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Abstract

We develop a model of credit-fuelled bubbles in which lenders accept risky assets as col-

lateral. Asset prices and credit reinforce each other, as booming asset prices allow lenders to

extend more credit, enabling investors to bid prices even higher. If investors are asymmetri-

cally informed, there exist equilibria in which it is optimal to ride bubbles, buying overvalued

assets in hopes of reselling at a profit to a greater fool. Lucky investors sell the bubbly asset

at peak prices, only to buy it again at or below fundamental value after the crash. Unlucky

investors, who buy at the peak hoping that the bubble continues to grow at least a bit longer,

suffer losses. If the degree of leverage is sufficiently high, lenders repossess and liquidate

the assets of unlucky investors, and may continue to seize their endowments until debts are

fully repaid. In our model, raising interest rates and regulating maximal loan-to-value and

loan-to-income ratios can reduce or even eliminate bubbles.
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1 Introduction

In spite of a recent surge in interest in the topic of asset price bubbles, there is a remarkable lack

of consensus regarding how to model, or even define, bubbles. Economists agree that newspa-

pers and the public at large often misuse the term bubble, using it as a synonym for boom-and-

bust. Economists are of course interested in booms and busts, but they do not automatically

equate price volatility with the existence of a bubble. For bubbles to exist, prices must in some

sense be wrong, i.e., different from fundamental values.1 This agreement among economists,

however, turns out to be quite superficial, as different authors define fundamental value—and

hence bubble—very differently. In some models, prices differ from fundamental values due to

the existence of agents who are not fully rational.2 In fully rational models, on the other hand,

agents buy assets only if the benefits conferred by ownership justify the price. Those benefits

may, depending on the environment, include dividends, liquidity, expectations of speculative

gains, loosening of credit constraints, and others. While dividends are always considered fun-

damental, whether other benefits are considered fundamental or bubble varies widely. For ex-

ample, in overlapping generations models à la Samuelson (1958) and Tirole (1985), a bubble is

identified with the liquidity benefit provided by fiat money. In another well-known branch of the

literature—see Allen and Gale (1990), Allen and Gorton (1993), Barlevy (2011)—price exceeds ex-

pected dividends because agents use borrowed funds and can shift losses to lenders if dividends

are low. In this paper, we focus on the so-called speculative bubble literature, where agents are

willing to pay more than the expected value of dividends because of an option value consisting

of a chance to sell the asset at an inflated price to a so-called greater fool. Our starting point is

the model of speculative bubbles developed by Doblas-Madrid (2012), which in turn builds on

Abreu and Brunnermeier (2003), but includes only rational agents. In this setting, a bubble arises

as an overreaction to a shock that is initially fundamental in nature. Under asymmetric informa-

tion, agents continue to bid up an asset that they know is overvalued, rationally riding bubbles

1By wrong, we do not mean inefficient. In fact, in some strands of literature, bubbly equilibira are Pareto-superior
to equilibria in which prices equal fundamental values.

2For example, in Abreu and Brunnermeier (2003) and Delong et al. (1990) there is a mix of rational and behavioral
agents, in Harrison and Kreps (1978) and Scheinkman and Xiong (2003) agents are overconfident, and Lansing (2010)
explores the bounded rationality case.
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as long as the chance to earn speculative gains outweighs the risk of getting caught in the crash.3

In this strand of the literature, rational agents find it optimal to behave like short-term traders,

attempting to time the market, rather than behaving as long-term passive investors. In these

models, the focus is always on bubbles that burst within finite time, and it is not necessary for

bubbles to last forever—either in a deterministic steady-state or in expectation.

In Doblas-Madrid (2012), the arrival of a shock that raises an asset’s expected dividends is as-

sumed to coincide with the exogenous acceleration in the growth of agents’ endowments. Rapid

growth in the resources that can be invested is needed for prices to boom, but the source of that

growth is not modeled. In this paper, we propose to fill this gap by introducing a self-reinforcing

feedback loop between credit and asset prices as a way to endogenize endowment growth. The

addition of a credit market provides a plausible answer to an open question and allows us us

to analyze the effect of lending policies on speculative bubbles. A connection between bub-

bles and credit has been noted by numerous observers of both historical and recent episodes of

booms and crises. Well-known accounts of historical episodes—for example Kindleberger and

Aliber (2005) and Minsky (1986)—emphasize the role of cheap and abundant credit which fu-

els traders’ efforts to seek speculative gains using borrowed money. Similarly, in an exhaustive

historical study of asset markets in many countries, Borio and Lowe (2002) find that episodes of

sustained rapid credit expansion are typically accompanied by booming stock or house prices

and high levels of investment. Regarding more recent evidence, in the years prior to 2007, coun-

tries with the largest increases in household debt relative to income experienced the fastest rise

in house prices over the same period (Glick and Lansing (2010)). Within the United States, house

prices rose faster in areas where subprime and exotic mortgages were more prevalent (Mian and

Sufi (2009), Barlevy and Fisher (2010), Pavlov and Wachter (2011)). Moreover, past house price

appreciation in a given area had a significant positive impact on subsequent loan approval rates,

according to Goetzmann et al. (2012). Finally, in a comprehensive report, the U.S. Financial

Crisis Inquiry Commission (2011) emphasized the effects of a self-reinforcing feedback loop in

which an influx of new homebuyers with access to easy mortgage credit helped fuel an excessive

run-up in house prices, thus encouraging lenders to ease credit further on the assumption that

3Other rational models of speculative bubbles include Allen et al. (1993) and Conlon (2004). There is also a ’greater
fool’ component to Allen and Gorton (1993), in addition to the risk shifting mentioned above.
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house price appreciation would continue indefinitely. While most of these references refer to the

housing market, which has attracted much attention due to its macroeconomic importance, the

logic of a self-reinforcing feedback loop between prices, collateral values, and credit also applies

to many other financial markets. For instance, margin trading is common in equity markets,

spot foreign exchange markets, futures markets, etc.

Motivated by all these observations, we extend the rational model of speculation developed

by Doblas-Madrid (2012) by allowing agents to ride bubbles using borrowed money. Our model

of the credit market is very stylized. Lenders costlessly and competitively intermediate between

the model economy and the rest of the world. They are willing to lend at the exogenous risk-free

rate, but the amount an agent can borrow is subject to a collateral constraint similar to Kiyotaki

and Moore (1997). Although agents speculate with borrowed money, our setup differs from the

leveraged-bubble models of Allen and Gale (2000) and Barlevy (2011), where limited liability on

the part of borrowers induces them to pay more than fundamental value. The key difference

is that, in our model, lenders have full recourse. That is, if the posted collateral is insufficient

to pay repay the debt, they seize agents’ endowments until they recover principal and interest

on their loans. Therefore, we would like to emphasize that, in our model, agents’ willingness

to pay more than fundamental value for the risky asset is purely due to the prospect of earning

speculative profits, and not due to the fact that they shift losses to third parties. Our assumption

that endowments can be seized ex post, but only assets can be pledged ex-ante precisely allows

speculators to borrow growing amounts in order to fuel the bubble without—for the parameter

values of interest—allowing them to shift losses to lenders. Moreover, there are many settings in

which our assumptions do not seem far-fetched in light of credit market regulations. While some

US states allow underwater borrowers to ’walk away’ from mortgages, in others, lenders sue un-

derwater borrowers for any unpaid balance if the revenue from liquidating a foreclosed prop-

erty does not satisfy the outstanding debt. In fact, the limited liability feature of mortgages in

some US states is quite unusual by international standards. In most other countries—including

some that have experienced dramatic housing booms and busts, such as Spain and Sweden—

mortgage regulations conform to the full recourse rather than the limited liability model. More-

over, under full recourse, borrowing limits are primarily based on appraised property values,

with income requirements being typically verified for approval. Full recourse regulations are
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also common in other financial markets besides housing. For instance, in the context of stock

trading, margin agreements do not typically restrict losses to the value of collateral. The maxi-

mum position a stock investor can open depends only on the value of the collateral, i.e., on the

margin deposited. However, if losses exceed the value of collateral, the investor is still liable for

the outstanding balance.4

While the addition of a credit market does add complexity to our model, the model is still

tractable enough for us to obtain a number of analytical results, at least in some regions of the

parameter space. Importantly, the self-reinforcing feedback loop between prices and credit con-

verges, after a number of periods, to a constant growth rate of the price. This simplifies the

analysis and allows us to apply results from Doblas-Madrid (2012), subject to only minor mod-

ifications. Bubble duration depends on the growth rate of the bubble, which in our model is

endogenous and depends positively on the maximum loan-to-value ratio allowed by the lender.

Bubbles randomly generate winners and losers. Lucky agents sell at peak prices and re-purchase

the asset after the crash. Unlucky agents are often forced to liquidate their assets after the crash.

Depending on parameters, it is possible for the price to overshoot during the crash. This occurs

when lucky agents do not have enough funds to acquire all the shares of the risky asset that are

being sold in forced liquidations at fundamental value. In this case, lucky agents win twice, as

the risky asset’s price recovers. The model predicts that looser lending standards (as measured

by higher loan-to-value ratios) imply faster growth in the price of the risky asset and therefore

longer bubbles. Bubbles can also be reduced or even eliminated, by raising the risk-free interest

rate or by enforcing lending caps based on price-to-income ratios.

The rest of the paper is organized as follows. Section 2 presents the model. In Section 3,

we define equilibrium and propose a candidate strategy profile. In Section 4, we characterize

equilibrium bubble duration in the most tractable, benchmark case. In Section 5, we discuss

our results and how to extend the analysis to less-tractable cases. In Section 6, we conclude.

4In normal times, it is rare for a stock investor to be left with negative equity after her portfolio is liquidated.
However, in so-called fast markets, prices move so rapidly that the equity in an investor’s account may be negative
by the time the broker finishes closing the positions in an under-margined account. For example, after the dot-com
crash in the early 2000s, some investors still owed money on their margin loans even after their brokerage firms
liquidated their entire portfolios.
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2 The Model

Time is discrete and infinite with periods labeled t = ..., 0, 1, .... There is a unit-measure con-

tinuum of investors indexed by i ∈ [0, 1], and a continuum of competitive lenders. In each pe-

riod, investor i earns labor income yt, trades in the asset market, refinances debt and consumes.

There are two assets, a risk-free and a risky one. The former yields an exogenous gross return R

and can be turned into consumption at a one-to-one rate. The risky asset, which exists in unit

supply, trades at price pt and pays nonnegative dividends {dt}t∈Z.

Investors are risk neutral, but may be hit by preference shocks inducing an urgent need to

consume. Specifically, every period a randomly chosen fraction θ ∈ [0, 1] of investors are hit by a

shock that sets their discount factor δi,t equal to 0, while the remaining mass 1− θ have discount

factor δi,t = 1/R. For an investor with δi,t = 1/R, expected utility is given by

Ei,t [U ({ci,τ}τ≥t)] = E

ci,t +
1

R

∑
τ≥t+1

(
1− θ
R

)τ−(t+1)
ci,τ

∣∣∣∣∣∣ Ii,t
 , (1)

where ci,t denotes investor i’s time-t consumption, U denotes utility, and Ei,t expectation con-

ditional on information Ii,t. If δi,t = 0, (1) reduces to Ei,tci,t. Preference shocks do not represent

the investor’s death. After being hit, investors continue to receive endowments and can be hit

again. For simplicity, shocks are assumed i.i.d., so that the probability that δi,t = 0 is indepen-

dent of past values δi,s, for s < t. This means that investors recently hit by the shock are just as

likely to be hit again as investors who have not been hit for a long time.

Depending on whether she is in compliance with the terms of her outstanding loans, investor

i can start period t in good credit standing, denoted by ς i,t = 1, or in default, in which case

ς i,t = 0.

2.1 Investors in Good Standing

Consider an investor i starting period t with good credit ς i,t = 1, hi,t ≥ 0 units of the risky asset,

bi,t ≥ 0 units of the risk-free asset, and a liability of li,t ≥ 0 units of the risk-free asset. For future

reference, the corresponding economy-wide aggregates are given by Ht, Bt and Lt, respectively.

At the beginning of the period, investor i learns the realization of her preference shock and re-
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ceives an endowment yt. She then visits an asset market, modeled as a Shapley-Shubik trading

post with two-step trading. In Step 1, investors submit orders to buy/sell as follows. In one bin,

investor i deposits risky-asset shares si,t ≥ 0 she offers for sale. Since the risky asset cannot be

shorted, it must be that

si,t ≤ hi,t. (2)

In another bin, she deposits mi,t ≥ 0 units of the risk-free asset she wishes to spend buying the

risky asset. The risk-free asset can be shorted by borrowing from lenders. Thus, mi,t is bounded

by

mi,t ≤ bi,t + yt, (3)

where some or all of bi,t may be borrowed. Note that investors choosemi,t and si,t before knowing

the price, determined in Step 2 once all bids and offers are combined. Specifically, the ratio of

the aggregate risk-free asset bid Mt over the aggregate number of shares sold St determines the

price

pt =
Mt

St
. (4)

Since there is always positive mass of shock-induced sellers, St > 0 and pt is well defined. After

trading, investor i’s portfolio is given by

hi,t+1 = hi,t +
mi,t

pt
− si,t (5)

and

b̃i,t = bi,t + yt + ptsi,t −mi,t, (6)

where b̃i,t denotes interim—post asset market and pre-refinancing—risk-free asset balance.

After the asset market closes, investor i refinances her debt with a lender. We assume that

interest accrues between the time the asset market closes and the debt refinancing time. In

other words, by the debt refinancing stage, risk-free assets and liabilities b̃i,t and li,t have re-
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specitively increased to Rb̃i,t and Rli,t. Lenders costlessly and competitively intermediate be-

tween the model economy and the rest of the world, where they borrow or lend at the rate R. To

retain good credit, investor i must repay Rli,t. She can borrow new debt li,t+1, but only up to a

fraction φ ∈ (0, 1] of the value of her risky asset shares. That is,

li,t+1 ≤ φpthi,t+1. (7)

If investor i can repay her debt, i.e., if

Rb̃i,t + φpthi,t+1 ≥ Rli,t, (8)

we assume that she repays and maintains good credit. Thus, we assume that lenders are able to

monitor assets in order to preclude borrowers from diverting borrowed funds to increase con-

sumption.5 We also assume, without loss of generality, that investors remaining in good credit

standing borrow as much as they can, so that (7) holds with equality. Since the interest rate

on risk-free assets and liabilities is the same, an investor who borrows at t and passively keeps

the funds in the form of risk-free balances next period can always repay her loan and incurs

no cost.6 Finally, investor i splits the remaining R
(
b̃i,t − li,t

)
+ li,t+1 beween consumption and

savings. That is, she consumes a fraction ξi,t ∈ [0, 1] of the available balance

ci,t = ξi,t

[
R
(
b̃i,t − li,t

)
+ li,t+1

]
. (9)

and saves the rest

bi,t+1 =
(
1− ξi,t

) [
R
(
b̃i,t − li,t

)
+ li,t+1

]
. (10)

Consumption choices are also straightforward. If δi,t = 0, investor i chooses ξi,t = 1, consuming

everything and saving nothing. And if δi,t = 1/R, we assume that she chooses the opposite

5Moreover, note that investors hit by the preference shock do not borrow. Since φ ≤ 1, they consume more by
selling all risky shares than by borrowing against them.

6It would be more realistic to assume that agents do not borrow more than the maximum they expect to bid in
the next period. However, incorporating this would greatly complicate the exposition—requiring us to set up two,
instead of one, decision problems per period—without affecting results.
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ξi,t = 0, consuming nothing and saving everything.7

2.2 Investors in Default

If (8) is violated, investor i defaults and ς i,t+1 becomes 0. The lender seizes Rb̃i,t and hi,t+1, im-

mediately applying Rb̃i,t towards debt repayment, and slating hi,t+1 for liquidation as soon as

the asset market reopens in period t + 1. Investor i is given no allowance for consumption, and

thus ci,t = bi,t+1 = 0 and li,t+1 = R
(
li,t − b̃i,t

)
.

As long as she remains in default, investor i is not free to make any choices. When the asset

market opens at time t + 1, she is forced to set (mi,t+1, si,t+1) = (0, hi,t+1). That is, she must sell

her shares of the risky asset—which may be positive only in the first period of default—and she

must keep her endowment in the form of risk-free balances, i.e., she is not allowed to invest it in

the risky asset. Thus, she leaves the asset market with (̃bi,t+1, hi,t+2) = (yt + pthi,t, 0).

At the lender’s,Rb̃i,t+1 is applied towards debt repayment. If this does not suffice to repay the

outstanding debt, investor i remains in default and must consume zero. If it suffices, she regains

good credit and the freedom to make choices, starting with the decision to consume or save the

balance left over after repayment R
(
b̃i,t+1 − li,t+1

)
. In sum,



ς i,t+2

li,t+2

ci,t+1

bi,t+2


=





0

R
(
li,t+1 − b̃i,t+1

)
0

0


if li,t+1 > b̃i,t+1



1

0

ξi,t

[
R
(
b̃i,t − li,t

)
+ li,t+1

]
(
1− ξi,t

) [
R
(
b̃i,t − li,t

)
+ li,t+1

]


if li,t+1 ≤ b̃i,t+1.

. (11)

Endowments are assumed valuable enough (relative to the maximum possible decline in asset

prices) to repay any debt.8 In other words, the number of periods that investor i remains in

7If the risky asset is expected to yield more than the inverse of the discount factor, consuming zero is the only
optimal choice. On the other hand, if expected returns equal the inverse of the discount factor, any amount is optimal.
Then, we assume that zero consumption as a tie-breaking rule.

8A parameter restriction ensuring that this is the case is derived later in the paper.
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Figure 1: [Insert here]

default is always finite. As discussed in the introduction, this allows us to consider very stylized

lenders who are willing to lend at the risk-free rate, since in the long run they do not incur any

credit losses.

2.3 Timeline: Three Phases

As in Doblas-Madrid (2012), there are three phases: A pre-boom phase for t < 0, a boom from

time 0 to the (endogenous) crash period tc, and a final, post-crash phase. As we will see later, in

the equilibria of interest the boom will be subdivided into a fundamental part and a bubble. The

full timeline is shown in Figure 1.

In the pre-boom phase, the risky asset’s fundamental value is known by all and equal to the

expected value of future dividends. This value, discounted to time 0, equals F > 0. Assuming,

for simplicity, that all dividends are expected to be paid after date 0, the fundamental value for

any t < 0 is given by

ft = FRt. (12)

Thus, while t < 0, the fundamental value ft of the risky asset and its price pt are both equal and

given by FRt. In this preliminary phase, the risky asset is not yet risky, but instead a perfect

substitute of the risk-free asset.

At time 0, an unexpected innovation raises the expected fundamental value above F . For

simplicity, we assume that the risky asset will pay a single dividend at the maturity/payoff date

tpay in the amount of dtpay = FRtpay . At time 0, investors realize that the risky asset has become

more valuable, but do not know the magnitude of the gains or the payoff date. Beliefs over F—

which as of time 0 are the same for all investors—are captured by the cdf Ψ(·), with Ψ(F ) = 0 and

Ψ(∞) = 1. We also assume that the payoff date tpay is an increasing function of F , i.e., that the

greater the increase in fundamental value, the longer it will take for the asset to pay dividends.

Hence, for any n = 0, 1, 2, . . .
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tpay(F ) = tpay + n if F ∈
(
Fn, Fn+1

]
, (13)

where the lower bound tpay is a positive integer, F 0 = F and Fn+1 > Fn. Clearly, at time tpay,

the value of F will become known. Our focus, however, will be in situations where F becomes

known before the dividend is paid.

We assume that investors cannot borrow enough at time 0 to bid pt up to its new expected

value—we will later derive parameter conditions ensuring this. Under this assumption, the

boom is not a one-time jump in price, but is instead sustained for a number of periods in which

prices and credit reinforce each other. Borrowing to buy the risky asset raises its price, which

in turn loosens borrowing constraints, allowing investors to borrow more and bid prices even

higher. Prices catch up to the new fundamental value, and begin surpassing it at t0. Any price

gains after t0 are not granted by fundamentals and bound to disappear at the crash time tc. We

assume that the lower bound on the payoff time tpay is always larger than tc, so that payment of

dividends occurs well after the bubble and crash have played out.

A crucial assumption that we borrow from AB is that agents do not observe t0 perfectly. In-

stead, every period from t0 to t0 + N − 1, immediately after observing the price, a mass 1/N of

agents receive a signal revealing that the risky asset is no longer undervalued. Signals define N

types of agents n = t0, ..., t0 + N − 1. Agents observe n, but not t0. In other words, each agent

knows she observes her signal, but not when others do. Once an agent observes her signal at

time n she knows that the start of the overvaluation t0 may have been as early as n − (N − 1) or

as late as n. Hence, the distribution of t0 conditional on n ≥ N is given by9

ϕ(t0|n) =

Pr[t0]

Pr[n−(N−1)]+···+Pr[n] if n− (N − 1) ≤ t0 ≤ n

0 otherwise.
(14)

Since t0 is the first period with pt ≥ F , the probability of each value of t0 ∈ {1, 2, ...} is derived

from the distribution of F as follows:

Pr[t = t0] = Ψ(pt)−Ψ(pt−1). (15)

9In the special case with t0 < N , types with n < N know that t0 must be above 0 since n − (N − 1) ≤ 0, and thus
condition on t0 ∈ {1, ..., n}.
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Sequential arrival of signals places investors along a line, but they are uncertain about their rel-

ative position in it. This plays an important role, because all investors—including those late in

the line—assign positive probability to the event that they could be early.10 If the price grows fast

enough, it may be optimal to continue buying the overvalued asset, trading off the chance to re-

sell at a profit in the event of being an early-signal investor against the risk of being a late-signal

investor and getting caught in the crash.

As long as all types continue to borrow and invest as much as they can, only the θ shares

forced by shocks are sold. However, as soon as shock-induced sellers are joined by sellers who

anticipate a crash, the price reveals that the bubble is starting to burst, and the boom comes to

an end. To fix ideas, suppose that type-n investors plan to wait for τ∗ ≥ 0 periods and then sell

at n + τ∗. (We will later show that this strategy profile is an equilibrium.) While t < t0 + τ∗,

St = θ, and the boom proceeds at maximum speed as all agents borrow and invest as much as

they can. This continues until, in period tc = t0 + τ∗, the number of shares for sale increases to

St = θ+(1−θ)/N , as shock-induced sellers are joined by sellers of type n = t0. At the same time,

the number of buyers falls from 1 − θ to (1 − θ)(1 − 1/N). Seeing the corresponding decline in

the price ratio pt/pt−1, buyers realize that t = tc, and thus also learn the value of t0 = tc− τ∗. The

boom thus concludes, with agents of type n = t0 selling at the peak and all other types finding

themselves in the position of the greater fool.

Since the crash reveals the value of t0, in the post-crash phase agents are willing to bid only

up to the fundamental value. At time tc + 1, agents of type n = t0 repurchase the risky asset from

the losing types n > t0, many of whom are in default. From that point on, agents who are in good

credit and who are not hit by the shock buy the asset from those who are hit by the shock. This

continues until the risky asset pays off and disappears at time tpay. The full timeline is shown in

Figure 1.

10This specification of signals is simply a discretized version of that in Abreu and Brunnermeier (2003). In exper-
imenal work, Moinas and Pouget (2012) also introduce uncertainty about the order in which agents move, so that
the last buyer thinks that she may not be the last. Other models with a ’greater fool’ flavor include Allen and Gorton
(1993), Allen, Morris and Postlewaite (1993) and Conlon (2004).
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3 Equilibrium Concept and Strategies

3.1 Equilibrium

The equilibrium concept is Perfect Bayesian Equilibrium (PBE) which consists of mutually con-

sistent strategies and beliefs. Investor i’s strategy of agent i is a plan of actions ai,t = {mi,t, si,t, ξi,t}

for all t, contingent on information Ii,t. In equilibrium, for all agents, at all times, and under

every possible contingency, beliefs must be consistent with strategies and actions must be opti-

mal given beliefs. Information Ii,t includes pt−1 = {. . . , pt−2, pt−1}, the price history up to period

t − 1, as well as the discount factor δi,t, since the agent knows the realization of the preference

shock. Once the agent has observed the overvaluation signal, i.e., once t ≥ υ(i), the signal

υ(i) = n is added to Ii,t. In sum, Ii,t is given by {pt−1, δi,t} if t < υ(i) and by {pt−1, δi,t, υ(i)} if

t ≥ υ(i).

Equilibrium beliefs µi,t are probability distributions over values of t0, which are updated ac-

cording to Bayes’ rule as signals and prices are observed. Given Ii,t, the set of possible values of

t0 is given by suppi,t(t0). Before signals are observed, suppi,t(t0) = {1, 2, 3, . . .}. Observing the

signal υ(i) allows investor i to exclude values of t0 below υ(i)− (N −1) and above υ(i), narrowing

the support down to suppi,t(t0) = {max{υ(i)− (N − 1), 1}, . . . , υ(i)}. Moreover, if trading strate-

gies depend on signals, agents to continue to learn and eliminate values from suppi,t(t0) as they

observe prices. Among the values in suppi,t(t0), probabilities are distributed according to Bayes’

rule. Hence, the equilibrium beliefs are given by

µi,t(t0) =
Pr[t0]∑

τ0∈suppi,t(t0)
Pr[τ0]

. (16)

Given (hi,t, bi,t, li,t, ς i,t) and Ii,t, investor i’s choices (mi,t, si,t, ξi,t) solve

Vi,t(hi,t, bi,t, li,t, ς i,t) = max
(mi,t,si,t,ξi,t)

E [Vi,t+1(hi,t+1, bi,t+1, li,t+1, ς i,t+1)|Ii,t] (17)

subject to (2), (3), (mi,t, si,t) = (0, hi,t) if ς i,t = 0, (5), (6), ξi,t ∈ [0, 1], and

13





ς i,t+1

li,t+1

ci,t

bi,t+1


=





0

R
(
li,t − b̃i,t

)
0

0


if Rli,t > Rb̃i,t + φpthi,t+1



1

φpthi,t+1

ξi,t

(
b̃i,t + li,t+1 −Rli,t

)
(
1− ξi,t

) (
b̃i,t + li,t+1 −Rli,t

)


if Rli,t ≤ Rb̃i,t + φpthi,t+1.

Finally, equilibrium also requires market clearing

Ht = 1. (18)

3.2 Strategies

Investors in default (i.e., with ς i,t = 0) have very little freedom. They must liquidate assets and

forego endomwents until repaying their debt. Specifically, their strategy is given by

(mi,t, si,t, ξi,t) =
(0, hi,t, 0) if δi,t = 1/R

(0, hi,t, 1) if δi,t = 0.
(19)

The choice of ξi,t = 1 if δi,t = 0 means that agent i wishes to consume 100% of the balance

available for consumption. Said balance, however, is only positive in the period when she fully

repays and regains good credit, i.e., when li,t+1 = 0 and ς i,t+1 = 1. As long as li,t+1 > 0 and

ς i,t+1 = 0, the balance available for consumption is zero, and thus ci,t = 0 regardless of the

choice of ξi,t.

Investors in good credit can freely choose to buy or sell the risky asset, a choice which is

nontrivial when they are not hit by the preference shock. Before and after the boom, investors

simply bid the asset to its fundamental value. To do this, they bid a fraction θft/[(1−θ) (Bt + yt)]

of their available risk-free funds bit + yt. The strategic interaction of interest occurs during the
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boom. Following Abreu and Brunnermeier (2003) and Doblas-Madrid (2012), we focus on trigger

strategies, in which type-υ(i) investors plan to ride the bubble for τ∗ periods after observing their

signal and sell at time υ(i)+τ∗. If all agents follow this strategy, the bubble is pricked when agents

of the first type υ(i) = t0 sell at time tc = t0 + τ∗. In sum, strategies of agents in good credit are

given by:

1. If hit by the preference shock, δi,t = 0 :

(mi,t, si,t, ξi,t) = (0, hi,t, 1).

2. If not hit by the preference shock, δi,t = 1/R:

(mi,t, si,t, ξi,t) =



(
θFRt

(1−θ)(Bt+yt) [bit + yt] , 0, 0
)

if t < 0

(bi,t + yt, 0, 0) if 0 ≤ t < min{υ(i) + τ∗, tc + 1}

(0, hi,t, 0) if t = υ(i) + τ∗ < tc + 1(
min

{
1, θFRt

(1−θ)(Bt+yt)

}
[bit + yt] , 0, 0

)
if tc + 1 ≤ t < tpay

(0, 0, 0) if t ≥ tpay

To derive equilibrium beliefs µi,t from trigger strategies, note that agent i learns about t0 from

the signal υ(i) and the crash tc = t0+τ
∗. From the signal, she infers that t0 is between υ(i)−(N−1)

and υ(i). Given this, strategies imply that tc must be between υ(i) − (N − 1) + τ∗ and υ(i) + τ∗.

(Assuming that τ∗ ≥ N−1, so that agent i has observed the signal as of υ(i)−(N−1)+τ∗.) When

she observes the price at time υ(i) − (N − 1) + τ∗, agent i learns that t0 = υ(i) − (N − 1) if the

bubble bursts, or that t0 > υ(i)− (N − 1) if it does not. Prior to observing this price, she assigns

a given probability to the event that t0 = υ(i) − (N − 1). Every period after that, she either gets

caught in the crash and learns the value of t0 or, if the bubble continues, she discards another

value of t0 from suppi,t(t0). As she discards successive values, the crash probability rises. In fact,

if t0 happens to be υ(i), agent i learns the true value of t0 when she observes the price at time

υ(i)− 1 + τ∗, which allows her to eliminate the possibility that υ(i)− 1.

4 Equilibrium in the benchmark case

Under some conditions, our model endogenously generates the same dynamics as in Doblas-

Madrid (2012). The specific conditions under which this is the case are the following:
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1. Parameters and the realization of t0 are such that the price growth rate during the bubbly

phase of the boom closely approximates a constant rate G > R.

2. Once t0 is known, the expectation E[F |t0] equals Gpt0 .

3. As the price growth rate approximates G, the distribution of t0 approximates a geometric

distribution. In other words, the cdf Ψ governing the distribution ofF satisfies the property

that, if pt+1 = Gpt,

Pr[t+ 1 = t0]

Pr[t = t0]
=

Ψ(pt)−Ψ(pt−1)

Ψ(pt−1)−Ψ(pt−2)
= λ, (20)

for some λ ∈ (0, 1).

4. The price does not overshoot below fundamental value. In other words, buyers after the

crash have or can borrow enough of the risk-free asset to buy all the shares offered for

sale—which might spike due to forced liquidations—at a price equal to fundamental value.

The case in which conditions 1-4 are satisfied serves as a useful benchmark for two reasons.

The first is that conditions 1-4 eliminate a series of complications, greatly simplifying the ana-

lytical derivation of equilibrium bubble duration. Second, in this benchmark case, we can apply

some of the results from Doblas-Madrid (2012), subject to only minor modifications. As we will

in a later Section, if conditions 1, 2, or 3 fail, formulas become more cumbersome, but the gist of

the analysis remains similar. Considering what happens when condition 4 fails is more involved,

although the effort will pay off in terms of additional results.

4.1 Before the fundamental shock

The pre-boom phase before period 0 is a quiet one, in which the price pt simply grows at the risk-

free rate. Agents hit by preference shocks sell their entire holdings of the risky asset. Since shocks

are i.i.d., the mass of shares offered for sale always amounts to St = θ. Those who are not hit by

the shock are willing to buy these shares at a price equal to fundamental value FRt. Of course,

for this to be possible in equilibrium, buyers must wield enough—owned or borrowed—funds

to bid Mt = θFRt. We therefore assume that, at all times
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θFRt ≤ (1− θ) (Bt + yt) , (21)

where (1−θ) is the measure of buyers andBt+yt the aggregate risk-free balances available when

the asset market opens. Also note that Bt includes funds borrowed in the previous period in the

amount of Lt = φFRt−1.

With the risky asset appreciating at the rateR, all borrowers can repay or roll over their debts

at the debt refinancing stage. Sellers repay θRLt and consume, in the aggregate

Ct = θ
[
R (Bt + yt) + FRt(1− φ)

]
. (22)

Buyers pledge the risky asset—of which they now own the full supply—to borrow Lt+1 =

φFRt and pay back their share of last period’s debt (1 − θ)RLt = (1 − θ)φFRt. Since buyers do

not consume, aggregate risk-free balances evolve according to

Bt+1 = (1− θ)R(Bt + yt −Mt)− (1− θ)RLt + Lt+1

= (1− θ)(Bt + yt)− θ(1− φ)FRt. (23)

We assume that, as of time 0, investors have more wealth than they need to purchase the risky

asset, i.e., we assume that as of time 0, (21) holds with strict inequality.

To fix ideas, consider an example where endowments grow at the risk-free rate, i.e., yt = yRt.

Then, (23) becomes

Bt+1 = (1− θ)RBt +
[
(1− θ)y − θ(1− φ)F

]
Rt. (24)

Iterating, and assuming that (1 − θ)R < 1, risky balances also grow at the risk-free rate and

are given by

Bt =
[
y − F (1− φ)θ/(1− θ)

]
Rt (25)

and (21) holds with strict inequality as long as y > F [θ/(1− θ)− φ].
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4.2 Innovation, boom and bubble

At the beginning of period 0, before the asset market opens, an unanticipated fundamental

shock raises the value of the risky asset’s future dividends. The value of such dividends—discounted

to time 0—increases from F to F . As of time 0, agents know that the fundamental value of the

risky asset has increased substantially, but they do not know exactly by how much, i.e., they do

not know the precise magnitude of F . Their beliefs over possible values of F are captured by the

cdf Ψ. We assume that, for a number of periods, the expected F exceeds the maximum price

that buyers are able to pay given their savings, endowments and ability to borrow. At time 0, the

mass θ of agents hit by preference shocks submit orders to sell S0 = θ shares, while the remain-

ing mass (1− θ) bid as much as they can for the risky asset. Hence,M0 = (1− θ)[B0 + y0] and the

price p0 is given by

p0 = (1−θ)
θ [B0 + y0].

The fact that p0 must be greater than F follows from our assumption that (21) holds with strict

inequality at time 0.

At the debt refinancing stage, sellers repay a fraction θ of RL0 and consume. Buyers repay

the remaining fraction 1 − θ of the outstanding debt, and—since they own the entire supply of

the risky asset—borrow the full new amount L1 = φp0 and thus begin period 1 holding B1 =

L1 − (1 − θ)RL0 units of the risk-free asset. The same pattern of actions taken in period 0 is

repeated in period 1, with the only sellers being those hit by the preference shock and all other

agents investing as much as they can into the risky asset. Therefore,

p1 = (1−θ)
θ [(L1 − (1− θ)RL0) + y1] .

and L2 = φp1.Iterating, this process gives rise to a recursion defined by

pt+1 =
1− θ
θ

[(Lt+1 − (1− θ)RLt) + yt+1] , (26)

and Lt+1 = φpt. Substituting the latter into (26) and dividing through by pt, we obtain

pt+1
pt

=
1− θ
θ

[
φ− (1− θ)Rφpt−1

pt
+
yt+1
pt

]
.
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We next define Gt ≡ pt/pt−1, and conjecture that this process generates price growth rates

higher than R. Under this conjecture, and the assumption that endowments do not grow faster

than R, the term yt+1/pt approaches 0 as t grows, and we can rewrite the above as

Gt+1 =
1− θ
θ

φ

[
1− (1− θ)R

Gt

]
. (27)

If this process converges to a constant growth rate Gt+1 = Gt = G, such rate must solve the

quadratic equation

G2 − 1−θ
θ φG+ (1−θ)2

θ φR = 0,

which has only one stable root given by

G = 1−θ
2θ φ

[
1 +

√
1− 4θR/φ

]
.

If 4θR ≤ φ, a constant rate G exists. After a number of periods, the price growth rate converges

to this constant level, which increasing in φ and decreasing in θ and R. It is not difficult to show

that whenever G exists, it must be greater than R.11

In the event that 4θR > φ, the constant rate G does not exist. Simulation results depicted

in Figure 2 show rapidly growing prices and debt for a number of periods, followed by declining

and eventually negative growth rates. As we will discuss in a later Section, one can still generate

bubbles in this case, as long as the bursting date arrives before price growth slows down, al-

though it is necessary to consider strategies different from trigger strategies. For the remainder

of this section, however, we will focus on the case where 4θR ≤ φ, so that a constant rate G does

exist.

Recapitulating, during boom periods t ∈ {0, . . . , tc−1}, all agents borrow and invest as much

as they can into the risky-asset, with the only sales being those forced by preference shocks, St =

θ. Under the assumption that 4θR ≤ φ, the growth rate of the price generated by the borrowing

and reinvesting recursion defined above converges towards a constant rate G.

The boom ends at time tc, when shock-induced sellers are joined by sellers who are leaving

the market in anticipation of the crash, and thus Stc becomes θ + (1 − θ)/N . At the same time,

11To see this, note that if φ = 4θR, G = 2(1 − θ)R. In this case, G > R is equivalent to θ < 1/2, which must be the
case since 4θR = φ ≤ 1. If φ > 4θR, G the difference between G and R grows.
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Figure 2: Prices and debt when G does not exist.

the number of buyers falls from 1− θ to (1− θ)(1− 1/N). These developments lead to a decline

in the price growth rate, which pricks the bubble and triggers the crash. Since agents know that

tc = t0 + τ∗, the value of t0 becomes common knowldege when the price ptc is observed. It is

important to note that, since orders to buy and sell are submitted in Step 1 of the asset market,

buyers do not learn how many sellers there are until the market clears in Step 2. By that point,

however, it is too late for them to cancel their buy orders.

To compute the decline in the price growth rate at time tc, we begin by writing the price as

ptc =
(1− θ)(1− 1

N )

θ + 1−θ
N

(φptc−1 − (1− θ)Rφptc−2 + ytc)

and dividing by ptc−1 to obtain

ptc
ptc−1

=

(1−θ)(1− 1
N
)

θ+ 1−θ
N

(1− θ)/θ

[
φptc−1 − (1− θ)Rφptc−2

φptc−2 − (1− θ)Rφptc−3 + ytc−1
+

ytc
ptc−1

]
.

If the boom is long enough, we can ignore ytc/ptc−1 and rearrange terms as follows

ptc
ptc−1

=
θ(N − 1)

1 + θ(N − 1)

[
φ
ptc−1
ptc−3

− (1− θ)Rφptc−2ptc−3

φ
ptc−2
ptc−3

− (1− θ)Rφ+
ytc−1
ptc−3

]
.

Similarly, we can approximate ytc/ptc−3 ' 0 and pt ' Gpt−1, allowing us to simplify the above

expression to obtain
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ptc = ptc−1
θ(N − 1)

1 + θ(N − 1)
G. (28)

The decline in the price growth rate, in addition to revealing information, reduces sellers’

revenue as captured by the fraction θ(N −1)/[1+θ(N −1)]. This revenue effect is decreasing in θ

andN , and can be made arbitrarily small by increasingN .12 Nevertheless, as we will see shortly,

it is not necessary for this effect to be negligible in order to generate bubbles. What is necessary

is that, overall, the effect does not reduce the potential reward from riding the bubble, in terms

of capital gains, to such a degree that agents become unwilling to bear the associated crash risk.

Before moving on to the collapsing asset market of period tc + 1, it is useful to track how

agents’ portfolios evolve over the course of period tc. Agents of all types start the period holding

on average assets Htc = 1 and Btc = φptc−1 − (1 − θ)Rφptc−2, and a liability Ltc = φptc−1 . Those

hit by preference shocks collectively sell θ shares, repay their share debt θRφptc−1 and consume

Ctc = θR[ptc+ytc−(1−θ)Rφptc−2]. Since they do not hold any shares of the risky asset, they do not

borrow. The mass (1− θ)/N of type-t0 agents who sell without being hit by the shock also finish

period tc without any risky asset shares and without any debt. However, instead of consuming,

they save their holdings of the risk-free asset, which amount on average to R[ptc + ytc − (1 −

θ)Rφptc−2]. Finally, the hapless mass (1 − θ)(1 − 1/N) of agents who are buyers at time tc find

themselves at the end of the period holding the entire supply of the risky asset. Since the price

ratio ptc/ptc−1 is still aboveR, they can still borrow φptc , repay their debts (1−θ)(1−1/N)Rφptc−1 ,

and avoid default for the moment.

4.3 Crash and aftermath without overshooting

Since all agents know that tc = t0 + τ∗, the price ptc reveals the true value of t0. This puts an end

to the asymmetry of information that began when signals arrived. Once t0 becomes common

knowledge, all agents compute the same expected fundamental value E[F |t0], which given the

definition of t0, must be between pt0 and pt0−1. Condition 2 allows us to further simplify the

analysis by equating E[F |t0] with pt0/G.

In the benchmark case, which most closely resembles Doblas-Madrid (2012), price falls to

12Such a large-N assumption is in place for most of the analysis in Doblas-Madrid (2012).
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fundamental value in the crash, but not further. That is, under conditions 4 and 2,

ptc+1 = E[F |t0]Rtc+1 =
pt0
G
Rtc+1.

For this price to arise from trading in the asset market, it must also be the case that

Mtc+1 = ptc+1Stc+1,

which is only possible if buyers at time tc+ 1 have enough funds to acquire all of the Stc+1 shares

sold. This is possible in two scenarios. In the first, the degree of leverage φ is sufficiently small

that agents who bought the risky asset at tc easily avoid defaulting at tc + 1 by selling a few of

their shares. In other words, the first scenario is one in which—even after crash losses—debt is

still a relatively small fraction of the portfolio’s value. In that case, there are no defaults and no

glut of forced liquidations of repossessed risky shares. Agents who bought the risky asset at tc

reduce their debt to bring it back within the allowed limit by selling a number of shares, which

depends on φ. On the other hand, the resources available for the aggregateMtc+1 depend on the

sales revenue obtained by the fortunate type-t0 agents who correctly timed the market at tc. If

the number of sales for sale does not increase, type-t0 agents—specifically the fraction of them

not hit by the preference shock—are able and willing to pay a price ptc+1 since they sold at a

the higher price ptc . In scenario 1, there is no overshooting because φ is small enough that the

increase in shares for sale Stc+1 does not outweigh the drop in price.

In the second scenario, the bubble is so large that the speculative profits of type-t0 agents

outweigh any increase in the number of shares for sale. The maximum possible increase in

shares for sale occurs when every buyer at tc must liquidate all her shares at time tc + 1. In

that event, the number of shares for sale increases from Stc = θ + (1 − θ)/N to Stc+1 = 1.

Nevertheless—as we will see shortly—for appropriate parameters bubble duration τ∗ can be

made arbitrarily large, so that the price falls by a greater percentage than the number of sales

for sale increase.

In each of these two scenarios, the price of the asset falls to fundamental value at the time of

the crash and then grows at the risk-free rate until the dividend is paid at the payoff date tpay.
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4.4 Characterizing bubble duration

Under conditions (1)-(4), the characterization of equilibrium τ∗ is derived from the conditions

verifying that agents—unless forced to sell by preference shocks—are willing to invest as much

as they can into the risky asset and sell all their shares at time υ(i) + τ∗. Since agents hit by

preference shocks have zero discount factors, it is straightforward that they are willing to sell

and consume. Thus, our focus shall be on the actions of agents who are not hit by preference

shocks during boom periods. It is the choices made under these circumstances that determine

whether bubbles can arise and how large can they become. Equilibrium requires that agents be

willing to: (i) Sell when the strategy dictates that they should sell and (ii) Wait when the strategy

dictates that they should wait. Part (i) holds for any τ∗. To see why, note that if agent knows that

others of her same type are selling at t, she knows that the price will show reveal the sales, and

the bubble will burst next period.

Part (ii) is less obvious and more important, since it pins down how large bubbles can be-

come in equilibrium. To understand the choices of waiting agents, consider a type-υ(i) agent.

She learns about t0 from signal and prices. From the signal, she infers that the support of t0 is

the set {υ(i)− (N − 1), . . . , υ(i)}. Under condition 3, the conditional probabilities are given by

Pr[t0 = τ |υ(i)] =
λτ−[υ(i)−(N−1)]

1 + λ+ λ2 + · · ·+ λN−1

An agent of type υ(i) eliminates values from her support of t0 as she observes that the bubble

does not burst at times υ(i) − N + 1 + τ∗, υ(i) − N + 2 + τ∗, and so forth. If she happens to be

"first in line", i.e., if υ(i) = t0 she finally learns that t0 = υ(i) when she observes the price at time

υ(i) − 1 + τ∗. In equilibrium, of course, she must be willing to wait until the scheduled selling

date υ(i) + τ∗, although the probability of a crash conditional on the bubble not having burst

increases every period as this date nears. Hence, preemptively sales are most tempting at time

υ(i)− 1 + τ∗, just one period before the selling time dictated by the strategies υ(i) + τ∗. If agent

i is willing to wait at time υ(i)− 1 + τ∗, she will also be willing to wait at all other times.

At time υ(i) − 1 + τ∗ this point, agent i may sell preemptively or wait one more period. If

she sells, she will avoid the crash and sell at a price which varies slightly depending on t0. If

t0 = υ(i)−1 shock-induced agents and type-υ(i)−1 agents will sell and the price will be reduced
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by a factor θ(N − 1)/[1 + θ(N − 1)] and if υ(i) − 1 only shock-induced sellers will sell and the

price will be accordingly higher. If agent i decides to wait, she will get caught in the crash in the

event that t0 = υ(i) − 1, and otherwise ride the bubble for one more period, selling at the price

θ(N − 1)/[1 + θ(N − 1)]pt0G
τ∗+1. In sum, waiting is optimal if

(
θ(N − 1)

1 + θ(N − 1)
+ λ

)
pt0RG

τ∗ ≤ pt0
G
Rτ

∗+1 + λ
θ(N − 1)

1 + θ(N − 1)
pt0G

τ∗+1

Dividing through by pt0RG
τ∗ and rearranging terms, we can rewrite the above ‘sell-or-wait’ in-

equality as

θ(N − 1)

1 + θ(N − 1)
+ λ ≤

(
G

R

)−(τ∗+1)
+ λ

θ(N − 1)

1 + θ(N − 1)

G

R
(29)

To read this inequality, it is easiest to first note that, when N is large enough that θ(N − 1)/[1 +

θ(N − 1)] is close to one, it simplifies to

1 ≤ 1

1 + λ

(
G

R

)−(τ∗+1)
+

λ

1 + λ

G

R
.

In this reduced version, the inequality governing the sell-vs-wait choice says that, relative to

selling, waiting yields crash losses with probability 1/(1+λ) and one more period of appreciation

with probability λ/(1 + λ). Thus, the higher λ and G/R, the greater the bubble duration τ∗ that

can be supported in equilibrium. The interpretation of the more general inequality (29) is in

essence the same. When θ(N − 1)/[1 + θ(N − 1)] is not close to one, the inequality changes

quantitatively as the expressions for the payoffs become more cumbersome, but the qualitative

interpretation remains the same. From (29), we can characterize the set of values of τ∗ that can

be supported in equilibrium. We summarize our findings in Proposition 1 below, which is an

adaptation of the one in Doblas-Madrid (2012).

Proposition 1 Suppose that conditions (1)-(4) hold and that agents follow trigger strategies, with

type-υ(i) agents planning to sell at time υ(i)+τ∗. Then: (a) IfG/R < [1+θ(N−1)]/[θ(N−1)]+1/λ,

equilibrium can be supported for any τ∗ between 0 and−1− ln({θ(N − 1)/[1 + θ(N − 1)]}+ (1−

λ{θ(N−1)/[1+θ(N−1)]}G/R))/ ln(G/R).(b) IfG/R ≥ [1+θ(N−1)]/[θ(N−1)]+1/λ, any integer

τ∗ ≥ 0, can be supported in equilibrium.
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The proof follows the same steps as the proof of Proposition 1 in Doblas-Madrid (2012). The

upper bound on τ∗ given by −1 − ln({θ(N − 1)/[1 + θ(N − 1)]} + (1 − λ{θ(N − 1)/[1 + θ(N −

1)]}G/R))/ ln(G/R) is derived directly from (29). The proof in Doblas-Madrid (2012) also dis-

cusses, for the sake of completeness, the complications that arise in cases where υ(i) < N , or

τ∗ < N − 1. If υ(i) < N , agent i’s signal is more informative than signals greater or equal to N ,

since υ(i)− (N − 1) and possibly other values can be eliminated from the support of t0 given the

knowledge that t0 must be positive. In the event that τ∗ < N − 1, the bubble bursts before all

agents have observed their signals. This is not probematic, since agents who have yet to observe

signals assign positive probability to an infinite set of values of t0.

In equilibria with τ∗ > N , the model generates strong bubbles in the sense of Allen et al.

(1993). That is, by period t0 + N , agents of all types know that the risky asset is overvalued, and

are nevertheless willing to continue buying it. Before period t0+N , some agents still believe that

the boom may be fundamental, and thus, bubbles with τ∗ ≤ N are in a sense weaker.

5 Discussion and Extensions

In Doblas-Madrid (2012), the shock raising expected future dividends is assumed to coincide

with the exogenous acceleration of endowment growth. In this paper, we replace exogenous en-

dowment growth with an endogenous self-reinforcing feedback loop between asset prices and

collateralized credit. In addition to addressing a limitation in previous work, the addition of a

credit market allows us to analyze the effect of lending policies on speculative bubbles. Un-

der conditions 1-4, the model is tractable enough to yield some analytical results. The self-

reinforcing cycle of borrowing and investing endogenously yields price growth rates that con-

verge to a constant. This constant exceeds the risk-free rate and depends positively on the max-

imum loan-to-value ratio allowed by the lender. Since maximum bubble duration depends on

the speed of bubble growth, loosening lending standards (as measured by high loan-to-value

ratios) is conducive to bubbles, and tighter credit can reduce or even eliminate bubbles. How-

ever, this relationship between lending standards and bubbles is not monotonic. If borrowing

limts are loosened to include the entire present value of future endowments, instead of collat-

eral values, bubbles do not arise, since there is no continued growth in the resources that can be
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invested in the bubble.

In fact, borrowing constraints expanding alongside asset prices are an essential ingredient

allowing us to generate bubbles and circumvent some well-known results ruling out speculative

trading. Specifically, in Tirole (1982), agents can borrow as much as they need in order to bid

for the asset. Thus, the price is basically an average of all agents’ valuations. Knowing that oth-

ers’ valuations are as likely to be right as their own, agents are unwilling to trade if they are risk

averse, and indifferent between trading and not under risk neutrality. Let us contrast this with a

bubbly equilibrium presented above. Consider periods after all agents have observed the signal,

but before the crash. All agents would like to bid more for the asset, but cannot access the funds

to do so. Thus, the price reflects the amounts agents can invest, not their estimates of the as-

set’s worth. Even at time tc, buyers strictly prefer to buy because—according to the information

available to them—potential gains if the bubble continues outweigh the crash risk. Thus, risk

neutrality—while helpful for tractability purposes—is not essential. If agents could borrow, the

bubble would not arise for two reasons. First, instead of growing at the rate G for a number of

periods, the price would jump and then grow at the risk-free rate. Without the reward of growth

at the rate agents would not be willing to incur the crash risk. Second, the price would be an av-

erage of agents’ valuations, thus revealing the value of t0 and eliminating the uncertainty about

the bursting date.

Another assumption that differs from Tirole (1982) is the trading protocol under which that

agents make buy/sell decisions in a first stage and observe prices only in a second stage. This

allows type-t0 agents to sell their shares in the period of the crash, since other agents commit to

buying in the first stage of the period and cannot withdraw their bids after observing the price.

This Shapley-Shubik trading protocol resembles the protocol in an exchange with market orders,

which are always filled with certainty, but without a price guarantee. Under Walrasian timing—

or in a market with limit orders—our results would not obtain, since buyers at tc would be able

to condition their purchase on the price. Only if there was enough noise in the price process,

this assumption could be relaxed, since buyers would not be able to distinguish the beginning

of the crash from random day-to-day fluctuations. Doblas-Madrid (2012) incorporates some of

these ideas, although he does not allow enough noise to allow for Walrasian timing.

Two deviations from the benchmark case are worth discussing. First is the case in which the
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price overshoots as it crashes, an observation that is reminiscent of recent events in US hous-

ing and equity markets. This occurs for bubbles of an intermediate duration, between the two

scenarios described in the previous section. That is, overshooting occurs if bubbles are large

enough to force a glut of defaults and liquidations but not large enough to generate such profits

among early sellers that they can acquire all the shares offered for sale at fundamental value.

In the presence of overshooting, after the initial glut of sales, the number of shares for sale falls

back to θ and then continues to grow at the rate R. Characterizing equilibrium bubble duration

τ∗ in the presence of overshooting requires adapting inequality (29) to account for the greater

losses in the event that the market crashes, and the opportunity of early sellers to profit twice by

reentering the market at below-fundamental prices.

Finally, it remains to discuss the situation in which the boom does not converge to a con-

stant growth rate G. Bubbles can still arise in this case, although the simple trigger strategies

consisting of waiting for τ∗ periods before selling are not a Perfect Bayesian Equilibrium. To see

why, note that in equilibrium agents must believe that those who observe the signal after them-

selves are also willing to wait for τ∗ periods, and it must be possible to iterate this argument

forward indefinitely. However, if there is a common-knowledge time at which price growth will

slow down, the iteration eventually collides against this. This problem can be circumvented by

assuming that there is a maximum possible value of F and hence of t0, and by specifying strate-

gies such that τ∗ decreases for agents who observe signals later. In fact, for agents observing

signals at the maximum possible value of t0, it must be that τ∗ = 0. This same argument would

apply to the situation in which the risk-free rate was sensitive to the amount borrowed, which

would be a sensible assumption for long booms. The increase in the risk-free rate would lead to

a common-knowledge slowdown date, ruling out equilibria with simple trigger strategies.

6 Conclusion

We extend the rational model of speculative bubbles presented by Doblas-Madrid (2012) by

adding a credit market as a source of funds that fuels bubbles. Due to borrowing constraints,

initial asset prices limit how much agents can borrow, which in turn limits the immediate re-

sponse of asset prices to a shock. Adjustment to the shock—instead of a one-time jump—takes
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place over a number of periods in which booming prices and credit reinforce each other. Under

asymmetric information a la Abreu and Brunnermeier (2003), rational agents continue bidding

prices past fundamental values, inflating a bubble. The ensuing crash redistributes wealth from

unlucky investors, saddled with debt even after liquidating their assets to repay debts, to lucky

ones, who benefit twice by selling at the top, and in some instances from re-entering the market

at fire-sale below-fundamental prices. By reducing the speed at which prices grow, monetary

and credit policies can shorten, or even eliminate bubbles. Specifically, such policies include

raising interest rates, lowering loan-to-value ratios and loan-to-income ratios. While these poli-

cies seem intuitively desirable, our model falls short of having implications for otpimal policy.

Risk neutrality and fixed supply of the risky asset pay huge dividends in terms of tractability, but

they also imply that, in our model, there is no misallocation of productive resources and that the

zero-sum redistribution caused by bubbles is welfare neutral. Extending the model to overcome

these limitations is, in our view, a worthwhile objective for future work.
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