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1 Introduction

Modern macroeconomic models have an important forward-looking dimension, with current vari-

ables depending, among other factors, on expected future economic conditions. Estimation of these

intertemporal relationships is often carried out with the relationships expressed in Euler-equation

form. In this form, a variable typically depends on its expected future, its past, and its driving

process. For example, an aggregate supply relationship in Euler form can be expressed as a hybrid

Phillips curve where in�ation is a function of expected future (next-period) in�ation, past in�a-

tion, and marginal costs (the driving process). In a limited-information estimation framework, the

crucial issue is how to use the available data to properly identify the role of the forward-looking

elements. Consider a two-stage estimation procedure where expectations are constructed �rst by

means of a simple unrestricted linear projection on past data, and then substituted into the dynamic

relationship of interest. At this point, it is important to distinguish between two polar approaches

to estimation. At one extreme, expectations are left unconstrained. In particular, the projections

are taken as the only information available on expectations and the econometrician directly esti-

mates an Euler equation (in practice, a di¤erence equation). At the other extreme, the evolution

of expectations is itself constrained to obey the Euler equation. This latter approach restricts the

expected value of the variable of interest to be governed by the same Euler equation one period

forward. Taking into account this fact introduces expectations of the variable of interest shifted

two periods forward, which in turn are governed by the Euler equation two periods forward, and

so on. This recursive procedure constrains the evolution of expectations to be model-consistent ad

in�nitum.1 A particular application of this approach is the estimation of a model�s closed form. A

closed-form solution to the Euler equation embeds by construction all model-based restrictions on

the evolution of expectations. For simplicity, we refer to model estimates based on a closed-form

solution as CF estimates, and to those based on the unrestricted Euler equation as DE (di¤erence

equation) estimates.

The CF estimates are of particular interest because they can be thought of as the limiting case in

which all model restrictions on the forward-looking part of the model are imposed at the estimation

stage. However, one can think of intermediate cases between the DE and the CF estimates where

model-consistency of expectations is imposed only for a �nite number of periods.2 In other words,

1Such a forward iteration requires determinacy of the dynamic system�s equilibrium.
2Our terminology should not mask the fact that these intermediate estimates are di¤erence equations themselves.
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the iteration described above when imposing model discipline on expectations is not carried out

ad in�nitum as in the closed form. These intermediate cases are especially relevant as they allow

one to assess the extent of model discipline that is needed to obtain estimates that are close to the

CF speci�cation�s results. In addition, they are particularly convenient when the closed form of an

Euler equation is di¢ cult to compute.

In this paper we analyze the di¤erences that arise from estimating a forward-looking relationship

when di¤erent degrees of model discipline are imposed on expectations. Of particular interest is the

contrast of results when the relationship is expressed in its DE form versus the CF representation.

We show in Monte Carlo exercises and in an empirical application that in small samples (of the size

typically available for macro time-series) DE and CF estimates can di¤er substantially. Moreover,

in our analysis a very small amount of model discipline imposed on expectations is su¢ cient to

yield estimates that are very close to their CF counterparts. In other words, the intermediate cases

between the polar DE and CF speci�cations are much more congruent with the CF estimates than

with the DE estimates, even if they do not rely on explicitly solving the DE form.

To explain the di¤erences in the estimates, we start from a �rst-stage estimation where expec-

tations of the variable of interest are generated by means of some forecasting rule. This forecasting

rule is the same unconstrained reduced form for all speci�cations that we consider (DE, CF and

all intermediate cases). It is estimated in the �rst stage as an unconstrained vector autoregression.

Given the estimated forecasting rule, the second stage uses minimum-distance methods to estimate

the deep parameters of the intertemporal relationship of interest. Since the �rst-stage estimates

are the same across all speci�cations, this two-step estimation isolates the impact on the estimates

from adding restrictions on the way expectations enter the relationship at hand.

When the �rst-stage reduced form is identical to the "true" data generating process the DE

and the CF speci�cations (and all the intermediate cases) estimated in the second stage should

be the same. Yet it is fair to assume that any unconstrained reduced form for the "true" process

underlying actual data is bound to be, at best, an approximation. In this case, the DE and

CF speci�cations (and all the intermediate ones) are not equivalent.3 The way in which these

speci�cations di¤er is that the DE form does not exploit model restrictions on expectations. Instead,

all other speci�cations impose at least some model discipline on expectations. We show that these

restrictions are equivalent to appending additional moment conditions to the DE speci�cation. As

3More speci�cally, the estimates obtained from each speci�cation will di¤er as long as the estimation is over-
identi�ed. This is the most relevant case in empirical applications.
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long as the dynamic relationship we are estimating provides an accurate description of the data,

placing these additional constraints results in more precise estimates. In this respect, our paper links

the estimation problem of Euler equations to the literature on the gains in e¢ ciency that result from

adding model constraints to minimum distance estimators (Kodde, Palm, and Pfann, 1990, and

Hayashi, 2000, ch. 3). This issue has already been explored in seminal work by Hansen and Sargent

(1982). Our analytical approach, however, is novel in that it shows how model discipline can always

be imposed through re-weighting of the very same cross-equation restrictions that characterize the

unstructured minimum-distance problem for the DE case. Thus, the econometrician can require

any degree of model consistency between (and including) the two polar cases without changing the

dimension of the minimum-distance problem.

The empirical application that we consider, and which also informs the setup of our Monte Carlo

exercise, is a New Keynesian Phillips curve (NKPC) estimated on U.S. data. The Monte Carlo

results show that estimates embedding model-consistent restrictions on in�ation expectations (with

the CF estimates as a limiting case) are much more precise than the DE estimates and more robust

to a form of misspeci�cation a¤ecting the indexation mechanism that appears to be empirically

relevant. For the estimation on actual data, we use a NKPC with time-varying coe¢ cients to

account for changes in the in�ation trend. Using this model, Cogley and Sbordone (2008) report

DE estimates that imply that the NKPC is purely forward-looking, with no role for lagged in�ation

in explaining in�ation dynamics.

Estimating a DE form of the NKPC that allows for two lags of in�ation indexation (and hence

nests Cogley and Sbordone�s speci�cation with a single lag) already produces drastically di¤erent

estimates.4 Nonetheless, even abstracting from this misspeci�cation, our main empirical �nding

is that imposing model-consistent restrictions on in�ation expectations produces estimates of the

NKPC parameters that are far away from Cogley and Sbordone�s estimates, both from a statistical

and an economic standpoint. According to the CF estimates, lagged and expected future in�ation

enter the Euler equation form of the NKPC with rather similar weights. Another important di-

mension in which the DE and CF estimates di¤er is the frequency with which prices are readjusted

optimally. In the DE speci�cation this frequency is estimated at 3.9 months, while in the CF spec-

i�cation it is close to one year.5 In addition, we show that a modest amount of model discipline

4 In a quarterly model, allowing for two lags of in�ation indexation implies that information about in�ation covering
the past six months is potentially relevant to characterize the indexation process.

5Our CF estimates �nd an important role for indexation to past in�ation. In the presence of indexation, �rms
change prices every period (some are re-optimizing, while others are not). Hence the frequency of price re-optimization
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on expectations is already enough to signi�cantly alter the estimated model dynamics of in�ation

relative to the DE estimates. Speci�cally, imposing just four quarters of explicit model discipline

on in�ation expectations produces estimates that are very close to their CF counterparts.

Overall, our results underscore that U.S. in�ation persistence within a widely used NKPC

framework cannot be explained entirely by time-varying trend in�ation and the persistence of the

driving process. In particular, lagged in�ation contributes importantly to in�ation dynamics. These

�ndings apply not only to the full 1960-to-2003 sample period, but also to the post-1983 sample.

There is now a large literature on estimating NKPC models.6 The forward-looking component

in the NKPC is usually derived from a micro-founded problem in which �rms cannot reset prices

optimally in every period (Calvo, 1983) or face convex adjustment costs (Rotemberg, 1982). Firms

then take into account not only current market conditions, but also expected future conditions when

setting prices optimally. This mechanism alone provides no role for lagged in�ation in the NKPC.

But in actual data, in�ation can be highly persistent, and purely forward-looking versions of the

NKPC often �t the data worse than "hybrid" versions where current in�ation depends not just on

expected future in�ation, but also on its own past. The dependence on past in�ation is frequently

introduced through some ad-hoc pricing mechanism (for example, indexation or "rule-of-thumb"

price setters). For many purposes this is unsatisfactory, as the mechanism lacks microfoundations,

though sluggish nominal adjustment has been related to learning and information processing con-

straints. The work by Cogley and Sbordone (2008) explores the possibility that the persistence in

the in�ation process is due to a time-varying in�ation target rather than to some ad-hoc element in

�rms�price-setting decisions.7 ;8 There is considerable evidence that the Federal Reserve�s in�ation

target has not remained constant over time (Ireland, 2007), and this raises the possibility that

variations in the target are an important source of in�ation persistence. The empirical �ndings in

Cogley and Sbordone do indeed favor a purely forward-looking Phillips curve where in�ation persis-

tence results entirely from a time-varying in�ation target. These �ndings, therefore, are consistent

with a price-setting framework that does not rely on ad-hoc, backward-looking price adjustment.

A purely forward-looking NKPC has important implications for in�ation dynamics. As long

in this case cannot be directly compared to micro-evidence based on price changes alone.
6See, among others, Galí and Gertler (1999), Galí, Gertler, and López-Salido (2005), Rudd and Whelan (2005,

2006), and Sbordone (2002).
7The usual ad-hoc assumption of Calvo (1983) pricing notwithstanding.
8Kozicki and Tinsley (2002) is the �rst study to explicitly consider time-varying trend in�ation when estimating

a NKPC. Cogley and Sbordone (2008), however, provide a full derivation of the NKPC with time-varying in�ation
from the �rms�optimization problem, and their empirical exercise is tightly linked to the theoretical model.
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as the in�ation target is not moving, in�ation is as persistent as its driving process. For example,

consider a situation in which real marginal costs drop below their steady-state level and are expected

to revert to the steady state in one year. In�ation then drops immediately and returns to its target

level in one year, in sync with real marginal costs.9 The same is true for a markup shock: a

one-period markup shock has only a one-period e¤ect on in�ation. Instead, when in�ation is

not purely forward-looking, the adjustment of in�ation to movements in real marginal costs or

to markup shocks is slower. A one-period negative markup shock, for example, results in lower

current in�ation and, given the dependence of in�ation on its own past, this lowers in�ation in the

next period. Indeed, in�ation converges only asymptotically to the target, despite the one-time

shock. These di¤erences in in�ation dynamics can have substantial implications for the design of

optimal monetary policy.10 In the current U.S. economic environment in which real marginal costs

are well below normal and are expected to increase only gradually, the di¤erence in the projected

path for in�ation can be large. In this situation, the extent of monetary policy accommodation

is critically dependent on the degree of backward-looking behavior that characterizes in�ation. In

the purely forward-looking NKPC, the decline in in�ation may well be modest, but when in�ation

is not purely forward-looking the pull of depressed marginal costs on in�ation can be signi�cant.11

The rest of the paper proceeds as follows. In section 2 we describe the DE, CF, and intermediate

speci�cations in the context of a simple NKPC model and discuss the two-stage estimation proce-

dure. We then provide an explanation for the gain in e¢ ciency from estimating speci�cations that

impose model-consistent constraints on expectations and provide some Monte Carlo evidence. In

section 3 we consider a NKPC model that allows for time-varying trend in�ation, and we compare

estimates from the di¤erent speci�cations using actual U.S. data. Section 4 o¤ers some concluding

remarks.

2 A Simple New Keynesian Phillips Curve Framework: Estima-

tion Methodology and Monte Carlo Simulations

In order to illustrate the main points of the paper, we consider in this section a conventional

NKPC relationship with �xed coe¢ cients. This setup, therefore, does not allow for a time-varying

9The NKPC model in Cogley and Sbordone (2008) features terms other than real marginal costs as additional
driving processes, but their role in explaining in�ation dynamics is estimated to be very small.
10See, for example, Benigno and López-Salido (2006) and Steinsson (2003).
11See Fuhrer and Olivei (2010).
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in�ation target. We do so for simplicity of exposition, as our main results do not hinge on these

speci�cs. We consider the same NKPC speci�cation as in Christiano, Eichenbaum, and Evans

(2005). In this framework, �rms that do not change optimally their price in a given period through

the Calvo (1983) random drawing can still update their current price. The updating follows an

indexation mechanism based on the aggregate in�ation rate in the last period, and the degree to

which indexation occurs is governed by the parameter � 2 [0; 1], with � = 0 denoting absence of

indexation (and thus no mechanical updating) and � = 1 denoting full indexation. The latter case

yields an NKPC relationship that depends almost as much on expected future in�ation as on lagged

in�ation. In this setup, the di¤erence equation (DE) speci�cation of the NKPC takes the following

form12

�t = ��t�1 + �(Et�t+1 � ��t) + �mct + ut: (1)

In equation (1), � denotes in�ation andmc real marginal costs, while Et is the expectations operator

conditional on the available information at time t. The parameter � < 1 is a discount factor, while

� > 0 is a function of the model�s structural parameters, with � = (1��)(1���)=(�+��!). In this

expression, (1 � �) denotes the �rms�probability of adjusting prices optimally each period, � > 1

is the elasticity of substitution across goods, and ! > 0 is the elasticity of �rms�marginal costs to

their own output (a measure of the degree of strategic complementarity in pricing decisions across

�rms). The unpredictable error term u is assumed to be i.i.d., and can be thought of as capturing

potential misspeci�cations in the relationship or shocks to �rms�desired mark-up. Rearranging (1)

gives the following expression for period t in�ation

�t =
�

1 + ��
�t�1 +

�

1 + ��
Et�t+1 +

�

1 + ��
mct + eut: (2)

From either (1) or (2), it is possible to obtain a closed-form representation of in�ation, conditional

on the expected discounted path of real marginal costs. Since the relationship in (2) holds in every

period, the one-period-ahead discounted in�ation expectations can be written as

�Et�t+1 =
��

1 + ��
�t +

�2

1 + ��
Et�t+2 +

��

1 + ��
Etmct+1: (3)

Similarly, the two-period-ahead discounted in�ation expectations are

�2Et�t+2 =
�2�

1 + ��
Et�t+1 +

�3

1 + ��
Et�t+3 +

��2

1 + ��
Etmct+2;

12See Woodford (2003) and Christiano, Eichenbaum, and Evans (2005) for a derivation.
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and so on. Substituting iteratively these expressions into (2) or, equivalently, summing the left-

hand and the right-hand sides of these expressions from time t onward, we obtain the closed form

(CF) representation of the NKPC13

�t = ��t�1 + �
1X
i=0

�iEtmct+i + ut: (4)

The di¤erence between equations (1) and (4) is that the CF representation explicitly incorporates

model-consistent expectations about future in�ation, whereas in (1) expectations about future

in�ation � the second term on the right-hand side of equation (2) � are left unconstrained.

2.1 Estimating the NKPC Structural Parameters

The ultimate goal of the estimation procedure is to provide inference about the NKPC structural

parameters �, �, �, �, and ! (or a subset of these parameters), which we collect in the vector  . The

estimation procedure exploits cross-equations restrictions between the NKPC structural parameters

and the parameters of a reduced-form VAR.14 Estimation of rational expectations models is based

on taking to the data parameter restrictions established by the structural relationships. While

there is a wide variety of estimation methods in the literature, we focus on the two-step minimum-

distance setup in Cogley and Sbordone (2008), which has a long tradition in the estimation of

expectational Euler equations (for a general discussion see Newey and McFadden, 1994).

Consider a (column) vector of variables x that includes, possibly among others, in�ation and

real marginal costs. We assume that the law of motion for x can be represented by a reduced-form

VAR of order p. De�ning the vector zt = (x0t;x
0
t�1; :::;x

0
t�p+1)

0; it is possible to rewrite the VAR(p)

in �rst-order form as

zt = Azt�1 + "z;t; (5)

where A is a square matrix of coe¢ cients with all roots inside the unit circle, and "z is a vector

of i.i.d. residuals.15 For simplicity and without loss of generality, we are omitting constants.16 In

what follows, we assume that the solution to the NKPC model for the variables in x has a reduced-

form representation that is captured by (5). This relationship is then used to form expectations

13The closed form representation of in�ation can also be obtained from equation (1) by forward iteration of Et(�t+j�
��t+j�1), j � 1.
14The estimation procedure follows Sbordone (2002) and Cogley and Sbordone (2008).
15 If xt contains n variables, then zt is a vector of size n � p: Hence the matrix A is (n � p)� (n � p) ; with the VAR

coe¢ cients in the �rst n rows.
16The intercepts play a central role in the NKPC, with time-varying trend in�ation considered in section 3. In the

present setup, they are immaterial.
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about the variables of interest, in�ation and real marginal costs. We can express the conditional

expectation of a variable yt+k 2 xt+k at time t as

Etyt+k = e
0
yA

kzt; (6)

where the vector e0y selects variable yt in zt. Consider then taking expectations as of t � 1 of the

NKPC written in the DE form (1) using the forecasting rule (6). We have

e0�Azt�1 = ���e0�Azt�1 + �e0�Izt�1 + �e0�A2zt�1 + �e0mcAzt�1; (7)

with I denoting an identity matrix that conforms withA. The left-hand side of (7) is the expectation

of in�ation from the reduced-form VAR. The right-hand side is the expectation of in�ation based on

the NKPC model. Equation (7) says that if the NKPC in (1) is the true data generating process for

in�ation, the reduced-form forecast and the NKPC-based forecast for in�ation must be the same.

Imposing that (7) holds for all realizations of z yields a vector of non-linear restrictions involving

the VAR coe¢ cients matrix A and the NKPC structural parameters  :

e0�A = ���e0�A+ �e0�I+ �e0�A2 + �e0mcA � gD(A; ); (8)

or

FD(A; ) � e0�A� gD(A; ) = 00; (9)

where 0 is a column vector of zeros with same size as e�, and the superscript D indicates that the

expressions correspond to the DE speci�cation.

The estimation procedure consists of two steps. The �rst step estimates the law of motion for

x from an unrestricted reduced-form VAR as in (5). This yields an estimated coe¢ cients matrixbA. Given this estimate, the second step involves searching for values of the NKPC parameters  
that minimize the squared deviation of gD(bA; ) from e0� bA, that is17

b D� argmin
 
FD(bA; ) � FD(bA; )0: (10)

The same reasoning applies to the NKPC written in closed form, equation (4). In this case,

time t� 1 expectations of the NKPC conditional on the forecasting rule (6) are

e0�Azt�1 = �e0�Izt�1 + �e
0
mc(I� �A)

�1Azt�1; (11)

17See Gouriéroux, Monfort, and Trognon (1985), and Gouriéroux and Monfort (1995, Ch. 9) for a discussion of
asymptotic least-squares (ALS). E¢ cient ALS estimates would require computation of an optimal weighting matrix
and consistency of bA.

8



and the vector of non-linear restrictions involving the VAR coe¢ cients matrix A and the NKPC

parameters  takes the form

e0�A = �e0�I+ �e
0
mc(I� �A)�1A � gC(A; ); (12)

or

FC(A; ) � e0�A� gC(A; ) = 00: (13)

where the superscript C indicates that the expressions correspond to the CF speci�cation. The

�rst step of the estimation procedure remains the same as before, while the second step involves

searching for values of the NKPC structural parameters  that minimize the squared deviation of

gC(bA; ) from e0� bA, that is
b C� argmin

 
FC(bA; ) � FC(bA; )0: (14)

To summarize, the minimum-distance problems in (10) and (14) are both based on a system

of implicit equations Fi(A; ) = 00, for i 2 fD;Cg. Each system consists of k equations and l

unknowns, where l is equal to the size of the parameter vector  , and k is the size of the square

VAR matrix A.18 This system of equations provides the basis for the estimation method. Hence,

when we replace A with its approximation bA in (10) and (14), the goal is to choose the estimate of

 that makes the vector Fi(bA; ) as close as possible to zero. The minimization problems in (10)
and (14) di¤er, even if the NKPC is the "true" data generating process for in�ation and bA is the

same in both minimizations. The reason for this di¤erence is that A is estimated with sampling

error. Then, as long as the system of equations is over-identi�ed (k > l), the estimates b D and b C
are also going to be di¤erent. It is only in the very special case of exact identi�cation (k = l) thatb D = b C , regardless of bA. With an over-identi�ed system, gD(A; ) equals gC(A; ) only when
A is known, in which case there exists a vector  such that (8) and (12) hold exactly. Then it does

not matter which speci�cation of the NKPC is being estimated, since in�ation forecasts generated

from the reduced-form VAR with the true matrix A �the term �e0�A
2zt�1 on the right-hand side

of (7) �are perfectly model-consistent.

To see how the CF speci�cation imposes model-consistent constraints on expectations that are

18The number of equations in the VAR is given by n, and p is the order of the VAR. Then k = n � p.
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not imposed on the DE form, note that it is possible to write gD(bA; ) as follows
gD(bA; ) � ���e0� bA+ �e0�I+ �e0� bA2 + �e0mc bA

= �e0�I+ �e
0
mc(I� � bA)�1 bA+ �k(bA; )bA

= gC(bA; ) + �k(bA; )bA; (15)

where

k(bA; ) = e0� bA� �e0�I� �e0mc(I� � bA)�1 bA:
It is then apparent that for gD(bA; ) to equal gC(bA; ), the restrictions k(bA; ) = 00 must

hold. These restrictions are model-consistent, and represent all of the constraints on in�ation

expectations�formation implied by the NKPC at any point in time. They need to be satis�ed in

order to obtain the closed-form of the NKPC (see the expression in 13), but they are not exploited

in the di¤erence equation form that yields gD(bA; ). In this latter case, the only information used
to characterize expectations is the unrestricted linear projections obtained through bA, which does
not take explicitly into account that the behavior of future in�ation should also satisfy the NKPC

relationship.

The question of interest, therefore, is how inference about  ; given the estimated bA; changes
when in the second stage of the estimation process, instead of using the di¤erence equation version

of the NKPC, we use other speci�cations that place model-consistent restrictions on expectations.

The CF speci�cation is one of them, but we now turn to other speci�cations (of which the CF is a

limiting case) that use a �nite number of those restrictions and that conceptually fall in between

the DE and CF formulations.

2.2 The E¢ ciency Gains From Imposing Model-Consistent Constraints On In-

�ation expectations

In this subsection we illustrate the e¤ect of placing model-consistent constraints on in�ation ex-

pectations when estimating the DE speci�cation of the NKPC. Suppose that we are interested in

estimating the NKPC in DE form, but we explicitly require that the same equation be valid for

two consecutive periods. The two equations involved in the estimation, therefore, are the following

Et�1�t = Et�1 f��t�1 + �(�t+1 � ��t) + �mctg (16)

Et�1�t+1 = Et�1 f��t + �(�t+2 � ��t+1) + �mct+1g : (17)
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Combining these two relationships yields the following di¤erence equation formulation

Et�1 f�t � ��t�1g = Et�1
�
�2(�t+2 � ��t+1) + ��mct+1 + �mct

	
;

where we have restricted the behavior of Et�1 f�t+1 � ��tg to be model consistent. It is also

possible to impose restrictions on Et�1�t+1 and Et�1�t separately, and this still requires using the

two equations above.19

Equations (16) and (17) can be translated into two sets of cross-equation restrictions, with each

set containing k restrictions:

c0 (A; ) � FD (A; ) = 00 (18)

c1 (A; ) � e0�A
2 � �e0�A+ ��e0�A2 � �e0MCA

2 � �e0�A3 = 00: (19)

Given the de�nitions in (8) and (9), it follows that

c1 (A; ) = c0 (A; ) �A: (20)

In addition, since the square matrix A is full rank, equation (20) implies that the following must

be true

c1 (A; ) = 0
0 , c0 (A; ) = 0

0: (21)

Because of (20) and (21), we do not need to estimate the model parameters taking into account

all of the 2 � k cross-equation conditions in (18) and (19). Those 2 � k conditions are equivalent to

the following k constraints:20

c�1 (A; ) � c0 (A; ) + �c1 (A; ) = 0
0

= FD (A; ) � (I+ �A) = 00. (22)

The minimum-distance estimation of  in this case yields estimates

b D(1)� argmin
 
FD(bA; ) � (I+ � bA) � (I+ � bA)0 � FD(bA; )0; (23)

where the superscript D(1) indicates that we are explicitly imposing that the DE formulation of the

NKPC holds for one additional period.21 The weighting matrix (I+ � bA) � (I+ � bA)0 in (23) forces
19This can be seen by noting that the two conditions in (16) and (17) can also be expressed as in (2) and (3)

respectively, with expectations taken as of time t� 1.
20The use of � facilitates linking the DE and CF problems in the discussion that follows in the main text. But the

coe¢ cient premultimplying c1 (A; ) in (22) does not need to equal �, although it needs to be positive.
21Therefore, b D(0) corresponds to the DE estimate b D from (10).
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the minimum-distance estimation to penalize di¤erently speci�c errors and interactions among the

errors FD(bA; ). The minimization problem in (23) imposes model discipline on in�ation expec-

tations by acknowledging that the NKPC di¤erence equation (1) should also apply at t+1: In this

way, the estimation takes into account that some speci�c violations of the cross-equation restric-

tions FD (A; ) = 00 have greater consequences for in�ation expectations than others. Considering

this fact is especially important when estimating forward-looking models. In contrast, the DE

problem in (10) disregards the relative importance of those errors and interactions. In essence, the

DE speci�cation is more agnostic about the way in which in�ation expectations are formed and

attaches the same importance to all cross-equation restrictions in FD (A; ) = 00.

Of course, we may want to discipline expectations not only one period ahead, but also two

periods ahead. Following the same logic that resulted in (22), the sets of cross-equation restrictions

involved in this problem (a total of 3 � k conditions) are now equivalent to the k conditions

c�2 (A; ) � FD (A; ) �
�
I+ �A+ �2A2

�
= 00:

More generally, we may want to impose model-consistent expectations for up to j � 1 periods

ahead in time. By induction, the set of k cross-equation restrictions is then given by

c�j (A; ) � FD (A; ) �
�
I+ :::+ (�A)j

�
= 00; (24)

and the corresponding estimates are then

b D(j)� argmin
 
c�j (bA; ) � c�j (bA; )0;

with D(j) indicating model-consistent restrictions on expectations for j consecutive additional

periods. It follows that, imposing model discipline on in�ation expectations at any future point in

time, the in�nite number of model-consistent constraints on expectations is then equivalent to the

k conditions:

c�1 (A; ) � lim
j!1

FD (A; ) �
�
I+ :::+ (�A)j

�
= FD (A; ) � (I� �A)�1 = 00: (25)

Combining the de�nitions (8), (9), (12), and (13), it is possible to show that the DE and CF

cross-equation restrictions are related by

FD (A; ) � (I� �A)�1 = FC (A; ) :

12



The k cross-equation restrictions c�1 (A; ) = 0
0 are then the very same restrictions that need to

hold for the closed-form NKPC:

c�1 (A; ) = F
C (A; ) = 00: (26)

Hence, as long as the NKPC model provides a good characterization of the data for every j

consecutive periods, the k cross-equation restrictions in c�j (A; ) provide more information about

the model dynamics than the k restrictions in FD (A; ) derived from the DE problem alone. This

additional information is the source of the gains in precision from estimating the CF speci�cation

versus the DE speci�cation when A is unknown and needs to be estimated. The discussion so far

also indicates that whenever the closed form is too complex to solve or too di¢ cult to approximate

reasonably well, it is possible to improve on the DE estimates by imposing additional restrictions on

expectations. These take the form of the DE relationship being iterated forward for j � 1 periods,

possibly a much easier task than computing the closed form. We have shown that this is equivalent

to imposing the k cross-equation restrictions c�j (A; ) = 0
0.

In sum, the results in this section are related to the literature that illustrates the gains in

estimation e¢ ciency from imposing additional restrictions (see Gouriéroux, Monfort, and Trognon,

1985, and Kodde, Palm, and Pfann, 1990). In our context, we show that this gain in e¢ ciency can

be obtained by imposing additional model-consistent restrictions on expectations. This is especially

desirable in the estimation of forward-looking models, as their dynamics depend crucially on how

expectations are formed. What is special about our setup is that all of the expectational constraints

can be collapsed into k cross-equations restrictions, no matter how many these constraints are.

Indeed, we have shown that the closed-form version of the NKPC also exploits k cross-equation

restrictions that characterize model-consistent behavior over the entire expected path of in�ation,

ad in�nitum.

2.3 Monte Carlo Simulations

We now turn to analyze the properties of the estimated vectors of parameters b D and b C obtained
in (10) and (14), respectively, in the context of a Monte Carlo exercise. We are interested in

ascertaining whether the use of the closed form instead of the di¤erence equation version of the

NKPC yields estimates of  that, in small samples, are noticeably di¤erent in terms of precision.

We also consider the estimated vectors b D(j) for small values of j � 1, in order to observe the
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impact of sequentially adding model discipline on expectations. In particular, we are interested to

assess how these estimates relate to b D and b C .
We consider �rst a case in which the estimated NKPC is the true data generating process, so

that there are no misspeci�cation issues. We then consider one case of misspeci�cation that we

deem relevant in actual data. Speci�cally, we generate data from an NKPC where lagged in�ation

enters as a weighted average of in�ation at time t� 1 and t� 2 through the indexation mechanism,

but then estimate an NKPC speci�cation that only allows for lagged in�ation at time t� 1.22

2.3.1 No misspeci�cation

The arti�cial data for in�ation in the Monte Carlo exercise are generated according to the NKPC

(1). For the marginal cost process, we use a simple univariate AR(2) law of motion. For each of the

Monte Carlo repetitions, we estimate a reduced-form VAR with two lags in in�ation and marginal

costs. The VAR estimation is carried out equation-by-equation via OLS. This provides us with an

estimated matrix bA(n), where n denotes the n-th repetition of the Monte Carlo experiment. With
this reduced-form coe¢ cients matrix, we can then estimate b D(n) using (10), and b C(n) using (14).23

Several considerations about this Monte Carlo exercise are in order. First, note that the NKPC

we are estimating, regardless of the chosen representation, is the true data generating process for

in�ation. In other words, there are no misspeci�cation issues in this exercise. Second, the reduced-

form process for real marginal costs, a univariate AR(2), is stylized but not overly counterfactual.

The improvement in adjusted R2 is only 1 percent when we move from the univariate AR(2)

representation of marginal costs to a multivariate reduced-form representation that, in addition

to two lags of real marginal costs, also includes two lags of in�ation, the federal funds rate, and

GDP growth.24 The di¢ culty in working with this larger information set is that, in order to

generate simulated in�ation data, the NKPC in (1) needs to be solved �rst using standard rational

expectations solution methods. The solution entails a constrained reduced-form representation

of in�ation that depends on  and on the parameters describing the unconstrained reduced-form

22A richer indexation mechanism that depends on in�ation at time t�1 and t�2 is not without economic content.
Such a scheme may smooth transitory movements and be more apt to capture more persistent components of in�ation.
23 In this exercise, OLS estimates bA(n) are consistent, as there are no misspeci�cation issues.
24The univariate AR(2) representation of real marginal costs we use, which is given by equation (27) in the text

(where a constant has been omitted), has an adjusted R2 of 0:835 over the period 1961:Q1 to 2003:Q4. Granted, if
real marginal costs are the relevant driving process for in�ation, then changes to the stance of monetary policy should
a¤ect real marginal costs. In other words, one would expect the federal funds rate to be a relevant component of the
dynamics of real marginal costs. We consider in the next subsection a Monte Carlo exercise with a larger information
set that also includes the federal funds rate.
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dynamics of the other variables. When using an augmented information set which, in addition

to in�ation and marginal costs, also includes the federal funds rate and GDP growth, it is not

possible to obtain a unique or stable rational expectations solution for a range of relevant values

of  .25 For this to be feasible, it is necessary to constrain the dynamics of some of the variables

in the information set. Therefore, we �rst report results from Monte Carlo simulations where the

data-generating process for real marginal costs is a simple univariate AR(2). In this case, it is

possible to �nd a stable and unique solution for the NKPC model under a wide range of values for

the vector  . We later show that our results do not change when the reduced-form dynamics of

real marginal costs rely on a larger set of variables.

The AR(2) speci�cation we use to generate the arti�cial data for marginal costs is the following

mcAt = 0:98 mc
A
t�1 � 0:05 mcAt�2 + uAmc;t; (27)

where variables have a superscript A to denote that these are arti�cially generated data. The

AR(2) coe¢ cients are obtained from estimating the process on actual U.S. data. With the AR(2)

representation for real marginal costs (27), it is easy to derive the constrained, reduced-form solution

from which the arti�cial data for in�ation are generated, which is given by

�At = ��At�1 +
0:98� 0:05�

1� 0:98� + 0:05�2
�mcAt�1 �

0:05

1� 0:98� + 0:05�2
�mcAt�2 + �u

A
mc;t + u

A
�;t: (28)

This expression is a function of the vector  of structural parameters in the NKPC.

The arti�cial data are generated by drawing shocks from a multivariate normal distribution,

where the variance-covariance structure of the shocks is estimated on actual data, given the law

of motions described in (27) and (28).26 For each Monte Carlo repetition we discard the �rst

500 arti�cially generated observations.27 We then estimate a reduced-form VAR of order 2 on the

arti�cial data.28 The sample length for the VAR estimation is set at S = 176, which corresponds
25 In�ation, real marginal costs, the federal funds rate, and GDP growth are the four variables that enter the VAR

considered in Cogley and Sbordone (2008).
26The estimation period is 1961:Q1 to 2003:Q4. We estimate the errors in (27) and (28), with � = 0:5 and � and

�; as described later in the text. For the purpose of estimating the shocks and obtaining their variance-covariance
matrix, we include a constant in (27) and in (28). The qualitative features of the Monte Carlo exercises are not
a¤ected by reasonable changes in the variance-covariance structure of the shocks used when generating the data.
27When generating the arti�cial data, we take zeros as initial conditions for in�ation and marginal costs. This

is equivalent to assuming that in�ation and marginal costs are at their average levels, since we are not including
constants in (27) and (28).
28The model-based reduced-form coe¢ cients matrix has zeros for the �rst and second lags of in�ation in the marginal

costs equation (27), and a zero for the second lag of in�ation in the in�ation equation (28). However, when estimating
the reduced-form VAR on the simulated data, we are not imposing those zero restrictions on the coe¢ cients matrix.
In other words, we are assuming that the econometrician knows that the system is fully characterized by in�ation
and marginal costs, but the econometrician does not know that marginal costs follow a univariate AR(2) process.
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to 44 years of data at a quarterly frequency (roughly the sample size used to estimate the NKPC

on actual data).

Once we have estimated the VAR coe¢ cients matrix bA(n), we proceed to estimate b D(n) using
(10), and b C(n) using (14). To keep matters simple, we set � equal to 0:99 and assume that this
parameter value is known and thus not estimated. The two parameters in  that are left to estimate

are, therefore, � and �. As shown earlier, � is a function of the parameters (�; �; !; �) and in this

setup only one of the three parameters (�; �; !) can be estimated independently. We set � equal

to 9:8 and ! equal to 0:43. We thus estimate the degree of price indexation � and the probability

� that a �rm will not be able to reset prices optimally in a given period. In generating the data,

we set � equal to 0:588,29 and consider di¤erent values for � � speci�cally, � = f0:1; 0:3; 0:5; 0:7;

0:9g � to assess whether the degree of indexation a¤ects the properties of the estimated b D(n) andb C(n).
Results of the Monte Carlo exercises are depicted in Figures 1 and 2, which compare the

distributions of (b�D(n); b�C(n)) and (b�D(n);b�C(n)), respectively, for di¤erent parametrizations of �. Each
Monte Carlo exercise consists of 500 repetitions. It is apparent from the pictures that the CF

estimates of the NKPC are better centered. This is especially clear when the true � in the in�ation

data-generating process gets closer to unity. Then, the small-sample bias in estimating � from the

DE formulation of the NKPC becomes noticeable, with an extremely large mass of estimates at

� = 1. An estimated value of � equal to unity implies an estimate of � equal to zero. In other words,

the DE formulation largely fails to detect that marginal costs are the driving process for in�ation

when the degree of indexation becomes relatively high. Instead, the corresponding distributions for

the estimated � under the CF speci�cation of the NKPC do not display mass at unity.

More importantly, the �gures also show that the CF estimation of the NKPC produces esti-

mates that are much more e¢ cient. The range between the 5th and the 95th percentiles in the

distribution of b�C can be three times smaller than the same interquantile range in the distribution
of b�D. Comparing b�C with b�D, the gain in e¢ ciency is somewhat less pronounced but still evident,
especially so when the true � in the in�ation data-generating process approaches unity. For exam-

ple, when the true � is set equal to 0:7, the range between the 5th and the 95th percentiles in the

distribution of b�C is less than half the same range in the distribution of b�D. It is worth recalling
that the estimated coe¢ cients matrix bA(n) from the reduced-form VAR that is used for the esti-

29The values for �, ! are common in the literature. The values of � and � match the median estimates in Cogley
and Sbordone (2008).
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mation of (�; �) is the same in the two minimization problems (10) and (14). The di¤erence in the

precision of the estimates is thus only the result of the CF speci�cation imposing model-consistent

expectations about future in�ation, as discussed previously.

We stressed in the previous section that the e¢ ciency of the DE estimates can be improved

by imposing j � 1 additional restrictions on in�ation expectations without resorting to the closed

form. In particular, we showed that the set of cross-equation restrictions in this case is

c�j (A; ) � FD (A; ) �
�
I+ :::+ (�A)j

�
= 00:

Figure 3 illustrates that a small j is su¢ cient to approach the e¢ ciency of the CF estimates,

which corresponds to the limiting case when j goes to in�nity. Setting j = 4 already generates a

substantial improvement in e¢ ciency compared to the DE estimates (which correspond to j = 0).

The �gure also shows that in some instances the gains in e¢ ciency from just having j = 1 are

quite large. Note that, at quarterly frequency, j = 4 means that we are imposing model-consistent

constraints on the evolution of expected future in�ation for only one year. We �nd this requirement

rather conservative for a model of in�ation dynamics.

2.3.2 Robustness

We now check that the large gains in e¢ ciency from estimating the closed form of the NKPC in

our baseline Monte Carlo exercise are still present when considering alternative speci�cations of

the reduced-form dynamics for marginal costs. We illustrate two cases that we deem especially

important. In the �rst case, the information set is still restricted to in�ation and marginal costs,

but we allow feedback from lagged in�ation in the evolution of marginal costs over time. This

is a particularly relevant case because the NKPC, as shown in (4), implies that current in�ation,

after controlling for the impact of lagged in�ation, is a predictor of the present discounted value

of current and future marginal costs. The econometrician may not observe all of the variables

useful to forecast marginal costs, but knowing in�ation is enough because in�ation reveals to the

econometrician the forecast of the present discounted value of current and future marginal costs.

Therefore, an implication of the NKPC is that in�ation should Granger-cause marginal costs when

�rms use information for forecasting marginal costs beyond the history of that variable.30 To

capture such a feature of the NKPC model, we now assume that, instead of following an AR(2)

30This observation, in the context of a consumption problem, was formulated �rst by Campbell (1987).
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process, the reduced-form equation for marginal costs is given by

mcAt = 0:17 �
A
t�1 + 0:14 �

A
t�2 � 0:31 �At�3 + 0:90 mcAt�1 + 0:14 mcAt�2 � 0:13 mcAt�3 + uAmc;t: (29)

Equation (29) constrains the sum of the coe¢ cients on lagged in�ation to sum to zero. This is done

to ensure uniqueness and stability of the solution for in�ation, given plausible parametrizations

of  . The process in (29) is data consistent once the zero-sum restriction on the coe¢ cients for

lagged in�ation is imposed.31 The Monte Carlo procedure follows the same steps as before, with the

modi�cation that the estimated reduced-form VAR in each replication is now of order 3. The para-

meterization of  is the same as in our baseline exercise. The results for � 2 f0:1; 0:3; 0:5; 0:7; 0:9g

are shown in Figures 4 and 5. The distributions of b�C and b�C are tighter and better centered than
the corresponding distributions for b�D and b�D. In all, these �ndings are very similar to the baseline
case in which there is no feedback from lagged in�ation in the dynamics of marginal costs.

Using a larger information set, which in addition to in�ation and marginal costs, also includes

the federal funds rate and GDP growth, does not change the conclusion that estimates of � and �

obtained from the CF speci�cation of the NKPC are better centered and more e¢ cient than the

corresponding estimates obtained from the DE speci�cation. This is shown in Figures 6 and 7 for

� 2 f0:1; 0:3; 0:5; 0:7; 0:9g. In this exercise, real marginal costs depend only on lagged marginal

costs and lagged GDP growth:

mcAt = �0:07 g
y;A
t�1 + 0:18 g

y;A
t�2 + 0:16 g

y;A
t�3 + 0:80 mc

A
t�1 + 0:37 mc

A
t�2 � 0:21 mcAt�3 + uAmc;t,

where gy denotes GDP growth. This process is consistent with actual data once we impose the

restrictions that lagged in�ation and the lagged federal funds rate do not enter the reduced-form

process for real marginal costs. Again, we place these restrictions to ensure uniqueness and stability

of the rational expectations solution for in�ation, given plausible parametrizations of  . The

reduced-form data-generating processes for GDP growth and the federal funds rate include three

lags of each variable in the information set and are consistent with actual data. In the Monte Carlo

procedure, we use an estimated reduced-form VAR of order 3 to retrieve bA(n) in each replication.
The estimation results, overall, are very similar to the results obtained in the baseline exercise.

31The process in (29) with the zero restriction on the sum of coe¢ cients for lagged in�ation was estimated over
the period 1961:Q1 to 2003:Q4. There is some evidence in the data, though not overwhelming, in favor of such a
speci�cation: In an unconstrained regression of real marginal costs on three lags of in�ation and three lags of marginal
costs, the test of the hypothesis that the sum of coe¢ cients on lagged in�ation is di¤erent from zero has a p-value of
0:126.
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2.3.3 Misspeci�cation of the indexation mechanism

We consider here a particular form of misspeci�cation in the estimation of the NKPC. The true

NKPC is now given by the following expression

�t = �(��t�1 + (1� �)�t�2) + �(Et�t+1 � �(��t + (1� �)�t�1)) + �mct + ut: (30)

In this case, �rms that do not reset their prices optimally in a given period follow an indexation

mechanism that is not based on last period�s in�ation only, but on a weighted average of in�ation

over the past two periods, where 0 � � � 1 denotes the weight placed on last period�s in�ation.

The reason for considering such a speci�cation is that estimating the in�ation process as a

function of two lags of in�ation and two lags of real marginal costs over the period 1961:Q1 to

2003:Q4 yields the following OLS estimates

�t = 0:51 �t�1 + 0:36 �t�2 + 0:096 mct�1 � 0:078 mct�2 + "t; (31)

(0:071) (0:070) (0:033) (0:034)

where standard errors are in parenthesis and "t is a reduced-form error.32 The second lag of

in�ation is highly signi�cant and, while not as large as the �rst lag, economically relevant. This

result, together with the fact that lags of in�ation are not especially important in an estimated

reduced-form equation for real marginal costs over the same period, raises the possibility that an

NKPC speci�cation as in (30) provides a better characterization of the data than the speci�cation

in (1), which constrains � to unity.

We investigate the misspeci�cation bias that arises when the data-generating process for in-

�ation is an NKPC with � < 1 as in (30), but the econometrician estimates an NKPC with �

constrained to equal unity. For this purpose, we set up a Monte Carlo exercise that is very similar

to our baseline exercise in section 2.3.1. In�ation and marginal costs are the only two variables in

the information set. Real marginal costs follow the same reduced-form AR(2) process as in (27). In

generating the data, we set � equal to 0:6. The other parameters (�,�,�,!) and the range of values

for � are set as before. The VAR used to retrieve the matrix bA(n) in each Monte Carlo replication
is of order 2. The misspeci�cation in this exercise arises from the fact that the estimated NKPC,

regardless of the speci�cation used, constrains � to unity.
32Augmenting the information set to include lagged GDP growth and lagged policy rates does not materially alter

the estimates of the coe¢ cients on lagged in�ation in (31). The median estimates of the coe¢ cients on the two
lags of in�ation in the in�ation equation from the reduced-form VAR used by Cogley and Sbordone (2008), which is
estimated with Bayesian methods, are 0:40 and 0:32; respectively.
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Estimation results for � and �, with � = f0:1; 0:3; 0:5; 0:7; 0:9g, are reported in Figures 8 and 9,

which compare the distributions of (b�D(n); b�C(n)) and (b�D(n);b�C(n)) for the di¤erent parametrizations of
�.33 It is apparent that when the NKPC is estimated in the DE form, the estimates (b�D;b�D) are
biased. The estimate b�D is upward biased, with the estimation procedure often failing to identify
real marginal costs as the driving process for in�ation. The estimate b�D is downward biased. In

other words, the estimates point to less indexation to past in�ation than is actually present in

the true data-generating process. When the NKPC is estimated in closed form via the minimum-

distance problem (14), estimates for � are well centered. There is some downward bias, instead,

when estimating �. However, the bias is not as large as with the DE speci�cation, as the �gure

clearly shows.

In all, the results in this section highlight the importance of correctly specifying the indexation

rule in the NKPC. This is true both in the DE and in the CF speci�cations of the NKPC, though

it is apparent that the CF version is less prone to su¤er from this misspeci�cation bias than the

DE counterpart.

3 Estimates of the NKPC with Time-Varying Trend In�ation

Given our Monte Carlo �ndings, we now turn to estimating an NKPC with time-varying trend

in�ation on actual data. We �rst provide a brief description of the DE and the CF representations

(and the cases in between) of the NKPC in this framework, and highlight the important di¤er-

ences with the zero-trend in�ation setup considered in the previous section. We then discuss the

estimation method and the empirical �ndings.

3.1 Model Setup

We adapt the framework in Cogley and Sbordone (2008) to allow for two lags of in�ation in the

indexation mechanism. This modi�cation, while technically minor, is important from an empirical

standpoint as it can reduce the e¤ect of misspeci�cation bias on the estimates. The indexation

mechanism takes the form

Pt(i) = (�
�
t�1�

1��
t�2 )

�Pt�1(i);

33For brevity, we discuss in the text only the two polar speci�cations. Estimates for the intermediate cases follow
the same pattern (relative to the DE and CF counterparts) as in Section 2.3.1. Results are available from the authors
upon request.
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where Pt(i) is the price set by �rm i when it cannot reoptimize at time t, and �t = Pt=Pt�1 is the

period t gross rate of in�ation. As in section 2, the parameter � 2 [0; 1] measures the degree of

indexation, while � 2 [0; 1] represents the weight given to t� 1 aggregate in�ation relative to t� 2

aggregate in�ation. This indexation mechanism nests the one-lag in�ation indexation case when

� = 1. The setup with time-varying trend in�ation di¤ers from the simple NKPC equation of the

previous sections. Previously, the NKPC was derived by log-linearizing the �rst-order conditions

of the Calvo pricing model around a zero-in�ation steady state. The log-linearization is now taken

around a steady state where trend in�ation is an exogenous process that evolves as a random walk.

The distinguishing feature of this type of setup, compared with the more standard setup with zero

trend in�ation, is that the coe¢ cients in the NKPC are a function of trend in�ation and, as a

result, are time-varying.

We leave the full details of the derivation of the NKPC to Appendix A. In the rest of this

section, we provide the equilibrium relationships of the model with time-varying trend in�ation

that we use at the estimation stage. The �rst of these relationships is the restriction between trend

in�ation and steady-state real marginal costs, which takes the form:34

�
1� ��(1��)(��1)t

�(1+�!)=(1��) "1� �qgy��(1+!)(1��)t

1� �qgy�(��1)(1��)t

#
= (1� �)(1+�!)=(1��) �

� � 1mct; (32)

where q is the steady-state real discount factor, gy is the steady-state growth rate of output, �t is

time t gross trend in�ation, mct denotes time t trend real marginal costs, and the other parameters

are de�ned in the previous sections. Denoting by a hat the log-deviation of a variable from its

steady-state value, we can write the NKPC as follows

b�t = ��(b�t�1 � bg�t ) + �(1� �)(b�t�2 � bg�t�1 � bg�t ) + �tEt(b�t+1 � ��b�t � �(1� �)(b�t�1 � bg�t ))
+�tcmct + t bDt + u�;t; (33)

where bg�t = ln(�t=�t�1) is the growth rate of trend in�ation, u�;t is a structural shock, and bD is

de�ned recursively as

bDt = '1;tEt(bqt;t+1+ bgyt+1) +'1;t(�� 1)Et fb�t+1 � ��b�t � �(1� �)(b�t�1 � bg�t )g+'1;tEt bDt+1: (34)
34See equation (7) in Cogley and Sbordone (2008). For ease of comparison and reference, we preserve their notation

whenever possible.
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Some coe¢ cients in (33) and (34) are time-varying. Compared to the standard NKPC speci�cation

with zero trend in�ation, this speci�cation involves, in addition to the growth rate in trend in�ation,

other terms summarized by bD.
It is possible to obtain an exact closed form (ECF) that expresses in�ation as a function of its

past and the driving process. In contrast with the �xed-coe¢ cients NKPC, this driving process is

a linear combination of real marginal costs (current and expected) and expected discounted real

output growth:

b�t = �� (b�t�1 � bg�t ) + � (1� �) �b�t�2 � bg�t�1 + bg�t �
+

1X
j=0

�j1;t

1X
i=0

�i2;tEt fb�t+i+jg+ u�;t; (35)

b�t+i+j � �t
�cmct+i+j � '1;tcmct+1+i+j�+ t'1;t �bqt+i+j;t+1+i+j + bgyt+1+i+j� :

The derivation of (35), and the de�nition of
�
�1;t; �2;t

	
are left to Appendix C.35 This appendix

also discusses how this expression can be interpreted as a limit that imposes all model consistency

restrictions on expectations, just as with the constant coe¢ cients case from section 2.

We provide estimates of this exact closed form in section 3.5. These estimates, like the esti-

mates of the DE speci�cation, show that t is typically small and unimportant from an economic

standpoint. The main channel through which expected future conditions a¤ect in�ation is mainly

real marginal costs (and their expected path). It is then possible to derive a simpler expression

that imposes model-consistent restrictions only on terms that are una¤ected by t: In particular,

we can iterate forward equation (33) to obtain an in�nite-horizon speci�cation that takes the form

b�t = ��(b�t�1 � bg�t ) + �(1� �)(b�t�2 � bg�t�1 � bg�t )
+�t

1X
i=0

�itEtcmct+i + t 1X
i=0

�itEt
bDt+i + u�;t; (36)

which we refer to as the CF version of the NKPC. This relationship imposes restrictions at each

point in time on the expected dynamics of non-predetermined in�ation, in the same spirit of the

exact closed form. In particular, equation (36) explicitly isolates the part of in�ation that is

35 In deriving (35) and (36) below, and as in Cogley and Sbordone (2008), expectations are formed using an
"anticipated utility" framework (see Kreps, 1998, and Cogley and Sargent, 2008), where at each point in time agents
expect all model coe¢ cients to stay constant at their current values going forward. This implies, for instance, that

Et
n
�it+i�

j
t+jb�t+i+jo = �it�jtEtb�t+i+j

for any integers i; j > 0.
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forward-looking, which is the essential component of this intertemporal model. To see this, note

that the non-predetermined part of in�ation is36

bBt � b�t � � ��(b�t�1 � bg�t ) + (1� �)(b�t�2 � bg�t�1 � bg�t )� ;
and that the DE speci�cation can be written as

bBt = Et

n
�t bBt+1 + �tcmct + t bDto+ u�;t:

Equation (36) imposes model restrictions on the expected evolution of Bt+j as follows37

Et

n bBt+jo = Et

n
�t+j bBt+j+1 + �t+jcmct+j + t+j bDt+jo ; for any j � 1: (37)

The set of equations in (37) provides one possible way of consistently expressing the restrictions

that the model places on expectations. It is possible to be more exhaustive in requiring model

discipline by also recognizing that bDt+j depends on bBt+j+1: This would fully restrict the evolution
of expectations, as in the exact closed-form solution. But as long as the model is correct, imposing

model consistency through (37) adds useful model information without the extreme demands of an

exact closed-form solution. This information is not explicitly taken into account in the DE version

of the NKPC, and conceptually it is introduced in the same way as in the standard constant

coe¢ cients setup with zero trend-in�ation. Moreover, the quasi-closed form in (36) becomes the

exact closed form when t = 0 for all t. We later show that t is estimated to be statistically

and economically insigni�cant, and that setting it equal to zero yields the same deep parameter

estimates for the NKPC.38 Also, the estimates from the exact closed form are remarkably close

to the estimates from the CF speci�cation even when t is not forced to be zero. This indicates

that the additional restrictions that the exact closed form imposes over (36) are not critical for

estimating the NKPC structural parameters.

Our discussion so far has assumed that the present discounted values in (36) are well de�ned.

We address the issue concerning convergence of these geometric series in detail in section 3.4.

36The term bg�t is exogenous, as trend in�ation is modeled as an exogenous process.
37This restriction is completely explicit on the impact that cmct+j has on non-predetermined in�ation, bBt+j , sincebDt+j does not depend on bBt+j .
38Given our estimates of trend in�ation and the median estimates of the NKPC deep parameters, jtj is typically

below 0:001. For instance, 99.9 percent of the exact closed-form estimates satisfy jtj < 0:001:
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3.2 Estimation Approach

We compare estimates of the deep structural parameters  =(�; �; �; �) obtained from four types of

speci�cations: The DE form (33), the CF representation (36), the cases with only a �nite number

of model restrictions on expectations that fall in between the DE and the CF speci�cations, and

the ECF solution. The two-step estimation procedure has already been discussed in section 2.1.

In the present context in which trend in�ation is time-varying, the reduced-form VAR has drifting

coe¢ cients (see Cogley and Sbordone, 2008). The VAR in �rst-order form can then be written as

zt = �t +Atzt�1 + "z;t; (38)

where "z;t is a possibly heteroskedastic but serially uncorrelated error vector and the coe¢ cients

in �t and At are assumed to evolve as a random walk. The evolution of the coe¢ cients in At is

constrained so that the roots of At at each point in time lie inside the unit circle. Using the VAR

in (38), the forecasting rule (6) is modi�ed as follows

Etbyt+k = e0yAktbzt; (39)

where bzt is the vector of variables expressed in deviations from the time-varying trends

bzt � zt � (I�At)�1�t;
and e0y is the selection vector for variable yt in zt. Given the forecasting rule (39) and equations (33)

and (34), we obtain the conditional expectation of in�ation in the DE form, based on information

at t� 2; as follows

e0�A
2
t�2bzt�2 = e�D1;t�2e0�At�2bzt�2 + (1� �)e�D2;t�2e0�bzt�2 + e�Dt�2e0mcA2t�2bzt�2

+dD1;t�2e
0
�A

3
t�2bzt�2 + dD2;t�2'1;t�2e0�Jt�2A4t�2bzt�2

+dD3;t�2(e
0
QJt�2A

2
t�2bzt�2 + e0gyJt�2A3t�2bzt�2); (40)

where

Jt � (I�'1;tAt)�1: (41)

We take expectations as of t�2 because the indexation mechanism is based on two lags of in�ation,

and this allows us to ignore the terms involving the growth rate of trend in�ation.39 The full

39As already mentioned, trend in�ation evolves as a (driftless) random walk, and therefore the expected future
growth rate of trend in�ation is zero.
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derivation of (40) and the de�nition of coe¢ cients is left to Appendix B. The same conditions

ensuring that the steady-state relationship (32) is well de�ned imply that
��'1;t�� < 1:40 This, together

with the fact that the roots of At are constrained to lie inside the unit circle, guarantees that the

series I + '1;tAt + '21;tA
2
t + ::: , is convergent and can be compactly written as in equation (41).

The vector of cross-equation restrictions implied by the conditional expectation in (40) is then

e0�A
2
t�2 = e�D1;t�2e0�At�2 + (1� �)e�D2;t�2e0�I+ e�Dt�2e0mcA2t�2

+dD1;t�2e
0
�A

3
t�2 + d

D
2;t�2'1;t�2e

0
�Jt�2A

4
t�2

+dD3;t�2(e
0
QJt�2A

2
t�2 + e

0
gyJt�2A

3
t�2)

� gD(�t�2;At�2; ); (42)

which we can write as

FD1 (�t;At; ) � e0�A2t � gD(�t;At; ) = 00;8t:

In contrast, for the CF speci�cation of the NKPC in (36) the conditional expectation of in�ation

based on information at t� 2 is now

e0�A
2
t�2bzt�2 = e�C1;t�2e0�At�2bzt�2 + (1� �)e�C2;t�2e0�bzt�2 + e�Ct�2e0mcKt�2A

2
t�2bzt�2

+dC0;t�2e
0
�Kt�2At�2bzt�2 + dC1;t�2e0�Kt�2A

2
t�2bzt�2

+dC2;t�2e
0
�Kt�2A

3
t�2bzt�2 + dC2;t�2'1;t�2e0�Kt�2Jt�2A

4
t�2bzt�2

+dC3;t�2(e
0
QKt�2Jt�2A

2
t�2bzt�2 + e0gyKt�2Jt�2A

3
t�2bzt�2); (43)

where

Kt � (I� �tAt)�1: (44)

We leave the derivation of (43) and the de�nition of coe¢ cients to Appendix B. It is important to

stress that for the series I + �tAt + �2tA
2
t + ::: , to have a representation as in (44), the roots of �tAt

need to lie inside the unit circle, that is k�tAtk < 1. This is not guaranteed by model conditions

alone, and it is therefore an empirical issue. Still, if this condition does not hold, the NKPC is

incompatible with any structural model with a reduced-form VAR representation as in (38), unless

one is willing to make additional assumptions on other structural equations besides the NKPC. As

we discuss in Appendix D, the reduced-form VAR would instead involve an in�nite number of lags of

40These conditions are given by the inequalities (39) and (40) in Cogley and Sbordone (2008), which we also impose
at the estimation stage.
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the endogenous variables, or equivalently the error term would have a moving average component.

Neither of these two representation would be consistent with the law of motion in (38). Then,

trying to match the cross-equation restrictions of the NKPC to a reduced-form VAR representation

(38) that the model cannot possibly admit would invalidate the estimation procedure. In essence,

the estimation procedure adopted here (and in Cogley and Sbordone, 2008) assumes a reduced form

as in (38), and hence implies that k�tAtk < 1: This condition is only necessary for the VAR in

(38) to be valid (as we show in section 3.5), but empirical violations of this condition would render

meaningless the estimates for all the speci�cations we consider.41 In the discussion of the empirical

results we show that the CF estimates typically satisfy this condition, while the DE estimates do

not. We also provide the necessary and su¢ cient condition for the validity of the �rst stage (the

estimation of (38)) when discussing the ECF estimates, and reach the same conclusion.

The vector of cross-equation restrictions implied by the conditional expectation in (36) is given

by

e0�A
2
t�2 = e�C1;t�2e0�At�2 + (1� �)e�C2;t�2e0�I+ e�Ct�2e0mcKt�2A

2
t�2

+dC0;t�2e
0
�Kt�2At�2 + d

C
1;t�2e

0
�Kt�2A

2
t�2

+dC2;t�2e
0
�Kt�2A

3
t�2 + d

C
2;t�2'1;t�2e

0
�Kt�2Jt�2A

4
t�2

+dC3;t�2(e
0
QKt�2Jt�2A

2
t�2 + e

0
gyKt�2Jt�2A

3
t�2)

� gC(�t�2;At�2; ); (45)

and the relevant distance for the estimation is

FC1 (�t;At; ) � e0�A2t � gC(�t;At; ) = 00:

As we already discussed, the function gC(�t;At; ) imposes model-consistent restrictions that are

not captured in gD(�t;At; ):

When trend in�ation varies over time, the long-run relationship given by equation (32) provides

an additional condition that is minimized at the estimation stage for all speci�cations. Correspond-

ingly, we de�ne

F2(�t;At; ) �
�
1� ��(1��)(��1)t

�(1+�!)=(1��) "1� �qgy��(1+!)(1��)t

1� �qgy�(��1)(1��)t

#
�(1��)(1+�!)=(1��) �

� � 1mct = 0
0:

41This is an issue that arises in limited information estimation, when estimates for At and �t are obtained at
di¤erent stages.
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The complete set of cross-equation restrictions that need to be satis�ed is then given by

F h(�) �
h
F h
1 ; :::;F h

T

i
for h � fD; Cg ;

F h
t �

h
F h
1 (�t;At; ) ; F2 (�t;At; )

i
;

where

� �f�t;AtgTt=1 :

The �rst step of the estimation procedure uses the Bayesian method in Cogley and Sargent

(2005) to characterize the posterior distribution of � from a set of M estimates f b�igMi=1. In the

second step we obtain the structural parameter estimates

b hi � argminF h( b�i) � F h( b�i)
0 for i = 1; ::;M;

where h indicates the di¤erent type of NKPC speci�cations being considered. These speci�cations

are given by the DE form (h = D), the CF formulation (h = C), and the exact closed form (h =

ECF ). The cross-equation restrictions for the exact closed-form case are discussed in Appendix

C, as their derivation o¤ers little additional insight to the discussion here.42 In addition to these

speci�cations, we estimate b D(j)i ; which impose model discipline on expectations of future in�ation

for (a �nite number of) j � 1 consecutive periods. The cross-equation restrictions involved in this

case can be obtained by postmultiplying the DE restrictions in (42) by (I + �tAt + ::: + �jtA
j
t ).

These formulations are therefore in between the DE and the CF (j ! 1) speci�cations, which

correspond to j = 0 and j !1, respectively. They are important because they gauge the impact

of imposing model discipline on expectations without resorting to the extreme requirements of the

closed form. In addition, they do not impose the assumption that k�tAtk < 1, which is used to

derive the CF estimates. In this dimension, their underlying assumptions are the same as those of

the DE estimates, and as long as j is small, the roots of �tAt are not a source of concern. Likewise,

it remains true that a violation of the condition k�tAtk < 1 would make the �rst-stage estimation

incompatible with the second stage.

We use the same data as in Cogley and Sbordone (2008).43 The technical aspects of the �rst-

stage estimation and the data are described in their paper. We provide results for their same sample

period, but as a robustness check we also report sub-sample (post-1983) �ndings. Here, we just

42Appendix C also links explicitly the analysis of the model with time-varying trends and the �xed-coe¢ cients
model from section 2.
43These data and Cogley and Sbordone�s code, upon which our code builds, are available at the AEA website.
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mention that the quarterly reduced-form time-varying VAR is of order 2 and has four variables:

in�ation, real marginal costs (as proxied by the labor share), output growth, and a nominal discount

factor, based on the federal funds rate. Because the �rst-stage Bayesian estimation yields an entire

posterior distribution f b�igMi=1, the second stage also provides a distribution of estimates fb hi gMi=1,
where h denotes the type of speci�cation we consider. The number of ensembles M is set to 5,000,

and the same ensembles are used to compute the distributions of all four types of second-stage

estimates.

3.3 Estimation Results

Tables 1 and 2 display our main full-sample (from 1960:Q1 to 2003:Q4) estimation results.44 In

Table 1, we compare the DE and CF estimates, and in Table 2 we focus on the important cases that

lie in between the DE and CF speci�cations. Speci�cally, Table 2 reports the estimates fb D(j)i gMi=1
when j = 2; 4; 6; and 8 quarters. The exact closed-form (ECF) estimates are discussed in section

3.5. Throughout our empirical analysis, the parameters � and ! are set as in section 2.45 In Table

1, we start by replicating Cogley and Sbordone (2008) baseline estimates, which are reported in

the �rst row of the table (denoted as DE_con). These correspond to the DE estimates b D with

� constrained to equal 1. The indexation parameter � is estimated at zero, and the estimated �

implies that the median time-span to re-optimization is between one and two quarters.

We then consider the DE speci�cation without constraining � to equal unity. This is a small but

potentially important change in the speci�cation, as the reduced-form in�ation equation from the

estimated VAR places a signi�cant weight on the second lag of in�ation. Our Monte Carlo results in

section 2.3 illustrate that the misspeci�cation bias from incorrectly constraining � to unity can be

very large, especially so when the NKPC is estimated in the DE form. Estimation results (denoted

as DE_uncon in the tables) show that this simple modi�cation produces a very di¤erent estimate

for �; suggesting misspeci�cation bias when estimating the NKPC with � set to 1. The median

estimated value for � jumps from zero in the previous case to 0.64. While imprecisely estimated,

the 90 percent trust region does not include zero. Moreover, � is estimated at 0.56, and its 90

percent trust region is bounded well away from one. This implies that the �rst and the second

lags of in�ation in the indexation mechanism receive approximately the same weight, suggesting

that the average in�ation over half a year is more relevant for indexation than just the most recent

44We report as a point estimate the median of the distribution of estimates for each parameter.
45The parameters are set to 0.99 and 0.43, respectively, for ease of comparison with Cogley and Sbordone (2008).
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quarter.

Next we consider the estimates obtained from the CF speci�cation of the NKPC. To highlight

the di¤erences in results when this speci�cation is used instead of the DE form, we report con-

strained (� = 1) and unconstrained estimates. For the constrained case (CF_con in the tables)

the median estimate of � is 0.59, with the 90 percent trust region that does not encompass zero.

Note also that the median estimate of � increases to 0.84, implying a median time between optimal

resets of approximately 5 quarters, almost three times the estimate obtained from the DE speci-

�cation (DE_con). Moreover, the 90 percent trust regions for this parameter in the DE and CF

speci�cations do not overlap.

Estimating the CF speci�cation that does not �x � (CF_uncon in the tables) yields a median

estimate for � of 0.89. This is an even larger estimate than the one obtained from the DE counterpart

(DE_uncon), and it is estimated much more precisely. The median estimate of �, at 0.88, implies

that re-optimization now occurs every 5 quarters on average. It is important to stress that this

refers to the frequency at which �rms optimally reset prices. In the presence of indexation, prices

are changed more frequently than they are being reoptimized. This relative infrequency of optimal

resets is consistent with evidence at the micro level suggesting that the information necessary to

set the optimal markup is costly to obtain (see Zbaracki et al., 2004). The estimated indexation

mechanism in the unconstrained CF speci�cation places a larger weight on the most recent quarter

of in�ation than in the DE counterpart; the median estimate is now 0.69. Still, the 90 percent trust

region for � does not contain unity. The median estimate of � is 12.3, which implies a steady-state

markup of 8.8 percent. This estimate for the steady-state markup is somewhat lower than the

steady-state markup of 11 percent estimated from the corresponding DE speci�cation. In addition,

the 90 percent trust region for � tends to be larger using the CF speci�cation. In all, the CF

estimates for �, �, and � suggest that when all of the model restrictions on expectations are taken

into account, the link from marginal costs to in�ation becomes weaker.

Table 2 illustrates how the estimates change when moving from the DE to the CF speci�cation

by progressively imposing additional model consistent restrictions on in�ation expectations. We

mentioned in section 2.2 that the DE and the CF speci�cations can be interpreted as two extremes,

with the CF speci�cation imposing, relative to the DE form, additional model-consistent expecta-

tions on all future realizations of in�ation. But we have emphasized that there is an important

middle ground where model discipline is explicitly imposed on expectations for just a �nite number
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of periods. Such middle ground can be an e¤ective way of trading o¤ the relatively unstructured

handling of expectations in the DE form, and the CF speci�cation�s high internal consistency re-

quirements. For this reason, these estimates are no less relevant than the two extremes examined

in Table 1.

In this second table, we focus on the speci�cation of the NKPC that does not restrict � to unity.

To facilitate the discussion, the table also reports the corresponding DE and CF estimates already

shown in Table 1. The results mirror our Monte Carlo �ndings regarding the quick convergence

of this type of estimates to the CF limiting case. Setting j = 4 (DE_uncon(4) in the table),

which corresponds to four quarters of model-consistent expectations, results in estimates for � and

� that are noticeably di¤erent from their DE counterparts. The DE_uncon(4) estimates have

already bridged about half of the gap between the DE and CF estimates. When considering j = 8

(DE_uncon(8) in the table), which corresponds to two years of model consistent expectations,

the median estimates for � and � become even closer to the corresponding CF estimates. As we

already mentioned, these estimates are important because for the small values of j we consider here,

the assumption that k�tAtk < 1 is not imposed at the estimation stage. Therefore, they provide

additional support to the CF results, as they illustrate that the CF estimates are not crucially

a¤ected by such an assumption.

3.4 A Necessary Condition for the Validity of Parameter Estimates

Although the condition k�tAtk < 1 is assumed when deriving the CF speci�cation, a violation of

this condition would invalidate all of the estimates reported in Tables 1 and 2, as we mentioned

in section 3.2. In particular, the estimates in Tables 1 and 2 rely on this implicit assumption as a

necessary condition for the �rst and second estimation stages to be compatible with each other.46

Panel A in Figure 10 shows the distribution of the largest estimated root of �̂tÂt in absolute

value for the CF_uncon speci�cation. Violations of this assumption are infrequent. The 99th

percentile of the distribution stays most of the time well below one. It is only during the period

1973 to 1979 that the 99th percentile of the distribution rises above unity, but the 95th percentile

is far below one throughout the entire sample. Still, a possible concern is that assuming that

46When the condition k�tAtk < 1 is violated, the NKPC solution is indeterminate. In this case, discussed in
Appendix C, in�ation dynamics are a¤ected by a predictable error unless the structural shock to in�ation u� is
assumed to be zero for all t. The presence of this predictable error would imply that expectations formed with the
VAR in (5) are biased, unless one imposes additional structural assumptions on the behavior of other equations
besides the NKPC.
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k�tAtk < 1 in order to derive the closed form of the NKPC could bias the estimates towards

satisfying this condition. We have shown, however, that the estimates b D(4) are already close
to the CF estimates. Not surprisingly then, the distribution (not shown) of

�̂tÂt for b D(4)
is still largely below unity. Moreover, increasing the number of model consistent restrictions on

expectations shifts this distribution towards the one based on the CF estimates.47

The corresponding �ndings for the DE_con speci�cation are sharply di¤erent, indicating an

incompatibility between �rst- and second-stage estimates. In this case, reported in panel B of Figure

10; the distribution of
�̂tÂt has the 95th percentile above unity almost always. Between 1970

and 1985 the fraction of estimates violating the stability condition ranges from 10 to 33 percent.

Worse yet, the fraction of ensembles for which the DE_con estimates never violate this stability

condition over the estimated sample period is a mere 11 percent. In contrast, using this more

restrictive criterion the corresponding fraction for the CF_uncon estimates is 79 percent.

In all, these �ndings point to an inconsistency between the assumption of a reduced-form VAR

as in (38) and the reduced form implied by the DE estimates when k�tAtk � 1. As highlighted in

section 3.2 and in Appendix D, when k�tAtk � 1 the �nite-order reduced-form VAR would involve

a moving average error. Failure to take this into account yields to regressors in the VAR being

contemporaneously correlated with the error term. The stark contrast between the distributions in

the two panels of Figure 10 indicates that this is much less of an issue for the CF estimates. For

this reason, the estimation strategy seems better suited for the CF speci�cation.

Our discussion so far raises the issue of whether the estimates change when we consider only

the ensembles that do not violate the necessary condition k�tAtk < 1. For the set of speci�cations

that do not �x � to unity in the estimation, which are more relevant given the fraction of surviving

ensembles, the results are reported in Table 3. If anything, this evidence corroborates our previous

�ndings that imposing additional model-consistent restrictions has a substantial impact on the

estimates. Too, for the DE form (DE_uncon) the median estimated � is already 0:78. Convergence

of � and � to the CF estimates, as illustrated by b D(4), is rapid.
47For b D(4), the 95th percentile of the distribution of �̂tÂt

 is above unity from 1972 to 1979, but the 90th

percentile is always below unity. Results for b D(j), where j = f2; 4; 6; 8g, are available upon request.
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3.5 Exact Closed-Form Estimates

We now discuss the exact closed-form estimates and their relationship with the CF estimates

reported in Tables 1 and 2. The relevant exact closed form is given in (35), and the cross-equation

restrictions used in the estimation are detailed in Appendix C. These estimates are especially

relevant because they provide a check on whether the expectational restrictions that we did not

impose on our CF estimates play a role in our results. The necessary and su¢ cient conditions for

the validity (and uniqueness) of the ECF solution are particularly transparent, and as a result they

facilitate assessing whether the �rst-stage estimation is consistent with the second-stage estimation.

These conditions are given by48

�i;t �At < 1 for i = 1; 2:
Without loss of generality, for �1;t > �2;t we have

�1;t � �t

�2;t � '1;t;

with equality for t = 0: It is clear then that the condition k�tAtk < 1 discussed in the context of

our CF estimates is just a necessary condition for determinacy and hence, for the existence of the

exact closed form (35).

Table 4 provides the estimates for this speci�cation without restricting � . We present four sets

of estimates. In the top row (ECF) we report median parameter estimates for all the optimized

ensembles. Using these parameter estimates, Figure 11 examines the necessary and su¢ cient con-

ditions for determinacy. The 95th percentile of
�̂i;t � Ât ; for i = 1; 2; is always below one with the

exception of a few small violations during the mid-1970s. The other rows in Table 4 report medians

for ensembles that do not violate the necessary and su¢ cient conditions for the validity of the ECF

speci�cation more than 100-, 95-, or 90-percent of the time, respectively. The most restrictive cri-

terion (100 percent) allows one to preserve only those ensembles for which no violations ever occur

over the 174 quarters. This criterion is satis�ed by 60 percent of the optimized ensembles. The 95

and 90 percent criteria allow one to preserve 90 and 98 percent of the ensembles, respectively.

It is apparent from the table that regardless of the criterion chosen, the estimates are remarkably

similar. What is most relevant for our analysis is that the distribution of estimates is virtually the

48The condition
'1;t �At < 1 is required in all speci�cations.
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same as for our CF_uncon speci�cation. The medians di¤er by less than 1 percent. This implies

that neglecting the additional restrictions imposed by the exact closed form relative to the CF

speci�cation is inconsequential for our �ndings.

Next, we consider a particular case in which the CF speci�cation is the exact closed form. This

requires omitting terms involving the discount factor, output growth, and terms involving higher-

order leads of in�ation. These terms do not appear to be empirically relevant for our estimates.

Since this amounts to setting t = 0 for all t, it is apparent from equation (36) that the CF

speci�cation provides the exact closed form. For this set of estimates, we also shut down time

variation in the NKPC coe¢ cients.49 Note that in this case �t is simply equal to �, and as a

result, the stability requirement that k�Atk < 1 is always satis�ed. In practical terms, this means

that the second-stage estimates cannot produce evidence contrary to the implicit assumption in

the �rst stage of model determinacy.50 Estimation results are reported in Table 5 for the same

speci�cations considered in Table 1. It is evident that the �ndings are largely unaltered from

a qualitative standpoint. Quantitatively, the changes in the estimates are very small across all

speci�cations. It is then apparent that di¤erences between the DE and CF estimates (constrained

or unconstrained), do not depend on whether the stability requirement is met, and are instead the

consequence of the CF speci�cation exploiting additional model-consistent restrictions.

3.6 Subsample Analysis

We discuss here a robustness check that we deem especially interesting, which concerns the estimates

of the NKPC over the post-1983 sample. The 20 years (1984:Q1 to 2003:Q4) we examine were a

period of mostly stable and low in�ation. It is relevant to ask whether this low in�ation (and low

in�ation volatility) environment was accompanied by noticeable changes in the values taken by some

of the deep parameters of the NKPC. For this exercise, we consider the very same speci�cations of

the NKPC with time-varying coe¢ cients examined in Table 1, with the only di¤erence consisting

in the chosen sample period. We use the shorter sample period in both the �rst and the second

49Cogley and Sbordone (2008) also report DE estimates for this simpler speci�cation in Table C.3. The estimation
procedure still uses the time-varying VAR in (38) to form expectations, and the long-run restriction (32).
50Even with a standard NKPC with constant coe¢ cients it is possible to have indeterminate equilibria � for

instance if policy does not satisfy the Taylor principle (see Lubik and Schorfheide, 2003). In our exercise this potential
outcome is ruled out by assumption, since the VAR is assumed to properly characterize the unique stationary dynamics
of the model, and because � < 1 (the real discount factor) is not estimated.
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stage of estimation.51 Estimation results for this exercise are reported in Table 6. The pattern of

�ndings is largely unchanged. The role of the second lag in in�ation indexation is now somewhat

larger and close to the weight given to the �rst lag. Hence, backward dependence seems to be

more closely related to semiannual in�ation than to higher (quarterly) in�ation frequencies. Again,

only the DE_con case yields estimates of � equal to zero, this time even more precisely than in

the full sample. The DE_uncon case and the CF speci�cations in the table yield a much larger

and signi�cant estimate of �. Estimates (not reported) for the exact closed form (35), as for the

full sample, are very close to the CF_ uncon speci�cation estimates.52 Overall, the subsample

estimates do not point to a shift in parameters towards a purely forward-looking NKPC. Similar

conclusions hold when the sample is further restricted to the period 1989 to 2003.53

3.7 Discussion of Results And Relationship to Previous Literature

Overall, the estimation �ndings from speci�cations that impose model discipline on expectations

are noticeably di¤erent from the unstructured DE speci�cation. This is true even after estimating

a speci�cation that entails a more plausible (at least empirically) indexation mechanism. In ad-

dition to the CF and ECF results, we would like to emphasize that the estimates that discipline

expectations for only a few periods already provide signi�cant evidence on the importance of using

these restrictions on expectations. After all, these restrictions are the de�ning characteristic of

forward-looking rational expectations models and should not be neglected at the estimation stage.

One can argue whether explicitly imposing rationality ad in�nitum is an overly stringent empirical

test for a model. For this reason, we have shown that it is not only possible but also relevant

to constrain expectations to be model consistent for a short period of time. In our application,

this turns out to be a particularly e¤ective way of validating (and also intuitively explaining) the

closed-form estimation results.

When interpreting the results, note that having � equal to one implies that the NKPC (expressed

in the DE form) would assign about the same weights to past in�ation and to expected future

in�ation.54 Other studies have shown that the autocorrelation properties of detrended in�ation are

51For the Bayesian estimation of the time-varying coe¢ cients VAR in the �rst stage, the pre-estimation training
sample goes from 1963:Q4 to 1983:Q4. We checked that the second-stage estimates of the NKPC are not overly
sensitive to the choice of training sample in the �rst stage.
52Estimation results for this speci�cation are available upon request.
53We looked at this case in order to consider a training sample for the �rst-stage estimates that is restricted to the

Great Moderation period. Estimation results are available upon request.
54This case would correspond to the NKPC assumed in Christiano, Eichenbaum, and Evans (2005), though their
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better captured by a high value of �. For instance, Fuhrer (2009) notes that after removing the

time-varying trend in this model, the �rst autocorrelation of in�ation in the data over the period

1960:Q3 to 2003:Q4 is equal to 0.81. With � equal to zero, the �rst autocorrelation implied by the

NKPC is very low, and a value of � close to one is necessary to match this crucial feature of the

data.

Our closed-form estimates of � are similar to some previous estimates in the literature, although

we are using a di¤erent estimation method and we are explicitly taking into account time-varying

trend in�ation. In particular, an almost even split between past and future in�ation when char-

acterizing in�ation dynamics in the NKPC appears to be common to those estimation procedures

which, like ours, take explicitly into account the constraints placed by the NKPC on all future

expectations of in�ation (Fuhrer and Moore, 1995; Fuhrer and Olivei, 2005; Lindé, 2005).55 Still,

it is important to stress that in our setup expectations are formed using the same reduced-form

estimated VAR in all the speci�cations of the NKPC that we consider. In this very speci�c sense,

the closed form does not use more information at the estimation stage than the DE form. But more

generally the closed form does exploit additional information: It requires that the DE relationship

hold at all future points in time. In this way, the closed form provides additional model structure

to the expected evolution of future in�ation that the DE form does not provide. The same holds

true for the speci�cations that impose model consistency for only a �nite number of future periods.

The CF and ECF estimates in our context are not the result of a full information estimation

method, because the expectations obtained in the �rst stage come from an unconstrained reduced

form. As such, the reduced form does not take into account any structural cross-equation restric-

tions. Still, imposing model discipline on expectations in the manner illustrated here allows a

partial information method to include more model restrictions that are especially relevant for test-

ing forward-looking models. We have applied this method in the context of a minimum-distance

estimation, but the requirement that the cross-equation restrictions be satis�ed in expected value

in future periods could be exploited in other partial information methods such as GMM.56

speci�cation does not include trend in�ation.
55The �nding of a � signi�cantly di¤erent from zero is also consistent with work by Kozicki and Tinsley (2002)

that explicitly considers time-varying trend in�ation.
56 In this respect, our work contributes to previous literature (Fuhrer, Moore, and Schuh, 1995, and Fuhrer and

Olivei, 2005) that compares the properties of DE and CF estimates, albeit in di¤erent settings and using di¤erent
estimation methods. In those papers, the CF relationship is estimated in a single stage by means of full-information
methods, so that the forecasting rule di¤ers from the reduced-form forecasting rule used to estimate the DE speci�-
cation.
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4 Conclusions

In this paper we illustrate why estimation of forward-looking models via limited information meth-

ods can di¤er substantially when the model is expressed in Euler equation (DE) form rather than in

closed form (CF). The reason for the di¤erence in estimates is that the closed form imposes model-

consistent restrictions on expectations that are not explicitly imposed in the DE form. These

restrictions contribute model information that results in much more precise estimates in small

samples.

We also show that estimating the DE and CF speci�cations of a forward-looking model can

be thought of as two polar cases: The CF speci�cation imposes model discipline on expectations

ad in�nitum while the DE form does not use model structure to characterize expectations. There

is also an important middle ground where model discipline on expectations is imposed on only a

�nite number of consecutive periods. This relaxes the strong model-consistency requirements of

the closed form, and provides a useful tool to assess how much model discipline is needed to explain

di¤erences between the DE and CF estimates.

A desirable property of our framework is that imposing additional model-consistent restrictions

on the DE form does not increase the scale of the estimation problem. While these restrictions

can be interpreted as additional moment conditions, we show that the number of cross-equation

restrictions is always the same, regardless of how much model discipline the econometrician is willing

to impose explicitly. This is especially useful when estimating forward-looking Euler equations in a

limited-information framework, as model-consistent expectations are an essential element of these

models (Hansen and Sargent 1982).

Our application focuses on the estimation of a New Keynesian Phillips curve (NKPC). In

Monte Carlo simulations, we show how the addition of model-consistent constraints (which do not

necessarily hold in the DE form) yields more e¢ cient and less biased estimates. On actual data,

moving from the DE speci�cation (Cogley and Sbordone, 2008) to the CF version of the NKPC

leads to substantially di¤erent results concerning the importance of lagged in�ation in the NKPC.

The estimated role for backward-looking indexation goes from zero in some DE speci�cations to

almost one using the CF speci�cation. This implies that the NKPC assigns similar weights to

lagged in�ation and to expected future in�ation. The estimation of the closed form suggests that

accounting for time-varying trend in�ation in the NKPC does not explain away in�ation inertia. In

addition, the CF speci�cation implies that prices are re-optimized much less frequently than what
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is suggested by the DE form (approximately 12 months versus 4 months).

Our empirical �ndings hold for both the 1960�2003 and the post-1983 samples. Moreover, the

results show that imposing model discipline on expectations for four quarters is already enough to

yield estimates that are much more precise than their DE counterparts. These estimates are similar

in distribution to the CF estimates.

Whether in�ation exhibits autonomous inertia has important implications for the dynamics of

in�ation. It is therefore important to approach the estimation of the NKPC using methods that take

the forward-looking nature of the model as seriously as possible. The in�ation model estimated

here is used simply as a tool to illustrate the importance of acknowledging model discipline on

expectations in estimation settings that do not necessarily require it. This widely used model

assumes autonomous in�ation inertia rather than deriving it from microfoundations. This lack

of microfoundations does not mean that we can a priori reject inertia as a feature of the data.

Moreover, "indexation" might just help to capture capture more complex structural behavior such

as the impact of learning on pricing (Gumbau-Brisa, 2005). For the period we consider, our

�ndings indicate that autonomous inertia is a relevant feature of the in�ation process, and continue

to highlight the need for better microfoundations. In this respect it should also be noted that our

estimates question the relevance of marginal costs (as proxied by the labor share) as the driving

process for in�ation. The current economic environment may provide an important test of the

model as a whole, and of the relevance of autonomous inertia when in�ation is very low.
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Figure 1: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 2: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.

39



Figure 3: 90% con�dence interval width after imposing
j additional expectational restrictions�

(Monte Carlo results)
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(1) j is the number of additional restrictions;
(2) j = 0 and j !1 correspond to the DE and CF speci�cations, respectively;
(3) real marginal cost is generated from an AR(2) process.
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Figure 4: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)

(Allowing for in�ation feedback in the marginal cost equation)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 5: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)

(Allowing for in�ation feedback in the marginal cost equation)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 6: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)

(Larger information set)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 7: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed form (CF)

(Larger information set)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 8: Monte Carlo simulations, � parameter

Di¤erence equation (DE) vs. closed form (CF), with misspeci�cation�
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Notes: � The data are generated with � = 0:6, but estimations are done with � = 1.
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 9: Monte Carlo simulations, � parameter

Di¤erence equation (DE) vs. closed form (CF), with misspeci�cation�
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Notes: � The data are generated with � = 0:6, but estimations are done with � = 1.
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 10: Distribution of largest root of �̂t � Ât in absolute value
Median, 95th, and 99th percentiles.
(Same Ât estimates in both panels)
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 :

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
0.85

0.9

0.95

1

1.05

1.1

1.15
99th

95th

50th

Panel B: Di¤erence-Equation Form, distribution of
�̂DEt Ât
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Figure 11: Distribution of largest root of
nb�i;t � Âto

i=1;2
in absolute value.

Median, 95th, and 99th percentiles.

Exact Closed Form
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Table 1: Structural parameter estimates (median and 90% trust region)

Sample period: 1960:Q1�2003:Q4

� � � �

DE_con 0 0.582 9.76 1
(0,0.17) (0.45,0.67) (7.66,12.46) �

DE_uncon 0.64 0.597 11.87 0.56
(0.29,1) (0.51,0.72) (10.25,14.80) (0.23,0.80)

CF_con 0.59 0.836 10.01 1
(0.29,0.91) (0.73,0.91) (7.90,14.73) �

CF_uncon 0.89 0.877 12.28 0.69
(0.76,0.99) (0.79,0.93) (10.77,20.19) (0.49,0.90)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) DE_con and CF_con correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_uncon
and CF_uncon correspond to DE and CF cases with unconstrained
� , respectively; (4) DE_con is the benchmark case in Cogley and
Sbordone (2008).

Table 2: Structural parameter estimates (median and 90% trust region)

Sample period: 1960.Q1�2003.Q4

� � � �

DE_uncon 0.64 0.597 11.87 0.56
(0.29,1) (0.51,0.72) (10.25,14.80) (0.23,0.80)

DE_uncon(2) 0.81 0.67 11.78 0.68
(0.50,1) (0.59,0.77) (10.30,15.00) (0.45,0.93)

DE_uncon(4) 0.86 0.722 11.75 0.71
(0.59,1) (0.64,0.81) (10.33,14.89) (0.50,0.96)

DE_uncon(6) 0.87 0.76 11.78 0.71
(0.64,1) (0.67,0.84) (10.36,14.91) (0.50,0.96)

DE_uncon(8) 0.87 0.781 11.82 0.71
(0.67,1) (0.70,0.86) (10.40,14.86) (0.51,0.95)

CF_uncon 0.89 0.877 12.28 0.69
(0.76,0.99) (0.79,0.93) (10.77,20.19) (0.49,0.90)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) DE_uncon and CF_uncon correspond to DE and CF cases with
unconstrained � , respectively; (3) DE_uncon(j) corresponds to the DE
case with j consecutive quarters of model-consistent restrictions
on expectations.
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Table 3: Structural parameter estimates (median and 90% trust region)

Sample period: 1960.Q1�2003.Q4

� � � �

DE_uncon 0.78 0.612 11.70 0.59
(0.34,1) (0.52,0.74) (10.23,13.75) (0.31,0.81)

DE_uncon(2) 0.90 0.684 11.63 0.69
(0.57,1) (0.60,0.78) (10.30,13.57) (0.47,0.92)

DE_uncon(4) 0.92 0.732 11.64 0.71
(0.66,1) (0.65,0.82) (10.33,13.60) (0.50,0.95)

DE_uncon(6) 0.90 0.76 11.67 0.71
(0.68,1) (0.69,0.84) (10.38,13.69) (0.51,0.95)

DE_uncon(8) 0.90 0.788 11.71 0.71
(0.70,1) (0.71,0.86) (10.42,13.79) (0.51,0.94)

CF_uncon 0.89 0.875 12.13 0.68
(0.76,0.99) (0.80,0.93) (10.74,15.16) (0.49,0.90)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) DE_uncon and CF_uncon correspond to DE and CF cases with
unconstrained � , respectively; (3) 45.39% (out of 4,902) ensembles
remain in DE_uncon; (4) 63.47% (out of 4,588) ensembles remain in
DE_uncon(2); (5) 68.91% (out of 4,587) ensembles remain in DE_uncon(4);
(6) 71.45% (out of 4,588) ensembles remain in DE_uncon(6); (7) 72.31%
(out of 4586) ensembles remain in DE_uncon(8); (8) 79.24% (out of 4,543)
ensembles remain in CF_uncon.
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Table 4: Structural parameter estimates (median and 90% trust region)

Sample period: 1960.Q1�2003.Q4
� � � �

ECF 0.90 0.884 12.38 0.69
(0.80,0.98) (0.82,0.93) (10.77,20.79) (0.50,0.90)

ECF (100% criterion) 0.90 0.883 12.01 0.68
(0.79,0.99) (0.82,0.93) (10.70,14.26) (0.50,0.89)

ECF (95% criterion) 0.89 0.885 12.25 0.69
(0.80,0.98) (0.82,0.93) (10.75,17.14) (0.50,0.90)

ECF (90% criterion) 0.90 0.885 12.34 0.69
(0.80,0.98) (0.82,0.93) (10.77,18.87) (0.50,0.90)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) The x% criterion preserves ensembles that satisfy the determinacy
condition for x% of the 174 quarters. (3) The number of optimized ensembles
is 4402. (4) The 100% criterion retains 60.2% of the ensembles, the 95% retains
90.4%, and the 90% retains 97.5%.

Table 5: Structural parameter estimates (median and 90% trust region)

Sample period: 1960.Q1�2003.Q4; Training sample: 1954.Q1�1959.Q4

(constant coe¢ cients and removing higher-order leads)

� � � �

DE_con 0 0.562 12.07 1
(0,0.11) (0.44,0.66) (8.12,15.22) �

DE_uncon 0.70 0.612 11.72 0.58
(0.37,1) (0.52,0.73) (10.21,13.95) (0.32,0.81)

CF_con 0.42 0.777 11.61 1
(0.17,0.71) (0.68,0.85) (8.46,15.10) �

CF_uncon 0.87 0.864 12.29 0.68
(0.72,0.99) (0.78,0.92) (10.77,16.11) (0.48,0.89)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) DE_con and CF_con correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_uncon
and CF_uncon correspond to DE and CF cases with unconstrained
� , respectively.
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Table 6: Structural parameter estimates (median and 90% trust region)

Sample period: 1984.Q1�2003.Q4; Training sample: 1963.Q4�1983.Q4

� � � �

DE_con 0 0.622 9.19 1
(0,0.09) (0.43,0.74) (7.51,11.88) �

DE_uncon 0.83 0.643 10.51 0.55
(0.42,1) (0.53,0.76) (8.46,15.23) (0.31,0.77)

CF_con 0.49 0.838 9.51 1
(0.10,0.88) (0.73,0.92) (7.51,14.13) �

CF_uncon 0.86 0.869 10.98 0.57
(0.66,0.99) (0.77,0.93) (9.04,31.74) (0.35,0.81)

Notes: (1) numbers in parentheses are 90% trust regions;
(2) DE_con and CF_con correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_uncon
and CF_uncon correspond to DE and CF cases with unconstrained
� , respectively.
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Appendix A: Derivation of the NKPC in di¤erence equation (DE)
form

In this appendix, we derive the NKPC in di¤erence-equation (DE) form as described in (33) and
(34). We also show how to combine them into a �nal form used in the estimation procedure
described in section 3.2. and show the cross-equation restrictions implied by conditional expectation
based on information at t� 2. The NKPC derivation closely follows that in Cogley and Sbordone
(2008).57

First, we derive the log-linear approximation of the evolution of aggregate prices. Let Xt be
the optimal nominal price at time t chosen by �rms that are allowed to adjust their prices, which
happens with constant per-period probability (1 � �). Based on our indexation mechanism, the
price of an individual �rm i that is not allowed to adjust (with probability �) evolves according to

Pt(i) = (�
�
t�1�

1��
t�2 )

�Pt�1(i) :

Hence, the aggregate price based on the CES aggregator is given by

Pt =
h
(1� �)X1��

t + �
�
(��t�1�

1��
t�2 )

�Pt�1
	1��i 1

1��
:

Dividing by the price level Pt, we have

1 = (1� �)x1��t + �
�
(��t�1�

1��
t�2 )

���1t
	1��

; (A1)

where xt is the optimal relative price at time t. Next de�ne stationary variables e�t = �t=�t,
g��t = �t=�t�1, g

y
t = Yt=Yt�1, and ext = xt=xt. Here, for any variable kt, kt is its time-varying trend.

Equation (A1) can then be transformed in terms of these stationary variables to yield (after some
algebra):

1 = (1� �)ex1��t x1��t

+�

" e��(1��)(1��)t�2
e���(1��)t�1

e��(1��)t �
(1��)(��1)
t �

(g��t�1)
��(1��)(1��)(g��t )

��(1��)(1��)(g��t )
���(1��)

#
: (A2)

In the steady state where ext = e�t = g��t = 1, (A2) can be solved for xt as a function of �t:

xt =

"
1� ��(1��)(��1)t

1� �

# 1
1��

: (A3)

De�ning b�t � ln e�t � ln(�t=�t) and bxt � ln ext, imposing (A3), and rearranging, the log-linear
approximation of (A2) around the steady state can be expressed as

bxt = � 1

'0;t
�(1� �)

�b�t�2 � bg��t�1 � bg��t �
� 1

'0;t
��
�b�t�1 � bg��t � (A3)

+
1

'0;t
b�t ,

57Note that in Cogley and Sbordone (2008), the indexation is constrained to the �rst lag of in�ation, which
corresponds to � = 1.
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where '0;t =
1���(1��)(��1)t

��
(1��)(��1)
t

.

Next, we take the log-linear approximation to the �rst-order condition (FOC) of �rms�pricing
problem. Identically to the one-lag indexation case in Cogley and Sbordone (2008), the �rms�FOC
can be written as

Et

1X
j=0

�jQt;t+jYt+jPt+j	
1��
tj

�
X
(1+�!)
t � �

� � 1MCt+j	
�(1+�!)
tj P �!t+j

�
= 0 ; (A4)

where Qt;t+j and MCt+j are the nominal discount factor and average marginal cost at t + j,
respectively. The variable 	tj enters in the CES demand function for any good i, Yt+j(i) =

Yt+j

�
Pt+j(i)	tj
Pt+j

�
, with

	tj =

�
1Qj�1

k=0

�
��t+k�

1��
t+k�1

�� j = 0
j � 1 (A5)

The second line of (A5) makes clear that prices are indexed to a weighted average of the �rst two
lags of in�ation if they are not set optimally. Combining (A4) and (A5) and rearranging leads to

X1+�!
t =

Ct
Dt

;

where Ct and Dt are recursively de�ned by

Ct =
�

� � 1YtP
�(1+!)�1
t MCt

+Et

h
�qt;t+1�

����(1+!)
t �

��(1��)�(1+!)
t�1 Ct+1

i
(A6)

Dt = YtP
��1
t

+Et

h
�qt;t+1�

��(1��)
t �

�(1��)(1��)
t�1 Dt+1

i
; (A7)

where qt;t+1 now is the real discount factor. De�ning the stationary variables eCt = Ct

YtP
�(1+!)
t

andeDt = Dt
YtP

��1
t

, we have based on (A6) and (A7):

eCt =
�

� � 1MCt

+Et

h
�qt;t+1g

y
t+1�

�(1+!)
t+1 �

����(1+!)
t �

��(1��)�(1+!)
t�1

eCt+1i (A8)

eDt = 1 + Et h�qt;t+1gyt+1�(��1)t+1 �
��(1��)
t �

�(1��)(1��)
t�1

eDt+1i : (A9)

Also note that eCteDt = Ct
Dt

1

P
(1+�!)
t

= x1+�!t ; (A10)

where xt � Xt=Pt. Evaluating (A8) and (A9) at the steady state leads to

Ct =
�
��1mct

1� �qgy��(1+!)(1��)t
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Dt =
1

1� �qgy�(��1)(1��)t

.

Combining the two expressions above with (A3) and using (A10) leads to the steady-state restriction
(32). This restriction does not depend on � and hence is identical to the case in Cogley and Sbordone

(2008) with � = 1. Next, de�ne bCt = ln eCt
Ct
, bDt = ln eDt

Dt
, and cmct = ln mctmct

. Log-linearizing (A10)
yields

(1 + �!)bxt = ( bCt � bDt) . (A11)

Combining (A11) with (A3) and rearranging leads to an intermediate expression for b�t:
b�t = ��

�b�t�1 � bg��t �
+�(1� �)

�b�t�2 � bg��t�1 � bg��t � (A12)

+
'0;t

(1 + �!)
( bCt � bDt) :

We can obtain the expressions for bCt and bDt by log-linearizing (A8) and (A9). Combining the
resulting expressions with (A11) leads to equations (33) and (34) in the main text:

b�t = ��(b�t�1 � bg��t ) + �(1� �)(b�t�2 � bg��t�1 � bg��t )
+�tEt(b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t )) + �tcmct + t bDt + u�;t (A13)

bDt = '1;tEt(bqt;t+1 + bgyt+1) (A14)

+'1;t(� � 1)Et
�b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t )	+ '1;tEt bDt+1 ;

with the time-varying coe¢ cients given by

�t = �t'3;t

�t = '2;t(1 + '0;t)

t =
�t('2;t � '1;t)

'1;t

�t =
'0;t
1 + �!

'1;t = �qgy�
(��1)(1��)
t

'2;t = �qgy�
�(1+!)(1��)
t

'3;t = 1� '2;t:

Finally, iterating bDt in (A14) forward, substituting the resulting expression for bDt in (A13), convert-
ing real discount factors bqt+j;t+j+1 into nominal discount factors eQt+j;t+j+1 for ease of comparison
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with Cogley and Sbordone (2008), and rearranging terms yields the NKPC in DE form:

b�t = e�D1;t �b�t�1 � bg��t �+ (1� �)e�D2;t �b�t�2 � bg��t�1 � bg��t �
+e�Dt cmct
+dD1;tEtb�t+1
+dD2;tEt

1X
j=2

'j�11;t b�t+j (PC-DE)

+dD3;tEt

1X
j=0

'j1;t

h bQt+j;t+j+1 + bgyt+j+1i + eu�;t;
where the coe¢ cients are de�ned by

e�D1;t =
�
�� � �t�(1� �)� t(� � 1)�(1� �)'1;t

�
=�te�D2;t = �=�t

dD1;t = edD1;t + dD3;t
dD2;t = edD2;t + dD3;t
dD3;t = [t'1;t]=�te�Dt = �t=�t

�t = 1 + ���t + t(� � 1)�'1;t
�
� + (1� �)'1;t

	
edD1;t =

�
�t + t(� � 1)'1;t

�
1� ��'1;t � �(1� �)'21;t

	�
=�tedD2;t =

�
t(� � 1)'1;t

�
1� ��'1;t � �(1� �)'21;t

	�
=�t:

Note that as in Cogley and Sbordone (2008), we use the "anticipated utility" assumption (Kreps,

1998) in deriving the NKPC in (PC-DE) so that Et
iY

k=0

'1;t+k
bht+i = 'i+11;t Et

bht+i for any variable
bht+i.

Two limiting cases of (PC-DE) are worth mentioning. First, when � = 1 so that the indexation is
constrained to the �rst lag of in�ation, we have the NKPC in Cogley and Sbordone (2008). Second,
if the prices of non-adjusting �rms are fully indexed to a mixture of past in�ation (�rst and second
lags) and current trend in�ation, the NKPC collapses to the case with constant coe¢ cients and
where there are no extra lead terms beyond t + 1. Furthermore, in the constant-trends case with
� = 1, one obtains the NKPC as in Christiano, Eichenbaum, and Evans (2005) exhibited in (2).

Cross-equation restrictions. Given the forecasting rule (39) and equation (PC-DE), we obtain
the conditional expectation of in�ation based on information at t� 2 in the DE form as follows

e0�A
2
t�2bzt�2 = e�D1;t�2e0�At�2bzt�2 + (1� �)e�D2;t�2e0�bzt�2 + e�Dt�2e0mcA2t�2bzt�2

+dD1;t�2e
0
�A

3
t�2bzt�2 + dD2;t�2'1;t�2e0�Jt�2A4t�2bzt�2

+dD3;t�2(e
0
QJt�2A

2
t�2bzt�2 + e0gyJt�2A3t�2bzt�2); (A15)
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where Jt � (I� '1;tAt)�1. Hence, the vector of cross-equation restrictions is given by

e0�A
2
t�2 = e�D1;t�2e0�At�2 + (1� �)e�D2;t�2e0�I+ e�Dt�2e0mcA2t�2

+dD1;t�2e
0
�A

3
t�2 + d

D
2;t�2'1;t�2e

0
�Jt�2A

4
t�2

+dD3;t�2(e
0
QJt�2A

2
t�2 + e

0
gyJt�2A

3
t�2)

� gD(�t�2;At�2; ) . (A16)
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Appendix B: Derivation of the CF speci�cation

In this appendix we derive the CF representation of the NKPC based on (A13) and (A14). First,
de�ne an auxiliary variablebBt = b�t � ��(b�t�1 � bg��t )� �(1� �)(b�t�2 � bg��t�1 � bg��t ) ;
so that

Et bBt+1 = b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t ) :
Note that the expectation above re�ects the fact that bg��t is an innovation process so that Etbg��t+j = 0
for j � 1. Using this de�nition, we can rewrite (A13) asbBt = �tEt bBt+1 + �tcmct + t bDt + u�;t: (B1)

Solving forward (B1) yields

bBt = �tEt

1X
j=0

�jtcmct+j + tEt 1X
j=0

�jt
bDt+j + u�;t: (B2)

In deriving (B2) (and (B3) below), the "anticipated utility" assumption is used so that

Et�t+j

jY
k=0

�t+kcmct+j = �t�
j+1
t Etcmct+j

Ett+j

jY
k=0

�t+k bDt+j = t�
j+1
t Et bDt+j

for any j > 0. Next, solving forward (A14), converting real discount factors into nominal ones, and
rearranging leads to

bDt = '1;tEt

1X
j=0

'j1;t

h bQt+j;t+j+1 + bgyt+j+1i
��1;t

�b�t�1 � bg��t �+ �2;tb�t + �3;tb�t+1 (B3)

+�3;tEt

1X
j=2

'j�11;t b�t+j ;
with the new coe¢ cients de�ned by

�1;t = (� � 1)�(1� �)'1;t
�2;t = (� � 1)��'1;t + (� � 1)�(1� �)'21;t
�3;t = �'1;t � (� � 1)��'21;t � (� � 1)�(1� �)'31;t:

We next remove the auxiliary variables bBt and bDt and derive the NKPC. Using the de�nition
of bBt, we reintroduce in�ation into (B2) so thatb�t = ��(b�t�1 � bg��t ) + �(1� �)(b�t�2 � bg��t�1 � bg��t )

+�tEt

1X
j=0

�jtcmct+j + tEt 1X
j=0

�jt
bDt+j : (B4)
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Finally, we substitute for bDt+j terms in (B4) using (B3) and rearrange the resulting expression to
obtain the CF representation of NKPC:

b�t = e�C1;t(b�t�1 � bg��t ) + (1� �)e�C2;t(b�t�2 � bg��t�1 � bg��t )
+e�Ct Et 1X

j=0

�jtcmct+j
+dC0;tEt

1X
k=0

�kt
�b�t+k�1 � bg��t+k�

+dC1;tEt

1X
k=0

�kt b�t+k
+dC2;tEt

1X
k=0

�kt b�t+k+1 (PC-CF)

+dC2;tEt

1X
k=0

�kt

1X
j=2

'j�11;t b�t+j+k
+dC3;tEt

1X
k=0

�kt

1X
j=0

'j1;t

h bQt+j+k;t+j+k+1 + bgyt+j+k+1i+ u�;t;

with the new coe¢ cients de�ned as follows

e�C1;t = ��e�C2;t = �e�Ct = �t

dC0;t = �t�1;t
dC1;t = �t�2;t
dC2;t = t�3;t

dC3;t = t'1;t:

Cross-equation restrictions.
As before, given the forecasting rule (39), the t�2 conditional expectation of (PC-CF) is in the

form

e0�A
2
t�2bzt�2 = e�C1;t�2e0�At�2bzt�2 + (1� �)e�C2;t�2e0�bzt�2 + e�Ct�2e0mcKt�2A

2
t�2bzt�2

+dC0;t�2e
0
�Kt�2At�2bzt�2 + dC1;t�2e0�Kt�2A

2
t�2bzt�2

+dC2;t�2e
0
�Kt�2A

3
t�2bzt�2 + dC2;t�2'1;t�2e0�Kt�2Jt�2A

4
t�2bzt�2

+dC3;t�2(e
0
QKt�2Jt�2A

2
t�2bzt�2 + e0gyKt�2Jt�2A

3
t�2bzt�2); (B5)
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where Kt � (I� �tAt)�1. Hence, the vector of cross-equation restrictions is given by

e0�A
2
t�2 = e�C1;t�2e0�At�2 + (1� �)e�C2;t�2e0�I+ e�Ct�2e0mcKt�2A

2
t�2

+dC0;t�2e
0
�Kt�2At�2 + d

C
1;t�2e

0
�Kt�2A

2
t�2

+dC2;t�2e
0
�Kt�2A

3
t�2 + d

C
2;t�2'1;t�2e

0
�Kt�2Jt�2A

4
t�2

+dC3;t�2(e
0
QKt�2Jt�2A

2
t�2 + e

0
gyKt�2Jt�2A

3
t�2)

� gC(�t�2;At�2; ): (B6)
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Appendix C: The exact closed form (ECF), derivation and discus-
sion

In this appendix we derive the exact closed form, and the corresponding cross-equation restrictions
used for estimation. In order to simplify notation, in this appendix we omit time subscripts where
immaterial, and hats on variables. All expectations assume anticipated utility (Kreps, 1998).

As in the main text, we use Bt to denote non-predetermined in�ation

Bt � �t � �� (�t�1 � g�t )� � (1� �)
�
�t�2 � g�t�1 + g�t

�
:

Then, the NKPC is given by the expression

Bt = �Et fBt+1g+ '1 (� � 1)
1X
i=0

'i1Et fBt+1+ig

+�mct + '1

1X
i=0

'i1Et
�
qt+i;t+1+i + g

y
t+1+i

	
+ u�;t:

After rearranging the in�ation terms as follows

Bt � �Et fBt+1g � '1 (� � 1)
1X
i=0

'i1Et fBt+1+ig

= �mct + '1

1X
i=0

'i1Et
�
qt+i;t+1+i + g

y
t+1+i

	
+ u�;t;

we add and subtract from the left-hand side of this equation the following term:

�'1

1X
i=0

'i1Et fBt+2+ig+ '1
1X
i=0

'i1Et fBt+1+ig :

This results in the equation

1X
i=0

'i1Et fBt+ig � (�+ '1 ( (� � 1) + 1))
1X
i=0

'i1Et fBt+1+ig

+�'1

1X
i=0

'i1Et fBt+2+ig

= �mct + '1

1X
i=0

'i1Et
�
qt+i;t+1+i + g

y
t+1+i

	
+ u�;t:

From now on we use several factorizations of the form (1� root � F ) in the expectational terms.
We discuss later the conditions under which inverting this factor is appropriate. The �rst factor-
ization extracts (1� '1F )�1 from the left- and right-hand sides of the last equation to obtain

Et

n
(1� '1F )�1 � [Bt � (�+ '1 ( (� � 1) + 1))Bt+1 + �'1Bt+2]

o
= �mct + '1Et

n
(1� '1F )�1 �

�
qt;t+1 + g

y
t+1

�o
+ u�;t;
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which can be rewritten as

Et fBt � (�+ '1 ( (� � 1) + 1))Bt+1 + �'1Bt+2g
= �Et f(1� '1F ) �mctg+ '1Et

�
qt;t+1 + g

y
t+1

	
+ u�;t:

Factoring the polynomial in the left-hand side we obtain

Et f(1� �1F ) (1� �2F )Btg = �Et f(1� '1F ) �mctg+ '1Et
�
qt;t+1 + g

y
t+1

	
+ u�;t (C1)

with the roots f�1; �2g given by

�1 + �2 = �+ '1 + '1 (� � 1) ; (C2)

�1 � �2 = �'1: (C3)

The unique closed form under determinacy is therefore

�t = �� (�t�1 � g�t ) + � (1� �)
�
�t�2 � g�t�1 + g�t

�
+�Et

8<:
1X
j=0

�j1

1X
i=0

�i2 (mct+i+j � '1mct+1+i+j)

9=;
+'1Et

8<:
1X
j=0

�j1

1X
i=0

�i2

�
qt+i+j;t+1+i+j + g

y
t+1+i+j

�9=;+ u�;t: (C4)

This closed form states that in�ation depends on (1) indexation, (2) the expected path of real
marginal costs, and (3) the real expected discounted value of future output growth. The expected
path of real marginal costs enters as a quasi-di¤erence, indicating that both the expected level and
the expected rate of change of real marginal costs have an impact on in�ation. While the roots
f�1; �2g can be complex, equation (C4) facilitates the discussion of the necessary and su¢ cient
conditions for determinacy. At the end of this appendix we show that this exact closed form is
in fact a function of real-valued parameters only. For our purposes, what is important is that
the cross-equation restrictions obtained from (C4), to which we now turn, involve only real-valued
coe¢ cients.

To derive the cross-equation restrictions, we use the forecasting rule (39) to form expectations.
Taking expectations of (C4) conditional on information available at time t� 2; we obtain

e0�A
2
t�2 = ��e0�At�2 + � (1� �) e0�I

+�t�2e
0
mcA

2
t�2
�
I� '1;t�2At�2

�
W�1

t�2

+t�2'1;t�2 (� � 1)
�ee0q;t�2I+ e0yAt�2�A2t�2W�1

t�2;

where the invertible matrixWt is de�ned as

Wt �
�
I� �1;tAt

� �
I� �2;tAt

�
=

�
(I� �tAt) (I� 'tAt)� t'1;t (� � 1)At

�
;

with the last equality following immediately from (C1)-(C3) and the forecasting rule, and the vectoree0q;t is given by ee0q;t = e0Q + e
0
�At:
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The vectors e0x are row vectors with zeros everywhere except for a single one in the position of
variable xt in zt (see equation (38)). The vector ee0q;t�2 selects the expected real discount factor
by adding expected in�ation to the nominal discount factor, which is the discount factor used in
the estimated VAR. The exact closed form for in�ation cannot depend on expected future nominal
variables, as these would contain expected future in�ation. For this reason, it is necessary to add
expected in�ation back to the nominal discount factor, in order to obtain the expected real discount
factor.

From expression (C4) it is possible to extract the necessary and su¢ cient conditions for the
validity of the exact closed-form estimates (see also Appendix D). These conditions are

k'1Ak < 1

k�iAk < 1 for i = 1; 2:

As stated in section 3 (see also Figure 11), these conditions appear to be satis�ed most of the time
in the data. A property of f�1; �2g worth noting is that as long as t'1;t (� � 1) � 0; which occurs
in over 99 percent of the estimates, we have that

�1;t � �t

�2;t � '1;t:

This can be shown from simple but tedious algebra based on the expression of these roots

f�1; �2g =
2�'1

�+ '1 + '1 (� � 1)�
q
(�+ '1 + '1 (� � 1))2 � 4�'1

:

We also note that when t'1;t (� � 1) = 0 we obtain

W�1
t = (I� 'tAt)�1 (I� �tAt)�1 ;

which shows that in this case �1 = �t; and �2 = '1;t: Hence, conditional on
'1;tAt < 1; the

necessary and su¢ cient condition would be given by

k�tAtk < 1;

which is the same condition discussed in the main text for the existence of CF estimators (given that'1;tAt < 1 ). In our exact closed-form (unrestricted) estimation we obtain that
��t'1;t (� � 1)��

has a median of 8:7x10�4; a mode of 2:8x10�6; and is below 3x10�3 for all ensembles.58 In short,
the necessary and su¢ cient conditions for the existence of the exact closed form are extremely
close to the conditions a¤ecting the CF speci�cations. Also, as discussed in the main text, the
conditions for the existence of our CF estimators are always met whenever the exact closed-form
solution exists.

To conclude, we show that even when the roots f�1; �2g are complex, the exact closed form in
(C4) depends only on real-valued coe¢ cients.59 To see this, note that

1X
j=0

�j1

1X
i=0

�i2Et fmct+i+jg =
1X
j=0

� (�2 + �1; �2�1; j)Et fmct+jg ;

58Negative values of t'1;t (� � 1) are typically due to t < 0; which occurs for 1.17 percent of the 765,948 point
estimates. We have only one negative estimate of '1;t; and the estimation is restricted to produce estimates of � > 1:
59This occurs for fewer than 0.06 percent of our estimates.

63



where � is a real-valued function of real arguments.60 This function is given by

� (�2 + �1; �2�1; j) =

8><>:
(�2 + �1)

j for j = 0; 1:

(�2 + �1)
j +

M(j)X
i=1

(�1)j
�
j�i
i

�
(�2 + �1)

j�2i
1 (�2�1)

i for j � 2
(C5)

M (j) =

� j
2 for j even,

j�1
2 for j � 3 and j odd,

where
�
j�i
i

�
is the binomial coe¢ cient j�iCi, and M (j) determines the number of elements in

the right-hand side summation. Despite its complicated appearance, this function essentially pro-
vides the moving average coe¢ cients from inverting a stationary AR (2) process of the form yt
(1� �2L) (1� �1L) = et:

Relationship between cross-equation restrictions of the DE speci�cation and the
exact closed-form solution.

Next, we discuss the relationship between the cross-equation restrictions of the DE speci�ca-
tion and the exact closed-form solution, along the same lines as our discussion for the constant-
coe¢ cients NKPC in sections 2.1 and 2.2 in the main text.

The cross-equation restriction errors for the DE speci�cation with time-varying trends can be
written as

FD (At;  ; t) � e0�B
�
t (I� �tAt)

��e0mcAt (I� 'A)
�t'1;t (� � 1) e0�B�tAt
�t'1;t

�ee0q;tI+ e0yA� ; (C6)

with B�t �
�
A2t � ��At � � (1� �) I

�
(I� 'A) ;

although in the main text we provide the expression closest to Cogley and Sbordone (2008) for ease
of comparison (this also motivates the particular presentation of the CF cross-equation restrictions
in the main text). The di¤erences are only due to the grouping of speci�c terms in the equation, and
for this appendix we adopt the expression (C6) to facilitate our discussion here. This expression
can be directly derived from the di¤erence equation that results from quasi-di¤erencing forward
the Phillips curve de�ned by (33) and (34), with factor '1.

The cross-equation restriction errors of the ECF speci�cation are then given by

FECF (At; ; t) = F
D (At; ; t)

�
I+ �1A+ (�1A)

2 + :::
��
I+ �2A+ (�2A)

2 + :::
�
;

which illustrates that FECF (At; ; t) is a reweighting of the di¤erence equation errors, as in the
constant coe¢ cients case, and that they can be obtained as a weighted sum of the restrictions
imposed by the model on expectations of future variables. In this sense, the only di¤erence with
the constant coe¢ cients case is that this involves a double summation. Nonetheless, since the idea
behind imposing model-consistency restrictions on expectations in our application is to explicitly
build the link between expected period t + j in�ation and expected period t + j marginal costs,
imposing this link for m periods is equivalent to

Fm (At; ; t) = F
D (At; ; t) (I+ �t;� (1)At + :::+ �t;� (m)A

m
t ) ;

60The arguments (�1 + �2) and (�1�2) are given in (C2) and (C3) above as a real-valued function of the parameter
values, which are always real. The third argument is a non-negative integer.
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with �t;� (j) � �
�
�1;t + �2;t; �1;t�2;t; j

�
de�ned in (C5), and hence Fm ! FECF when m!1:

Likewise, expression (15) in our discussion of the case with constant coe¢ cients can also be
generalized for the case with time-varying trends. This expression is now

gD
�
Ât; ; t

�
= gECF

�
Ât; ; t

�
+
�
�̂1 + �̂2

�
k
�
Ât; ; t

�
Ât �

�
�̂1�̂2

�
k
�
Ât; ; t

�
Â2t :

Since having both �̂1 + �̂2 = 0 and �̂1�̂2 = 0 would render the NKPC meaningless (see (C2) and

(C3)), this expression implies that gD
�
Ât; ; t

�
= gECF

�
Ât; ; t

�
if and only if61

k
�
Ât; ; t

�
= 0:

It is possible to show, using only equations provided in this appendix, that when k (:) = 0 we have

k
�
Ât; ; t

�
= FECF

�
Ât; ; t

�
:

As a result, all of our discussion on the role of model-consistency restrictions for the NKPC with
constant coe¢ cients naturally extends to the NKPC with time-varying coe¢ cients.

61As we have pointed out earlier, Ât is a full rank matrix for all t, and all the eigenvalues of Ât are inside the unit

circle. Hence
Â2

t

 < Ât

 < 1:
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Appendix D: Misspeci�cation of the �rst-stage VAR in the presence
of sunspots

In this appendix we show that the V AR representation (5) with a �nite number of lags and i.i.d.
shocks implies that there is a unique forward solution to the model. In particular, we show that
indeterminacy of the model solution yields to a reduced-form representation that involves a moving
average error term. In such a setting, a reduced-form V AR representation with i.i.d. shocks entails
an in�nite number of lags.62 Therefore, estimation of the �nite-order V AR in (5) results in biased
and inconsistent coe¢ cient estimates (truncation bias). This discussion is relegated to an appendix
because its content draws on a vast literature on solutions to rational expectations models; see for
instance the textbook treatment in Pesaran (1989) and the references therein.

For ease of exposition and without loss of generality, we consider a simple setup with only two
structural equations.63 The �rst equation is a purely forward-looking version of the NKPC with
zero (constant) trend in�ation:

�t = �Et�t+1 + �mct + u�;t; (D1)

where � � 0 is the elasticity of in�ation with respect to marginal costs, � > 0 determines the extent
of forward-looking behavior, and u�;t denotes the structural i.i.d. shock associated with the NKPC.
The presence of this structural shock is critical for modern DSGE models and is at the heart of
the discussion in this appendix.64 The second equation closes the model, and states that marginal
costs follow a simple univariate autoregressive process

mct = �mct�1 + umc;t; (D2)

where 1 � � > 0 and umc;t is also a structural i.i.d. shock.
Before analyzing the conditions for determinacy, notice that regardless of the value of � > 0, it

is always possible to express (D1) backwards as

�t =
1

�
�t�1 �

�

�
mct�1 �

1

�
u�;t�1 + [�t � Et�1�t] : (D3)

In a determinate solution the model equations impose just enough conditions to uniquely determine
the forecast error [�t � Et�1�t] as a linear combination of new information revealed at time t by the
two structural shocks u�;t, and umc;t: When there are not enough conditions to uniquely pin down
the forecast error [�t � Et�1�t] ; rational expectations dictate only that the error be unpredictable
as of time t � 1; and as a result, this error could be partly driven by a sunspot.65 Whether the
stationary solution for the system in (D1) and (D2) is indeterminate cannot be established just by
looking at the parameters of the NKPC. In fact, in this stylized framework, whether a stationary
solution involves sunspots or not is uniquely determined by the parameter interaction ��.

62For a discussion of this non-invertibility problem see Fernandez-Villaverde et al. (2007).
63The arguments here carry over with some minor adjustments to the anticipated utility framework with time-

varying trends (or parameters). Also, note that our discussion focuses on the issue of determinacy and assumes for
convenience that a stationary solution is feasible.
64As already mentioned in the main text, this shock can be interpreted as capturing potential misspeci�cations in

the relationship or a markup shock.
65See Pesaran (1989, Chapter 5) for a discussion of the di¤erent methods to re�ne the solution set under indeter-

minacy.
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Consider �rst the case in which �� < 1. Then a unique stationary forward-looking solution for
the NKPC exists and takes the following form:

�t = �

1X
i=0

�iEtmct+i + u�;t

, �t = �mct

1X
i=0

(��)i + u�;t

, �t =
�

1� ��mct + u�;t: (D4)

In constrained reduced form, the last expression can therefore be rewritten as

�t =
��

1� ��mct�1 + u�;t +
�

1� ��umc;t: (D5)

Equations (D2) and (D5) form a constrained reduced-form V AR with serially uncorrelated
shocks. In order to estimate the deep parameters of the model, it is possible to minimize the
distance between the constrained V AR given by (D2) and (D5) and an estimated unconstrained
reduced-form V AR as in (5). In the speci�c case of our application, we try to match the cross-
equation restrictions implied by model expectations, with forecasts obtained from the estimated
unrestricted V AR. For this exercise to be correct, the estimated unrestricted V AR in (5) and the
restricted V AR implied by (D2) and (D5) need to share two crucial characteristics: (1) a �nite
number of lags, and (2) serially uncorrelated (unpredictable) errors.

Using (D4) it is possible to eliminate u�;t�1 in (D3), to obtain

�t =
��

1� ��mct�1 + (�t � Et�1�t): (D6)

Next, equations (D5) and (D6) can be used to solve for the forecast error as a linear combination
of the structural shocks:

�t � Et�1�t = u�;t +
�

1� ��umc;t:

Hence, in the determinate solution the time t values of in�ation, marginal costs, and expected
in�ation are all uniquely determined by the two structural shocks in the model. At most two of
these variables can be linearly independent. This property is what allows one to properly form
in�ation expectations using a V AR where the only right-hand-side variables are in�ation and
marginal costs. As we discuss next, this property does not hold in the presence of sunspots.

The indeterminate (sunspot) solution arises when �� � 1: In this case, the stationary forward-
looking solution we just discussed is no longer feasible because equations (D4), (D5), and (D6) do
not hold. This implies that the forecast errors cannot be uniquely determined by the new time t
information provided by u�;t and umc;t. Following Lubik and Schorfheide (2003), the forecast error
in this case can be written as

�t � Et�1�t =M1u�;t +M2umc;t + ht; (D7)

where ht is an arbitrary martingale di¤erence (the sunspot shock), and M1 and M2 are parameters
that are not pinned down by the structural parameters of the model. As a result, the parameters
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M1 and M2 cannot be guaranteed to take any speci�c value, although in principle they can be
estimated (see Lubik and Schorfheide 2004).66

Replacing the forecast error in (D3) by (D7) yields the following constrained reduced-form
representation of in�ation

�t =
1

�
�t�1 �

�

�
mct�1 +M2umc;t + �t (D8)

�t =

�
M1u�;t �

1

�
u�;t�1

�
+ ht: (D9)

Under determinacy, equation (D4) implies that the error u�;t�1 in (D9) can be replaced by a linear
combination of �t�1 and mct�1; and as a result in�ation does not contain a moving average error
term. But in the indeterminate case equation (D4) does not hold, and the moving average error
in (D9) becomes an important problem for estimation. More speci�cally, the equilibrium under
indeterminacy is spanned by three independent shocks (u�;t; umc;t; and �t), and as a result marginal
costs, in�ation, and expected in�ation are all linearly independent.67 To avoid misspeci�cation,
a �nite-order V AR would need to include all three variables: in�ation, marginal costs, and most
importantly in�ation expectations themselves.68

It follows from this discussion that the dynamics of marginal costs and in�ation given by (D2)
and (D8) cannot have an unrestricted V AR representation such as (5), because (5) does not allow
for a moving average error component. In other words, the problem with the unrestricted V AR
in (5) is the omission of a variable that belongs in the model. In the presence of sunspots the
estimated V AR parameters are biased and inconsistent, since the lagged endogenous variables at
t� 1 are correlated with the moving average error term. Moreover, even if consistent estimates for
the V AR in (5) part of the process were available, it would still be incorrect to use (5) to proxy for
one-period-ahead expectations.69 The error term u�;t�1 would contribute valuable information to
form time t� 1 in�ation expectations beyond what would be contributed by in�ation and marginal
costs.

Overall, this simple example shows that assuming the V AR representation (5) as an uncon-
strained reduced form for the NKPC model amounts to imposing the existence of a stable forward-
looking solution, that is, �� < 1. If �� � 1, the reduced-form V AR representation contains a
moving average error term as we have already discussed. In such a case, the V AR errors would
only be uncorrelated if the V AR contains an in�nite number of lags. Otherwise estimating (5)
with a �nite number of lags results in truncation bias in the estimated coe¢ cients. This bias would
undermine the validity of the second stage, whereby estimates of the parameters of the NKPC
are obtained by imposing model-consistent, cross-equation restrictions on the estimated V AR in
equation (5). Moreover, because the estimation of (5) in the �rst stage imposes the assumption
that no sunspots are present in the equilibrium, it is important that the second-stage estimates be
supportive of this assumption. Evidence to the contrary would invalidate the estimation because of
an incongruence between the two estimation stages. In our application, determinacy of the system
66For estimation purposes, they cannot be assumed to be zero, or to equal their determinacy values M1 = 1 and

M2 = �= (1� ��) :
67Note that as long as (D4) does not hold, in�ation is a¤ected by the moving average �t even if we assume ht = 0

for all t. More generally, the problems posed by �t for the invertibility of the DSGE model are present even ifM1 = 0.
68This is, in essence, the non-invertibility problem that arises whenever the V AR has to incluede variables that are

unobservable to the econometrician (see Fernandez-Villaverde et al., 2007).
69 In order to obtain these consistent estimates the empirical model could be a V ARMA(p; q) model. In models

that involve additional leads and lags of in�ation or the driving process(es), the problem is how to determine the
correct values of p and q:
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hinges on the largest eigenvalues of b�t bAt: While Figure 10 illustrates that this is not a problem for
our CF estimates, Figure 11 points at an important problem for the DE estimates (which replicate
those in Cogley and Sbordone, 2008).

Two additional issues are worth noting here. First, truncation bias would imply that the
estimated errors from the V AR follow an in�nite-order moving average (see Fernandez-Villaverde
et al., 2007). Second, even if a �nite-order V AR might provide a relatively good approximation
to the dynamics of the true in�nite order VAR for speci�c shocks, this is ultimately irrelevant
for our estimation because we exploit cross-equation restrictions.70 In particular, the dynamics of
the variables are determined by linear combinations of the columns of the V AR, while the cross-
equation restrictions select very speci�c elements of the estimated V AR matrix to determine the
structural parameters. Even if the linear combinations of the inconsistently estimated VAR matrix
may provide relatively good impulse responses for speci�c shocks, the cross-equation restrictions
hinge much more critically on each point estimate involved in a cross-equation restriction. In this
sense, for the purpose of minimum-distance estimation as carried out in our paper and in Cogley
and Sbordone (2008), the warning in Fernandez-Villaverde et al. (2007) against simply assuming
that a �nite-order V AR appropriately replicates model dynamics is particularly relevant.

70See Sims and Zha (2006) and Sims (2009) for applications where the non-invertibility of a DSGE model does not
pose a particularly serious issue for estimation of a �nite-order V AR.
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