insurance), its critical points are the

pure strategy Nash equilibria of the game.

It is straightforward to show that the emotional process’s objective function is the

potential function of the game, as its first-order conditions with respect to  and  are

the same as those of the rational process and emotional process, respectively. That is the

potential function Θ( ) =  ()   −∗() captures the best-response dynamics of
the intrapersonal game, and this potential game is therefore a model of affective decision

making.

The equilibrium notion in the potential game is pure strategy Nash equilibrium, which

is a natural candidate for choice, as it reflects a mutually determined choice and consis-

tency between the rational and emotional processes. Excluding the case of tangency

between the best responses of the two processes and given that the potential function is

biconcave we have the following existence theorem (see Figure 2 for illustration).
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Proposition 3 The ADM intrapersonal game has an odd number of pure strategy Nash

equilibria. The set of Nash equilibria is a chain in 2 under the standard partial order on

points in the plane.

Emotional BRs

Rational BRs

Insurance

p
0 1p0

I*p *

NE

Figure 2

Note that with the ADM model one captures differences in report and choice tasks, as

documented in different studies (in the context of normal form games, see Costa-Gomes

and Weizsäcker 2008). In the insurance context, when asked to report the probability of,

say, an accident with no subsequent action to take, the agent activates only the emotional

process and tends to report low chances of an accident occuring. However, when asked to

choose an action both processes are activated and together determine choice–hence the

chosen action will generally be inconsistent with the reported beliefs.

Although the ADMmodel generally has multiple equilibria, which we believe is realistic

given that it captures framing and attentional effects as will be discussed below, the case of

a unique equilibrium ADM model is attractive due to its predictive power. The sufficient

condition, due to Neyman (1997), for the uniqueness of pure strategy Nash equilibrium

in a simultaneous-move potential game is strict concavity of the potential function and

compact strategy sets. Due to the properties of the problem, one can always define a

restricted game with compact strategy sets that will admit the same set of Nash equilibria

as the original game. The potential is strictly concave if the Hessian of the potential be

negative definite, which in this simple example reduces to the following condition:

Proposition 4 A sufficient condition for a unique pure strategy Nash equilibrium for the

intrapersonal game is:

2∗(; 0)
2

 − [( + (1− ))(1− ) +( − )]
2

[2( + (1− ))(1− )2 + (1− )2( − )2]


This condition is simply a statement regarding the relative slope of the two processes’

best responses. Note that
2∗(;0)

2
is the rate at which the marginal mental costs change
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with respect to perceived probabilities , while [( + (1− ))(1− ) +( − )]

is the rate at which the marginal benefits of distorting beliefs change with respect to insur-

ance level . The above condition therefore states that the ratio of change in the marginal

mental costs with respect to perceived risk to the change in the marginal mental benefit

with respect to insurance is always greater than a similar ratio defined on marginal ex-

pected utility. In this case, the emotional process’s best response is everywhere steeper–to

support a given change in perceived probability the emotional process demands a greater

change in insurance level relative to the rational process’s best response–and the intrap-

ersonal game admits a unique equilibrium. One implication of this condition is that for

large mental costs the equilibrium is unique (think of   0 b∗ (·) = ∗(·)), and for
very large mental costs the ADM model reduces to the expected utility model.3

However, unless the mental costs are very large, even with a unique ADM model

risk perceptions are endogenous and the model systematically departs from the expected

utility model. This suggests that the failure of the expected utility model to explain some

datasets may be due to systematic affective biases. How exactly does affective choice in

insurance markets differ from the demand for insurance in the expected utility model?

Proposition 5 shows that the expected utility outcome in the case of an actuarially fair

insurance market (full insurance) falls within the choice set of the ADM agent. However,

if the insurance market is not actuarially fair, then this is no longer the case.

Proposition 5 If  = 0 there exists at least one Nash equilibrium (∗ ∗) with ∗ =

0 = , and ∗ = full insurance

If   0 there exists at least one Nash equilibrium (∗ ∗) with ∗  0 and ∗ 

∗(0)

If   0 there exists at least one Nash equilibrium (∗ ∗) with 0  ∗ and ∗ 

∗(0)

To understand the intuition behind these results, consider a standard myopic adjust-

ment process where the processes alternate moves. If   0 at 0 the rational process,

similar to the expected utility model, prescribes buying less than full insurance. The emo-

tional process, in turn, leads the decision maker to believe “this is not going to happen to

me” and to determine that she is at a lower risk. This effect causes a further reduction in

the insurance purchase, with a result that the agent is not fully insured and is insured at

a lower level than the expected utility model would predict. This proposition gives both

an intuitive understanding of the effect of the emotional process in the ADM model, and

intuitively shows existence of pure-strategy Nash equilibrium, affective choice. In the case

of a unique ADM model, proposition 5 fully characterizes affective choice; in the case of

multiple equilibria it points out only one equilibrium out of many possible. However, the

effect of the two processes in enhancing each others’ initial tendency is true whether one

considers the unique ADM models or the entire class of ADM models.

3As ∗ → ∞ ∗ → 0 for all values of . As a result, the ADM model converges to the expected

utility model.
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Considering such an adjustment process, the ADM model is consistent with two widely

discussed phenomena: cognitive dissonance and attention effects. Cognitive dissonance is

when an individual holds two contradictory beliefs at the same time. Hence if one thinks

of the adjustment process as a process of reaching a decision, in this process the agent

suffers cognitive dissonance and her choice represents a resolution of it. As for attention

effects–if one’s attention is manipulated to first think of an action, or first think of risk

beliefs, generally he or she will end up making different choices. In particular, according

to our general ADM model, thinking first of the probabilities of adverse events occuring

leads to greater optimism and lower insurance levels than if the agent’s attention is given

to thinking of insurance first.

Note that proposition 5 also implies that, from the viewpoint of an outside observer,

both optimism and pessimism (relative to 0) are possible. This is due to the characteris-

tics of many insurance contracts reflected in the model: if an agent purchases an amount

that is in excess of full insurance, then the “bad” state becomes the “good” state, and

vice versa. Consequently, if there is no effective action, meaning that one cannot change

the bad state to a good state, we would observe optimism and less-than-optimal level of

insurance.

Another example of the difference between affective choice and the demand for insur-

ance in the expected utility model is as follows: In the expected utility model, if people

realize that they face a higher potential loss due to educational campaigns aimed at raising

awareness of the possible catastrophe–much like warning labels such as "Smoking Kills"

on cigarette packages, campaigns against speeding that show vivid pictures of people

severely injured or killed in car accidents, and flood warnings "Like Never Before"–then

they will purchase more insurance.4 Yet, in the ADM model, if an agent realizes that she

faces a higher possible loss, then she might purchase less insurance. The increased size of

the potential loss affects both the emotional and the rational processes in different ways:

the rational process prescribes more insurance, while the emotional process precribes a

lower risk belief to every insurance level (due to greater incentives to live in denial). If

the emotional effect is stronger the agent will buy less insurance than previously. That

is, if the potential loss is great, agents might prefer to remain in denial and ignore the

possible catastrophic outcomes altogether, which will lead them to take fewer precautions

such as buying insurance. This result is consistent with consumer research showing that

in educating people on the health hazards of smoking, a high fear arousal leads to agents

discounting the potential threat (Keller and Block 1996; see also Ringold 2002 and refer-

ences therein). Proposition 6 and Figure 3 below summarize the conditions for educational

4 Indeed, there may be educational campaigns aimed at increasing the baseline probability of an event

occurring, or changing the mental costs directly. If one analyzes this kind of educational campaign, it is

still possible that the campaign will back fire. It depends on the specific assumptions made as to how the

marginal mental costs change with the campaign, and the type of equilibria studied.

The approach we take is because many educational campaigns such as those for smoking, alcohol

consumption, speeding, and natural disasters stress the adverse outcome and not the probability of

getting into a bad state as described above. That is, many "educational" ads do not add information on

the probability of suffering from the adverse consequence, but rather draw the public’s attention to the

possible dramatic consequences.
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campaigns to produce the counterintuitive affective result.

Proposition 6 An educational campaign results in more optimistic beliefs if

0( + (1− ))

( + (1− ))


0( − )

( − )


and this will result in an agent purchasing less insurance if

0( + (1− ))

( + (1− ))


2∗(; 0)
2

(1− )

where (·) is the absolute risk aversion property of the utility function (·)

Insurance

p
0 1p0

I*p *

Emotional BRs

Rational BRs

Figure 3

In Proposition 6, if the utility function (·) exhibits constant or increasing absolute risk
aversion, educational campaigns will lead to more optimistic view if and only if the agent

initially buys less than full insurance coverage. This will translate into a lower insurance

purchase depending on the curvature of the utility function at the bad state relative to the

cost function. Taking the cost function discussed in the next section,
P=

=1 [ lg(0)]

a backfire effect will occur if the marginal utility at the bad state is greater than the

coefficient of absolute risk aversion at that point. Hence, for such utility functions, educa-

tional campaigns can divide the insurance market into a set of agents who purchase more

insurance–the intended consequence–and a set of agents who purchase less insurance–

the unintended consequence. These conditions are true for any equilibrium, even in the

case of multiplicity of equilibria.
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4 ADM Potential Games

In this section we present a state-preference model of affective decision making where an

agent maximizes her utility subject to a budget constraint and is facing possible states of

nature; this section therefore extends the analysis in section 3. More specifically, consider

an agent who faces  possible states of nature and has a utility function  over outcomes.

The rational process chooses an action  that maps states into outcomes. Preferences

over acts  are represented by a convex function  of state-utility vectors () where

() is the vector of utilities of outcomes for the act . That is, preferences over acts 

are represented by a composite utility function (()). The emotional process chooses

a belief  and the ADM potential game is Θ( ) =  ()   −∗(), where ∗() is a
convex function of Legendre type. That is, ∗() is a strictly convex, essentially smooth

function on the interior of the probability simplex ∆5 

Before proceeding to the results and extending the analysis of the two-states case into

-states, we pause to define optimism bias in the general case and discuss the relationship

of optimism bias to the assumptions made on the affective cost function. We use Theorem

26.5 in Rockafellar (1970) showing that a closed convex function  is of a Legendre type

on the interior of the effective domain of  denoted Ω if and only if the Legendre conjugate

∗ is of Legendre type on the interior of the effective domain of ∗, denoted Ω∗. Moreover,

the gradient mapping ∇ is a one-to-one map from the open convex set Ω onto the open

convex setΩ∗, where the gradient map is continuous in both directions and∇∗ = (∇)−1
Now, if ∗() is a convex function of Legendre type, then it follows from the envelope

theorem that the affective probabilities chosen by the emotional process for the act  are

∇()(()) = argmax
∈∆

{ ()   −∗()} 

Moreover, for all state-utility vectors () and ():

£∇()(())−∇()(())
¤ · [()− ()]  0

That is, the affective probabilities, ∇()(()) are a strictly increasing monotone map

of the state-utility vector (). This is our definition of optimism bias. The definition of

optimism bias in the -state world subsumes the intuitive definition of optimism bias in

the two-state case, where the assigned probability is skewed towards the more favorable

outcomes of an act .

Remarkably, the above exercise shows that the assumed shape of the mental cost

function in the demand for insurance example (strictly convex and essentially smooth),

reflecting the psychological characterization of affective costs, is both necessary and suf-

5The notion of a strictly convex, essentially smooth function is due to Rockafellar (1970)–see chapter

26. If Ω = the interior of the effective domain of a proper, extended real-valued convex function  :

 −→  ∪ {+∞}, then  is essentially smooth if: () Ω is not empty, () f is differentiable throughout

Ω, () lim−→∞ k∇()k = +∞ whenever 1 2... is a sequence in Ω converging to a boundary point

 of Ω He defines the class of strictly convex and essentially smooth functions to be of Legendre type.
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ficient for optimism bias.

The next question is whether the assumed shape of the affective cost function is "typ-

ical"? That is, in some precise sense are most closed proper convex functions on 

strictly convex and essentially smooth on the interior of their effective domains? Sur-

prisingly, the answer is yes! This result is an immediate consequence of Howe’s (1982)

theorem that in the uniform topology, the family of strictly convex and differentiable

functions on a compact, convex subset  of  is a residual subset of the family of con-

vex functions on  Any open and bounded convex subset of  can be exhausted by a

countable family of compact, convex subsets. Since a countable intersection of residual

sets is also residual, we see that in the topology of uniform convergence on compact sets

(or topology of compact convergence) the family of strictly convex and differentiable func-

tions on an open and bounded convex subsets,  of  is a residual subset in the family

of convex functions on . If ∗() is strictly convex and differentiable, then it follows

from the strict monotonicity of the gradient map that the gradient map is one-to-one.

By Corollary 26.3.1. in Rockafellar–that is, if ∗() is a closed proper, convex function

on  , then the subgradient correspondence reduces to a one-to-one gradient map on

the interior of the effective domain of ∗() if and only if ∗() is strictly convex and

essentially smooth–these functions are strictly convex and essentially smooth. In other

words, Legendre convex functions are generic6.

Now we extend the existence and local uniqueness of pure strategy Nash equilibria

results in the two-state ADM potential game to ADM potential games with  states

of the world. To do this, we define regular potential games as potential games where

the potential function Θ( ) is a Morse function. In other words, 0 is a regular value of

∇()[Θ( )], where  is an action and  is a belief–the Hessian of the potential function
Θ( ) evaluated at a critical point of the potential is non-singular. For a discussion of

Morse functions, see chapter 1 in Guillemin and Pollack (1974) where they show that

"most" smooth functions are Morse functions.

We show that essentially smooth and strictly biconcave regular potential games have

an odd number of locally unique pure strategy Nash equilibria. In the proof we use

the homotopy principle, which implies an algorithmic interpretation and allows for the

computation of a pure strategy Nash equilibrium. Moreover, we show that if the potential

function Θ( ) is essentially smooth and strictly biconcave, then the set of pure strategy

Nash equilibria is non-empty, where 0 need not be a regular value of ∇()[Θ( )].

Proposition 7 If Θ( ) is the potential function for a regular potential game , where

the strategy sets  and Π are the interiors of non-empty, convex, compact subsets of  

and the potential function is essentially smooth and strictly biconcave, then  has an odd

number of locally unique, pure strategy Nash equilibria.

Corollary 8 If Θ( ) =  ()   −∗() is the potential function for a regular
 potential game , where  is the interior of the budget hyperplane and Π is the

6This theorem is due to Roger Howe - personal communication (March 2010).
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interior of the probability simplex, and the potential function is essentially smooth and

strictly biconcave, then  has an odd number of locally unique, pure strategy Nash equi-

libria.

Proposition 9 If Θ( ) is the potential function for a potential game , where the

strategy sets  and Π are the interiors of non-empty, convex, compact subsets of   and

the potential function is essentially smooth and strictly biconcave, then the set of pure

strategy Nash equilibria is non-empty.

Corollary 10 If Θ( ) =  ()   −∗() is the potential function for an 

potential game , where  is the interior of the budget hyperplane and Π is the interior

of the probability simplex, and the potential function is essentially smooth and strictly

biconcave, then the set of pure strategy Nash equilibria is non-empty.

The conditions for uniqueness, given below, extend Neyman’s (1997) theorem on the

uniqueness of pure strategy Nash equilibrium for potential games with compact strategy

sets to potential functions with bounded, open strategy sets.

Proposition 11 If Θ( ) =  ()   −∗() is the potential function for a regular
 intrapersonal game , where the strategy set  is the interior of the budget hyper-

plane and strategy set Π is the interior of the probability simplex, is essentially smooth

and strictly concave, then  has a unique pure strategy Nash equilibria.

In the insurance example, the affective cost function depends on baseline probabilities

0. In the general -states framework the analogous concept is Bregman divergence–a

generalization of relative entropy, a concept in information theory used to measure the

"directed distance" from a fixed probability distribution 0 to other probability distri-

butions ; see Banerjee et al. (2005) for a general discussion of Bregman divergences.

Importantly, every convex function of Legendre type ∗ on the interior of ∆ and "prior"

probability distribution 0 in the interior of ∆ defines a Bregman divergence (0 ) of

Legendre type, where

(0 ) ≡ ∗()− ∗(0)−∇∗(0) · (− 0)

For our purposes, notice that () for all 0 and  in the interior of ∆, (0 ) ≥ 0 and
() (0 0) = 0. Hence 0 is the minimum of (0 ) on ∆ or the baseline probabilities

in the insurance example. That is, (0 ) is the "directed distance" from 0 to  ∈ ∆.
If ∗() = −∗() where ∗() is a Bregman divergence, then we define ∗() as a

dual Bregman divergence. Relative entropy, ∗() ≡ P=
=1 [ lg(0)], is a Bregman

divergence of Legendre type and is of special interest as ∗() = − ∗()–its dual

Bregman divergence of Legendre type–is the affective cost function in the multiplier

preferences model (Hansen and Sargent 2000). That is, the structure of the cost function

we suggest is consistent with a well-known cost function used in the literature.
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Given this, here is an example of an essentially smooth, strictly biconcave 

intrapersonal potential game:

Let

() =    ∈ (0 1)

and

∗() ≡
=X
=1

[ lg(0)]

then

Θ( ) =

=X
=1

 −
=X
=1

[ lg(0)]

The general setup of ADM potential games can be applied to insurance markets in

a straightforward manner: instead of the two states considered in section 3 now the

agent faces  possible future states of the world with an associated wealth-level vector

 (where  is the wealth level in state  ∈ ). The different acts available to the agent

are equivalent to different insurance vectors , and the rational process chooses a utility

vector () to maximize expected utility given a perceived risk . Specifically, the rational

process maximizes  ()   while the emotional process chooses an optimal risk

perception (∗) given an insurance level  to maximizes Θ( ) = { ()   −∗()}
In the general case, we require that the mental cost function ∗() be a strictly convex

and essentially smooth function on the interior of the probability simplex ∆ meaning it

is a convex function of the Legendre type Given this set up, all results of the general

ADM potential games immediately follow.

5 Axioms for Optimistic Preferences

In this section we show that attitudes towards optimism reduce to the convexity of the

utility representation of preferences over acts, and use this property to derive axioms for

optimistic preferences. We show that preferences over acts, , are optimistic if and only

if there exists a continuous utility function  over outcomes and a continuous convex

function  over state-utility vectors (), that is, the utility vector for the act . The

ADM model we present below is an example of optimistic preferences over acts.

We use the Legendre-Fenchel conjugate of a continuous convex function (()) to

represent optimistic preferences as ADM potential games. That is, the Legendre-Fenchel

conjugate is:

∗() ≡ ()∈+ { ()   −(())}

It follows from the biconjugate theorem that

(()) = ∈∆{ ()   −∗()}

That is, the double conjugate of  (∗)∗ =  . This equivalence is the same as the dual
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relationship between the cost and profit functions of a price-taking, profit-maximizing

firm producing a single good.

Since we assume ∗() is a convex function of Legendre type, that is, ∗() is a

strictly convex, essentially smooth function on the interior of the probability simplex ∆

its Legendre conjugate and biconjugate are well defined–see Theorem 265 in Rockafellar

(1970) as previously stated in section 4. The potential function for the associated ADM

potential game is

Θ( ) ≡ ()   −∗()

Next, we derive the set of axioms characterizing optimistic preferences, and show that

these axioms also characterize the ADM potential maximizers. That is,

argmax
∈

(()) = arg max
∈∈∆

Θ( )

The axiomatic characterization of optimistic preferences amends the axiomatic char-

acterization of variational preferences in Maccheroni, Marinacci and Rustichini (2006)

[], where:  is the set of states of the world; Σ is an algebra of subsets of , the

set of events; and , the set of consequences, is a convex subset of some vector space.

 is the set of (simple) acts, that is, finite-valued Σ-measurable functions  :  −→ .

(Σ) is the set of all bounded Σ -measurable functions, and endowed with the sup-norm

it is an AM-space with unit, the constant function 1. (Σ) the set of Σ-measurable

simple functions is norm dense in (Σ). The norm dual of (Σ) is (Σ), finitely additive

signed measures of bounded variation on Σ (see Aliprantis and Border 1999 for further

discussion). Below we present the axioms:

1 (Weak Order): If    ∈  (a) either  %  or  % , and (b)  %  and

 %  =⇒  % .

2 (Weak Certainty Independence): If   ∈    ∈  and  ∈ (0 1), then
 + (1− ) %  + (1− ) =⇒  + (1− ) %  + (1− ).

3 (Continuity): If    ∈  , the sets{ ∈ [0 1] :  + (1− ) % } and
{ ∈ [0 1] :  %  + (1− )} are closed
4 (Monotonicity): If   ∈  and () % () for all  ∈ the set of states, then

 %  .

b5 (Quasi-Convexity): If   ∈  and  ∈ (0 1) then
 ∼  =⇒  + (1− ) - 

6 (Nondegeneracy):  Â  for some   ∈ 

These axioms where b5 is replaced by 5 (quasi-concavity) are due to MMR (2006).
Theorem 12 Let % be a binary order on  . The following conditions are equivalent:

(1) The relation % satisfies axioms 1−6

(2) There exists a nonconstant function  :  −→  unique up to a positive affine

transformation, and a continuous, convex function ∗ : ∆ −→ [0∞] where for all  
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∈  ,  %  ⇐⇒  () ≥  () where  () = (()) = max∈∆ {h() i− ∗()}
is a convex function of () by the biconjugate theorem.

In the standard approach, as in the expected utility theory and prospect theory, the

agent maximizes over actions not over both action and beliefs. In our setup, argmax∈ (()) =

argmax∈∈∆Θ( ) are the potential maximizers, a subset of the set of pure strat-

egy Nash equilibria of the  potential game. If the  model has a unique pure

strategy Nash equilibrium, then maximizing the composite utility function (()) over

actions and maximizing the potential Θ( ) over actions and beliefs rationalize the same

observed choices. Hence, these models are refutable. That is, not every dataset can be

rationalized with an ADM potential game.

6 Discussion

The set of axioms we present, and therefore the ADM model, is closely related to exist-

ing models in the literature: if axiom b5 – ambiguity-seeking – is replaced by MMR’s

axiom 5–ambiguity aversion – then we get MMR’s variational preferences model. If we

replace axiom b5 – ambiguity-seeking – with axiom e5 of ambiguity-neutrality we get the
subjective expected utility model (both results are proved in MMR 2006). This relation-

ship suggests that optimism bias and pessimism bias are equivalent to ambiguity-seeking

and to ambiguity-aversion, respectively. That is, the ADM model has an alternative

interpretation of ambiguity-seeking behavior and variational preference has an alterna-

tive interpretation of pessimism bias, where instead of a game against nature the game is

against the emotional self that assigns a higher probability to the least favorable outcome.

We view these two interpretations (optimism bias and ambiguity-seeking) as two con-

cepts that apply to different parallel choice situations: in risky situations, when the deci-

sion maker does have information, the appropriate interpretation of preference should be

in terms of optimism or pessimism. In these situations, although decision makers have in-

formation they also have some freedom in choosing their probabilistic beliefs, as we argue

in this paper. Hence, one can view such risky situations as instances of endogenous ambi-

guity, ambiguity that is generated by the individual and is created in a skewed manner. If

the individual is optimistic then the generated endogenous ambiguity would be favorable

to her; therefore being optimistic is being ambiguity-seeking in this case. In other words,

the individual prefers the situation where she "does not know" the exact probability dis-

tribution over states of the world. If the individual is pessimistic, then the generated

endogenous ambiguity would be unfavorable to her; therefore being pessimistic is being

ambiguity-averse. In that sense, attitudes toward ambiguity are equivalent to holding op-

timistic or pessimistic attitudes. In contrast, uncertain or ambiguous situations are cases

where the decision maker has no information regarding the probability distribution over

future states of the world. Hence one can view such ambiguous situations as instances of

exogenous ambiguity, meaning ambiguity that is imposed on the individual.
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Using this distinction between endogenous and exogenous ambiguity, the existing evi-

dence can be summarized as follows: evidence on ambiguity aversion is found in situations

with no information–exogenous ambiguity–while optimism bias is found in situations

where the decision maker has some information and freedom to choose her beliefs; these are

instances of endogenous ambiguity. That is, we would expect to find ambiguity-seeking a

là ADM in endogenously ambiguous situations, while we would expect ambiguity-aversion

a là MMR in exogenously ambiguous situations. In fact, in their study of ambiguity Heath

and Tversky (1991) state that: "We investigate the relation between judgments of prob-

ability and preferences between bets. A series of experiments provides support ... that

people prefer betting on their own judgment over an equiprobable chance event when

they consider themselves knowledgeable, but not otherwise. They even pay a significant

premium to bet on their judgments. These data cannot be explained by aversion to

ambiguity, because judgmental probabilities are more ambiguous than chance events."

This distinction between self-generated or imposed ambiguity helps understand the

relationship between the game against nature in variational preferences and the game

against the emotional process in the ADM model: in both the variational preferences

model and the ADM model, nature and the emotional process, respectively, are formal

descriptions of uncertainty. In MMR this is a formal description of an imposed uncertainty,

while in the ADM model it is a formal description of generated uncertainty. Even if one

considers the unique equilibrium ADM case, the emotional self still generates ambiguity

in the sense that it allows the agent to consider several possible probability distributions.

The attitude towards ambiguity is either negative –when uncertainty is imposed on the

agent–or positive–when uncertainty is generated by the agent.
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7 Appendix: Proofs

Proof of Proposition 2. Denote the rational process’s payoff function as (R) and

the emotional process’s payoff function as (E). A necessary and sufficient condition for

the intrapersonal game to have a potential function (Monderer and Shapley 1996) is
2


= 2


 This condition clearly is satisfied in the ADM model. The potential function

Θ( ) is a function such that (Monderer and Shapley, 1996): Θ


= 


 Θ


= 




Because 


= 

, () can serve as a potential function. The critical points of the

potential function are Θ


= 


= 0 Θ


= 


= 0 The potential function is strictly

concave in each variable, so at each critical point, each process is maximizing its objective

function given the strategy of the other process. Therefore, the critical points of the

potential function are the pure strategy Nash equilibria of the intrapersonal game, and

all pure strategy Nash equilibria are critical points of the potential function.

Proof of Proposition 3. Given the assumption on the mental cost function, we know

the relationship between the emotional process and the rational process best response at

the extreme beliefs {0 1}We know that as → 0, the rational process best response would

be "higher", since the optimal insurance given such a belief is greater than the required

insurance level to support these beliefs (which would be infinite). The relationship exactly

reverses when  → 1 Hence, there exists a pure strategy Nash equilibria; since the best

responses are monotonically increasing, it follows that there exists an odd number of Nash

equilibria.

Proof of Proposition 4. Given the geometry of the problem, the Nash equilibria are

not at the boundary; hence, one can always find values 0      1 such that the set

of the game’s Nash equilibria (
0
 

0
) satisfy 

0 ∈ [ ] and 
0 ∈ [∗() ∗()] , where ∗()

represents the rational process’s best response. One can therefore restrict attention to

an intrapersonal game where the players’ strategy spaces are compact. Neyman (1997)

proved that a potential game with a strictly concave, smooth potential function, and one

in which all players have compact, convex strategy sets, has a unique pure strategy Nash

equilibrium. That is, the Hessian of the potential function is negative definite, which in

the insurance example reduced to the stated condition.

Proof of Proposition 5. Consider the case in which  = 0. At full insurance, there is

no mental gain for holding beliefs  6= 0 but holding these beliefs exacts a mental cost.

Therefore, at the full insurance level, the mental process’s best response is  = 0 Given

that  = 0 = , the rational process’s best response is full insurance. Consequently, for

this case full insurance and  = 0 is a Nash equilibrium Next, consider the case   0;

because the insurance premium is higher than 0, 
∗( = 0)  . Also, ∗ = 0 only

at the full insurance level, where  =  Therefore, at  = 0 the mental process’s best

response falls above the rational process’s best response. This relationship is reversed at

the limit → 0 and both the mental and the rational best responses increase. Therefore,

there exists a Nash equilibrium with   0 and less insurance than predicted by the

expected utility model. A similar argument can be used to prove the result when   0.
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Proof of Proposition 6. Define ̃(; 0) as the inverse function 
∗−1 Define Π(; 0) =

∗() −̃(; 0); a solution Π(; 0) = 0 is a Nash equilibrium, and Π


 0 where 

is the loss size represents the unintended consequence of greater optimism due to such

campaigns.

Π


 0⇔

̃

∗


 1



∗


=

h

00
( −  + (1− )∗)

i h

0
( − ∗)

i2
[

0
( − ∗)]

"

00
( −  + (1− )∗)

0
( − ∗)(1− )

+
0
( −  + (1− )∗)

00
( − ∗)

# ;

̃


=

h

0
( −  + (1− )̃)

i
h

0
( −  + (1− )̃)(1− ) + 

0
( − ̃)

i ⇒
Π


 0⇔ ( − )


0
( − )


( + (1− ))


0
( + (1− ))

where () = −
00
()


0
()



Define ̂() as the inverse function ∗−1 Define Π̂() = ∗() −̂(); a solution Π̂() =
0 is a Nash equilibrium, and Π̂


 0 where  is the loss size represents the unintended

consequence of obtaining less insurance due to such campaigns.

Π̂


 0⇔

̂

∗


 1


∗


= −

0
( + (1− ))


00
()

;

̂


= − 

00
( + (1− ))(1− )(−1)


0
( + (1− ))(1− ) + 

0
( − )

⇒

Π̂


 0⇔ 

0
( + (1− ))

( + (1− ))
 (1− )

00
()where () = −

00
()


0
()



Note that when Π


 0 or Π̂


 0 the result would be greater optimism.and less insurance

respectively, even at an unstable equilibrium (under the usual Tatoumount adjustment

process) This is because as a result of the change, a person whose choice was according to

an unstable Nash equilibrium would converge now to a stable, lower, Nash equilibrium.

The proofs of propositions 7 and 9 use the homotopy principle—see chapters 1 3, and

22 in Garcia and Zangwill (1981). The homotopy principle admits an algorithmic inter-

pretation that can be used to compute a pure strategy Nash equilibrium of the potential

game–see chapter 2 in Garcia and Zangwill.

Proof of Proposition 7. Consider the following homotopy: (  0) = (1 − )( −
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0) + ∇[ ()], where  = ( ), 0 = (0 0) and  ∈ [0 1] Zero (0) is a regular value
of (0  0), since [(0  0)] = 2 , the identity matrix on  ×  . Zero (0)

is also a regular value of (1  0), since [(1  0)] = ∇[ ()] and  () is a

Morse function. For  ∈ (0 1), [(  0)0] = − 2 . Hence 0 is a regular value

of (  0) for all  ∈ (0 1) by the transversality theorem (parametric Sard’s theorem).

That is, 0 is a regular value of (  b0) for almost all b0 ∈ Θ where Θ ≡  × Π–
see chapter 2 in Guillemin and Pollack for a proof of the transversality theorem. The

assumption that  () is essentially smooth, that is, k∇[ ()]k→∞ as  → (Θ)

implies that the homotopy is boundary-free. Hence by the homotopy principle, ∇[ ()]

has an odd number of regular points–see the proof of Theorem 323 in Garcia and

Zangwill. Since  () is strictly biconcave, it follows that  () has an odd number of

locally unique, pure strategy Nash equilibria.

Proof of Corollary 8. Proof is immediate.

Proof of Proposition 9. If the set of pure strategy Nash equilibria is empty, then the

set of critical points is empty and 0 is a regular value, contradicting proposition 7 Hence

there exists at least one singular critical point. That is, there exists at least one pure

strategy Nash equilibrium.

Proof of Corollary 10. Proof is immediate.

Proof of Theorem 11. Axioms 1-4 are used in  to derive a nonconstant util-

ity function  unique up to a positive affine transformation, over the space of conse-

quences,  The utility function  is extended to the space of simple acts,  , using

certainty equivalents That is, () = ( ) ∈ (Σ) for each  ∈  , where  is the

certainty equivalent of  . This is lemma 28 in  where () = () is a niveloid

on Φ = { :  = () for some  ∈ }. Niveloids are functionals on function spaces that
are monotone:  ≤  =⇒ () ≤ () and vertically invariant: ( + ) = () +  for

all  and  ∈ –see Dolecki and Greco (1995) for additional discussion. Φ is a convex

subset of () and by axiom 5 in Schmeidlers (1989),  is quasi-concave on Φ. We also

assume axioms1-4, so lemma 28 in MMR holds for the niveloid  in the ADM repre-

sentation theorem. By axiom b5,  is quasi-convex on Φ  (2006) show in lemma

25 that  is concave if and only if  is quasi-concave. Hence  is convex if and only

if  is quasi-convex, since  is convex(quasi-convex) if and only if − is concave(quasi-
concave).  extend  to a concave niveloid b on all of (Σ)–see lemma 25 in
. Epstein, Marinacci, and Seo [EMS] (2007) show in lemma 5 that niveloids are

Lipschitz continuous on any convex cone of an AM-space with unit and concave(convex)

if and only if they are quasi-concave(convex). Hence, since (Σ) is a convex cone in

an AM-space with unit, b is Lipshitz continuous. It follows from the theorem of the

biconjugate for continuous, concave functionals that () = inf∈(Σ)
nR

− b∗()o,
where b∗() = inf∈(Σ) nR − b()o is the concave conjugate of b()–see Rockafel-
lar (1970 p.308), for finite state spaces. On pg. 1476 MMR show that we can restrict

attention to ∆, the family of positive, finitely additive measures of bounded variation

in (Σ). Hence () = min∈∆
nR

− b∗()o = min∈∆
©R

()+ ()
ª
, where
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 = () and

∗() = −b∗(). ∗() is convex since b ∗() is concave.
Extending - to - b on (Σ), using lemma 25 in MMR, it follows from the theorem of

the biconjugate for continuous, convex functionals that

() = max
∈(Σ)

½Z
− b∗()¾ 

where b∗() = max
∈(Σ)

½Z
− b()¾

is the convex, conjugate of b()–see Rockafellar (1970 p.104), for finite state spaces and
Zălinescu (2002 p.77), for infinite state spaces. Again it follows from  that

() = max
∈∆

½Z
− b∗()¾ = max

∈∆

½Z
()− ∗()

¾
= ()

where  = () and ∗() = b∗(). ∗() is convex since b ∗() is convex
 %  ⇐⇒ (()) ≥ (()) ⇐⇒  () ≥ ()

Hence argmax∈∈∆
©R

()− ()
ª ⊆ set of pure strategy Nash equilibria of the

 intrapersonal game, where (·) is the Bernoulli utility function of the rational
process and b∗(·) is the cost function of the emotional process. It follows that the axioms
for ambiguity-seeking preferences also characterize the  intrapersonal games with a

unique pure strategy Nash equilibrium: argmax∈∈∆
©R

()− ∗()
ª
.
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