

February 3, 2022

Project Hamilton Phase 1
A High Performance Payment
Processing System Designed for
Central Bank Digital Currencies
Federal Reserve Bank of Boston and

Massachusetts Institute of Technology Digital Currency Initiative

Payments Innovation

Project Hamilton Phase 1 Executive Summary

© 2022 Federal Reserve Bank of Boston. All rights reserved.

Contents

Introduction .. 3
Core Design and Results ... 4
Learnings ... 5
Phase 2 .. 6
References ... 7

The views expressed in this paper are those of the author and do not

necessarily represent those of the Federal Reserve Bank of Boston or the

Federal Reserve System.

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 3

Introduction

In light of continued innovation in money and payments, many central banks are

exploring the creation of a central bank digital currency (CBDC), a new form of central

bank money which supplements existing central bank reserve account balances and

physical currency [5]. CBDCs could exist in various forms depending on a central bank’s

objectives, including a general-purpose CBDC that can be made available to the public

for retail, e-commerce, and person to person payments. Central banks, researchers, and

policymakers have proposed various objectives including fostering financial inclusion,

improving efficiency in payments, prompting innovation in financial services, maintaining

financial stability, and promoting privacy [2,3,9,19].

Because the CBDC research process is still in early stages in many jurisdictions, several

technical design questions remain open for investigation. The answers to these questions

will have meaningful implications and consequences for what options are, or are not,

available to policymakers.

The Federal Reserve Bank of Boston (Boston Fed) and the Massachusetts Institute of

Technology’s Digital Currency Initiative (MIT DCI) are collaborating on exploratory

research known as Project Hamilton, a multiyear research project to explore the CBDC

design space and gain a hands-on understanding of a CBDC’s technical challenges and

opportunities. This paper presents the project’s Phase 1 research. Our primary goal was

to design a core transaction processor that meets the robust speed, throughput, and fault

tolerance requirements of a large retail payment system. Our secondary goal was to

create a flexible platform for collaboration, data gathering, comparison with multiple

architectures, and other future research. With this intent, we are releasing all software

from our research publicly under the MIT open source license.1

By focusing Phase 1 on the feasibility and performance of basic, but resilient

transactions, we aim to create a foundation for more complex functionality in Phase 2.

The processor’s baseline requirements include time to finality of less than five seconds,

throughput of greater than 100,000 transactions per second, and wide-scale geographic

fault tolerance. Topics left to Phase 2 include critical questions around high-security

issuance, systemwide auditability, programmability, how to balance privacy with

compliance, technical roles for intermediaries, and resilience to denial of service attacks.

As exploratory research on the implications of different design choices, this work is not

intended for a pilot or public launch. That said, we consider performance under a variety

of extensive, realistic workloads and fault tolerance requirements.

1 https://github.com/mit-dci/opencbdc-tx

https://github.com/mit-dci/opencbdc-tx

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 4

Core Design and Results

In Phase 1, we created a design for a modular, extensible transaction processing system,

implemented it in two distinct architectures, and evaluated their speed, throughput, and

fault tolerance. Furthermore, our design can support a variety of models for

intermediaries and data storage, including users custodying their own funds and not

requiring storing personally identifying user data in the core of the transaction processor.

In our design users interact with a central transaction processor using digital wallets

storing cryptographic keys. Funds are addressed to public keys and wallets create

cryptographic signatures to authorize payments. The transaction processor, run by a

trusted operator (such as the central bank), stores cryptographic hashes representing

unspent central bank funds. Each hash commits to a public key and value. Wallets issue

signed transactions which destroy the funds being spent and create an equivalent

amount of new funds owned by the receiver. The transaction processor validates

transactions and atomically and durably applies changes to the set of unspent funds. In

this version of our work, there are no intermediaries, fees, or identities outside of public

keys. However, our design supports adding these roles and other features in the future.

The flexibility, performance, and resiliency challenges of this design are addressed with

three key ideas. The first idea is to decouple transaction validation from execution, which

enables us to use a data structure that stores very little data in the core transaction

processor. It also makes it easier to scale parts of the system independently. The second

idea is a transaction format and protocol that is secure and provides flexibility for potential

functionality like self-custody and future programmability. The third idea is a system

design and commit protocol that efficiently executes these transactions, which we

implemented with two architectures.

Both architectures met and exceeded our speed and throughput requirements. The first

architecture processes transactions through an ordering server which organizes fully

validated transactions into batches, or blocks, and materializes an ordered transaction

history. This architecture durably completed over 99% of transactions in under two

seconds, and the majority of transactions in under 0.7 seconds. However, the ordering

server resulted in a bottleneck which led to peak throughput of approximately 170,000

transactions per second. Our second architecture processes transactions in parallel on

multiple computers and does not rely on a single ordering server to prevent double

spends. This results in superior scalability but does not materialize an ordered history for

all transactions. This second architecture demonstrated throughput of 1.7 million

transactions per second with 99% of transactions durably completing in under a second,

and the majority of transactions completing in under half a second. It also appears to

scale linearly with the addition of more servers. In order to provide resilience, each

architecture can tolerate the loss of two datacenter locations (for example, due to natural

disasters or loss of network connectivity) while seamlessly continuing to process

transactions and without losing any data.

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 5

Learnings

Phase 1 has surfaced several key learnings on the potential design of a CBDC:

Select ideas from cryptography, distributed systems, and blockchain technology can

provide unique functionality and robust performance. We suspect existing database and

distributed systems technology is sufficient to provide a more traditional payment

architecture for CBDC where one actor stores users’ accounts, users cannot custody

their own funds, and there is no transaction scripting functionality. We created a new

design to offer both these features and new opportunities for different intermediary roles.

A CBDC can provide functionality that is not currently possible with either cash or bank

accounts. For example, a CBDC could support cryptographic proofs of payment, more

complex transfers to or from multiple sources of funds, and flexible forms of authorization

to spend, such as varying transaction limits.

We found that separating a transaction processor into modular components improves

system scalability and flexibility; for example, we can scale and replicate transaction

validation independently from preventing double spending and committing transactions,

and our architecture can support many future designs for programmability and privacy.

Despite using ideas from blockchain technology, we found that a distributed ledger

operating under the jurisdiction of different actors was not needed to achieve our goals.

Specifically, a distributed ledger does not match the trust assumptions in Project

Hamilton’s approach, which assumes that the platform would be administered by a

central actor. We found that even when run under the control of a single actor, a

distributed ledger architecture has downsides. For example, it creates performance

bottlenecks, and requires the central transaction processor to maintain transaction

history, which one of our designs does not, resulting in significantly improved transaction

throughput scalability properties.

CBDC design choices are more granular than commonly assumed. Currently, CBDC

designs are categorized as direct, two-tier, or hybrid models, with “token” or “account”

access models [1, 2, 7, 12, 15]. We found these limited categorizations lacking and

insufficient to surface the complexity of choices in access, intermediation, institutional

roles, and data retention in CBDC design [10]. For example, wallets can support both an

account-balance view and a coin-specific view for the user regardless of how funds are

stored in the database.

By breaking transaction processing into steps like creation, authorization, submission,

execution, and storing history, CBDC designers can consider the potential roles for

intermediaries at each stage, creating opportunities for innovation.

By implementing a robust system, we identify new questions for CBDC designers and

policymakers to address, regarding tradeoffs in performance, auditability, functionality,

and privacy. Our work raised important questions to address in how the technical

architecture might affect the use and function of CBDC in payments. For example, it is an

open question how important from an economic perspective it might be to support atomic

transactions. In database parlance, this implies multiple operations to different pieces of

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 6

the data are applied in a way that appears instantaneous (atomic), or the set of updates

does not happen at all; there is no partial application [4,14]. In the context of a payment

processor, this means users could reliably issue payments that might transfer multiple

bills (or funds from multiple accounts) entirely, and would never see partial transfers,

even if there are crashes or system errors. We chose to implement atomic transactions,

which has a direct impact on the performance of the system [8].

The main functional difference between our two architectures is that one materializes an

ordered history for all transactions, while the other does not. This highlights initial

tradeoffs we found between scalability, privacy, and auditability. In the architecture that

achieves 1.7M transactions per second, we do not keep a history of transactions nor do

we use any cryptographic verification inside the core of the transaction processor to

achieve auditability. Doing so in the future would help with security and resiliency but

might impact performance. In the other architecture, we can audit the set of unspent

funds to make sure they were created correctly. Storing the history of transactions implies

the central transaction processor can reconstruct the transaction graph, which, in

combination with other data sources, could reveal sensitive user information [16,17]. In

the next phase of work, we will focus on adding privacy-preserving designs for

auditability.

Similarly, our goals of supporting self-custody and reducing data stored in the core of the

transaction processor had direct implications on data users might be required to store,

failure scenarios, recovery protocols, and on what types of payment functionality we can

support.

Phase 2

In Phase 2 of Project Hamilton, the Boston Fed and MIT DCI will explore new

functionality and alternative technical designs. Research topics may include

cryptographic designs for privacy and auditability, programmability and smart contracts,

offline payments, secure issuance and redemption, new use cases and access models,

techniques for maintaining open access while protecting against denial of service attacks,

and new tools for enacting policy. In addition, we hope to collaborate and explore these

challenges with other technical contributors from a variety of backgrounds in the open

source repository.

Through the development and testing of its own custom software, Project Hamilton

provides unique insight into the technical considerations and tradeoffs involved with the

development of a core processing engine for a CBDC. Project Hamilton’s research and

experimentation with a fast, highly scalable, resilient, and secure technical architecture

will supplement previous work by central banks including policy and economic research

[13], proofs-of-concept and pilot testing [11, 18], as well as CBDCs which have been

made available to the public [6].

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 7

References

[1] R. Auer and R. Böhme. The technology of retail central bank digital currency. BIS

Quarterly Review, March, 2020.

[2] Bank for International Settlements. CBDCs: an opportunity for the monetary system.

BIS Annual Report Economic Report 2021, pages 65–91, 6 2021.

[3] Bank of Canada et al. Central bank digital currencies: foundational principles and

core features. BIS Working Group, 2020. https://www.bis.org/publ/othp33.pdf.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery

in database systems, volume 370. Addison-wesley Reading, 1987.

[5] C. Boar and A. Wehrli. Ready, steady, go? results of the third BIS survey on central

bank digital currency. BIS Papers No 114, 2021.

https://www.bis.org/publ/bppdf/bispap114.htm.

[6] Central Bank of The Bahamas. Sand dollar. https://www.sanddollar.bs.

[7] Committee on Payments and Market Infrastructures Markets Committee. Central

bank digital currencies. BIS Quarterly Re-view, March 2018.

[8] European Central Bank. Work stream 3: A new solution –blockchain & eID, 2021.

https://haldus.eestipank. ee/sites/default/files/2021-07/Work%20stream%203%20-

%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf.

[9] R. Garratt, M. J. Lee, et al. Monetizing privacy with central bank digital currencies.

Technical report, Federal Reserve Bank of New York, 2020.

[10] R. Garratt, M. J. Lee, B. Malone, A. Martin, et al. Token- or Account-based? A digital

currency can be both. Technical report, Federal Reserve Bank of New York, 2020.

[11] J. C. Jiang and K. Lucero. Background and implications of China’s central bank

digital currency: E-CNY. Available at SSRN 3774479, 2021.

[12] C. M. Kahn, F. Rivadeneyra, and T.-N. Wong. Should the central bank issue e-

money? Money, pages 01–18, 2019.

[13] J. Kiff, J. Alwazir, S. Davidovic, A. Farias, A. Khan, T. Khiaonarong, M. Malaika, H.

Monroe, N. Sugimoto, H. Tourpe, and P. Zhou. A survey of re-search on retail central

bank digital currency, 2020. https://www.elibrary.imf.org/view/journals/

001/2020/104/001.2020.issue-104-en.xml.

[14] B. W. Lampson. Atomic transactions. In Distributed Systems Architecture and

Implementation, pages 246–265. Springer, 1981.

[15] T. Mancini-Griffoli, M. S. M. Peria, I. Agur, A. Ari, J. Kiff, A. Popescu, and C. Rochon.

Casting light on central bank digital currency. IMF staff discussion note, vol 8, 2018.

[16] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. Mc-Coy, G. M. Voelker,

and S. Savage. A fistful of bitcoins: charac-terizing payments among men with no names.

https://www.bis.org/publ/othp33.pdf
https://www.bis.org/publ/bppdf/bispap114.htm
https://www.sanddollar.bs/
https://www.elibrary.imf.org/view/journals/%20001/2020/104/001.2020.issue-104-en.xml
https://www.elibrary.imf.org/view/journals/%20001/2020/104/001.2020.issue-104-en.xml

Project Hamilton Phase 1 Executive Summary

Federal Reserve Bank of Boston | bostonfed.org | Payments Innovation 8

In Proceedings of the 2013 conference on Internet measurement conference, pages

127–140, 2013.

[17] D. Ron and A. Shamir. Quantitative analysis of the full bit-coin transaction graph. In

International Conference on Financial Cryptography and Data Security, pages 6–24.

Springer, 2013.

[18] Sveriges Riksbank. E-krona pilot phase 1. Sveriges Riks-bank Report, 2021.

https://www.riksbank.se/en-gb/payments--cash/e-krona/technical-solution-for-the-e-

krona-pilot/.

[19] A. Usher, E. Reshidi, F. Rivadeneyra, S. Hendry, et al. The positive case for a CBDC.

Bank of Canada Staff Discussion Paper, 2021.

https://www.riksbank.se/en-gb/payments--cash/e-krona/technical-solution-for-the-e-krona-pilot/
https://www.riksbank.se/en-gb/payments--cash/e-krona/technical-solution-for-the-e-krona-pilot/

Foreword

Project Hamilton

“The ultimate test we’ll apply when assessing a central bank digital currency and other digital
innovations is: Are there clear and tangible benefits that outweigh any costs and risks?” – Jerome
Powell, chairman of the Federal Reserve Board of Governors, Sept. 22, 2021

“Given enough eyeballs, all bugs are shallow.” – Eric S. Raymond, “The Cathedral and the Bazaar”

We present here the findings of Phase 1 of Project Hamilton, the Federal Reserve Bank of Boston’s
collaboration with researchers from the Digital Currency Initiative at the Massachusetts Institute of
Technology. This research aims to understand technical opportunities and tradeoffs associated with a
hypothetical general purpose central bank digital currency. By building a platform from scratch, we hope
to better understand the risks and benefits this technology may bring and the many nuanced choices
that impact the ultimate design. Importantly, by issuing an open-source license for the code, we ensure
maximum sharing of what we’ve learned and expand the pool of experts debating and contributing to
the code base. We encourage those working in this code to push this effort forward – creating benefits,
reducing risks, and bringing all bugs to the surface.

Jim Cunha & Robert Bench

Federal Reserve Bank of Boston

A High Performance Payment Processing System Designed for
Central Bank Digital Currencies

James Lovejoy Cory Fields Madars Virza Tyler Frederick David Urness
Kevin Karwaski Anders Brownworth Neha Narula

1 Introduction
Central banks are increasingly investigating general-
purpose central bank digital currency (CBDC), defined
as a currency that is electronic, a liability of the cen-
tral bank denoted in the national unit of account, broadly
available, and used for retail and person-to-person pay-
ments [10,11,19,20,24,29,30,45,62,81]. Figure 1 sum-
marizes a figure explaining the different properties of a
CBDC as compared to other forms of payment instru-
ments [13]. Researchers have proposed that a CBDC
could help address public policy objectives such as en-
suring public access to central bank money, fostering
payment competitiveness and resilience, supporting fi-
nancial inclusion, and offering a privacy-preserving dig-
ital payment method [4, 10, 20, 52, 84].

A CBDC’s primary use case is to act as a payment
instrument for individuals and businesses as part of a
broader exchange of goods or services. For example, a
user might pay for coffee in a cafe by sending digital
currency to the cafe owner. However, beyond this core
use case, the design of a CBDC can vary considerably
based upon the public policy objectives and unique char-
acteristics of various jurisdictions. Importantly, the fea-
sibility, operating performance and impact of different
CBDC design choices are inextricably linked to the tech-
nical design of the underlying transaction processor. To
better inform policy discussions, central banks are rec-
ognizing the importance of technical experimentation in
understanding the implications and tradeoffs of different
CBDC models and design decisions on possible policy
outcomes.

The Federal Reserve Bank of Boston (Boston Fed)
and the Massachusetts Institute of Technology’s Dig-
ital Currency Initiative (MIT DCI) are collaborating
on a multi-year exploratory research project, known as
Project Hamilton, to gain a hands-on understanding of
a CBDC’s technical challenges and opportunities.1 This
paper presents the first phase of Project Hamilton’s re-
search and describes the technical design of Hamilton,
a research transaction processing system flexible enough
to support experimentation with multiple CBDC models.

1This project is named in tribute to two Hamiltons: Margaret, an
MIT computer scientist who led the software development for the
Apollo Program’s guidance system at NASA, and Alexander, who laid
the foundation for a U.S. central bank.

Hamilton is the first contribution to OpenCBDC, a place
for collaboration on technical research and development
for CBDC.2

1.1 Goals
Project Hamilton’s Phase 1 goal is to investigate the tech-
nical feasibility of a high throughput, low latency, and re-
silient transaction processor that provides flexibility for
a range of eventual CBDC design choices. We intend to
investigate more complex functionality in future phases.
Note that our design is not a complete CBDC system;
it is neither production-ready nor does it provide all the
functionality needed for a working CBDC. In this techni-
cal paper, we do not assess a CBDC’s policy, regulatory,
and legal questions or whether or how it could be issued.

Performance. To support the scale of retail transactions
in a large country such as the US, a CBDC transaction
processor should be able to process, at minimum, tens
of thousands of transactions per second in real-time and
scale to account for the potential growth in payment vol-
umes [54]. These figures well exceed the transaction vol-
umes interbank settlement systems are designed to pro-
cess [7,47,48,74]. We set the following initial set of per-
formance targets to guide our design:

Speed. To capture the benefits of faster or real-time
payments [6], we set a target of 99% of transactions com-
pleting within 5 seconds. Completion includes a trans-
action being validated, executed, and confirmed back to
users. This is comparable to card payment methods and
existing interbank instant payment systems.

Throughput and scalability. To support settlement fi-
nality and CBDC models which don’t require intermedi-
aries to aggregate transactions, Hamilton must be able to
handle peak projected transaction volumes produced by
hundreds of millions of users. We chose 100,000 transac-
tions per second as a minimum target based on existing
cash and card volumes and expected growth rates.

Resiliency. To maintain trust in the digital currency,
a CBDC must guarantee the ongoing existence and us-
ability of funds. In this phase of research, we focus on
continuing to provide system access and preventing data
loss even in the presence of multiple data center failures.

2https://github.com/mit-dci/opencbdc-tx

1

https://github.com/mit-dci/opencbdc-tx

Property Cash Bank deposits Central bank reserves CBDC
Electronic
Central-bank issued
Universally accessible

Figure 1: Table describing the properties of various monetary instruments, summarized from Graph 3 in [13].

We will address upgradeability and other measures of re-
silience in future phases of research.
Privacy and minimizing data retention. There is strong
user demand for financial privacy since fine-grained
transaction data can reveal sensitive user details [59],
even if anonymized [50]. Respondents to a Eurosys-
tem CBDC public consultation ranked privacy as the
most important feature of a digital euro (46% of respon-
dents) [45]. Any payment system’s architecture is influ-
enced by the design choices made around data privacy,
access, and retention, and achieving robust privacy re-
quires making explicit architectural choices at each layer
of a system’s design. In particular, if many parts of a sys-
tem require access to sensitive data (either raw or de-
rived), it can be challenging to retrofit such a system to
provide data protection after the fact. Though exploring
the implications of cryptographic designs for strong pri-
vacy will be a part of our Phase 2 research, during Phase
1 we focused solely on design options that limit data ac-
cess and retention in the central transaction processor, to
support future research and design optionality. Note that
the safest way to secure data is not to collect it in the first
place. We designed Hamilton’s transaction processor to
retain very little data about transactions.
Intermediary and custody flexibility. One of the most
important questions in CBDC design is that of the role of
the central bank and other intermediaries.3 These roles
will likely vary by jurisdiction, due to policymaker deci-
sions and consumer preferences.

Currently, members of the public who want to digitally
store funds and make payments must open accounts with
financial institutions or payment service providers which
are linked to the identity of the owner. These institutions
are responsible for processing transactions on behalf of
their customers, interfacing with payment networks, and
safeguarding customer funds.

In contrast, cash can be held directly by the public and
used to conduct transactions without the need for a finan-
cial institution to process the payment on their behalf. A
CBDC could be designed to offer similar functionality
to cash and provide users the power to spend their own
funds without the need for an account provider or custo-
dian to generate transactions [22].

3We use the term “intermediaries” to include financial institutions,
custodians, payment service providers, and other third parties who
perform payment-related functions and services. Other entities which
do not perform payment-related functions, such as Internet service
providers, are not included in this definition.

The Bank for International Settlements (BIS) simpli-
fies intermediary choices to three possibilities—the “di-
rect” model, in which the central bank issues CBDC to
users directly, “two-tier”, in which the central bank is-
sues CBDC to intermediaries who then manage relation-
ships with users, and a hybrid of the two [8].

We do not directly address intermediary roles in Phase
1. However, we foresee much more complexity of choice
in the roles for intermediaries in a CBDC, along dimen-
sions like authorization, custody, and viewing transac-
tions.

Importantly, our work shows the design space for in-
termediaries is much broader than previously assumed.

Design choices not addressed in Phase 1. Fees, com-
pliance and fraud controls, and several other design con-
siderations were not addressed in Phase 1 and are left to
future work.

1.2 System design
Our system processes payments from users who address
and sign transactions using their public/private key pairs
stored in their digital wallets, as is the case in many cryp-
tocurrencies.

User wallets submit transactions to the Hamilton
transaction processor to move unspent funds—a repre-
sentation of money containing an amount and the rules
required to spend it (in our case, a public key indicat-
ing ownership). A transaction indicates the unspent funds
being used and the new unspent funds being generated
(i.e., the new data record indicating who now has owner-
ship over the money). We refer to these as transaction
inputs and outputs, respectively, consistent with many
cryptocurrency systems [14, 32, 67]. Hamilton validates
the transaction is correct and executes it by deleting the
inputs and creating the outputs. We implement two ar-
chitectures for high throughput, low latency, and fault-
tolerant transaction processing. The first, the atomizer ar-
chitecture, uses an ordering server to create a linear his-
tory of all transactions. The second, the two-phase com-
mit (2PC) architecture, executes non-conflicting trans-
actions (transactions which do not spend or receive the
same funds) in parallel and does not create a single, or-
dered history of transactions.

1.3 Technical challenges and contributions
We had to solve the following challenges. First, we had
to build a flexible platform that could support multi-
ple designs without explicit policy requirements or well-

2

defined tradeoffs. For example, it is unclear what balance
to target between end-user privacy and data storage re-
quirements for users at the central transaction processor.
We take a layered approach with a design where addi-
tional functionality can be built outside the core trans-
action processor. Our design can support a range of in-
termediary roles including one where users custody their
own funds. We explore a design which minimizes storing
personally identifying user data and information about
transaction addresses and amounts in the core of the sys-
tem.

The second challenge is in providing strong consis-
tency, geographic fault tolerance, high throughput, and
low latency, all with a workload that consists of 100%
read/write, multi-server transactions. In payment appli-
cations, all transactions require strong consistency; it is
vital that payments execute correctly even in the presence
of unforeseen events or computer crashes. Given our
performance and resiliency requirements, we must store
data on multiple computers. This requires correctly co-
ordinating data updates across computers for most trans-
actions, since we cannot rely on payments having data
locality, which is often exploited by traditional database
systems for partitioning to make workloads predomi-
nantly single-partition transactions. We decided to sup-
port atomic transactions, meaning a payment is guaran-
teed to execute in an all-or-nothing fashion. Atomicity
provides better semantics for payments and guarantees
to users, and is helpful for programmability in the future,
but increases the cost of achieving these requirements. It
remains to be seen if it will be required for a CBDC.

Hamilton addresses these challenges using three key
ideas:

The first is to decouple transaction validation from
fund existence checks; only a validating layer needs to
see the details of a transaction. Beyond the validating
layer, Hamilton stores funds as opaque 32 byte hashes
inside an Unspent funds Hash Set, or UHS [49] (§3.2).
This hides details about the funds (like amounts and
addresses) from the UHS storage, reduces storage re-
quirements, and creates opportunities to improve perfor-
mance.

Our second key idea is the UHS-designed transac-
tion format (§3.3), which is extensible and secure against
double spends, inflation attacks, replay attacks, and mal-
leability, and also has the benefit of supporting future
layer 2 designs for even higher throughput in the future.
It borrows heavily from Bitcoin’s transaction format but
is designed to be validated without looking up data from
the UHS, which we term transaction-local validation.

The UHS design, in combination with our transaction
format, affords us substantial flexibility. First, we be-
lieve that the abstractions our system provides and the
assumptions it makes are compatible with most ideas

underlying certain types of programmability and cryp-
tographic privacy-preserving designs [14, 66, 83, 85],
which, along with auditability, we intend to explore in
Phase 2. Second, we can upgrade the scripting language
or add a cryptographic privacy-preserving protocol (even
supporting multiple concurrent designs), as long as they
are compatible with 32-byte hash storage, without need-
ing any changes to the backing UHS, making it possible
to defer decisions on specific programmability features.
Third, if needed, it is always possible to store more data
at other layers outside the transaction processor, for ex-
ample in user wallets or an intermediary such as a custo-
dian. However, our design choices have implications on
what data users or intermediaries need to store in their
wallets and what messages are required to confirm a pay-
ment (§3.4).

Our third key idea is a system design and proto-
col for efficiently committing atomic payment transac-
tions that leverage the UHS to achieve high performance,
strong consistency, and geographically-replicated fault
tolerance in a 100% read/write, non-partitionable work-
load. We implemented two high-performance architec-
tures with different properties (§4). In both architectures,
the UHS is partitioned across servers to support higher
throughput and an expanding UHS; executing a single
transaction often involves multiple servers. Each archi-
tecture uses a different technique to coordinate the con-
sistent application of a transaction across servers. In the
atomizer architecture, we use a replicated server to order
all updates, which are then applied to the state of the rest
of the system; one can think of this as an attempt at a
high-performance blockchain.

In the 2PC architecture, we exploit payment transac-
tion semantics and our transaction format to limit the
locking required to achieve atomic transactions and seri-
alizability [15]. Transactions using different funds do not
conflict and can execute in parallel; once a valid trans-
action’s funds are confirmed to be unspent, the transac-
tion can always proceed, and we can batch many trans-
actions together to amortize two-phase commit overhead.
Because of these choices, we can use a simpler version
of two-phase commit without rollback.

Our evaluation demonstrates 1.7M transactions per
second in the 2PC architecture with less than one sec-
ond 99% tail latency, under 0.5 seconds 50% latency, and
adding more resources could increase throughput fur-
ther without negatively affecting latency. The atomizer
design peaks at 170K transactions per second with un-
der two seconds 99% tail latency and 0.7s 50% latency.
We reduced the functionality in the atomizer state ma-
chine to simply ordering and deduplicating the inputs for
a small set of transactions; even so, we were limited in
throughput because the atomizer could not be sharded
across multiple servers. This implies that a design which

3

requires strongly ordering valid transactions to prevent
double spends will be throughput-limited.

In summary, the contributions of this paper are the fol-
lowing:

• Hamilton, a flexible transaction processor design
that supports a range of models for a CBDC and
minimizes data storage in the core transaction pro-
cessor while supporting self-custody or custody
provided by intermediaries

• A transaction format and implementation for a UHS
which together support modularity and extensibility

• Two architectures to implement Hamilton: the at-
omizer architecture which provides a globally or-
dered history of transactions but is limited in
throughput, and the 2PC architecture that scales
peak throughput almost linearly with resources but
does not provide a globally ordered list of transac-
tions.

• An evaluation of the performance of the two archi-
tectures with different types of transaction work-
loads. Hamilton and the software to evaluate its per-
formance are implemented in OpenCBDC-tx.

Our architectures are for research purposes and, ac-
cordingly, have limitations that need to be addressed in
future work. These experimental designs are not ready
for real-world use and do not provide system-wide au-
ditability, protection against internally compromised ma-
chines, complete privacy guarantees, or resilience to de-
nial of service attacks.

The rest of this paper discusses the system model and
security goals for Hamilton (§2), explains the transaction
format and UHS (§3), describes the design of the two
architectures (§4) and their implementation (§5), evalu-
ates Hamilton’s performance on a variety of transaction
workloads (§6), and puts Hamilton in context with re-
lated work (§7). We discuss broader learnings, limita-
tions to our design, and future work in (§8).

2 System model and security goals
This section describes the actors in Hamilton, their roles,
and the security properties we want Hamilton to satisfy.
In our description, we make the simplifying assumption
that users directly custody their money without the assis-
tance of an intermediary. We note that adding an inter-
mediary would not change the core security properties of
the transaction processor.

2.1 Actors
We distinguish three types of actors: the transaction pro-
cessor, the issuer, and users. At a high level they op-
erate and interact as follows. The transaction processor

Sender wallet
Alice: $20 Transaction

processor

Stores all funds and
executes transfersRecipient wallet

Bob: $0

Transaction
requests and
confirmations

Figure 2: Data flows between all participants in a trans-
action.

keeps track of funds which are owned by different users.
Funds are a representation of money and as such refer
to an amount of money (such as dollars) and a condi-
tion that must be satisfied to move this amount (say, to
another user or users). The funds enter and exit the sys-
tem through acts of the issuer who can mint and redeem
funds to add and remove them from the transaction pro-
cessor, respectively. Users can execute transfer opera-
tions (transactions or payments) that atomically change
the ownership of funds, with the requirement that the
total amount of funds stored in the transaction proces-
sor has not changed. A user does so by submitting their
transaction to the transaction processor over the Inter-
net, which the processor then validates and executes. We
leave offline transactions and transfers without Internet
connectivity to future research. Figure 2 shows the high-
level system model and potential communication chan-
nels between users and the transaction processor.

Users run wallet software to manage cryptographic
keys, track funds, and facilitate transactions. Wallets
could run on a mobile phone or specialized hardware in
smart cards. We do not discuss how users obtain wallets
and get system access; this could be done using a PKI
and access control, or, the system could be open to all
users. An important piece of future work is preventing
spam and denial of service attacks, which we briefly dis-
cuss in §8.

2.2 Threat model
Our goal is to design a system where each user’s funds
and the integrity of the monetary system are safe from
interference of an external actor. For the purposes of this
paper we assume that the transaction processor is faith-
fully executing our design, that users’ wallets are able to
maintain secret keys, and that the users are able to use
a secure channels to communicate with the transaction
processor. Our design is a cryptographic system so we
assume the security of standard cryptographic primitives
such as hash functions and digital signatures.

We aim to protect against an adversary who can freely
interact with the system as a regular user, and as such
make no additional assumptions about an adversary’s ca-
pabilities or behavior. For example, the adversary is free

4

to create arbitrarily many identities and wallets, receive
funds from other users, and engage in elaborate transac-
tion patterns. Some of our designs are multi-server sys-
tems and the adversary is free to attempt concurrent at-
tacks against all externally-exposed parts of the system.

2.3 Data representation: prior work
To design a transaction processor we have to make a
choice about how the users’ funds are represented in the
system. The two most common ways are the account bal-
ance model and the UTXO model, which we now sum-
marize.4

Tracking of balances. The simplest way to implement a
payment system is using balances. The system can store
unspent funds as balances associated with unique identi-
fiers, and a user can make a payment by issuing a request
to the transaction processor to transfer balance to another
identifier. Traditional payment systems choose this ap-
proach and manage authorization by storing identifiers
under user accounts, usually accessed via a username
and password. Traditional payment systems could use
public key cryptography and digital signatures instead of
passwords for authorization, but this is not widely used
in practice outside of cryptocurrency.5 Several cryptocur-
rencies, like Ethereum [87], choose this data representa-
tion.

Tracking of discrete funds. Another way to implement
a payment system is to track outstanding funds without
explicitly consolidating them into balances. Here a sys-
tem maintains an append-only ledger of accounting en-
tries (sometimes called “coins”) each of which records
a value (i.e., amount of dollars) and conditions to spend
the funds. Furthermore, each entry is either marked as
“spent” or “unspent”. To transfer funds, a user creates
and authorizes a transaction which: (a) marks some en-
tries (called inputs) as spent, each with a witness that sat-
isfies the conditions to spend the entry; and (b) appends
new (unspent) entries (called outputs) to the ledger. A
valid transaction must preserve balance: the sum of a
transaction’s input values must equal the sum of its out-
put values.6

4There are other, less common, representation models, such as,
David Chaum’s original eCash design [33] and the ECB prototype [46]
using fixed value bills that atomically change ownership.

5Public-private key pairs have significant advantages over user-
names and passwords. Private keys are harder to guess or crack with
brute force and can be reused without the same risks as passwords (a
common security problem). Furthermore, private keys do not need to
be seen or stored by the central transaction processor; signatures made
with a private key only authorize a single transaction instead of pro-
viding permanent access to a user’s money. They also allow for inter-
operability with other public-private key systems and for novel privacy
options.

6In cryptocurrencies with fees, the requirement is that the sum of
the transaction’s input values must be greater than the sum of its output
values, with the difference going to the block miner as fees.

Tracking of unspent entries is central to this model
so, following Bitcoin, these have a special name: UTXOs
(Unspent Transaction Outputs). Importantly, UTXOs are
never modified and must be spent in their entirety. There-
fore, Alice who wants to use her $20.00 UTXO to send
$4.99 to Bob will create a transaction with two outputs:
one $4.99 output meant for Bob and one $15.01 change
output meant for Alice herself. In contrast to physical
banknotes or coins the UTXO values are not restricted to
a fixed set of denominations. Note that it is not required
to make change in a system that tracks balances since
the default is that the remaining balance stays under the
same identifier.

2.4 Data representation in Hamilton
Both of these designs have benefits and drawbacks, but
we chose to build Hamilton in the UTXO model. The
choice of UTXOs is compatible with privacy extensions
in the future. Notably, most scalable privacy designs
[14, 21, 33, 60, 63, 83, 85], including those deployed on
top of account-based systems [76,86], use a UTXO-style
data representation internally. In contrast, privacy de-
signs in the account model [25,69] require locking all of
the accounts in the anonymity set. The UTXO model also
offers greater transaction execution parallelism. How-
ever, UTXOs can be less intuitive to the user than ac-
count balances. Although UTXOs can support arbitrary
programmability, it is much easier to implement general
programmability in an account-balance design. Account
balances are also more fungible, which is an important
property for money. It might be useful to consider an ac-
count balance data model which minimizes the amount
of data stored in the transaction processor in the future.

We emphasize that the transaction processor’s inter-
nal data representation is distinct from the interface pre-
sented to the user. In particular, both of these choices
support an account balance user interface abstraction
(i.e., tallying the total balance of user’s holdings, show-
ing their transaction history, etc), even though only one
has an account balance internal data representation.

2.5 Unspent funds
Formally, we represent unspent funds as triples utxo :=
(v, P, sn). Here v is the amount of money and its role
in representing unspent funds is clear. The other two ele-
ments are an encumbrance predicate P , and a serial num-
ber sn, which we now explain.

The encumbrance predicate P takes two arguments: a
transaction tx (to be formally defined later) seeking to
spend this utxo, and a witness wit. The predicate returns
true if and only if the witness signifies that this spending
transaction should be authorized. This is similar to Bit-
coin, where each UTXO is encumbered with a script, an
executable program which evaluates the conditions for a
valid spend.

5

A common encumbrance is that of digital signature
authorization. Here the predicate P hard-codes a pub-
lic key pk and P (tx,wit) checks that wit consists of a
valid signature where the message comprises the serial-
ized spending transaction tx and the signature is under
the public key pk. To spend such a utxo, the user creates
a transaction tx having the utxo as an input and signs tx
with the corresponding secret key sk. In a system sup-
porting only digital signature authorization, a predicate
P can be represented by the public key pk itself.

In our system we permit users to reuse encumbrances,
e.g., a user Alice could publish her public key pkAlice and
receive multiple payments meant for it. Therefore, we
need a way to reference and distinguish funds that share
the same encumbrance and value (e.g., Alice having re-
ceived same $5.00 value in two different transactions en-
cumbered with the same public key pkAlice).

We express this distinction between otherwise iden-
tical UTXOs through a globally unique serial number
sn, the third component in a utxo. In our security defi-
nitions below we require that serial numbers do not re-
peat across time: a serial number associated with a spent
UTXO cannot “reappear” as a serial number for a new
unspent UTXO. Global uniqueness of serial numbers is
not a mere technicality: they express the intent of sin-
gling out a particular UTXO and prevent replay attacks
(see §2.8 for discussion).

Skipping ahead, our system assigns each UTXO a
serial number by deterministically hashing all the cor-
responding transaction’s inputs, as well as the output
UTXO’s encumbrance, value, and its index among all
outputs. This in turn references previous serial num-
bers and recursively incorporates the entire transaction
history.7 The collision resistance of the hash function
and the system property that valid inputs can only be
spent once guarantees that all serial numbers are glob-
ally unique.

2.6 System operations
Logically, Hamilton maintains a record of all unspent
funds in existence; consistent with other cryptocurren-
cies we call this record the UTXO set. In order to spend
funds, they must be present in the UTXO set. Our system
supports the following three kinds of operations: Mint,
Redeem, and Transfer, all of which are atomic and are
applied one at a time.

Minting and redeeming. The Mint operation creates
new unspent funds and adds UTXOs to the UTXO set,
whereas the Redeem operation removes unspent funds
from the UTXO set, making them unspendable. When
deployed these operations also have semantics outside
Hamilton: namely, minting would normally correspond

7This is similar how Bitcoin whitepaper [67] defined a coin to be a
chain of digital signatures.

to currency in the outside world being set aside for use in
Hamilton, whereas redeeming would make them avail-
able again. The issuer must choose unique serial num-
bers for newly minted UTXOs. It suffices to set these as
uniformly random, or as result of monotonically increas-
ing counter value (i.e., the issuer minting the i-th UTXO
would set its serial number to i).
Value transfers. The Transfer operation both consumes
UTXOs and creates new UTXOs; this is the only opera-
tion which both adds and removes from the UTXO set.
The input to Transfer is a transaction tx comprised of:
(a) a list of input UTXOs to be spent; (b) two lists of out-
put values and encumbrances specifying output UTXOs
to be created; and (c) a list of witnesses , one for each
input. In a valid transaction, balances are preserved, and
each input UTXO to be spent has its encumbrance pred-
icate satisfied by the corresponding witness (e.g., a sig-
nature). When a transfer operation succeeds, the input
UTXOs are completely consumed (removed from the
UTXO set) and cannot be used again, and the outputs
are available to be used an inputs to other Transfer or
Redeem operations. Hamilton also computes and assigns
unique serial numbers to the output UTXOs.
No editing of unspent funds. The above three opera-
tions are the only ways the UTXO set can be modified. In
particular, the unspent funds tracked in Hamilton cannot
be modified to change their ownership (encumbrance),
value or serial number (see change output discussion in
§2.3).
Payment discovery. Transaction history in Hamilton is
not public. The sender must give the recipient the newly
created UTXOs (or the information needed to reconstruct
them) so that the recipient can further spend them. To
ensure users know a Transfer is completed and has been
applied, the transaction processor is also responsible for
responding to queries from users about the existence of
UTXOs.8

2.7 Security properties
In brief, the system must faithfully execute transactions,
ensuring that each was authorized by the owner of the
input funds, and safeguard that transactions do not dis-
turb the overall balance of funds (outside of minting and
redemption). The transaction processor in Hamilton en-
sures this by satisfying the following four security prop-
erties.
Authorization. Hamilton only accepts and executes
Mint and Redeem operations authorized by the issuer,
i.e., only the issuer can mint and redeem funds. Simi-
larly, Hamilton only accepts and executes Transfer op-
erations where encumbrances of each consumed UTXO

8This is unlike in public blockchains where users can search the
publicly available history of transactions to see if they have received
payment.

6

are satisfied (e.g., all three operations are covered by dig-
ital signature authorization).

Authenticity. The UTXO set of Hamilton only con-
tains authentic funds, as we now define. Define UTXOs
created by authorized Mint operations to be authentic.
Moreover, define UTXOs created by Transfer operations
to also be authentic if and only if all inputs consumed by
the transaction were authentic and the transaction pre-
serves balance. Note that the recursive authenticity prop-
erty depends on both the contents of the transaction itself,
as well as the UTXO set when Transfer is applied.

Durability. Mint, Redeem, and Transfer are the only op-
erations in Hamilton that change the UTXO set.

Note that, as a consequence of the three integrity prop-
erties defined above the UTXO set always remains au-
thentic and transactions in Hamilton cannot be reverted.
We further require that the transaction processor makes
the following availability guarantee and always makes
progress:

Availability. An authorized transaction spending authen-
tic funds will always be accepted by the transaction pro-
cessor.9

2.8 Discussion
We carefully designed our data representation (§2.5),
system operations (§2.6) and security properties (§2.7)
so that any system satisfying these maintains an authen-
tic and authorized UTXO set, eliminates the possibil-
ity of double spends, and also achieves additional secu-
rity goals related to its use. In particular, transactions in
Hamilton are not replayable and digital signature autho-
rizations are not reusable.

These properties are a consequence of the fact that
each UTXO created by a Mint or Transfer transaction
is unique and guaranteed to not equal any other member
of the UTXO set either in the past or in the future. The
issuer chooses uniformly random serial numbers for each
Mint transaction output. In Hamilton, for each Transfer
the output UTXO serial numbers are set by hashing all
the corresponding transaction’s inputs, as well as details
pertinent to the particular output UTXO itself (see §2.5).
Therefore each UTXO serial number recursively incor-
porates the entire transfer history up to the original Mint
transactions that engendered system with these source
funds. Under standard cryptographic assumptions, it is
infeasible to create two distinct chains of transfers re-
sulting in the same serial number, thus all serial numbers
and all UTXOs are globally unique.

No double-spends. Transfer operations permanently
mark UTXOs as spent. Therefore, as serial numbers are

9This does not preclude potential access control outside the trans-
action processor.

unique, no UTXO can be spent more than once or recre-
ated after having been spent.

No replay attacks. In a basic replay attack the victim
has signed a single transaction to authorize a single value
transfer. The attacker, however, submits this transaction
twice in hopes of effectuating two value transfers. For ex-
ample, Alice, who has two unspent $5.00 “bills”, might
give Bob a transaction that spends one of her $5.00 bills
to pay for ice cream, which Bob then submits twice to
take possession of both. Or, if Alice only has one $5.00
bill available right now, Bob can wait until she receives
$5.00 as a change, resubmit the (old, already confirmed)
transaction and take possession of Alice’s newly received
change.

Hamilton’s transaction format prevents replay attacks
as each transaction references globally unique input
UTXOs, and each signature covers the entire transac-
tion, including all its inputs and outputs. Thus, signatures
are not valid for spending any other UTXO, including
those created in the future, and it is not possible to copy a
Hamilton transaction and apply it multiple times to spend
additional funds.10

Transactions are non-malleable. In a system with mal-
leable transactions, an attacker can change some details
about the transaction (e.g., the witnesses used to satisfy
input encumbrances or output UTXO serial numbers)
without otherwise changing the input UTXOs or modify-
ing output UTXO values or encumbrances. For example,
if the transaction format included an auxiliary field not
covered by the signatures but used in serial number com-
putation, an attacker could change this field. This would
change output UTXO serial numbers and make it unsafe
to accept a chain of unconfirmed transactions, thus pre-
venting certain higher level protocols like the Lightning
Network. In 2014, the largest Bitcoin exchange Mt. Gox
closed after claiming to be a victim of malleability at-
tacks [38]. In our implementation, we require signatures
to cover all fields of uniquely-encoded transaction and
derive UTXO serial numbers from the same fields (plus,
output indexes).

10There are other ways to prevent replay and signature reuse attacks,
for example, by incorporating a timestamp or an incrementing nonce,
or enforcing unique encumbrances: each of them ensure that a signed
transaction can effectuate at most one transfer, and that signatures can-
not be repurposed. We made our choice to incorporate serial numbers
derived from the transaction’s history due to its simplicity and flex-
ibility. For example, deterministic serial numbers do not require the
sender to maintain state and allow for pre-signing transactions that can
be kept online to be broadcast later. This does introduce challenges
to programmability since a transaction cannot be signed until the user
knows exactly what outputs it is spending; we could use other tech-
niques from cryptocurrency systems to address this.

7

3 Transaction design
A payment system’s transaction format determines the
user experience when making a payment and has policy
implications in a wide range of areas including the level
of user privacy, whether interaction with financial insti-
tutions is required, and how minting is performed.

In the abstract design described in §2.6, the transac-
tion processor has full visibility into transactions, includ-
ing public keys, the transaction graph, and values, and
stores the entire UTXO set. Storing the entire UTXO set
is unfortunate because it requires the transaction proces-
sor to store encumbrances and values. This has an ef-
fect on storage and bandwidth requirements (Bitcoin’s
UTXO state is over 4 gigabytes and Ethereum’s is almost
a terabyte [80, 91]), and, as described in §1.1, this poses
data retention and user privacy challenges. Instead, we
explored a design which does not require storing encum-
brances (which could identify users) and values in clear-
text in the transaction processor. Depending on how the
system is architected, we believe this design can be later
extended to avoid even temporarily showing this data to
the transaction processor. In Hamilton, the transaction
processor stores unspent funds as a set of opaque 32-
byte cryptographic hashes of UTXOs, not UTXOs them-
selves. The rest of this section explains the technical mo-
tivation behind this choice and how to securely create
and process transactions in this model. We introduce the
transaction format, steps in which a transaction is pro-
cessed and applied to the state, and implications these
choices have on future functionality.

3.1 Processing transactions in Hamilton
Processing a Transfer transaction involves confirming
that it is valid and then applying it to the state. Valida-
tion involves checking the following:

1. whether the funds exist to be spent;

2. whether the spender has provided authorization to
spend the funds; and

3. does the transaction preserve balance of funds.

The first and third items provide authenticity. The sec-
ond item is authorization. Applying a valid transaction
to the UTXO set involves atomically removing the spent
funds and creating the new funds under the control of the
recipient(s); this in combination with the other checks
provide durability.
Separating validation checks. An important part of the
design of Hamilton is that these three validation checks
can be divided in transaction-local validation, which
does not require access to shared state, and existence val-
idation which does. We can then scale these two pieces
of work independently. This is useful because they have

different scalability profiles, with transaction-local vali-
dation requiring mostly compute resources (i.e., verify-
ing digital signatures used in spend authorization) and
existence validation requiring mostly persistent storage
I/O.

Performing local-validation. With this separation in
mind, Hamilton has dedicated components, which we
call sentinels, that receive transactions from users and
perform transaction-local validation, which is stateless,
and then forward the locally-validated transactions for
further processing. This local validation (1) checks that
the transaction is correctly formatted, (2) confirms that
each input has a valid signature for the output it is spend-
ing, and (3) confirms that balance is preserved (i.e., the
sum of the outputs equals the sum of the inputs).

Checking existence and executing a locally-validated
transaction. Now, given a transaction that passes
transaction-local validation, our system needs to atom-
ically check for input existence and, if valid, update the
UTXO set as follows. First, check if all transaction’s in-
put UTXOs exist in the UTXO set, and abort further pro-
cessing if any of the input UTXO’s are missing. Oth-
erwise, continue and (a) remove the transaction’s input
UTXOs from the UTXO set, and (b) add the newly cre-
ated output UTXOs to the UTXO set.

In our current design, sentinels ensure that locally-
valid transactions with inputs in the UTXO set have glob-
ally unique outputs, therefore we do not need to explic-
itly check that none of the transaction’s output UTXOs
exist in the UTXO set once the sentinel has correctly de-
rived serial numbers. However, we do so in the trans-
action executor in case we wish to support a different
transaction format in the future which might not have this
property (see §4.3.1).

3.2 UTXO hash set
We start by observing that executing a transaction that
passes transaction-local validation does not require ac-
cess to transaction’s witness data, e.g., digital signatures.
This is because neither input nor output UTXOs de-
pend on the witness data and so the atomic update is in-
dependent of witnesses. Therefore, after sentinels have
checked that a transaction passes transaction-local val-
idation, the sentinels could strip witness data and only
forward the transaction’s inputs and outputs for process-
ing.

Existing UTXO-based cryptocurrencies look up the
contents of input UTXOs in a transaction-processor
maintained UTXO set, to confirm the user has provided
valid UTXOs (i.e., part of the current UTXO set) to
spend. Our key insight was relying on the (untrusted)
user to provide UTXO data by reducing the problem of
checking UTXO correctness to existence—Do the funds
the user is claiming they can spend actually exist?

8

By doing this, one can go further and observe that af-
ter transaction-local validation, instead of processing and
storing the entire UTXO, the transaction processor can
operate on cryptographic commitments to the UTXOs. In
Hamilton we replace the UTXO set with a UTXO hash
set (UHS), and instead of storing a set of entire UTXOs
utxo = (v, P, sn), we store cryptographic commitments
h := H(v, P, sn) to UTXOs, which we subsequently re-
fer to as hashes, or UHS IDs. Here H is a cryptographic
hash function, and in Hamilton we use SHA-256 to de-
rive these hash commitments.

Converting a user’s Transfer transaction into commit-
ments to be applied to the UTXO hash set is a new step to
transaction processing which we call compaction. When
processing a Transfer transaction, Hamilton’s sentinel
computes the hashes for input UTXOs, deterministically
derives serial numbers for output UTXOs, and computes
hashes for output UTXOs. These two sets of hashes form
a compact transaction. Sentinels forward compact trans-
actions to the execution engine to be applied to the UHS,
described in §3.3.

We note that replacing UTXOs by cryptographic com-
mitments preserves security, and an attacker can not cre-
ate a transaction that would be invalid in UTXO set
model but succeed in the UHS model. Because UHS
hashes commit to the same UTXO data which must be
provided in the transaction, an attacker can not fit a dif-
ferent UTXO preimage into the same UHS hash with-
out violating the collision-resistance of H. Therefore, if
a transaction format is secure in the UTXO model, then
it must be in the UHS model. We explain security of our
transaction format in §3.3.

The idea of storing unspent funds as commitments
was first proposed as a Bitcoin storage and scalabil-
ity improvement [49]. We now discuss the benefits and
drawbacks of a UHS. It lowers storage requirements, in-
creases flexibility, and improves privacy, but creates chal-
lenges for auditing, transaction flows, and programma-
bility.
Storage. In the UHS model the transaction processor
only stores a 32-byte hash per individual UTXO, inde-
pendent of a UTXO’s size. If transactions contain pro-
grammable features in the future that require a large
amount of storage space in the transaction format, the
storage requirement for the state remains the same. This
state would be maintained by wallets and the user would
need to provide the necessary commitment preimages
alongside the transaction. It also keeps the data format
uniform and for transaction formats that include user-
supplied data, this hampers users from storing arbitrary
data (such as copyrighted or illegal data [79]) in the
transaction processor.
Flexibility. The UHS makes no assumptions about what
hashes represent, and this data structure is not limited to

UTXOs; it could be applied to a digital currency with
balances or some other application that requires atomi-
cally swapping hashes. This means we can experiment
with different transaction formats or scripting languages
without needing to change the core execution engine.
Privacy. The transaction processor does not need to store
balances or account information, though sentinels do
need to see (but do not need to retain) parts of this infor-
mation to validate a transaction. We anticipate being able
to remove this requirement using cryptographic privacy-
preserving designs which we will investigate in the next
phase of work [14, 66, 85].

However, this design also presents challenges for cer-
tain kinds of auditability, transaction protocols, and pro-
grammability.
Auditability. The UHS does not contain enough infor-
mation to audit the total amount of unspent funds. This
type of auditing would probably be important in the con-
text of a digital currency, but can be achieved either by
logging data outside the UHS or, to continue preserving
privacy, by storing values in homomorphic commitments
that can be maintained and tallied using additional cryp-
tographic techniques [69, 75].
Sender/recipient transaction protocols. The UHS de-
sign requires a recipient to learn the commitment to find
out if they have received funds, and know the serial num-
ber, encumbrance, and value to further spend their funds;
the transaction processor does not store enough infor-
mation to help a user recover this if they lose it. This
information could be stored elsewhere, or third parties
could conceivably provide this service to users. Requir-
ing a user to receive the serial number, encumbrance, and
value to spend their funds has implications on our trans-
action protocol and the types of transactions supported,
which we discuss in §3.4.
Programmability. Decoupling transaction-local valida-
tion and access to shared state means that future trans-
action programmability is restricted to only transaction-
local state. The UHS requires the person constructing the
transaction to be able to specify the start and end states
for the modifications to the spender’s funds and the recip-
ient’s funds. If there are concurrent transactions debiting
or crediting an account balance this might be challeng-
ing. This is easier in the UTXO model since we do not
need to support concurrent access to UTXOs. It would be
challenging to implement a complex smart contracting
language (such as Solidity [44]) using this abstraction.

We will consider auditing, alternative data models
and advanced transaction semantics in the next phase of
work.

3.3 Transaction format and execution
Recall that we represent unspent funds as UTXO triples
utxo = (v, P, sn), comprised of a value v, encumbrance

9

P , and serial number sn (§2.5). We now describe the con-
crete choices for v, P , and sn, Hamilton’s transaction for-
mat, and transaction execution in detail.
Values. We represent values v as 64-bit unsigned inte-
gers specifying multiples of the smallest subdivision of
money, i.e., multiples of $0.01.
Encumbrances. Currently we only support encum-
brances of public keys, indicating that the authorization
needed to spend this output is a signature on some spe-
cific data by the corresponding private key.11 Thus, an
encumbrance P is a 32-byte public key. Our model sup-
ports future encumbrances, such as requiring a subset of
signatures from multiple public keys.
Serial numbers. It is important that UHS hashes (or,
equivalently, UTXO set entries) do not collide, yet at the
same time it is possible to spend the same amount v to
the same encumbrance P multiple times. This property is
both about completeness—the ability to put multiple out-
puts with same encumbrance and value in the UHS—and
about security—to prevent replay and signature reuse at-
tacks (§2.8). This is the role of the globally unique serial
number sn.

We make UTXOs (i.e., UHS hashes) unique by deriv-
ing the serial numbers sn as pairs sn := (txid, idx) as
follows. The first component, txid is the unique trans-
action identifier: the cryptographic hash of the Mint or
Transfer transaction that created this UTXO. This hash
covers all input UTXOs, output encumbrances and val-
ues (as well as a unique nonce for each Mint transaction
which has no inputs). The second component, idx, is the
particular output index, i.e., first, second, etc, output of
the transaction.12 Since inputs can only be spent once
and they are all unique, this ensures that valid transac-
tions create unique serial numbers sn and unique output
hashes: txid’s are different for distinct transactions and
the idx values distinguish multiple outputs of the same
transaction.

This design matches Bitcoin where previous outputs
being spent are referenced via an outpoint, the trans-
action identifier/output index pair. A Bitcoin outpoint
uniquely identifies a previous output and is never reused
for a different output once spent, therefore we use se-
rial number and outpoint interchangeably when describ-
ing Hamilton transactions.

A notable difference is that Bitcoin transactions only
contain outpoints but not the outputs themselves, so val-
idating nodes must look up output information (like the
amount) in a local database in order to validate a trans-
action. As we operate in the UHS model, our trans-
action processor does not store this output information

11In Bitcoin and other cryptocurrencies, such encumbrances are
known as Pay-to-Pubkey, or P2PK, scripts.

12While in this exposition we use 1-based indexing, our software
implementation uses 0-based indexing

outpoint:
transaction_id: byte[32]
index: uint

output:
public_key: byte[32]
value: uint

input:
outpoint: outpoint
output: output

witness:
signature: byte[64]

transaction:
inputs: input[]
outputs: output[]
witnesses: witness[]

Figure 3: Description of a Transfer transaction. When
submitted to the execution engine, the transaction is byte
serialized to remove labels and delimiters required for a
human-readable format.

(it stores a cryptographic commitment to it). Therefore,
when spending a previous output in our system, the out-
put’s value and encumbrance are included in an input
along with outpoint reference to that input.

We are now ready to fully specify the transaction for-
mat, computation of transaction identifiers, and transac-
tion validation.

Mint transactions. Unspent funds enter the system as
outputs created by Mint transactions. A k-output Mint
transaction txMint is a quadruple (~vout, ~Pout, nonce;σ),
comprised of two size-k lists of output values ~vout
and ~Pout, as well as a unique nonce, and issuer’s sig-
nature σ. Such a transaction creates k UTXOs with
value/encumbrance pairs (vout,1, Pout,1), . . . , (vout,k,

Pout,k). We define txid(txMint) := H((~vout, ~Pout,
nonce)), whereH is a cryptographic hash function.

Transfer transactions. A k-input, l-output Transfer
transaction seeks to fully consume k UTXOs currently
present in the system, and create l new UTXOs spec-
ified by encumbrances and values. Such transaction
txTransfer = (~utxoinp, ~vout, ~Pout; ~wit) is comprised of (a) a
size-k list ~utxoinp of input UTXOs to be spent; (b) two
size-l lists ~vout and ~Pout of output values and encum-
brances specifying output UTXOs to be created; and (c) a
size-k list of witnesses ~wit, one for each input. (See Fig-
ure 3 for a machine-readable specification of a Transfer
transaction.)

The transaction’s inputs utxoinp,i = (vinp,i, Pinp,i,
sninp,i) must have values that sum up exactly to the val-
ues for transaction’s outputs:

∑k
i=1 vinp,i =

∑l
j=1 vout,j .

Note that this is different from Bitcoin which requires the
sum of the outputs to be less than or equal to the sum of
the inputs, because the difference is used as transaction
fees which go to the block miner. We do not require fees,

10

but could consider them in a future phase of this work.
Similar to Mint transactions, such txTransfer creates

l UTXOs with value/encumbrance pairs (vout,i, Pout,i),
and we define txid(txTransfer) := H((~utxoinp, ~vout,
~Pout)). (See Figure 4 for an explicit description of this
computation.13)

The transaction format satisfies the properties speci-
fied in §2.7 of authorization, authenticity, and durability.
It is not possible to create counterfeit money in the sys-
tem as an outpoint is globally unique and unusable once
spent, and transaction-local validation checks, described
later, ensure preservation of balance.

Transaction creation. To create a Transfer transaction,
users use their private keys to create a digital signature
on the txid, which serves as the witness for authorizing
the transaction, obtaining one signature per transaction
input. Witnesses are not included in the transaction iden-
tifier so signing can be deferred by the sender to after the
outpoint has been shared with the recipient. This is use-
ful to support future smart contract functionality where
unsigned transactions could be shared between parties to
be signed and broadcast later under certain conditions.
Recall that encumbrances are applied to individual out-
puts rather than whole transactions, meaning that funds
can be spent atomically from multiple public keys in a
single transaction.

Once a transaction is finalized, the users will determin-
istically derive outpoints (i.e., serial numbers) of each of
the output UTXOs from the transaction contents. Users
store this outpoint information in their wallets.

Transaction execution. As described in §3.1, transac-
tion execution in Hamilton can be separated in two parts:
(a) transaction-local validation, and (b) checking for
UHS hash existence and execution of a locally-validated
transaction.

The sentinel completes transaction-local validation of
a Transfer transaction by performing the following three
checks:

1. Syntactical correctness. Check that the transaction
has at least one input and output, and that the trans-
action supplies exactly one witness per input.

2. Balance. Check that transaction’s input values tally
up to exactly the same value as outputs to be cre-
ated.

3. Authorization. Check that each input UTXO is ac-
companied by a valid signature, relative to the in-
put’s public key, on a message comprised of the
transaction’s identifier txid.

13In our system we use SHA256 both for computing UHS hashes
and transaction identifiers. To make vector serialization unambiguous
we also explicitly hash k and l as part of tuple serialization.

See Figure 5 for Python pseudocode of a validate

function specifying the transaction validation algorithm.
Once validated, a transaction is compacted. First, the

sentinel derives the output UTXO serial numbers; to-
gether with output encumbrances and values they fully
specify output UTXOs to be created. Next, the sentinel
hashes the input and output UTXOs and obtains two lists
of hashes which it sends to the transaction processor,
which maintains the UHS, for existence checks and exe-
cution. See Figure 6 for a pseudocode description of the
transaction compaction algorithm.
The swap abstraction. Note that while the validate

function does not reference any data from the state and
only uses transaction-local data, the UHS, in turn, does
not reference a transaction’s contents and only operates
on the compacted hash values. Consequently, processing
Hamilton transactions at scale reduces to the challenge
of implementing a fast, scalable, and durable system for
executing the following kind of UHS primitive, which
we call swap. We describe two such systems in §4.

A UHS system maintains a set of hashes, and exposes
a single operation called swap. The inputs to swap are
two lists of hashes: one for existence checks and removal
(called input hashes), and one for insertion (called out-
put hashes). To execute a swap, the system atomically
checks that all input hashes are present. If an input hash
is missing, swap aborts. Otherwise, it obtains an updated
UHS by erasing all input hashes and inserting all output
hashes. All other hashes in the UHS remain unchanged.
Figure 7 describes contents of a compact transaction and
how such a transaction is then processed by swap.

We note that separating transaction-local validation
and execution means that with swap we can support mul-
tiple transaction formats concurrently without affecting
UHS performance.
Security. Note that the transaction format itself guar-
antees that old and new hashes output by the compact

function are unique, as the hashes commit to the entirety
of pertinent transfer history up to the distinct (due to
presence of a nonce) Mint’s. Once swap has removed
hashes from the UHS they can not be recreated (this
would require duplicate outpoints) thus ensuring that
outputs cannot be double-spent and transactions cannot
be replayed: the subsequent spends would be rejected by
swap’s existence checks as input hashes would not be
present in the UHS. Similarly, since the swap abstrac-
tion provides atomic deletion and addition of inputs and
outputs, the transaction is final once accepted and cannot
be reversed. Finally, transaction IDs will never repeat for
valid transactions as described above, so signatures can-
not be reused once the transaction is settled as changing
any aspect of the inputs or outputs of the transaction will
change the transaction ID, resulting in an invalid signa-
ture.

11

def transaction_id(transaction):
hash_args = [len(transaction['inputs'])]
for inp in transaction['inputs']:

hash_args += [inp['outpoint']['transaction_id'], inp['outpoint']['index'],
inp['output']['public_key'], inp['output']['value']]

hash_args += [len(transaction['outputs'])]
for out in transaction['outputs']:

hash_args += [out['public_key'], out['value']]

return serialize_and_hash(hash_args)

Figure 4: Calculation of transaction identifier.

def validate_local(transaction):
if len(transaction['inputs']) < 1:

return False
if len(transaction['outputs']) < 1:

return False
if len(transaction['witnesses']) != len(transaction['inputs']):

return False

total_input_value = 0
for inp in transaction['inputs']:

total_input_value += inp['output']['value']

total_output_value = 0
for out in transaction['outputs']:

total_output_value += out['value']

if total_input_value != total_output_value:
return False

txid = transaction_id(transaction)

for inp, wit in zip(transaction['inputs'], transaction['witnesses']):
if not check_signature(inp['output']['public_key'], wit['signature'], txid):

return False

return True

Figure 5: Transaction validation algorithm.

12

def input_hash(input):
hash_args = [input['outpoint']['transaction_id'], input['outpoint']['index'],

input['output']['public_key'], input['output']['value']]
return serialize_and_hash(hash_args)

def compact(transaction):
txid = transaction_hash(transaction)
input_hashes = []
for inp in transaction['inputs']:

h = input_hash(inp)
input_hashes.append(h)

output_hashes = []
for i, out in enumerate(transaction['outputs']):

inp = {
'outpoint': {

'transaction_id': txid,
'index': i

}
'output': out

}
h = input_hash(inp)
output_hashes.append(h)

return (txid, input_hashes, output_hashes)

Figure 6: Calculation of UHS input hashes and transaction compaction algorithm.

𝐔𝐇𝐒old 𝐔𝐇𝐒new

24ba...4cc
2808...777
2d44...5f2

30ef...0d1
5015...c06
677b...99d

…

…

Compact transaction 𝑻𝐜𝐨𝐦𝐩𝐚𝐜𝐭

Input hashes: Output hashes:

feb6...4f0

txid: 81fc...d94

2808...777
5015...c06

677b...99d
3e1e...612
cd1d...2c3

txid: adb7...401
Output index: 0

PK: b0c8...290

Value: $2.15

txid: 81fc...d94

Output index: 2

PK: 49e2...891

Value: $7.00

24ba...4cc

2d44...5f2

30ef...0d1

677b...99d

…

…
feb6...4f0
677b...99d
3e1e...612
cd1d...2c3

Figure 7: Processing of a compact transaction. As explained in §3.3, a transaction T is first validated, and after that T
is compacted to obtain the corresponding compact transaction Tcompact. The compact transaction Tcompact consists of
a transaction identifier (txid), input hashes (referring to previously committed transaction outputs), and output hashes
(referring to outputs of the transaction T itself). To process Tcompact, the swap function atomically does the following:
it checks that all input hashes of Tcompact are in the UHS, and if so it obtains an updated UHS by erasing Tcompact’s
input hashes (highlighted in italics) and adding Tcompact’s output hashes (highlighted in bold). All other hashes in the
UHS remain unchanged.

13

3.4 Transaction protocol
A transaction protocol is the series of user actions (or ac-
tions performed by wallets on the user’s behalf) needed
to create and submit a transaction to the transaction pro-
cessor. This includes how the recipient shares their public
key with the sender, who participates in constructing and
authorizing the transaction, who submits the transaction
to the transaction processor, how confirmation (or rejec-
tion) is communicated, and any other actions needed for
a transaction to succeed. For example, a protocol may be:
(1) the recipient shares their public key with the sender,
(2) the sender constructs, signs, and submits a transac-
tion to the transaction processor, and (3) both the sender
and recipient query the transaction processor (possibly
repeatedly) to find out if the transaction has completed
successfully. Note that once constructed and shared, ei-
ther the sender or recipient could submit the transaction.

Our choice of transaction data model and format di-
rectly impact potential transaction protocols. For exam-
ple, transaction compaction for the UHS adds a new
communication step requirement between sender and re-
cipient. Note that the recipient does not need to authorize
the transfer, beyond sharing a public key with the sender.
This means that a sender could construct and submit a
transaction without the recipient’s knowledge (e.g., by
reusing a public key), or without sending the recipient
the constructed transaction. This would make the funds
unspendable, and the recipient might not even know they
exist. The recipient should not consider a payment “com-
plete” until they have received both a confirmation from
the transaction processor and the full preimage data for
their new outputs. If the recipient does not receive these,
the sender has essentially destroyed the funds.

In theory, other cryptocurrencies in which the recip-
ient’s address is obfuscated also have this problem. In
practice, because the entire blockchain is public and stan-
dard address formats are used, recipients can scan every
transaction to detect if they have been paid and, if so,
construct new transactions to further spend those funds.
Even if the UHS were public, recipients would not be
able to unilaterally detect payments as the output hashes
are only generated during transaction construction.

This communication requirement means we cannot al-
ways safely execute certain transaction protocols, includ-
ing non-interactive or “billboard” payments. We define
non-interactive payments as transactions where the re-
cipient does not need to engage with the sender at all at
the time of transaction. For example, a charity may want
to solicit donations in a train station by posting their pub-
lic key as a QR code. If the sender did not communicate
with the charity to also send the new outputs, the money
would be rendered unspendable (it is controlled by the
charity’s public key, but the charity does not have enough
information to construct a valid transaction to spend it).

One way to address this would be to have the transac-
tion processor store the outputs as well, so the recipient
could query for them later, but this would require storing
public keys and amounts, which would allow users to be
tracked across transactions.

An alternative transaction format could compute the
hash with only the public key and value, so the recipi-
ent could deterministically find out if they have received
money without needing to know exactly how it was
spent. This fixes the above problem but has downsides.
The swap function would need to explicitly check for
and reject duplicate transaction IDs to prevent transac-
tions from being replayed. Unlike in the format described
above, it would be trivial to recreate the same input set,
and thus the transaction ID, if outputs with the same pub-
lic key and value were created, allowing signatures to
be reused. This would effectively force users to generate
new public private key pairs for transactions of the same
value because the swap function must reject transactions
that repeat the same public key and value pair.

Learning transaction confirmation. There is no pub-
lic ledger of transactions, so recipients must rely on
the transaction processor to learn about the status of
outstanding transactions. In our system they do this by
querying the transaction processor directly, but we could
also consider a design where the transaction processor
signs confirmed transactions so the spender could relay
confirmation directly to the recipient. In §4, we introduce
a service that responds to user queries about whether a
transaction was successful. This service stores transac-
tion IDs and output hashes. As described above, recipi-
ents must receive either the transaction ID or output data
about the transaction before they can confirm it has been
successful; this can be shared at any point after transac-
tion construction (including before submission).

Instead of requiring the user to poll for transaction
confirmation, the processor could support receipt call-
back endpoints. Users would specify a callback endpoint
in the transaction format and the transaction processor
would push a notification to that endpoint when the trans-
action is complete. Users are already familiar with this
payment protocol as it is commonplace for credit card
payments over the Internet: an e-mail address or phone
number is provided at transaction time, and a receipt is
sent to that address upon completion. It may be possible
for third-party intermediaries to emerge who do noth-
ing but provide a finality inbox service to users, much
like how e-mail providers hold messages until users grab
them. Importantly, this callback would not affect the ex-
ecution of the transaction itself, merely the finality noti-
fication, so these intermediaries would not need to take
custody of user money.

Using a receipt callback endpoint has two primary
drawbacks. First, it increases data storage requirements

14

within the UHS or within an alternative look-up service
and, second, it requires high availability for the call-
back endpoint. To link a successful transaction from the
UHS to an endpoint (e.g., an email address), the end-
point data would need to be included within the UHS.
If not included, a separate service would need to scrape
the endpoint data along with the transaction ID or output
hashes from the validation set. This increases data re-
tention and, accordingly, impacts privacy and likely per-
formance. Furthermore, if the endpoint is unavailable or
incorrectly specified by the user, the confirmation noti-
fication would fail, leaving polling the transaction pro-
cessor as the only alternative. A central directory con-
taining all public keys and notification endpoints would
simplify the process, but creates a similar privacy risk by
linking transactions to personally identifying data (e.g.,
email addresses).

Limitations on types of transactions supported.
Hamilton only supports push payments—the sender must
explicitly authorize and initiate each transaction. We do
not yet support pull payments, where the sender can pre-
authorize the recipient to continuously charge money to
the sender, like with a subscription service. It is not clear
how to support this using a UHS because transactions,
and transaction authorization, must reference the specific
funds being spent.

3.5 Learnings
Constructing a payment system using a UHS showed
how choices in transaction design and data storage can
impact data retention requirements and transaction pro-
tocols (including potential use cases). Importantly, the
flexibility of a system’s transaction protocols will im-
pact what use cases are possible and the user experi-
ence, which are critical for adoption. The amount of data
the transaction processor retains and to whom it is visi-
ble dictates what out-of-band interactions between users
are needed. During out-of-band communication, wallet
communication protocols could fail or transaction data
could be lost, creating edge cases where a sender no
longer has the authority to spend funds and the receiver
does not have the information required to reference them.
We leave solving these tradeoffs and building fully func-
tional user wallets to future work.

4 Processing transactions at scale
To illustrate how architecture design choices for the
transaction processor affect the broader properties of
a CBDC, we designed and implemented two architec-
tures. This required exploring the tradeoffs in user-facing
wallet software, the payment processor’s back-end soft-
ware, and the communication layers between them. Im-
portantly, these transaction processing systems would
require significant further development for real-world

CBDC usage. We present them as examples to illustrate
key ideas and facilitate discussion.

There are many other potential architectures to explore
for fast transaction processing. We made several early de-
sign choices that ultimately defined other properties of
the system. Examples of these early design choices in-
clude defining how users learn about execution results,
or whether those results are globally linearizable, mean-
ing that a time-based ordered list of transaction history
logically exists and can be materialized [58].

In this section we describe the two architectures we
implemented and evaluated for processing transactions
at scale. Both would require solving significant addi-
tional challenges before they would be ready for use in a
production-quality system.

4.1 Consistency

As described in §3, transaction processing can be split
into transaction-local validation, existence validation,
and execution, which creates opportunities for improv-
ing performance. To process more transactions, we par-
tition the set of unspent funds across multiple computers.
Transactions might reference unspent funds stored on
different machines, requiring a coordination protocol to
check existence of inputs and execute transactions atom-
ically. One way to achieve this is to first explicitly order
all valid transactions and subsequently apply them to the
partitioned state in the same order, if the inputs exist and
have not already been spent. We investigate this type of
architecture in §4.2. However, our correctness require-
ments do not require materializing a linear transaction
history. In §4.3, we describe an architecture which uses
a variant of two-phase commit [51] to achieve atomicity
and serializability without actually materializing a linear
order.

Our invariants suggest that we could further relax con-
sistency requirements so transactions would not need to
execute atomically. That is, the new funds could be cre-
ated lazily and a user might observe that their spent funds
are not available for some time before the transferred
funds are available to spend. (Note that delayed execu-
tion is quite common in today’s payment systems where
settlement might even take days.) In addition, we might
not require that a total order of all transactions exists
(even an implicit one). Relaxing one or both of these
guarantees might improve performance. We leave these
explorations to future work.

As described in §3.1, in both of our implemented de-
signs a sentinel receives a transaction from a user, per-
forms transaction-local validation, condenses the trans-
action into a compact transaction, and sends it to the ex-
ecution engine to enact the transfer and update the UHS.

15

4.2 Atomizer design
This design takes a two-stage pipelined approach: users
submit transactions to sentinels and then subscribe to a
watchtower to learn transaction status. Shards, each of
which stores some portion of the set of unspent outputs
(the UHS), receive compact transactions from the sen-
tinels. Shards check to see if the inputs to a transaction
exist, and then send this information to an ordering server
we call an atomizer, which produces a linear ordering of
transactions in blocks of state updates to the UHS. These
blocks are made durable on the archiver. Finally, each
block is broadcast and applied atomically in order (by
block height) to each shard in parallel. Each shard keeps
track of its current block height. The watchtower also
digests blocks and keeps state on transaction status for
users.

Figure 8 shows a diagram of the components in the
atomizer architecture and the data flow between compo-
nents. The order of messages during normal transaction
execution are described below:

1. User wallet submits a valid transaction to the sen-
tinel for execution by the system.

2. Sentinel validates the transaction and responds to
the user that the transaction is valid and is now
pending execution.

3. Sentinel converts the transaction to a compact trans-
action and forwards it to the shards.

4. Shards check the input UHS IDs are unspent and
forward the compact transaction to the atomizer.
The shards attach their current block height and the
list of input indexes the shard is attesting are un-
spent to the notification.

5. Atomizer collects notifications from shards and ap-
pends the compact transaction to its current block
once a full set of attestations for all transaction in-
put UHS IDs have been received. Once the make
block timer has expired, the atomizer seals the cur-
rent block and broadcasts it to listeners. Shards up-
date their current block height and their set of un-
spent UHS IDs by deleting UHS IDs spent by trans-
actions in the block and creating newly created UHS
IDs. The watchtower updates its cache of UHS IDs
to indicate which have been spent and created re-
cently.

6. User wallet queries the watchtower to determine
whether their transaction has been successfully ex-
ecuted.

7. Watchtower responds to the user wallet to confirm
the transaction has succeeded.

Figure 8: System diagram for the atomizer architecture
and inter-component data flow

16

4.2.1 Validating transactions
The sentinel is responsible for validating all transaction
rules except the existence of inputs. This includes check-
ing that the transaction is correctly formatted, that it
preserves funds, and that any necessary signatures are
present and valid. If a transaction does not meet these
criteria, the sentinel will return an error to the user with-
out forwarding the transaction for further processing. We
could extend the transaction format and sentinel valida-
tion to support more complex encumbrances in the fu-
ture.

Assuming the sentinel validates the transaction suc-
cessfully, it converts the transaction to a compact trans-
action and broadcasts this to the shards. As described
in §3, a compact transaction is the minimal data neces-
sary to validate that all transaction inputs are present in
the UHS, and update the UHS by deleting spent inputs
and inserting new outputs. Each shard is responsible for
a range of UHS IDs. Relevant shards (responsible for a
UHS ID range covering input UHS IDs in a transaction)
will check if the inputs exist. If they do, they will form
an attestation for the atomizer, which contains the com-
pact transaction, a list of the input UHS ID indexes the
shard is attesting are unspent, and the block height for
which the attestations are valid. This means an attesta-
tion is a confirmation by the shard that the input exists
as of a specific block height. Note that the shard does not
remove inputs or change state in any way at this point,
and might attest to the same input across multiple trans-
actions. This could conceivably result in a double spend
but is prevented by the atomizer, as described below.

4.2.2 Ordering transactions
The atomizer collects, processes, and applies attestations
from shards. The atomizer stores attestations by block
height and transaction ID, and when a transaction has a
complete set of attestations at the latest block height (we
will relax this requirement later), the atomizer considers
it for a block. In our implementation, the atomizer pro-
duces blocks on a specific schedule (in §6, every 250ms),
but could also produce blocks when a certain number of
complete transactions are ready to be included in a block.
The atomizer creates a block of complete compact trans-
actions, based on the order in which a complete set of
input attestations were received for the transaction. Im-
portantly, the atomizer does not include transactions con-
taining inputs already referenced by another transaction
in the block, even if both transactions have a full set of in-
put attestations. The atomizer assigns the block the next
sequential block height, makes the block durable, and
then broadcasts the block to the shards, watchtower, and
archiver. A transaction is considered finalized (meaning
its effects will eventually be visible to users) once the
block is made durable, as described in §4.2.4.

4.2.3 Updating state

As shards receive blocks, they atomically apply the
blocks to their local state; they remove any inputs that
were spent in the block and insert new UHS IDs created
in the block into their local data stores. (Each shard does
this for its own UHS ID range.) Once it has completely
processed a block, the shard updates its block height to
be used in future attestations.

Watchtowers receive blocks from the atomizer and
maintain a time-limited cache of recently executed com-
pact transactions. Users can query the watchtower by
transaction ID to find out whether the system has suc-
cessfully executed their transactions. Another service
could provide longer-term, historical transaction status
by reading the blocks from the archiver and maintaining
an index, much like a cryptocurrency block explorer.

Correctness relies on the atomizer as an ordering
server. In the design described above, an atomizer will
not consider an attestation if it is not marked with the lat-
est block height. A shard also will not update its block
height until it has fully processed the previous block’s
updates, so at the time the shard produces an attestation
the atomizer will accept, it must have processed the pre-
vious block, destroying any spent inputs. A shard might
attest to the same input twice at one block height for
different transactions, but the atomizer will deduplicate
this and allow only one of the transactions into a block,
whichever receives a full set of input attestations first.

The reliance on block height for attestations creates
a synchronization loop problem between shards and the
atomizer. A shard’s attestations may no longer be valid
after the atomizer updates its block height and before the
shard processes new blocks. To allow the use of attes-
tations that are still valid but not current (i.e., UHS IDs
still not spent as of a certain block height), we introduce
a spent transaction output (STXO) cache in the atomizer.
If an attestation has a non-current block height, the atom-
izer checks in the STXO cache if the attestation’s UHS
ID has been spent in recent blocks. If not, the attestation
is still valid and the transaction can proceed. The STXO
cache depth determines the maximum usable attestation
“age” (i.e., the difference between the block heights of
the attestation and the atomizer). With each new block
produced, the atomizer adds newly spent UHS IDs to
its STXO cache and discards UHS IDs older than the
cache’s depth.

The STXO cache significantly improves performance
because stale attestations can still be considered by the
atomizer across block boundaries. Furthermore, the at-
omizer’s STXO cache makes it possible for shards to
process new compact transactions from sentinels in par-
allel with digesting a block. By taking a snapshot of
its existing UHS partition before processing a block at

17

height h, the shard can issue attestations with the snap-
shot’s block height of h− 1. Once the shard has fully di-
gested the block, the old snapshot can be discarded and
attestations will reference the latest block height h.

4.2.4 Fault tolerance
The atomizer operates in a replicated state machine; in
our implementation we use Raft [73]. We replicate in-
puts to the atomizer’s functions to process transactions,
make blocks, and prune blocks (shard attestations, com-
plete transactions, and block heights). The replication
process makes sure that blocks are replicated across at-
omizers; the lead atomizer (and at least half the replicas)
will remember the block until an archiver has received
it and notified the lead atomizer that the block is safe to
prune. The lead atomizer will make sure this operation
is replicated. Archivers are the long-term storage for his-
torical data in the system to reduce the storage require-
ment for the atomizer. A block, and thus the transactions
contained within it, is committed once the command to
produce the block has been replicated by the atomizer
state machine. At this point, a majority of the atomizer
replicas have the state necessary to broadcast the block.

Interestingly, shards do not require consensus to stay
up to date, since they apply blocks from the atomizer in
block-height order. We can replicate shards by simply
creating shards with overlapping UHS ID ranges. Each
shard range copy can process blocks and provide correct
attestations as of their current block height. Sentinels can
send transactions to any of the copies of a shard range;
if one fails, it can try another. Note that if a replica is
out of date (has not yet processed the most recent block
outside the atomizer’s STXO cache) its attestations will
be discarded at the atomizer; this would require the user
or sentinel to retry the transaction. The atomizer must
broadcast blocks to all shard replicas.

If there is a leadership change in the atomizer Raft
cluster after a MakeBlock command has been repli-
cated but before the resulting block has been broadcast to
the archiver, the archiver will request the missing block
from the new atomizer leader once a subsequent block is
received and the discontinuity is recognized. Similarly,
shards and watchtowers will request missing blocks from
the archiver, allowing them to catch up after an atomizer
leadership change. Since blocks are stored by the atom-
izer cluster until an archiver has backed them up, there
is no risk of blocks being lost even if broadcasting them
fails.

Sentinels do not need to retain state and thus do not
need state recovery. New sentinels may be spawned at
any time to support higher loads or drained as load de-
creases.

Shard state will be a consistent but possibly stale view
of the overall UHS maintained by the system. Shard data

loss is prevented by replicating each UHS hash on more
than one shard. If a shard becomes unavailable, the ser-
vice can still be maintained if the replication factor does
not fall below one. A replacement shard can be created
by either re-applying the blocks stored by the archiver
or copying the required state from other replica shards.
Additionally, if a shard falls more than one block behind,
the shard can get the missed block(s) from the archiver
and apply them to catch up. Blocks not yet in the archiver
can be retrieved from the atomizer leader, making the at-
omizer the real-time source of consistency and synchro-
nization between all system components.

The archiver is the historical record of state transitions
of the overall UHS and can be used for recovery in the
event of component failures or network degradation. If
archive data is lost, the system can continue to operate
as long as all shards remain synchronized with the at-
omizer. However, in this case, future shard reconstruc-
tion from archive data would be impossible. To alleviate
this problem and speed up shard recovery from blocks in
the archive, periodic snapshots of shard state at regular
block heights could be taken. This would require fewer
blocks to be processed while reconstructing shard state
and would also remove the necessity of the archiver to
store blocks prior to the most recent snapshot. In this
way, the archiver could be recovered to full functional-
ity.

4.2.5 Preventing double spends
Suppose an adversary tries to double-spend an output
that was previously spent in a transaction confirmed a
long time in the past (e.g., minutes). Typically, this will
be caught and prevented at the shard layer. A shard copy
that is responsible for the UHS ID of the input that ref-
erences the previously spent output will check its UHS
range and see that the UHS ID is not present, and thus
not spendable. The shard will thus not forward an at-
testation to the atomizer for the offending input. Since
the atomizer will never receive a full set of attestations
for each input to the malicious compact transaction, the
transaction will not be included in a block and therefore
will not execute. The atomizer eventually discards these
incomplete compact transactions.

Consider the case where two transactions (txA and
txB) are submitted concurrently and double spend an
output o; this means each transaction references o in
an input. Assume that this double spend succeeds; this
means that the UHS ID for this output is attested to twice
at block heights h1 and h2, by shards s1 and s2. Assume
the atomizer is at height h, and there is no STXO cache.

• Case 1: h1 = h2: shards s1 and s2 (these might
be the same shard) will send attestations a1 and a2
with heights h1 and h2; h1 = h2 must be≤ h (if the

18

atomizer is at height h, it could not have broadcast a
previous block higher than h). The atomizer will re-
ceive attestations a1 and a2 in some order; assume
it is a1 first. If there is no new block created before
the atomizer receives a2, then later when making a
block the atomizer will detect the duplicate attesta-
tion a2 in txB and discard txB . If there is a new
block created, then the atomizer will be at height
h+ 1 > h, which means h+ 1 > h2 and the atom-
izer will discard a2 because its height is not current.

• Case 2: Assume h1 < h2. If h1 < h2 < h,
then the atomizer will discard both attestations. If
h1 < h2 = h (h2 cannot be greater than h for the
reason above), then the atomizer will discard s1’s
attestation when it is received, but accept s2’s be-
cause it is up-to-date.

Since both attestations will not be accepted by the at-
omizer, txA and txB cannot both succeed.

We can extend this argument to include the STXO
cache by considering that if h1 < h2 < h the atom-
izer will reject the attestation from shard s1 if it is too
old (h1 has been phased out of the cache), and reject the
attestation from s2 if the attestation from s1 at height h1
is still in the cache.

4.2.6 Watchtower
The atomizer design uses a queryable watchtower to ef-
ficiently communicate a transaction’s success to users. A
transaction reaches finality (i.e., success) when the at-
omizer includes its compact version (containing input
hashes, output hashes, and transaction ID) in a finished
block. The simplest way to notify users would be for the
system to broadcast completed blocks to all users, and re-
quire users to check each block for their transaction ID.
This is analogous to how each node in the Bitcoin net-
work stores the entire block history. Given this system’s
throughput requirement of 100,000 transactions per sec-
ond, this high volume of transactions would create un-
reasonable bandwidth and processing demands for users.
Similarly, broadly sharing the complete transaction his-
tory would undermine privacy (e.g., the transaction graph
could be seen).

Instead, the system provides a watchtower which ag-
gregates error messages from system components and
blocks from the atomizer, and stores an index of recently
confirmed transactions and errors to share with autho-
rized clients upon their request. Users query a watch-
tower with a transaction ID and UHS IDs, and the watch-
tower returns the status of the UHS IDs corresponding
to the given transaction ID within the system to indicate
whether or not it was successful.

By requiring a tuple of transaction ID and UHS IDs
as the watchtower query payload from users, the watch-

tower reveals minimal information about transactions. A
recipient of funds in a transaction will be able to query
about the status of their own outputs, but they cannot
learn the status of the transaction inputs or other outputs
which the sender has not shared with them. Similarly,
the sender of funds in a transaction can confirm that the
system accepted the outputs they created, but they can-
not learn about how the recipient spends those outputs,
since the sender will not know the transaction ID for the
transaction in which the recipient spends those outputs.
For additional privacy, the watchtower could challenge
the user to produce a signature for the UHS ID they are
querying to ensure the user actually has the ability to
spend the given output.

4.3 Two-phase commit design
In this architecture, shards use variants of two-phase
commit and conservative two-phase locking [43] to
atomically apply transactions to the UHS. There is no
materialized order of transactions, though two-phase
commit ensures serializability. There are two compo-
nents: transaction coordinators and shards. Each logical
shard is responsible for a subset of the UHS IDs which
are unspent within the system, in the same fashion as in
the atomizer architecture. Unlike in the atomizer design,
there are no blocks, archivers, or atomizers; shards do not
have any notion of block height; sentinels are responsi-
ble for communicating transaction status back to users
synchronously; and we require a replication protocol for
shard fault tolerance.

Figure 9 shows a diagram of the components in the
2PC architecture and the data flow between components.
The order of messages during a single transaction’s suc-
cessful execution are described below:

1. User wallet submits a valid transaction to sentinel.

2. Sentinel converts the transaction to a compact trans-
action and forwards it to the coordinator.

3. Coordinator splits input and output UHS IDs to be
relevant for each shard and issues a prepare with
each UHS ID subset.

4. Each shard locks the relevant input IDs and reserves
output IDs, records data about the transaction lo-
cally, and responds to coordinator indicating it was
successful.

5. Coordinator issues a commit to each shard.

6. Each shard finalizes the transaction by atomically
deleting the input IDs, creating the output IDs, and
updating local transaction state about the status of
the transaction. The shard then responds to coordi-
nator to indicate that the commit was successful.

19

Figure 9: System diagram for the 2PC architecture and
inter-component data flow

7. Coordinator issues a discard to each shard inform-
ing them that the transaction is now complete and it
can forget the relevant transaction state.

8. Coordinator responds to sentinel indicating that the
transaction was successfully executed.

9. Sentinel responds to user wallet, forwarding success
response from coordinator.

4.3.1 Batching Transactions
Instead of processing one transaction at a time, a coor-
dinator receives compact transactions from sentinels (the
same as in §4.2) and adds them to a batch of many com-
pact transactions, which represents a single distributed
transaction, or a dtxn. After a delay, or when a batch has
reached a size threshold, a coordinator initiates the pro-
tocol to try to commit the transaction batch. Many coor-
dinators could create and execute dtxns in parallel. There
are two phases to commit a dtxn:

1. Lock. The coordinator contacts each shard respon-
sible for a UHS ID included in the batch and re-
quests that it durably lock the input UHS IDs and
reserve the output UHS IDs. (Note that in the trans-
action format described in §3.3 output UHS IDs are
guaranteed to be unique across transactions by the
nature of our transaction format, so this reservation

is not strictly necessary. It is possible in other trans-
action format designs UHS IDs will not be guar-
anteed to be unique, so we do not assume this and
reserve outputs.) Each shard responds to the request
indicating which transactions in the batch had their
IDs successfully locked or reserved, and which no
longer exist, or were already locked/reserved by a
different dtxn.

2. Apply. The coordinator uses the shards’ responses
to determine which compact transactions in the
batch can be completed, and which cannot complete
because some of the inputs are unavailable or al-
ready locked. The coordinator makes this decision
durable and then contacts each shard again to indi-
cate which transactions in the dtxn batch to com-
plete and which to cancel. Each shard then atomi-
cally unlocks the input UHS IDs belonging to a can-
celed transaction, and deletes input UHS IDs and
creates the output UHS IDs for successful transac-
tions.

Once every shard participating in the batch has com-
pleted the second phase, the coordinator informs each
sentinel whether its transactions were successfully ex-
ecuted or rejected by the shards. The sentinels in turn
forward these responses to the users who submitted the
transactions.

It is possible that if two concurrent transactions by
different transaction coordinators spend the same inputs,
neither will succeed, because both will be canceled due
to observing the other’s lock conflicts. This means that at
least one will need to be retried, which is left to the user’s
wallet. An adversary could try to continually conflict a
user’s transaction by spending the same input. However,
this requires the adversary to have the authorization to
spend the same input. Investigating methods to fairly re-
solve concurrency conflicts is left to future work.

Batching many user payments into larger distributed
transactions amortizes the cost of making the result
of each phase of the protocol durable on each shard,
whether by flushing to persistent storage or replicating
as part of a distributed state machine.

Because our application semantics are constrained,
this is slightly different from traditional two-phase com-
mit in that dtxns always complete successfully, and indi-
vidual compact transactions are executed (or not) deter-
ministically: If all of a compact transaction’s input UHS
IDs are locked and output UHS IDs are reserved, the
compact transaction will succeed. The transaction coor-
dinator always completes both phases of dtxns, even if
some of the compact transactions within do not succeed.
General 2PC designs need to support transaction coordi-
nators that might make arbitrary decisions about whether
to commit or abort transactions.

20

4.3.2 Fault Tolerance
Each transaction coordinator and shard is made fault tol-
erant via a replicated state machine. Our implementation
uses Raft. Sentinels maintain state during the duration of
the user wallet request to return transaction status to the
user. If a sentinel fails before a client request has been
forwarded to a coordinator, the user’s wallet will need to
retry its transaction with another sentinel.

Only the leader node in the transaction coordinator
Raft cluster actively processes dtxns; followers simply
replicate the inputs to each phase of the dtxn. Before ini-
tiating each phase of the distributed transaction, the co-
ordinator replicates the inputs to both the lock and apply
commands to each shard. Shards remember which phase
each dtxn has last executed and the response to the coor-
dinator. If the coordinator leader changes mid-dtxn, the
new leader reads the list of active dtxns from the coor-
dinator state machine and continues each dtxn from the
start of its most recent phase. Shards that have already
completed the phase will return the stored response to the
new coordinator leader. To ensure proper completion of
the apply phase across all shards, shards will remember
the response for the apply phase until the coordinator has
received responses from all shards in the dtxn and issued
a “discard” message to inform shards the dtxn is com-
plete and can be forgotten. Note that discards can be ap-
plied lazily and the transaction coordinators can inform
the sentinels the transactions were successful before is-
suing the discard.

Similar to coordinators, only the leader in a given
shard cluster processes dtxns and responds to sentinels.
Although followers do not handle RPCs, they maintain
the same UHS as the shard leader, so they are prepared
to take over processing RPCs if the leader fails with-
out a specific recovery procedure beyond that provided
by the Raft protocol. Once a dtxn has entered the lock
phase and has been replicated by the coordinator cluster,
the dtxn will always run to completion. If a shard leader
fails mid-transaction, the coordinator leader will retry re-
quests until a new shard leader processes and responds to
the request.

If a user’s wallet loses connection to its sentinel while
waiting for a response to its transaction, that response
will be lost and the wallet will have to query the shards
to discover whether their transaction has succeeded, or if
it will need to be retried.

4.3.3 Preventing double spends
Assume there is a double spend of output o by txA and
txB (as described in §4.2.5). The UHS ID u for out-
put o is handled by one shard cluster, at most. In order
for txA to succeed, the transaction coordinator handling
the compacted txA (c(txA)) must submit a dtxn con-
taining c(txA) which locks u. If c(txA) succeeds, then

the transaction coordinator will eventually call apply and
the shard will destroy u. For c(txB) to succeed, another
transaction coordinator must also lock u, but it cannot do
so without contacting the same shard and seeing either
that u has already been locked by the transaction coordi-
nator executing c(txA) or that u no longer exists.

4.3.4 Comparison to atomizer design
There are two primary differences between the 2PC and
atomizer architecture. First, the 2PC architecture does
not materialize an immediately available total ordering
of transactions, which the atomizer architecture does
through a sequence of blocks. Although it might be pos-
sible to generate a partial ordering of transactions post-
execution using a technique such as Lamport timestamps
[64], this is left to future work. Ultimately, however, in
two-phase commit, unrelated transactions could execute
in any order while maintaining serializability and cor-
rectness from double-spends. This difference may have
negative implications for future auditability but positive
implications on the privacy of the system from post-
execution transaction flow analysis. What’s more, re-
laxing the requirement for a total ordering removes the
primary bottleneck in the atomizer architecture (the at-
omizer cluster itself). As shown in §6, this means the
2PC architecture can scale linearly in throughput by de-
ploying additional shards and transaction coordinators,
whereas the atomizer architecture is limited by the re-
source constraints (network bandwidth and CPU) of a
single server, the atomizer leader.

Second, the atomizer uses asynchronous communi-
cation between components whereas the 2PC architec-
ture uses typical synchronous remote procedure calls for
inter-component communication. Using blocks to coor-
dinate state between individual components makes the
consistency and replication story for the atomizer sim-
pler, but it also means that transactions can fail for tran-
sitory reasons related to inter-component message timing
that are opaque to the end user. When the atomizer-based
system is operating at or close to peak capacity, or dur-
ing degraded network conditions, users may have to retry
their transaction multiple times before successful execu-
tion if a shard or the atomizer is overloaded and cannot
provide or validate attestations before they expire. Fur-
thermore, since transaction status and error reporting is
handled entirely by the watchtower, users will need to
actively poll the watchtower at the time of the transac-
tion to discover its result.

In contrast, 2PC uses a more complex availability and
consistency strategy that relies on replicated state ma-
chines for shards and coordinators. This adds signifi-
cantly more code complexity, increasing the attack sur-
face for exploiting bugs. It also requires careful con-
sideration for how to safely recover partially completed

21

dtxns. However, from an end-user perspective, much less
complex software is required to successfully complete
a transaction. Once a coordinator has replicated a user’s
transaction, it will always run to completion, and the user
will receive a success or error response directly from the
sentinel that received their transaction. Furthermore, as
shown in §6.2.1, the lack of message timing complex-
ity between internal system components and the lack of
fixed inter-block delays results in reduced transaction tail
latency for the same throughput. Users would only need
to retry transactions in the rare case of simultaneous fail-
ure of several internal system components, and never
once replicated by a coordinator. The 2PC system itself
ensures successful completion of transactions rather than
depending on the user to work within the best-effort se-
mantics provided by the atomizer architecture.

4.4 Considering blockchain technology
Many have suggested using blockchain technology to de-
sign a central bank digital currency; blockchain technol-
ogy has been used to refer to a wide range of technolo-
gies comprising distributed consensus protocols, hash-
ing, digital signatures, zero-knowledge proofs, and dis-
tributed databases. Many of these technologies predate
the first time the term was used in Bitcoin [68].

We found that using a blockchain-based system in its
entirety was not a good match for our requirements. The
first reason is due to performance. Byzantine fault toler-
ant consensus algorithms and other new blockchain con-
sensus protocols generally provide lower performance
than Raft, and any single state machine architecture will
be limited by the resources of one server.14 Our atom-
izer architecture is inspired, in part, by a permissioned
blockchain design. Though we minimized the function-
ality in the atomizer to just deduplicating inputs, we
were unable to achieve throughput greater than 170K
transactions per second in a geo-replicated environment;
the cause being network bandwidth limitations between
replicas in other regions. If bandwidth constraints are re-
laxed, computation in the leader atomizer to manage Raft
replication and execute the state machine becomes the
bottleneck. Section 6 describes bottlenecks and the per-
formance of the atomizer under different workloads.

Second, there was no requirement to distribute trust
amongst a set of distrusting participants. The transac-
tion processing platform is, by its nature, controlled and
governed by a central administrator, the central bank.
Blockchains use relatively new distributed consensus
protocols which operate in a very different adversar-
ial environment. This introduces software and opera-
tional complexity. A CBDC has different adversarial as-
sumptions and should rely on the simplest, most well-

14Layer 2 designs can provide higher throughput, but add timing
complexity and have different security assumptions.

understood, well-tested protocols to achieve its goals.
Note that it might be beneficial to distribute read-only

copies of the data to other actors for auditing purposes.
This can be done in many architectures and must be care-
fully balanced with data privacy and performance con-
siderations. Given a workload target of 100K transac-
tions per second and a minimum transaction size of 64
bytes, this would require transferring over 500GB of data
per day, which is out of scope for most users. In the
next phase of work, we intend to explore adding forms
of cryptographic auditing that do not require replicating
all transactions.

Reasons to consider blockchain technology. Central
banks that wish to distribute trust and governance might
still consider blockchain technology for their implemen-
tations, and it might make sense to use blockchain tech-
nology if CBDC designers decide that intermediaries
should run nodes in the system that validate and exe-
cute transactions. The state-of-the-art in blockchain per-
formance is improving, which might remove this concern
as a factor in the future.

5 Implementation
We implemented the 2PC and atomizer architectures as
a set of standalone applications in C++. We used C++17,
the most recent C++ specification that was widely sup-
ported by mainline compilers at the time, supporting
builds using both GNU GCC and LLVM Clang. The
codebase15 has been tested on Linux and macOS but
should be portable to any UNIX-like system with rela-
tively minimal changes. The primary dependence on a
UNIX-compatible API is our use of UNIX sockets for
network communication. Aside from that the codebase
uses only standard C++ and some third-party libraries so
may be portable to non-UNIX systems in the future.

Clients communicate with the sentinel and watchtower
components via a custom serialization protocol, via sin-
gle, short-lived TCP connections. Our watchtower imple-
mentation accepts polling client status requests. We an-
ticipate that users will have different status confirmation
needs regarding latency, client overhead, interoperabil-
ity, and range of historical data availability. Future imple-
mentations could allow clients to make archival queries
for historical transaction information, reduce latency by
adopting a more sophisticated publish/subscribe design
where clients could subscribe to asynchronous updates
for pending transactions, or accept queries via alternate
protocols or more standard serialization formats.

We used four third-party libraries for the core code-
base: LevelDB [56], NuRaft [41], libsecp256k1 [18] and
vendored components from Bitcoin Core [17]. We use
LevelDB for internal shard storage and atomic write

15Published at https://github.com/mit-dci/opencbdc-tx

22

https://github.com/mit-dci/opencbdc-tx

transactions as well as a persistent implementation of a
Raft log. We use NuRaft to provide the Raft replicated
state machine abstraction used for fault tolerance in the
atomizer, 2PC shards, and 2PC coordinators.

From Bitcoin Core, we use libsecp256k1 for BIP-
340 compatible Schnorr signatures [90] which we use
as our public-key signature scheme for transactions. We
also use the cryptography components of Bitcoin Core
to provide optimized implementations of SHA256 [71],
used as the cryptographic hash function in the codebase,
SipHash [5] used for hashmaps and bech32 [88,89] used
for error-correcting public key encoding. Unit and inte-
gration tests also require the GoogleTest [55] framework,
but the framework is not required to build and run the
main codebase.

6 Evaluation
In this section, we evaluate and compare the atomizer and
2PC architectures against our original project require-
ments of high throughput and low latency, ability to tol-
erate the failure of multiple data center regions, and per-
formance under a variety of workloads. We also describe
our benchmarking environment.

6.1 Setup
For benchmarking and testing we deployed the code-
base in Amazon Web Services (AWS) using EC2 vir-
tual servers. All servers run Ubuntu 20.04. Atomizers,
shards, coordinators, watchtowers, and 2PC sentinels
used c5n.2xlarge instances (8 vCPUs, 21GB RAM)
whereas load generators and atomizer sentinels used
c5n.large instances (2 vCPUs, 5.25GB RAM). Both in-
stance types are virtualized so the underlying hardware is
being shared by other virtual machines operated by other
AWS customers. Each EC2 instance has a network inter-
face card (NIC) that provides up to 25 Gbps to Amazon’s
internal network and used elastic block store (EBS) vol-
umes for persistent storage rather than local disks.

We ran the system components in three geographical
regions, Virginia (us-east-1), Ohio (us-east-2), and Ore-
gon (us-west-2), with VPC peering connections between
each region utilizing Amazon’s private network rather
than the public Internet. Unless otherwise stated, all 2PC
shards, coordinators, and atomizers were replicated by a
factor of three (one node in each region, tolerating one
failure per Raft cluster), and atomizer shards replicated
by a factor of two (tolerating one failure per UHS ID
range). Replicated components were equally distributed
between regions to simulate conditions where the entire
system is geo-replicated and tolerant to the loss of an en-
tire region. Similarly, non-replicated components such as
sentinels, load generators, and watchtowers were equally
distributed between regions to simulate offered load from
across the United States. We modified the default TCP

window size [42] settings to increase the maximum win-
dow size to account for the high bandwidth, high latency
links between servers in different regions. Without this
change we were unable to maximize a single TCP con-
nection over long distances, hurting performance at the
edge of the transaction throughput envelope.

Measurement and generating load. Load generators are
simulated wallets that manage their own set of unspent
outputs, public and private key pairs, and pending trans-
actions. Load generators create and sign transactions and
wait for confirmations from the sentinel in the 2PC ar-
chitecture, or query a watchtower in the atomizer archi-
tecture. We simulate both the sender and the receiver
querying transaction status separately. Latency is mea-
sured in the load generator as the time taken between the
sender broadcasting a transaction and receiving a con-
firmation. In the 2PC architecture, load generators also
record transaction throughput and the values are aggre-
gated to produce throughput values over time for the
overall system. In the atomizer architecture, the archiver
calculates the transaction throughput based on the num-
ber of transactions in each block and the time between
blocks. Since sentinels are not replicated and can be
scaled independently of the remainder of the system
components, each load generator is paired with a sen-
tinel with a one-to-one relationship so that static transac-
tion checks, signature validation, and conversion to com-
pact transactions are not a bottleneck for overall system
throughput and latency. Load generators start with a fixed
number of outputs minted in the system and send trans-
actions as fast as they can, limited by the speed of their
virtual machine and the number of outputs available to
spend due to existing pending transactions. Unless oth-
erwise stated, load generators produce transactions with
two inputs and two outputs.

If, in an experiment, Raft clusters are unable to reliably
replicate data between all online nodes in the cluster, we
discard the data point. This is to not count high through-
put or low latency numbers in which data is not fully
replicated as expected; we intend to show where band-
width constraints between regions or variations in virtual
machine performance prevent reliable fault tolerance for
a given workload.

For peak finding, we ran sweeps with increasing load
over a number of system configurations. To select the
peak throughput configuration where the system was not
overloaded, we only considered results where the aver-
age tail latency was below 5 seconds, with the maximum
below 15 seconds, and completed successfully at least
3 times, or for the majority of test runs. Once the peak
configuration was identified, we acquired at least 3 data
points to plot the throughput and latency results irrespec-
tive of the individual latency values. For scalability plots,

23

0 4 8 12 16 20 24 28 32
Logical shards

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (T

X/
s)

 ×
10

6
Peak throughput (shard scale)

2PC
Atomizer

Figure 10: Peak throughput of the atomizer and 2PC ar-
chitectures when varying logical shard count to be 1, 2,
4, . . . , 32.

we included all experiments that completed successfully
regardless of the latency values.

6.2 Scalability
In this subsection, we consider two forms of system per-
formance and scalability. The first relates to increased
load from users in terms of transactions per second, and
how varying the number of system components affects
the maximum supported transaction throughput and tail
latency. The second explores how increasing the size
of the unspent transaction output set affects the perfor-
mance metrics of both architectures. These two experi-
ments compare how readily the architectures could sup-
port a high number of users.

6.2.1 Throughput and latency
Figure 10 compares the peak transaction throughput be-
tween the atomizer and 2PC as the number of logical
shards increases. The atomizer architecture has a peak
throughput of 170,000 transactions per second, beyond
which adding additional shards fails to increase through-
put, whereas the 2PC architecture scales linearly as the
number of logical shards increases, up to 1.7 million
transactions per second, though we expect peak through-
put would continue to increase with more shards. The
atomizer itself is the limiting factor for the overall sys-
tem as all transaction notifications have to be routed via
the atomizer Raft cluster. Adding more shards actually
increases the network bandwidth and computation re-
quired of the atomizer leader as there are more block
subscribers, as can be seen by the drop in performance
between eight and sixteen shards. The leader is unable
to serve both the followers in the atomizer Raft cluster
and the subscribed shards and watchtowers with its avail-
able network bandwidth and compute resources. These
constraints could be alleviated through an extra service
purely responsible for distributing blocks to shards so
that there are fewer subscribers to the leader atomizer
node, or by using IP multicast. However, since the leader

atomizer node has to ingest and replicate all transaction
notifications from shards, there will always be a bottle-
neck at the atomizer cluster even if block distribution is
offloaded to another service. This is the key drawback
of the atomizer architecture and the cost of generating a
total ordering of all transactions.

Diving deeper, Figure 11 shows the throughput and la-
tency varying the number of clients for different shard
counts for both architectures. Recall we only include
data points where the system was not overloaded and the
transaction data could be replicated reliably between all
regions containing nodes. Often benchmarks with greater
offered load succeeded when others with less load failed
based on the above criteria, or there were large variations
in latency between experiments using the same system
configuration. We suspect that this is because of varia-
tion in the peak network bandwidth and compute avail-
able when running the benchmark in AWS, due to op-
erating on shared hardware and network links. Since we
were unable to control for these variations, many of the
plots show large error bars, and may contain data points
where an experiment was retried multiple times to obtain
at least three results. It is possible that the variability is
actually due to our system design or its implementation,
but a controlled testing environment would be required
to evaluate this hypothesis.

Here we see 2PC does not have a drop off in perfor-
mance, supporting a greater offered load by increasing
the number of shards. Additionally, if a lower tail la-
tency is desired for a particular transaction throughput,
increasing the number of shards can decrease tail latency
for the same offered load. Crucially, the 2PC architecture
has no experimentally demonstrated bottleneck and can
support more throughput without trading off tail latency
by scaling the number of shard clusters. In the worst case
each transaction requires the participation of a subset of
shards equal to the number of inputs and outputs in the
transaction. Since transactions in the test load have an
upper bounded number of inputs and outputs, increasing
the number of shards results in each transaction requir-
ing the participation of a smaller proportion of the total
shards in the system. By contrast, the atomizer architec-
ture has a clear peak throughput plateau with 8 shards,
where increasing to 16 nodes results in a drop in peak
throughput.

6.2.2 Database Size
Figure 12 compares how the transaction throughput and
tail latency for both architectures change as the number
of unspent outputs increases, with the number of shards
fixed at 8. The plot shows that the atomizer architecture
can handle up to 100 million outputs with minimal ef-
fect on transaction throughput and latency. At one bil-
lion outputs, throughput suffers slightly for the same of-

24

0 5 10 15 20 25 30 35 40
Clients

0

50000

100000

150000

200000

Th
ro

ug
hp

ut
 (T

X/
s)

Atomizer Scalability (Throughput)
1
2
4
8
16

0 5 10 15 20 25 30 35 40
Clients

1000

10000

99
%

 la
te

nc
y

(m
s)

Atomizer Scalability (Latency)
1
2
4
8
16

0 40 80 120 160 200 240 280
Clients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Th
ro

ug
hp

ut
 (T

X/
s)

 ×
10

6

2PC Scalability (Throughput)
1
2
4
8
16
32

0 40 80 120 160 200 240 280
Clients

1000

10000

100000

99
%

 la
te

nc
y

(m
s)

2PC Scalability (Latency)
1
2
4
8
16
32

Figure 11: Atomizer and 2PC peak (considering clients) average throughput and 99% latency at peak average through-
put with varying logical shard count and clients. In 2PC there are the same number of coordinators as shards.

fered load. Recall that the shards must store the UHS on
disk, meaning that as the size of the database grows, each
lookup of a UHS ID and update of the UHS when a block
is processed takes longer. Thus, peak throughput might
have to be limited to support a larger number of out-
puts as the default atomizer architecture cannot easily ac-
commodate more shards due to network bandwidth con-
straints on the leader atomizer node. Conversely, while
the peak throughput decreases with a larger UHS in the
2PC architecture, it is able to scale by increasing the
number of shards and thus maintain performance. Un-
like the atomizer architecture, which is limited by the
atomizer leader, the 2PC architecture is only limited by
the performance of the shards themselves, the number of
which can be increased to spread load between a greater
number of shards.

The atomizer architecture may be able to accommo-
date a larger UHS if shards did not use an on-disk
database like in 2PC. Note, however, that an in-memory
only shard would not survive a crash or power fail-
ure and would need to be rebuilt completely from the
archiver which may be challenging in a long-running
system. The 2PC shard’s state is still persisted to disk
but through a sequentially written Raft log and snapshots.
This method of persistence is more performant than the
random reads and writes to disk needed by the atomizer
architecture’s shard. The 2PC shard’s state machine is

entirely in-memory leading to much better performance
with a large number of outputs. Because of this, replicat-
ing the shards in the atomizer architecture using a Raft
cluster might lead to better raw throughput for a given
number of shards.

6.3 Fault Tolerance
In this subsection, we consider how the system responds
to failures, such as random hardware failures, natural dis-
asters, and network partitions. We evaluate how both ar-
chitectures handle up to two regional data center failures,
and the scalability of each architecture as the number of
supported failures increases.

Figure 13 shows the transaction throughput over time
for the atomizer architecture when two simulated data
center failures occur and shards have a replication factor
of three and the atomizer a replication factor of five (sup-
porting up to two failures per cluster). At both 120 and
180 seconds into the test, an atomizer node and shard
replica for each logical shard is killed to simulate two
failures of entire data centers. The plot shows that the
system can recover successfully and automatically re-
store the availability of the system in a matter of sec-
onds. The failures cause a drop in throughput to zero for
several seconds as the atomizer Raft cluster performs a
leader election to select a new leader. Interestingly, we
only see a dip in performance when the atomizer leader

25

106 107 108 109

Seeded UTXOs

0

100000

200000

300000

400000

500000

600000
Th

ro
ug

hp
ut

 (T
X/

s)

Peak throughput (UTXO set size)
2PC
Atomizer

106 107 108 109

Seeded UTXOs

0

2000

4000

6000

99
%

 la
te

nc
y

(m
s)

Latency at peak throughput (UTXO set size)
2PC
Atomizer

Figure 12: Comparison of 2PC and atomizer with different UHS sizes.

00:00 01:00 02:00 03:00 04:00 05:00
Time (mm:ss)

0

10000

20000

30000

40000

50000

60000

Th
ro

ug
hp

ut
 (T

X/
s,

12
50

m
s M

A)

Atomizer two regional failures

Figure 13: Atomizer architecture throughput over time
with atomizer replication factor five, shard replication
factor three and two whole-data center failures at 120s
(leader) and 180s (follower) (see discussion for why the
follower failure does not cause throughput drop). 5 sam-
ple moving average (1 sample per block).

is killed, and the Raft cluster needs to elect a new leader,
which is what happens at 120 seconds. At 180 seconds,
in addition to shards, a follower Raft atomizer node is
killed, which does not impact performance. Shards in the
atomizer architecture do not use Raft consensus, so any
sentinels previously using the failed shard simply con-
nect to a different online shard covering the same range
of UHS IDs. After the atomizer leader election has com-
pleted, the shards connect to the new leader and continue
processing transactions. There is no loss of data or incon-
sistency in the unspent output set as a result of the fail-
ures. Load generators simply retry any transactions that
were dropped by failed shards or the previous atomizer
cluster leader.

The plot in Figure 14 shows the overall system
throughput of the 2PC architecture over time when
shards and coordinators have a replication factor of five
(supporting up to two failures per cluster). To simulate
continued system uptime and recovery when up to two
data centers fail completely, the Raft leaders for coordi-
nators and shards were killed at 120 seconds into the test,

00:00 01:00 02:00 03:00 04:00 05:00
Time (mm:ss)

0

200000

400000

600000

Th
ro

ug
hp

ut
 (T

X/
s,

50
00

m
s M

A)

2PC two regional failures

Figure 14: 2PC architecture throughput over time with
replication factor 5 and 2 whole data center failures at
120s and 180s. 5 sample moving average (1 second per
sample).

and a subsequent set of nodes for each cluster were killed
at 180 seconds into the test (which comprised some lead-
ers and some followers). The plot shows that the 2PC ar-
chitecture is successfully able to handle and recover from
the failure of two entire data centers with minimal loss of
downtime and no loss of system performance. For each
failure, throughput was temporarily reduced for less than
fifteen seconds, before automatically recovering to the
baseline. As in the atomizer architecture, there is no loss
of data from each failure and the system is not left in an
inconsistent state as the replacement coordinators con-
tinue any distributed transactions that were in progress at
the time of each failure.

Figure 15 compares the change in transaction through-
put and tail latency between architectures as the num-
ber of supported system failures increases from zero
through four. For 2PC this shows how the system per-
forms when the replication factor of shards and coor-
dinators increases from one through nine, the number
of clusters remains fixed at eight and the offered load
is increased until peak throughput is achieved. The plot
shows that 2PC is tolerant to increased replication fac-
tor, showing only a modest decrease in peak throughput.

26

0 1 2 3 4
Failures the system can tolerate

0

100000

200000

300000

400000

Th
ro

ug
hp

ut
 (T

X/
s)

Peak throughput (fault tolerance)

2PC
Atomizer

0 1 2 3 4
Failures the system can tolerate

0

500

1000

1500

2000

2500

99
%

 la
te

nc
y

(m
s)

Latency at peak throughput (fault tolerance)
2PC
Atomizer

Figure 15: Throughput and 99% latency for different choices of number of faults tolerated, f . In the atomizer archi-
tecture this means 2f + 1 atomizer replicas and f + 1 shard replicas. In 2PC, it means 2f + 1 transaction coordinator
replicas and shard replicas.

This suggests that, if desired, the 2PC architecture may
be able to support a high number of simultaneous fail-
ures.

For the atomizer architecture, the shard replication
factor is increased from one through five and the at-
omizer cluster from one through nine, showing peak
throughput decrease. Since the atomizer is the bottleneck
in the system, increasing the replication factor of the at-
omizer cluster results in increased bandwidth require-
ments on the leader atomizer node causing a decrease
in peak throughput. Increasing the replication factor of
shards also results in more bandwidth utilization on the
leader atomizer. As explained previously for the shard
scaling plot in Figure 10, the leader must broadcast the
latest blocks to a larger number of subscribers as each
shard replica receives all blocks. The atomizer architec-
ture is therefore less tolerant to increased redundancy
than 2PC due to bandwidth constraints on the leader at-
omizer node.

6.4 Workload Variability
This subsection compares how both architectures per-
form under varying transaction workloads from users.
We vary the proportion of transactions with a high num-
ber of input and outputs, and the proportion of double-
spending transactions. We are unsure how the transaction
workload will look in practice, however, for Bitcoin we
found that over 75% of transactions consist of one input
and two outputs, or vice versa.

6.4.1 Transaction Size
Figures 16 and 17 compare how the proportion of trans-
actions sent with a high number of inputs and outputs,
respectively, affect the throughput and latency between
architectures. In this test, the proportion of transaction
load sent to the system with eight rather than two in-
puts/outputs was increased from 0% through 30%. The
benchmarks were conducted using a database containing
1 billion UHS IDs.

As the number of inputs per transaction increases, the
peak throughput drops in the atomizer architecture. This
is because inputs must be checked by the shards to en-
sure they are unspent and aggregated within the atom-
izer to ensure all outputs have been attested to by shards.
Since more shards on average are required to attest to
a transaction with a larger number of inputs, more data
must be replicated by the atomizer cluster. There is also
a higher probability that it will take multiple blocks be-
fore all required attestations have been accumulated for
a transaction in the atomizer.

Conversely, the increase in output count in the atom-
izer architecture exhibits only a minor loss in throughput
and increase in latency because outputs are not the lim-
iting factor for the atomizer to process transactions. Our
transaction format guarantees unique output UHS IDs if
the transaction is valid, so as an optimization the atom-
izer and shards are not required to check them. There-
fore, additional outputs only increase the size of blocks
and transaction notifications, and thus the network band-
width requirement between atomizers and shards.

For the 2PC architecture, as the proportion of large
transactions (inputs or outputs) increases, the peak
throughput decreases as the system becomes overloaded.
This is similar to increasing the number of clients of-
fering two-input, two-output transactions. Ultimately the
system is limited by the overall number of UHS IDs be-
ing processed, regardless of how they are grouped into
transactions. Tail latency is largely unaffected by the
transaction size as latency is dominated by Raft repli-
cation delays rather than the lookup time in the state ma-
chine for each UHS ID. As a result, in production envi-
ronment it may be necessary to over-provision the num-
ber of shard clusters to absorb workloads with a high pro-
portion of large transactions, or discourage large transac-
tion via other means.

27

0% 5% 10% 15% 20% 25% 30%
% of transactions being 8-in-2-out

0

50000

100000

150000

200000

250000

300000

Th
ro

ug
hp

ut
 (T

X/
s)

Peak throughput (many inputs)

2PC
Atomizer

0% 5% 10% 15% 20% 25% 30%
% of transactions being 8-in-2-out

0

1000

2000

3000

4000

99
%

 la
te

nc
y

(m
s)

Latency at peak throughput (many inputs)
2PC
Atomizer

Figure 16: Throughput and 99% latency varying the proportion of transactions with eight inputs and two outputs.

0% 5% 10% 15% 20% 25% 30%
% of transactions being 2-in-8-out

0

100000

200000

300000

400000

Th
ro

ug
hp

ut
 (T

X/
s)

Peak throughput (many outputs)

2PC
Atomizer

0% 5% 10% 15% 20% 25% 30%
% of transactions being 2-in-8-out

0

1000

2000

3000

4000

99
%

 la
te

nc
y

(m
s)

Latency at peak throughput (many outputs)
2PC
Atomizer

Figure 17: Throughput and 99% tail latency varying the proportion of transactions with two inputs and eight outputs.

6.4.2 Double Spends

Figure 18 compares how the transaction throughput and
latency of valid transactions changes between architec-
tures as the proportion of double-spending transactions
sent from the load generators is varied between 0% and
30%. The load generators send double-spending trans-
actions by storing previously confirmed transactions and
re-issuing them at a later time. This ensures the inputs to
the transaction are either not present in any shard’s UHS
or are present in the atomizer’s spent transaction output
cache. Only the throughput and latency of valid trans-
actions are included in the plot. After sending a double-
spend transaction, there is an artificial delay within load
generators to simulate the additional time it takes to gen-
erate new valid transactions.

Double-spends do not greatly affect the throughput
and latency of valid transactions in the atomizer archi-
tecture. This is because most double-spends are trivially
caught at the shard layer so that additional load is not
put on the atomizer cluster. Double-spends negatively af-
fect the peak throughput of valid transactions in 2PC be-
cause each transaction, valid or not, has to be replicated
as part of a distributed transaction batch. This requires
shards to replicate all transactions as part of the lock
phase, and the coordinators have to replicate the status
of all transactions, so double-spends cause the same load
as valid transactions. Absorbing an increased proportion

of double-spending transactions in 2PC while maintain-
ing the same load of valid transactions could be achieved
by increasing the number of shards and coordinators. It
may be more difficult to scale the atomizer architecture
to absorb more double-spends by adding shards because
of the increased load additional shards put on the atom-
izer cluster as shown in Figure 10.

7 Related Work
Central banks around the world are in a wide variety of
stages with regard to CBDCs. Some are in research and
development phases while others are running pilots and
even launching products to the public. China’s e-CNY is
currently in public trials [30, 61, 77] and is a centralized
system based on the UTXO model. e-CNY involves a
two tier model and does not support end-user custody.
On a smaller scale, the Central Bank of the Bahamas has
launched a two tier CBDC, the Sand Dollar [29], which
is built on the NZIA Cortex DLT platform. The Central
Bank of Nigeria has launched eNaira [28], a two tiered
system based on Bitt’s DCMS platform. Some projects
are in pilot phase such as the Eastern Caribbean Central
Bank’s DCash [40] system which is also based on Bitt’s
platform.

Other projects are in research and development phases
such as the Riksbank’s e-krona project, built on R3’s
Corda Enterprise Blockchain platform [78], which re-

28

0% 5% 10% 15% 20% 25% 30%
% of transactions being double spends

0

100000

200000

300000

400000

Th
ro

ug
hp

ut
 (T

X/
s)

Peak throughput (double spends)

2PC
Atomizer

0% 5% 10% 15% 20% 25% 30%
% of transactions being double spends

0

1000

2000

3000

4000

99
%

 la
te

nc
y

(m
s)

Latency at peak throughput (double spends)
2PC
Atomizer

Figure 18: Throughput and 99% latency of valid transactions varying the proportion of transactions with double-
spending inputs.

quires all transactions go through a single notary to
enforce double-spend protection. This creates a similar
scaling bottleneck to our atomizer architecture [81]. Sev-
eral projects have achieved linear scalability with a paral-
lelized architecture. Eesti Pank along with several other
banks in the Eurosystem, have tested a CBDC design
based on tracking groups of bills using a set of paral-
lelized blockchains [46]. While it achieves linear scala-
bility, transactions involving multiple bills require exter-
nal coordination. No internal guarantee of atomicity for
these transactions is provided.

Several central banks already support real-time gross
settlement (RTGS) and fast payment systems [6]. These
systems are designed to settle transactions between eli-
gible financial institutions with low latency. In practice,
these systems do not handle a volume of traffic repre-
sentative of a national retail payment system nor do they
provide direct access to the public [7, 47, 48, 74]. Allen
et. al. identify these and other technical and legal issues
related to CBDC design [2].

The Bank for International Settlements together with
a group of seven central banks outlined [9] some of
the tradeoffs between privacy, interoperability, resilience
and other topics but do not propose a potential design.
The Regulated Liability Network [36] from SETL and
Amazon AWS presents a CBDC design which claims to
achieve 1 million transactions per second utilizing mul-
tiple coordinated blockchains. However, the paper does
not discuss deployment across multiple geographic re-
gions which is vital for resiliency, and does not provide
transaction latency figures.

Hamilton borrows ideas from both cryptocurrency and
electronic cash designs. Hamilton uses the UTXO trans-
action model first used in Bitcoin and stores state as un-
spent coins [67]. Unlike Bitcoin, Hamilton operates in
a model of centralized trust. Our transaction flow di-
verges from Bitcoin because the complete ledger is not
publicly available to users, and the transaction processor
only stores transaction hashes to reduce stored informa-

tion [49]. Output data is blinded in the process of gen-
erating UHS IDs and the transaction processor does not
store the output data itself. As a result, we introduce an
interactive transaction protocol that relies on the sender
of funds sharing the output data and identifier with the
recipient. In Bitcoin, all parties can independently verify
the success of a transaction by checking if it is included
in a block which is not practical at scale as described in
§4.4. We address this issue in the atomizer architecture
with the addition of a watchtower where senders and re-
ceivers can verify transaction success. In the 2PC archi-
tecture, senders and receivers learn of success directly
through the shards. Another design option might be for
payers to send recipients cryptographic proofs of trans-
action inclusion, for example by using something like
SkipChain [70], so recipients do not need a query ser-
vice.

Hamilton’s 2PC architecture uses a variant of two-
phase commit [57] which does not need to support roll-
backs. Like Google’s Spanner [35], it uses a combination
of two-phase commit with a replicated state machine (in
this case, Raft [73]), but does not support general SQL.
Narwhal/Tusk [37] is a consensus algorithm which com-
mits to hashes of transaction sets using a DAG but does
not present a full-featured state machine nor transaction
system. It might be possible for Hamilton to use this in-
stead of Raft for improved performance but it is not clear
how a deterministic transaction execution state machine
would be built that could take advantage of the increased
consensus performance.

Chaumian eCash [33], and designs based on it [23,
26, 27], also operate with a central trusted intermediary,
but either require maintaining an ever-growing list of all
spent coins for double spend prevention, or require users
to manage expiring coins. The Swiss National Bank’s
CBDC [34] project expands upon Chaum’s model by
proposing epoch windows in which coins must be spent.
This addresses the issue of maintaining an evergrowing
list of spent coins by pruning older entries, but imposes a

29

new requirement on users who might not be familiar with
money that cannot be used across epochs, and has signif-
icant policy implications. Many of these schemes strive
to achieve unlinkability, with mixed success against col-
luding attackers, while Hamilton does not. It is unclear
what level of performance these schemes can achieve in
practice, since few of them have been implemented.

Unlike most CBDC research efforts to date, the Hamil-
ton project is open source. This allows results to be inde-
pendently reproducible and fosters collaboration with ex-
ternal parties on continuing research. It also encourages
global interoperability standards and provides a much
lower barrier to adoption.

Contrary to other projects proposing backed stablecoin
designs [16, 31, 39, 82], Hamilton is designed to be ad-
ministered directly by the central bank or a related entity,
and transacts in central bank liabilities.

8 Discussion
Phase 1 of Project Hamilton has identified several key
results which challenge preexisting technical design as-
sumptions, and highlight several open questions to be ex-
plored in future phases of the project. We discuss our
learnings and opportunities for future research below.

8.1 Key Results
CBDC design choices are more granular than com-
monly assumed. Existing research often assumes that
blockchain or distributed ledger technology is required
to implement many of the desirable features for a CBDC,
or makes broad suppositions about the capabilities of
particular data models, such as so-called “token-based”
and “account-based” models [3, 12, 65]. We found these
limited categorizations lacking and insufficient to sur-
face the complexity of choices in access, intermedia-
tion, institutional roles, and data retention in CBDC de-
sign [53]. Our research identified several key design
choices that would need to be made. For example, the
CBDC’s trust and threat model, transaction format, and
fault-tolerance and scaling strategy, the primary choices
explored by this phase of research, present a range of
potential options that affect user experience. Future re-
search into auditability, tamper-resistance, spam preven-
tion, programmability semantics, and privacy are among
the most important design choices which have been left
to future research.

CBDCs can adopt a wide variety of design character-
istics depending on public policy objectives and sys-
tem performance demands. Robust technical research
and experimentation is required to inform policymakers
as to the wide variety of technical capabilities and trade-
offs. Equally, clear public policy objectives and product
design decisions are required to inform the appropriate
technical design for the system. As a result, at this stage

of CBDC research, it is important that policy and tech-
nical research are not conducted in isolation from each
other.

Techniques from cryptography, distributed systems
and blockchain technology can be combined to pro-
vide unique functionality and robust performance. By
leveraging classical distributed computing algorithms,
we implemented a highly scalable CBDC platform while
supporting a Bitcoin-like transaction format. Without im-
plementing a blockchain, our two-phase commit archi-
tecture supports both intermediation and self-custodying
user wallets, and eliminates single points-of-failure to
provide geographic fault tolerance. Our system also sup-
ports a range of potential privacy options by not re-
quiring central storage of user balances or identities.
The atomizer architecture uses a globally-ordered se-
quence of transactions grouped into batches, similar to
a blockchain, which potentially provides better support
for auditability in the future. However, generating the
transaction sequence in the atomizer architecture limits
its scalability potential compared to the two-phase com-
mit architecture.

Using a Byzantine fault tolerant (BFT) single state
machine approach might cater for an unnecessarily
strong threat model if the central bank directly op-
erates the CBDC. Systems in which transaction valida-
tion and execution are distributed among multiple sepa-
rate entities, such as in cryptocurrencies like Bitcoin and
permissioned chains like the proposed Diem blockchain,
can be implemented as replicated state machines using
distributed consensus algorithms which provide Byzan-
tine agreement or full Byzantine fault tolerance. This ap-
proach allows such systems to tolerate malicious nodes
when multiple mutually untrusted parties participate in
settling transactions and defining system rules. In a cen-
tral bank operated CBDC, only the central bank settles
transactions and defines the system rules so there is no re-
quirement to expect malicious nodes under normal oper-
ation. If the CBDC is not operated directly by the central
bank, and instead via multiple, distrusted third parties, a
distributed BFT-based approach may be a better solution.
We leave exploring this option to future work. Byzantine
fault tolerant algorithms such as HotStuff [1] might still
be useful to protect against bugs or compromised com-
ponents as a drop-in replacement for Raft, the non-BFT
consensus algorithm already used for this project.

Executing all transactions via a single-threaded state
machine, whether generating a blockchain-like data
structure or not, prevents horizontally scaling the
maximum throughput of the system by adding more
nodes. Our research was unable to partition the atomizer
service, which must be scaled vertically using additional
network bandwidth and processor speed for an increase

30

in maximum transaction throughput. Vertical scalability
is more difficult to achieve than horizontal scalability be-
cause improvements in network bandwidth and proces-
sor speed occur over long timeframes and have increas-
ingly plateaued in recent years. However, it may be im-
possible to avoid a limited capacity to scale for increased
throughput if materializing a total ordering of all trans-
actions proves to be the best method for implementing
tamper-detection and programmability, important ques-
tions for future research. By contrast, depending on the
workload, a traditional partitioned database implemen-
tation can scale horizontally to accommodate a greater
maximum transaction throughput by adding more nodes
to the system. In our specific data model, funds are uni-
formly distributed across partitions and transactions can
require the participation of multiple partitions, but we ex-
pect most transactions will only reference a small num-
ber of unspent outputs relative to the total number of par-
titions. Other data models, such as accounts, may reduce
the maximum number of partitions involved in a trans-
action and make the cross-partition workload more pre-
dictable.

It is challenging to implement a non-interactive pay-
ment protocol while maintaining user-to-user pri-
vacy. In public cryptocurrencies, transactions are visi-
ble to all parties making it easy for a user to indepen-
dently discover whether they have received a payment
under certain conditions. If transactions use standardized
encumbrances, the recipient of a payment can identify
funds they can spend by searching all transactions settled
by the system for encumbrances they can satisfy. Public
visibility of all transactions is unlikely to be a desirable
feature for a CBDC due to user-to-user privacy concerns.
Although some cryptocurrencies use cryptography to ob-
fuscate or hide the transaction participants and values
from observers, the volume of transactions settled by a
CBDC may be too great for a user to check every trans-
action to determine whether they have received a pay-
ment. Since the transactions executed by the system are
not broadcast to all users, the sender and recipient have
to communicate with each other either directly or via a
third party as part of the transaction protocol to provide a
payment notification. Public cryptocurrencies allow for
non-standard encumbrances which also require user-to-
user communication to provide a payment notification,
but this is uncommon in practice, and our system requires
out-of-band notification for all transactions regardless of
whether using a standard encumbrance. Third parties in-
cluded in the transaction protocol would be useful if both
the sender and receiver are not online at the same time,
and could be the central bank itself or external service
providers. Zero-knowledge proofs might make it possi-
ble to publish all transactions executed by the system
without compromising user-to-user privacy, an interest-

ing area of future research.

The central bank does not need to retain all trans-
action information to implement a secure CBDC sys-
tem. We show that the central transaction processor only
needs to store commitments to unspent funds, as opaque
32 byte hashes. This limits data retention by the cen-
tral bank, which is appealing, but makes self-custody
more operationally challenging for users, and the sys-
tem harder to audit internally. Our data model only stores
cryptographic commitments to unspent funds at the cen-
tral bank and discards the underlying preimage of the
commitment required to spend, in order to limit data re-
tention at the central bank. In order to spend funds, the
user must provide the preimage of the commitment with
their transaction so it can be validated by the sentinels.
Therefore, the sender of a payment must provide the re-
cipient with the preimage required to spend the money
before the transaction can be considered complete. The
preimage must be retained by the user until they spend
their funds, as it cannot be recovered if lost, and without
it the sentinels cannot check whether the transaction is
valid. The task of storing transaction data and commu-
nicating it between users could be conducted by a third
party. However, the third party would have access to the
transaction data of participating users. Zero-knowledge
proofs have the potential to hide transaction data from
sentinels, eliminate the need for direct communication
between transacting parties, and enable internal system
auditing.

8.2 Future Work
This paper demonstrates a high-performance, fault-
tolerant CBDC implementation. However, we have not
yet explored all design considerations for a practical
CBDC deployment. Some ideas for future areas of re-
search and implementation are presented below. We plan
to investigate many of these research topics in future
phases of Project Hamilton.

Privacy and auditability The UHS is a powerful data
model enabling transaction validation to be fully de-
coupled from the database layer of the system. It also
minimizes data retention in the core system, and opens
the possibility of zero-knowledge sentinels which would
hide transaction data and greatly increase user privacy
from the central bank. However, only storing commit-
ments to the underlying data makes the system difficult
to audit for correctness of transaction execution, the total
supply of money, and intrusion detection. Furthermore,
it is unclear how to balance user privacy from the central
bank and the desire of law-enforcement to access trans-
action data.

Programmability Our current transaction format and
data model restricts programmability features to those

31

which can be implemented using transaction-local val-
idation. Transactions are deterministic in that they must
provide all state elements that will be mutated prior to
transaction execution, and fully specify the state tran-
sition should the transaction complete. It is unclear
whether these two restrictions affect the space of con-
tracts that can be implemented. In either case, the UHS
makes contract engineering more difficult than a model
which supports non-deterministic transactions, so the
performance of a system implementing such a model will
need to be evaluated.

Interoperability To support further innovation on top of
the CBDC, techniques for interacting with cryptocurren-
cies and existing payment solutions in the traditional fi-
nancial sector will need to be researched. We are confi-
dent that our designs could support interoperability with
cryptocurrencies via Layer-2 payment channel networks,
though specific implementation details still need to be
determined. It is unclear whether the CBDC will need
to directly support formal standards used by payment
platforms in the banking sector, or whether interoperable
functionality could instead be delivered by third parties.
Easier cross-border payments are often cited as an im-
portant policy goal for a CBDC, and our designs support
such payments if users from multiple countries are able
to directly use the CBDC. Techniques for cross-border
payments between separate CBDCs will depend largely
upon how CBDCs from other countries are designed.

Offline payments We have not yet explored the poten-
tial for payments using CBDC without an Internet con-
nection. Our transaction format and data model requires
interactive communication between the central bank and
both transacting parties. One option is to operate a paral-
lel system using trusted hardware requiring no connectiv-
ity with the central bank to conduct a transaction. Trusted
hardware would be responsible for enforcing the authen-
ticity of CBDC while outside central bank systems, and
thus vulnerable to supply chain attacks or end-user tam-
pering. Alternatively, radio, satellite or mesh networks
could be exploited to retain connectivity with the central
bank during an Internet outage.

Minting and redemption Our experiments assumed the
entirety of the CBDC in circulation was already present
in the system. In practice, CBDC will need to be minted
or removed from circulation depending on the flow of
money into and out of the system. We have yet to explore
how best to implement changing the supply of CBDC
while maintaining security against both insider attacks
and external adversaries.

Productionization Our designs are fully fault-tolerant
against multiple geographic data center failures, ensuring
high-availability while preventing data loss. However,
the implementation has not been hardened or tested for

long-term, production-level readiness. Our evaluation fo-
cused on measuring peak performance for short periods
of time under high load with a static number of system
components. We did not evaluate system performance
over extended periods of time, where supporting a large
UHS may require a greatly increased number of shards.
Scaling the number of shards and rebalancing UHS IDs
between them may have performance implications need
to be fully investigated. We also do not provide an im-
plementation for various important production processes
such as system health monitoring, shard rebalancing, and
automated component scaling.

Denial of service attacks Our designs support self-
custody of private keys, and we assume there are no fees
per transaction in the base layer, making the system vul-
nerable to denial-of-service attacks. Adversaries could
submit large volumes of invalid or valid transactions at
no cost, consuming central bank resources and degrading
system performance for legitimate users. Rate-limiting
and spam-prevention techniques (aside from fees) could
mitigate this risk. Options include network-level throt-
tling, enforcing a cool-off period before money can be
re-spent, charging nominal fees past a certain transaction
volume threshold, or requiring a proof-of-work per trans-
action.

Quantum resistance If large-scale quantum computers
are built, most cryptographic systems powering today’s
Internet, e-commerce, and finance could eventually be at
risk. This stems from the fact that these systems rely on
cryptographic primitives that are vulnerable to quantum
adversaries. However, standards bodies, such as NIST
[72], are developing a portfolio of cryptographic prim-
itives resistant to classical, quantum, and hybrid attacks.
This is a highly mature effort and is expected to yield
final selections in the not-too-distant future. The cryp-
tographic primitives used in Hamilton are either post-
quantum with minimal modifications (e.g., hash func-
tions, where post-quantum resistance can be obtained by
a suitable increase in parameters), or can be replaced
with a standardized post-quantum alternative, once one
is available. Similarly, the extensions of Hamilton that
we have identified, e.g., a privacy-enhanced version, use
cryptographic primitives for which post-quantum alter-
natives are known. Transitioning to post-quantum sys-
tems will be an industry-wide effort. We are confident
that Hamilton is well-prepared for such a transition and
can remain a long-term secure system in a post-quantum
world.

9 Conclusion
CBDCs are being considered widely by central banks
and technical research is critical to understand what is
feasible, identify interdependencies between technical

32

and policy choices, and discover novel approaches to
achieving goals for a CBDC.

Our research presents a CBDC transaction processor
design, implements two potential architectures to sup-
port transactions at scale, and high performance and re-
silience. We find that technical and policy choices are
highly interdependent and that these choices are more
granular and with more permutations than commonly
discussed. Our work is limited to the transaction proces-
sor component of a CBDC and, as a research platform,
is neither designed to launch a CBDC or address all po-
tential requirements. Further research is needed in a wide
range of technical areas and how these different technical
options impact desired policy outcomes.

Through software design, development, and testing,
Project Hamilton provides unique insight into technol-
ogy relevant to implementing a CBDC. By designing a
flexible research platform and issuing an open-source li-
cense for the software, the Project Hamilton team hopes
to share its learnings with others and receive feedback
and contributions to the code from other digital currency
experts.

This open-source release concludes Phase 1 of Project
Hamilton. The flexible core infrastructure developed in
Phase 1 was designed to support future research and de-
velopment with various potential designs and features. In
Phase 2 of Project Hamilton, the Boston Fed and MIT
DCI will continue their CBDC infrastructure research
and explore different options and configurations in ar-
eas such as data privacy, programmability, and interoper-
ability. The team will assess how these choices impact a
platform’s technical design and performance.

As the global CBDC discussion evolves and the Fed-
eral Reserve’s research continues, Project Hamilton aims
to continue providing valuable insights to policymakers
and the general public through its experimentation with
leading-edge technical research.

10 Acknowledgements
The authors express gratitude to Robert Bench, Jim
Cunha, Ken Montgomery, and Eric Rosengren for their
leadership and direction in this work. In addition,
we thank Robleh Ali, Jonathan Allen, Spencer Con-
naughton, Thomas Cowan, Tadge Dryja, Rob Flynn,
Kristin Forbes, Shira Frank, Nikhil George, Gert-
Jaap Glasbergen, Ethan Heilman, Simon Johnson, Sean
Neville, Ronald L. Rivest, Bernard Snowden, Michael
Specter, Sam Stuewe, Robert Townsend, Reuben Young-
blom, and staff at the Federal Reserve Board for their
helpful contributions, feedback, and comments. We are
also grateful to the funders of the Digital Currency Ini-
tiative for their ongoing support of the MIT researchers
that participated in this work.

References
[1] I. Abraham, G. Gueta, and D. Malkhi. Hot-Stuff the

linear, optimal-resilience, one-message BFT devil. CoRR,
abs/1803.05069, 2018.

[2] S. Allen, S. Čapkun, I. Eyal, G. Fanti, B. A. Ford, J. Grimmel-
mann, A. Juels, K. Kostiainen, S. Meiklejohn, A. Miller, et al.
Design choices for central bank digital currency: Policy and tech-
nical considerations. Technical report, National Bureau of Eco-
nomic Research, 2020.

[3] R. Auer and R. Böhme. The technology of retail central bank
digital currency. BIS Quarterly Review, March 2020.

[4] R. Auer, J. Frost, M. Lee, A. Martin, and N. Narula. Why
central bank digital currencies? Liberty Street Economics,
2021. https://libertystreeteconomics.newyorkfed.org/2021/12/
why-central-bank-digital-currencies/.

[5] J. Aumasson and D. J. Bernstein. SipHash: a fast short-input
PRF. Cryptology ePrint Archive, Report 2012/351, 2012. https:
//eprint.iacr.org/2012/351.

[6] Bank For International Settlements. Fast payments - enhanc-
ing the speed and availability of retail payments. Committee on
Payments and Market Infrastructures, 2016. https://www.bis.org/
cpmi/publ/d154.pdf.

[7] Bank for International Settlements. BIS statistics explorer, 2019.
https://stats.bis.org/statx/toc/CPMI.html.

[8] Bank for International Settlements. CBDCs: an opportunity for
the monetary system. BIS Annual Report Economic Report 2021,
pages 65–91, 6 2021.

[9] Bank for International Settlements et al. Central bank digital
currencies: System design and interoperability, 9 2021. https:
//www.bis.org/publ/othp42 system design.pdf.

[10] Bank of Canada et al. Central bank digital currencies: founda-
tional principles and core features. BIS Working Group, 2020.
https://www.bis.org/publ/othp33.pdf.

[11] Bank of England. Central bank digital currency: Opportunities,
challenges and design, 2020. https://www.bankofengland.co.uk/-
/media/boe/files/paper/2020/central-bank-digital-currency-
opportunities-challenges-and-design.pdf.

[12] Bank of Thailand. Central bank digital currency:
The future of payments for corporates, 2021. https:
//www.bot.or.th/English/FinancialMarkets/ProjectInthanon/
Documents/20210308 CBDC.pdf.

[13] M. L. Bech and R. Garratt. Central bank digital currencies. BIS
Quarterly Review, September 2017.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anonymous
payments from Bitcoin. In Proceedings of the 2014 IEEE Sym-
posium on Security and Privacy, SP ’14, pages 459–474, 2014.

[15] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
control and recovery in database systems, volume 370. Addison-
Wesley Reading, 1987.

[16] Binance. Binance USD. https://www.binance.com/en/busd.

[17] Bitcoin Core Developers. Bitcoin Core. https://github.com/
bitcoin/bitcoin.

[18] Bitcoin Core Developers. libsecp256k1. https://github.com/
bitcoin-core/secp256k1.

[19] C. Boar and A. Wehrli. Ready, steady, go? – results of the third
BIS survey on central bank digital currency. BIS Papers No 114,
2021. https://www.bis.org/publ/bppdf/bispap114.htm.

[20] Board of Governors of the Federal Reserve System. Money and
payments: The U.S. dollar in the age of digital transformation,
January 2022.

33

https://libertystreeteconomics.newyorkfed.org/2021/12/why-central-bank-digital-currencies/
https://libertystreeteconomics.newyorkfed.org/2021/12/why-central-bank-digital-currencies/
https://eprint.iacr.org/2012/351
https://eprint.iacr.org/2012/351
https://www.bis.org/cpmi/publ/d154.pdf
https://www.bis.org/cpmi/publ/d154.pdf
https://stats.bis.org/statx/toc/CPMI.html
https://www.bis.org/publ/othp42_system_design.pdf
https://www.bis.org/publ/othp42_system_design.pdf
https://www.bis.org/publ/othp33.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bot.or.th/English/FinancialMarkets/ProjectInthanon/Documents/20210308_CBDC.pdf
https://www.bot.or.th/English/FinancialMarkets/ProjectInthanon/Documents/20210308_CBDC.pdf
https://www.bot.or.th/English/FinancialMarkets/ProjectInthanon/Documents/20210308_CBDC.pdf
https://www.binance.com/en/busd
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://www.bis.org/publ/bppdf/bispap114.htm

[21] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu.
Zexe: Enabling decentralized private computation. In Proceed-
ings of the 41st IEEE Symposium on Security and Privacy,
S&P ’20, 2020. ePrint: https://eprint.iacr.org/2018/962.

[22] L. Brainard. Update on digital currencies, stablecoins, and
the challenges ahead, 2019. https://www.federalreserve.gov/
newsevents/speech/brainard20191218a.htm.

[23] S. Brands. Untraceable off-line cash in wallet with observers.
In Annual international cryptology conference, pages 302–318.
Springer, 1993.

[24] N. Brewster and S. Bishop. Getting out the message.
http://www.centralbank.org.bb/ economic-insightbb/getting-
out-the-message.

[25] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards
privacy in a smart contract world. In Proceedings of the 24th
International Conference on Financial Cryptography and Data
Security, FC ’20, 2020. ePrint: https://eprint.iacr.org/2019/191.

[26] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Com-
pact e-cash. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 302–321.
Springer, 2005.

[27] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing
accountability and privacy using e-cash. In International Confer-
ence on Security and Cryptography for Networks, pages 141–155.
Springer, 2006.

[28] Central Bank of Nigeria. Design paper for the eNaira. https:
//enaira.gov.ng/download/eNaira Design Paper.pdf.

[29] Central Bank of The Bahamas. Sand dollar. https://www.
sanddollar.bs.

[30] Central Banking Newsdesk, 2020. https://www.centralbanking.
com/fintech/cbdc/7529621/pboc-confirms-digital-currency-
pilot.

[31] Centre Foundation. USD-C. https://www.centre.io/usdc.

[32] M. M. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian,
M. P. Jones, and P. Wadler. The extended UTXO model. In In-
ternational Conference on Financial Cryptography and Data Se-
curity, pages 525–539. Springer, 2020.

[33] D. Chaum. Blind signatures for untraceable payments. In Ad-
vances in Cryptology: Proceedings of Crypto 82, pages 199–203.
Springer, 1983.

[34] D. Chaum, C. Grothoff, and T. Moser. How to issue a central
bank digital currency. arXiv preprint arXiv:2103.00254, 2021.

[35] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Fur-
man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al.
Spanner: Google’s globally distributed database. ACM Transac-
tions on Computer Systems (TOCS), 31(3):1–22, 2013.

[36] A. Culligan, N. Pennington, M. Delatine, P. Morel, E. M. Salinas,
G. Vargas, N. Dusane, J. Iu, S. Sheikh, N. Kerigan, T. McLaugh-
lin, P. D. Courcy, M. Low, and K. H. Park. The regulated liabil-
ity network, 12 2021. https://setldevelopmentltd.box.com/shared/
static/18mff2m990qabgzseiex3h7itq7qdnls.pdf.

[37] G. Danezis, E. K. Kogias, A. Sonnino, and A. Spiegelman. Nar-
wal and Tusk: A DAG-based mempool and efficient BFT consen-
sus, 2021. https://arxiv.org/pdf/2105.11827.pdf.

[38] C. Decker and R. Wattenhofer. Bitcoin transaction malleability
and MtGox. In Proceedings of the 19th European Symposium on
Research in Computer Security, pages 313–326, 2014.

[39] Diem Foundation. Diem. https://www.diem.com/en-us/white-
paper/.

[40] Eastern Caribbean Central Bank. ECCB digital EC currency pi-
lot, 2021. https://www.eccb-centralbank.org/p/about-the-project.

[41] eBay. NuRaft. https://github.com/eBay/NuRaft.

[42] ESnet. Linux tuning. https://fasterdata.es.net/host-tuning/linux/.

[43] K. Eswaran, J. Gray, and L. Traiger. The notion of consistency
and predicate locks in a database system. Communications of the
ACM, 19(11):624–632, november 1976.

[44] Ethereum Developers. Solidity, the smart contract programming
language. https://github.com/ethereum/solidity.

[45] European Central Bank. ECB publishes the results of the public
consultation on a digital euro, 2021. https://www.ecb.europa.eu/
press/pr/date/2021/html/ecb.pr210414∼ca3013c852.en.html.

[46] European Central Bank. Work stream 3: A new solution –
blockchain & eID, 2021. https://haldus.eestipank.ee/sites/default/
files/2021-07/Work%20stream%203%20-%20A%20New%
20Solution%20-%20Blockchain%20and%20eID 1.pdf.

[47] Eurosystem. TARGET Instant Payments Settlement user re-
quirements, 2017. https://www.ecb.europa.eu/paym/target/tips/
profuse/shared/pdf/tips crdm uhb v1.0.0.pdf.

[48] Eurosystem. T2-T2S consolidation user requirements doc-
ument for T2-RTGS component, 2018. https://www.ecb.
europa.eu/paym/pdf/consultations/T2-T2S Consolidation User
Requirements Document T2 RTGS v1.2 CLEAN.pdf.

[49] C. Fields. UHS: Full-node security without maintaining a full
UTXO set. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2018-May/015967.html.

[50] M. Fleder and D. Shah. I know what you bought at Chipotle
for $9.81 by solving a linear inverse problem. In Proceedings of
the ACM on Measurement and Analysis of Computing Systems,
volume 4, pages 1–17, 2020.

[51] B. I. Galler and L. Bos. A model of transaction blocking in
databases, 1983. https://www.sciencedirect.com/science/article/
pii/0166531683900123.

[52] R. Garratt, M. J. Lee, et al. Monetizing privacy with central bank
digital currencies. Technical report, Federal Reserve Bank of
New York, 2020.

[53] R. Garratt, M. J. Lee, B. Malone, and A. Martin. Token- or
Account-based? A digital currency can be both. Liberty Street
Economics, 2020. https://libertystreeteconomics.newyorkfed.
org/2020/08/token-or-account-based-a-digital-currency-can-be-
both/.

[54] G. Gerdes, C. Greene, X. M. Liu, and E. Massaro. The 2019
Federal Reserve payments study, 2019.

[55] Google. GoogleTest. https://github.com/google/googletest.

[56] Google. LevelDB. https://github.com/google/leveldb.

[57] J. N. Gray. Notes on data base operating systems. In Operating
Systems: An Advanced Course, pages 394–481. Springer, 1978.

[58] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[59] K. Hill. How Target figured out a teen girl was pregnant before
her father did, 2012. https://www.forbes.com/sites/kashmirhill/
2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-
before-her-father-did/.

[60] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol
specifiation, 2021. https://zips.z.cash/protocol/protocol.pdf.

[61] J. C. Jiang and K. Lucero. Background and implications of
China’s central bank digital currency: E-CNY. Available at SSRN
3774479, 2021.

[62] J. Kiff, J. Alwazir, S. Davidovic, A. Farias, A. Khan,
T. Khiaonarong, M. Malaika, H. Monroe, N. Sugimoto,
H. Tourpe, and P. Zhou. A survey of research on retail central
bank digital currency, 2020. https://www.elibrary.imf.org/view/
journals/001/2020/104/001.2020.issue-104-en.xml.

34

https://eprint.iacr.org/2018/962
https://www.federalreserve.gov/newsevents/speech/brainard20191218a.htm
https://www.federalreserve.gov/newsevents/speech/brainard20191218a.htm
http://www.centralbank.org.bb/_economic-insightbb/getting-out-the-message
http://www.centralbank.org.bb/_economic-insightbb/getting-out-the-message
https://eprint.iacr.org/2019/191
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://www.sanddollar.bs
https://www.sanddollar.bs
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centre.io/usdc
https://setldevelopmentltd.box.com/shared/static/18mff2m990qabgzseiex3h7itq7qdnls.pdf
https://setldevelopmentltd.box.com/shared/static/18mff2m990qabgzseiex3h7itq7qdnls.pdf
https://arxiv.org/pdf/2105.11827.pdf
https://www.diem.com/en-us/white-paper/
https://www.diem.com/en-us/white-paper/
https://www.eccb-centralbank.org/p/about-the-project
https://github.com/eBay/NuRaft
https://fasterdata.es.net/host-tuning/linux/
https://github.com/ethereum/solidity
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210414~ca3013c852.en.html
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210414~ca3013c852.en.html
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/tips_crdm_uhb_v1.0.0.pdf
https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/tips_crdm_uhb_v1.0.0.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-May/015967.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-May/015967.html
https://www.sciencedirect.com/science/article/pii/0166531683900123
https://www.sciencedirect.com/science/article/pii/0166531683900123
https://libertystreeteconomics.newyorkfed.org/2020/08/token-or-account-based-a-digital-currency-can-be-both/
https://libertystreeteconomics.newyorkfed.org/2020/08/token-or-account-based-a-digital-currency-can-be-both/
https://libertystreeteconomics.newyorkfed.org/2020/08/token-or-account-based-a-digital-currency-can-be-both/
https://github.com/google/googletest
https://github.com/google/leveldb
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
https://zips.z.cash/protocol/protocol.pdf
 https://www.elibrary.imf.org/view/journals/001/2020/104/001.2020.issue-104-en.xml
 https://www.elibrary.imf.org/view/journals/001/2020/104/001.2020.issue-104-en.xml

[63] koe, K. M. Alonso, and S. Noether. Zero to Monero: Second edi-
tion, 2020. https://www.getmonero.org/library/Zero-to-Monero-
2-0-0.pdf.

[64] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565,
jul 1978.

[65] T. Mancini-Griffoli, M. S. M. Peria, I. Agur, A. Ari, J. Kiff,
A. Popescu, and C. Rochon. Casting light on central bank digital
currency. IMF Staff Discussion Note, 8, 2018.

[66] G. Maxwell. Confidential transactions – investiga-
tion. https://elementsproject.org/features/confidential-
transactions/investigation.

[67] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Cryptography Mailing list at https://metzdowd.com, 10 2008.
https://bitcoin.org/bitcoin.pdf.

[68] A. Narayanan and J. Clark. Bitcoin’s academic pedigree. Com-
munications of the ACM, 60(12):36–45, 2017.

[69] N. Narula, W. Vasquez, and M. Virza. zkLedger: Privacy-
preserving auditing for distributed ledgers. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’18, 2018. ePrint: https://eprint.iacr.org/
2018/241.

[70] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford. CHAINIAC: Proactive
software-update transparency via collectively signed skipchains
and verified builds. In 26th USENIX Security Symposium
(USENIX Security ’17), pages 1271–1287, 2017.

[71] NIST. Secure Hash Standard, 2002. https://csrc.nist.
gov/csrc/media/publications/fips/180/2/archive/2002-08-
01/documents/fips180-2.pdf.

[72] NIST. Post-quantum cryptography, 2016. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography.

[73] D. Ongaro and J. Ousterhout. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC ’14), pages 305–319, 2014.

[74] Pay.UK. Pay.UK 2020 annual self-assessment against
the principles for financial market infrastructure, 2020.
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-
Self-Assessment-Jun-20.pdf.

[75] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Proceedings of the 11th Annual Inter-
national Cryptology Conference, CRYPTO ’91, pages 129–140,
1992.

[76] A. Pertsev, R. Semenov, and R. Storm. Tornado cash privacy
solution: Version 1.4, 2019. https://tornado.cash/Tornado.cash
whitepaper v1.4.pdf.

[77] Y. Qian. Technical aspects of CBDC in a two-tiered system,
2018. https://www.itu.int/en/ITU-T/Workshops-and-Seminars/
20180718/Documents/Yao%20Qian.pdf.

[78] R3. Corda. https://www.corda.net.

[79] K. Shirriff. Hidden surprises in the Bitcoin blockchain and
how they are stored: Nelson Mandela, WikiLeaks, photos,
and Python software. http://www.righto.com/2014/02/ascii-
bernanke-wikileaks-photographs.html.

[80] Statoshi.info. Bitcoin unspent transaction output set.
https://statoshi.info/d/000000009/unspent-transaction-output-
set?orgId=1&refresh=10m.

[81] Sveriges Riksbank. E-krona pilot phase 1. Sveriges Riks-
bank Report, 2021. https://www.riksbank.se/globalassets/media/
rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf.

[82] Tether Operations Ltd. Tether. https://tether.to/.

[83] UkoeHB. Mechanics of MobileCoin. https://github.com/
UkoeHB/Mechanics-of-MobileCoin.

[84] A. Usher, E. Reshidi, F. Rivadeneyra, S. Hendry, et al. The pos-
itive case for a CBDC. Bank of Canada Staff Discussion Paper,
2021.

[85] N. van Saberhagen. CryptoNote v 2.0. https://web.archive.org/
web/20201028121818/https://cryptonote.org/whitepaper.pdf.

[86] T. Walton-Pocock. Why hashes dominate in SNARKs: A
primer by AZTEC, 2019. https://medium.com/aztec-protocol/
why-hashes-dominate-in-snarks-b20a555f074c.

[87] G. Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–
32, 2014.

[88] P. Wuille. Bech32m format for v1+ witness addresses, 2020.
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki.

[89] P. Wuille and G. Maxwell. Base32 address format for native v0-
16 witness outputs, 2017. https://github.com/bitcoin/bips/blob/
master/bip-0173.mediawiki.

[90] P. Wuille, J. Nick, and T. Ruffing. Schnorr signatures for
secp256k1, 2020. https://github.com/bitcoin/bips/blob/master/
bip-0340.mediawiki.

[91] YCharts. Ethereum chain full sync data size. https://ycharts.com/
indicators/ethereum chain full sync data size.

35

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://elementsproject.org/features/confidential-transactions/investigation
https://elementsproject.org/features/confidential-transactions/investigation
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2018/241
https://eprint.iacr.org/2018/241
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-Self-Assessment-Jun-20.pdf
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-Self-Assessment-Jun-20.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20180718/Documents/Yao%20Qian.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20180718/Documents/Yao%20Qian.pdf
https://www.corda.net
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://statoshi.info/d/000000009/unspent-transaction-output-set?orgId=1&refresh=10m
https://statoshi.info/d/000000009/unspent-transaction-output-set?orgId=1&refresh=10m
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://tether.to/
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf
https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size

	Hamilton-Cover-Page-v1
	Project-Hamilton-Phase-1-Executive-Summary-v2
	Introduction
	Core Design and Results
	Learnings
	Phase 2
	References

	Hamilton Forward_FINAL
	Hamilton.Whitepaper-2022-02-02-FINAL2
	1 Introduction
	1.1 Goals
	1.2 System design
	1.3 Technical challenges and contributions

	2 System model and security goals
	2.1 Actors
	2.2 Threat model
	2.3 Data representation: prior work
	2.4 Data representation in Hamilton
	2.5 Unspent funds
	2.6 System operations
	2.7 Security properties
	2.8 Discussion

	3 Transaction design
	3.1 Processing transactions in Hamilton
	3.2 UTXO hash set
	3.3 Transaction format and execution
	3.4 Transaction protocol
	3.5 Learnings

	4 Processing transactions at scale
	4.1 Consistency
	4.2 Atomizer design
	4.2.1 Validating transactions
	4.2.2 Ordering transactions
	4.2.3 Updating state
	4.2.4 Fault tolerance
	4.2.5 Preventing double spends
	4.2.6 Watchtower

	4.3 Two-phase commit design
	4.3.1 Batching Transactions
	4.3.2 Fault Tolerance
	4.3.3 Preventing double spends
	4.3.4 Comparison to atomizer design

	4.4 Considering blockchain technology

	5 Implementation
	6 Evaluation
	6.1 Setup
	6.2 Scalability
	6.2.1 Throughput and latency
	6.2.2 Database Size

	6.3 Fault Tolerance
	6.4 Workload Variability
	6.4.1 Transaction Size
	6.4.2 Double Spends

	7 Related Work
	8 Discussion
	8.1 Key Results
	8.2 Future Work

	9 Conclusion
	10 Acknowledgements

	Hamilton-Exec-Summary-TOC.pdf
	Introduction
	Core Design and Results
	Learnings
	Phase 2
	References

