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Abstract:

In the now conventional view of the inflation process, the New Keynesian Phillips
Curve (NKPC) captures most of the persistence in inflation. The sources of
persistence are twofold. First, the “driving process” for inflation—the output gap or,
more commonly, real marginal cost—is itself quite persistent, and a casual inspection
of the NKPC reveals that inflation must “inherit” this persistence. Second, a modest
amount of backward-looking or indexing behavior imparts some “intrinsic”
persistence to inflation. This latter source is generally thought to be of less
importance than the former, as the degree of autocorrelation in the driving processes
is substantial. This paper shows that in practice inflation in the NKPC inherits very
little of the persistence of the driving process, and, contrary to conventional wisdom,
it is intrinsic persistence that constitutes the dominant source of persistence. The
paper explores the reasons for this and links them to two empirical observations.
First, it has been difficult to develop a sizable coefficient on the driving process in
NKPCs. Second, the shock that enters the NKPC, while often difficult to motivate
economically, is large and is critical in distinguishing the sources of inflation
persistence. While these observations help to clarify the behavior of inflation in
NKPCs, they raise other fundamental questions about how to model inflation.
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The progression of price-setting models has a long and lively history. Beginning with A.
W. Phillips (1958) and continuing with Lucas (1972), Fischer (1977), Gray (1978), Taylor (1980),
Calvo (1983), Rotemberg (1983), Gordon (1985), Roberts (1995), Fuhrer and Moore (1995), Gali
and Gertler (1999), Erceg, Henderson, and Levin (2000), Gali, Gertler, and Lopez-Salida (2001),
Sbordone (2002), Mankiw and Reis (2002), Christiano, Eichenbaum, Evans (2005) and countless
others, the specifications have matured to include rational expectations, optimizing
foundations, a more persistent driving process (real marginal cost), and a variety of “frictions”
that allow the models to mimic the gradual response of inflation to a variety of shocks.

In recent years, much of the development of Phillips curves has centered on two issues:
(1) the emergence of real marginal cost (versus an output gap measure) as the preferred driving
variable in the specification, on both theoretical and empirical grounds; and (2) the
incorporation of frictions into optimizing rational expectations models.! The frictions have
included indexing (as in Christiano et al. 2005) and “rule-of-thumb” or “backward-looking”
price setters (as in Gali and Gertler 1999). These frictions have been ad hoc, in that they are not
micro-founded. Still, the common view is that, after allowing for just a little friction, the baseline
model works well. For example, in a fairly recent summary, Gali (2003, Section 3.1) suggests
that

The findings...are...quite encouraging for the baseline NKPC: while backward-looking
behavior is often statistically significant, it appears to have limited quantitative
importance. In other words, while the baseline pure forward-looking model is rejected
on statistical grounds, it is still likely to be a reasonable first approximation to the
inflation dynamics of both Europe and the U.S.

This paper will provide theoretical analysis and empirical evidence that largely
contradicts this emerging consensus on price-setting models. It will show that, regardless of the
persistence in the driving process, very little of that persistence is inherited by inflation in the
conventional NKPC. This result runs counter to the common intuition that inflation in the
NKPC directly inherits the persistence of the driving process, which, in the case of real marginal

cost (or proxies thereof), is quite considerable. In fact, inflation does inherit some of the

1 A third development has been the inclusion of serially correlated shocks to the models. A model with
serially correlated shocks is considered in Section II.



persistence of the driving process, but, in the models commonly in use, the amount that it
inherits is remarkably small.

So how does this seemingly counterintuitive result arise? There are two reasons: (1) The
coefficient on the driving variable in NKPCs is estimated to be very small, on the order of .001
to .05, and (2) In addition to the shock that impels the driving process and thus indirectly
influences inflation, there is another shock that disturbs the Phillips curve directly. The paper
will show that the variance of that shock is large, generally at least as large as the shock driving
real marginal cost or the output gap.

As the paper demonstrates below, those two facts together imply a very attenuated
inheritance of the driving variable’s persistence into the inflation process. A simple intuition for
this result is as follows. Consider the purely forward-looking version of the NKPC displayed

below.
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If one iterates the top equation forward, one sees that inflation is simply a discounted sum of
future y’s plus the error term e:, which is assumed to be iid for the moment.? If there were no
other shock in the model —if e: were identically zero—then inflation’s dynamic properties
would be solely determined by those of the driving process y.

However, in the presence of a second shock, the intuition about inflation persistence
changes. In that case, one can think of the simple forward-looking model as the sum of an AR(1)
process y and an uncorrelated shock e. The persistence of the AR(1) process —summarized by its
autocorrelation function —decays geometrically at rate p. The persistence of the shock process is
rather uninteresting: Its autocorrelation function equals one at lag zero, and zero at all other
lags. Which of these two processes dominates inflation’s autocorrelation properties depends on
two parameters, y and the variance of e (relative to the variance of u). The larger is y, the more

the mix looks like the AR(1) process, and the less it looks like white noise. The larger is the

2 We consider the ramifications of a serially correlated shock below.



variance of e relative to that of u, the more the process looks like white noise and the less it looks
like an AR(1) process.

If y is relatively small, and the variance of e relatively large, then the frictions added to
the NKPC —the sources of “intrinsic persistence” in the model —will no longer be quantitatively
unimportant but statistically significant additions. They will be of first-order importance to the
model. But it also follows that the optimizing foundations, through which the forward-looking
model with marginal cost as the driving process is motivated, become correspondingly less
important for explaining inflation behavior. Thus, it becomes critical to understand what the
inflation shock is and why the estimated coefficient on the driving process is so small.® This
paper will provide only partial answers to these questions.

The paper demonstrates analytically the propositions about inherited persistence for the
forward-looking model in Section I. It analyzes the case of the hybrid model in Section II.
Section III considers some extensions, including a model with explicit monetary policy. It also
considers the implications of possible recent changes in the persistence of inflation. Section IV
examines reduced-form properties in the data that will lead to structural models that embody a

small v and a relatively large variance of the inflation shock. Section V concludes.

I. The Purely Forward-Looking Model

Consider the canonical hybrid New-Keynesian Phillips curve (HNKPC), which may be

expressed as*

3 The same points are demonstrated for the Mankiw-Reis model of price-setting in Fuhrer (2002). There,
the presence of large “mark-up shocks,” which are the equivalent of inflation shocks in the HNKPC,

similarly imply that inflation inherits very little of the driving variable’s persistence.
* A related specification allows lagged inflation to Granger-cause the driving process y.
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Because this modification adds no intrinsic persistence to inflation, its implications for the autocorrelation properties
of inflation are virtually identical to those of the model in equation (1.1), for any plausible value of 3. In addition,
for the data employed in this paper, estimates of & tend to be nearly zero and insignificantly different from zero.
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where 7t denotes inflation, y is a driving variable, typically a proxy for real marginal cost or the
output gap, yand (B- u) are the weights on past and expected inflation, and y is the coefficient
on the driving process.® The baseline case will assume that ¢, the “inflation shock,” is a white
noise 7id shock, although that assumption is relaxed below. The second equation specifies the
simplest persistent process for the driving variable y, a first-order autoregression with
autoregressive parameter g, which is set to 0.9 in all of the exercises below.® The covariance
matrix of the error processes is denoted by X and will be assumed diagonal throughout.
However, the relative sizes of the shock variances will be allowed to vary and will be shown to

have important effects on inflation persistence.

The analytical autocorrelation function for inflation

The solution to the HNKPC model may be expressed as a vector first-order state-space

system:

¢,
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where A is the matrix of reduced-form solution coefficients (see Anderson and Moore, 1985),

and So is defined in Fuhrer and Moore (1995). For this simple model with u=0, A and So are

0o P .
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5 While I do not make this explicit here, one can map the coefficient y into the underlying frequency of
price adjustments, as in Woodford (2003), chapter 3, eq. 2.13, or Gali and Gertler (1999), equation 16. As
the fraction of prices that remain fixed each period increases, the coefficient on marginal cost declines.
Thus a rise in y implicitly corresponds to an increase in the frequency of price adjustment or,
equivalently, to an increase in price flexibility.

6 This value corresponds to estimates obtained later in the paper. The qualitative results in the paper are
unchanged by a value for pup to 0.95.



Note that the structure of A implies that the lagged inflation rate does not enter the solution for
current inflation. The structure of So implies that the relative effects of the two shocks on

inflation will depend critically on y.

Denote the k-period ahead variance of x by Vi, where V, =AYV, |A’, with Vy initialized to

S,2S;". The unconditional variance of x, denoted V, is the convergent sum of the Vi. Then the

correlation of the vector x: with x:x is simply I'=A*! I'1, with I'=V. Hence, the matrices that
determine the autocorrelation properties of x are the transition matrix A and the unconditional
variance matrix V.

Using these two matrices and the definition of the unconditional variance, we can show
that the unconditional variance of inflation for the NKPC model is a linear combination of the

variances of ¢ and u:
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The first term in the unconditional variance of inflation is the unconditional variance of y scaled

2
by { Y+ M} . The weight on the variance of y is strictly increasing in y and p, so the larger

1-pp
are y and p, the larger is the relative influence of & and the smaller is the relative influence of
o’ in the variance of .

The autocorrelations for y: take the expected form for an AR(1) process. The

autocorrelations for inflation at horizon i are denoted by I; they are’

7 In an unpublished comment, Gali (2005) derives the solution to these models in the case of e=0.
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Clearly, the autocorrelations decay at the rate p. The term % sets the initial “level” of the

ac, +y
autocorrelation function, with the rate of decay from the initial level dependent only on p. Thus,
the difference between a persistent and a non-persistent inflation rate in this model will hinge
on how large is the first autocorrelation: Do the autocorrelations jump down toward zero
immediately, or do they decay from near one? As suggested above, the answer to this question
must depend upon the extent to which y feeds into 7 (that is, how large is ), and the relative
size of the variances of the shock hitting the inflation equation and the shock hitting the driving

process. With o normalized to 1, it is straightforward to show that equation (1.5) implies

581—‘1 > O;SL;< 0 (1.6)
Y o,

That is, the smaller is the influence of y on 7, the smaller is the initial autocorrelation. The larger
is the variance of e relative to u, the smaller is the initial autocorrelation.

Note also that in the case in which the stochastic dimension of [r, y] is 1—that is, for
simplicity o =0, so that the only shock in the system is u —then the autocorrelations of
inflation take the simpler form

r,=p
Not surprisingly, in this special case, inflation follows exactly the same AR(1) process as y.8

As it turns out, extreme values of o and/or y are not required to imply a very small
tirst-period autocorrelation for inflation, even when the autocorrelation of y is considerable.
Table 1 displays the value of the first autocorrelation of inflation for various values of ¢~ and y.

Because the autocorrelations following the first will die out geometrically at rate p, this first

8 The autocovariances of 7t will still depend upon v, but the autocorrelations for 7t are identical to those
for y.



autocorrelation is a sufficient statistic for the entire function, once one knows p. For reference,

the last row of the table displays the value of the first autocorrelation when o and y take on

values that are implied by common estimates in the empirical literature on NKPCs.’

Table 1

Value of I': for selected values of o and y

r
o’ 02 .05 1 2
0 0.90 0.90 0.90 0.90
1 0.12 0.44 0.71 0.84
2 0.06 0.29 0.59 0.79
3 0.04 0.22 0.50 0.75
5 0.03 0.14 0.39 0.68

0. =3, y=.03 0.092

As the table suggests, depending on the parameter configuration, the first
autocorrelation of inflation can range from essentially zero for high values of o> and low
values of y to pfor the opposite. The relative size of the shock variances is not often reported,

but given the evidence presented below, it will be unusual to find 0'62 << 1. Thus, this table

’ Note that the empirical analysis in this paper employs annualized inflation rates, so the appropriate
adjustment must be made to scale both y and Gez . Raising y by a factor of four (converting the highest

estimates in Gali and Gertler to an annualized basis) shifts the autocorrelations up, but they still lie
outside the 90 percent confidence intervals. More broadly, one must work very hard to obtain sizable and
significant estimates of y. Estimates on quarterly inflation rates range from 0.001 or below in Rudd and
Whelan (2001) to 0.037 in Gali and Gertler (1999). The estimates presented below generally lie well below
0.01, with only one estimate on annualized growth rates exceeding 0.03, and none significantly different
from zero. Thus a y of 0.03 is a quite generous annualized coefficient, given the number of near-zero
estimates in the literature, and given the difficulty in developing significant estimates. The maximum
likelihood estimates presented below, using annualized inflation rates and employing either the output
gap or real marginal cost as the driving variable, develop estimates of v of 0.011 and 0.001, respectively.



implies that most often, the first autocorrelation for inflation implied by the NKPC will fall at or
below 0.1.

Therefore, the purely forward-looking version of the NKPC imparts only a trivial
amount of persistence to inflation. Of course, when one includes a lag of inflation, as in the
hybrid model, the interaction between lagged inflation and the forward-looking component of

the model must be taken into account. The hybrid model is the subject of the next section.!

II. The Hybrid Model

Now, consider the hybrid NKPC (HNKPC), which sets >0 in equation 1.1. The algebra
becomes somewhat more complex (see the details in Appendix A), but much of the intuition
from the simple NKPC remains. Larger values of ¢~ and y will imply lesser and greater
inheritance, respectively, of the persistence in the driving process. Now, however, the degree of
“backward-looking” or indexing behavior —the size of u—becomes critical in determining the
persistence of inflation implied by the model.

The key matrices A and So for the state-space representation (equation (1.2)) of the

hybrid model are
P P A T
A= " (B-1)(A-p) |38, = 1 plp-4y) 2.1)
0 Yo, 0 1

where Ab and As are the unstable and stable roots, respectively, of the system."" We can write the

solution to the model as 12

10 Jreland (2004) also emphasizes the centrality of this shock, in his model a “cost-push” shock, in
achieving data consistency.

11 The third root is always p. Appendix A shows that 4,4 = _H

— ﬂ ’
12 This representation is a version of the familiar solution to the second-order difference equation,
oo}
i
To=A 7/f(/1s>/1b)z ME Y.t &,

i=0
in which the forward-sum term in the equation is solved for the sum of the ¢-period expectations of y:.
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This representation shows that, as is common for simple second-order difference equations of

this type, the coefficient on lagged inflation in the HNKPC solution is the stable root of the
system. The stable root, in turn, is a function of the parameters y and f; the dependence of the
stable root and the first autocorrelation on i is examined below.

The unconditional variance of inflation, denoted here by V=, is again a weighted average

of the underlying shock variances. The weights are given by

2 2rn 2
Vo= Wegez + WMG? _ A 2, AV 20 p(1—pA)+ A ] O'j 23)
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The stable root plays a key role in determining the contributions of the two conditional
variances to the unconditional variance of inflation. Figure 1 displays the variation in the ratio

we/w. as u varies. The effect of u on the contribution of &~ to Vx is not monotonic. Increasing u
from 0 to 0.4 slightly depresses the contribution of & . But as u increases from 0.4 to 0.9, the
relative weight on &~ rises by a factor of six. Thus relatively modest differences in y imply

significant differences in the contributions of the two variances. As the lower panel of the figure
indicates, the larger is y, the smaller is the relative contribution of & to V, but, in any case, the

effect is relatively small.

The expression for the autocorrelations in the HNKPC is somewhat more complex than
in the simple NKPC. Nonetheless, the autocorrelation function can be shown to decay
approximately geometrically after the first few autocorrelations.!® As a result, again a critical
question is how large is the first autocorrelation. It can be expressed as

r, L —d+a, (24)

T bol-cpu

13 The rate of decay is slower than pfor the first few autocorrelations, and then converges to pas k gets
large.

10



where [a,b,c,d] are functions of the stable root As (in turn a function of  and ) and the

underlying parameters [, , 7, o-]. As is the case for the purely forward-looking model above,

it can be shown that I'1 is decreasing in o . As will be shown below, the additive term in As

Figure 1
Relative weights of shock variances of and aj in inflation variance
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dominates I';, and both As and I'1 rise almost one-for-one with p1.

Table 2 shows the value of T'1 for an array of values for o> and . The table illustrates
that, for values of these parameters in the range commonly estimated, one obtains a relatively
small first autocorrelation—0.6 or below. The bottom panel of the table shows the first eight
autocorrelations of inflation when vy, 0'62 , and u are set to values consistent with parameter
estimates in the literature. The autocorrelations die out quickly, and in the following section we
will see that they die out significantly more quickly than those exhibited in the data.

Note in the first row of Table 2 that as 062 goes to zero, the autocorrelation of inflation is

bounded below by pand rises quickly to one as u increases.'* The message of this table is that if

14 Of course with 062 =0 and p=0, the first autocorrelation is p.

11



one wishes to be roughly data-consistent and to assume a relatively small fraction of backward-

looking or rule-of-thumb price-setters —say 0.3—one must impose a relative variance of o near

zero. As will be shown below, such an estimate appears to be strongly at odds with the data.

Table 2

Value of I': for selected values of o and y, hybrid model

y=0.03, 5=0.98, p=0.9

M

o’ 1 3 5 7 9
0 0.92 0.96 0.99 1.00 1.00
1 0.32 0.60 0.89 0.96 0.98
2 0.23 0.53 0.86 0.96 0.98
3 0.20 0.50 0.86 0.96 0.98
'5 0.16 0.47 0.85 0.96 0.98

Autocorrelations for o~ =3, y=.03, y=.35
1 2 3 4 5 6 7 8
0.59 0.37 0.25 0.18 0.14 0.11 0.09 0.08

Figure 2 illustrates the dominance of As—and thus y—in determining the first

autocorrelation (see equations (2.2) and (2.4) above). The figure plots the stable root along with

the first autocorrelation as p rises from 0 to 0.65. The stable root rises from about 0.5 to almost

0.9 as u varies from 0.35 to 0.5. Correspondingly, the first autocorrelation of inflation rises from

about 0.55 to 0.85 over this range. From this figure, it is clear that u is the critical determinant of

the autocorrelation properties of inflation in the HNKPC and that small variations in p will

imply significant differences in the model’s implications for the autocorrelation of inflation.

12



Figure 2

Effect of 1 on stable root and first autocorrelation of hybrid model
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How much “hybrid” do we need in the NKPC to be roughly data-consistent?

Do commonly-employed estimates of ¢ and y, in conjunction with a data-consistent
process for the driving variable, imply a data-consistent amount of persistence for inflation? Of
course, it is difficult to know what the data imply about inherited versus intrinsic persistence —
this requires structural identifying restrictions. But the reduced-form persistence of inflation is
relatively simple to compute and provides a useful benchmark against which to judge the
implications of the structural hybrid NKPC.

We begin with full-sample estimates of a simple three-variable vector autoregression in
the inflation rate, the federal funds rate, and real marginal cost.’®> The full sample extends from
1966:Q1 to 2003:Q4. The autocorrelation for inflation that is implied by the VAR is derived in
the same manner as described above for generic linear rational expectations models. Seventy
and 90 percent confidence intervals are displayed for the VAR’s autocorrelation function, where
the confidence intervals are computed by assuming that the vector of OLS estimates of the VAR

parameters is drawn from a multivariate normal distribution.

15 See the data appendix for variable definitions.
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Figure 3 displays the theoretical autocorrelation for inflation implied by the pure and
hybrid NKPCs at the parameter values indicated. As the figure suggests, at a somewhat
generous estimate of y =0.03, and p at the estimate for the U.S. developed in Gali, Gertler, and
Lopez-Salido (u=0 for the pure NKPC), the implied autocorrelation for inflation lies outside the
90 percent confidence interval of the VAR'’s inflation autocorrelation for the first 15 quarters, at
which point the theoretical autocorrelation is essentially zero, and the VAR-based
autocorrelation is insignificantly different from zero.' 7 The heavy dashed line shows the
implied inflation autocorrelation with u raised to 0.6. This parameter setting puts the theoretical

hybrid autocorrelation in the middle of the distribution of estimates from the VAR.

Figure 3

Comparison of theoretical ACFs with VAR (ulc), full sample (1966-2003)
p=0.9,y=0.03, x.=0.35 o= 3
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16 Using a somewhat different methodology, Rudd and Whelan (2001) develop estimates of y that are
often an order of magnitude smaller than this.

17 A similar comparison that sets the relative variance of inflation to 1 produces essentially the same
result. While the theoretical autocorrelations are shifted upward somewhat, they still lie completely
outside the 90 percent confidence intervals for the VAR.
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As discussed below, it may be that the simple three-variable VAR misrepresents both
the variance and autocorrelation of inflation, as it excludes the effects of large relative price
movements for energy and non-oil imported goods. Figure 4 displays the same exercise for a
five-variable VAR that includes the relative price of oil and the relative price of imported goods
(again, see the data appendix for details).

The inclusion of these variables does little to change the basic contours of the inflation
autocorrelation, although the autocorrelations decay a bit more quickly toward zero in the five-
variable VAR. Still, the qualitative conclusion remains: the pure and hybrid versions of the

NKPC are unable to match the VAR'’s implications for the autocorrelation of inflation.

Figure 4

Comparison of theoretical ACFs with 5-variable VAR (ulc), full sample (1966-2003)
p=0.9,y=0.03, 4=08 5 =3
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Recent work by Levin and Piger (2003) and O'Reilly and Whelan (2004) emphasizes the
potential for time-variation in the intercept for inflation, which may influence estimates of

inflation persistence. The next figure addresses this concern, again estimating a three-variable

15



VAR, but only over the period since mid-1984, a point that many have identified as a breakpoint
for the volatility of macroeconomic time series, including output and inflation.’® With these
somewhat lower autocorrelations and wider confidence intervals, the hybrid model with =0.35
begins to skirt the now-wider 70 and 90 percent confidence intervals around the inflation
autocorrelation. Now, a value of y=0.5 implies an autocorrelation function squarely in the
middle of the distribution of VAR autocorrelations. This computation emphasizes a point made
above: The autocorrelation of inflation in the hybrid NKPC is very sensitive to relatively small
changes in u. The difference between 1=0.35 and p=0.5 can move the implied inflation

autocorrelation from outside the confidence intervals to the middle of the distribution.

Figure 5

Comparison of theoretical ACFs with VAR (ulc) 1984-2003
p=09,4=0.03, =035 5 =3
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18 Choosing the breakpoint differently, say, to correspond to the change in the Fed Chairman in July 1987,
makes little difference to the conclusions drawn from the figure.
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How much of the persistence in the hybrid specification comes from the driving
variable?

While the analysis above demonstrates that the persistence of inflation in the HNKPC
derives mostly from the lagged inflation term, the next exercise calibrates the remaining
contribution of the driving variable. Figure 6 displays the theoretical autocorrelation functions
for the hybrid model for pairs of parameter values. The pairs of lines highlight the contribution
to persistence from the lag of inflation (u = 0.35, u = 0.5) versus the driving variable, through
both contemporaneous and expected future effects (y =0, y = 0.03). Of course when y =0, the
driving variable has no effect on inflation.

As the figure indicates, almost all of the persistence imparted to inflation in the hybrid
specification arises from the effects of u. For parameter values near the baseline chosen from the
literature (the solid and dashed lines), the incremental difference between the autocorrelation
for zero or non-zero 7y is not zero, but it is quite small. For a value of u that is data-consistent
(the dotted and dashed-dot lines), the incremental difference is essentially zero. For a given
degree of “backward-looking” behavior in the specification, the incremental addition from

including the driving variable’s persistence is very small.
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Figure 6
How Much Persistence from the Driving Variable?
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Estimation of the hybrid model

A more direct way to compare the properties of the model with the data is to directly
estimate the HNKPC specification. Maximum likelihood (ML) has been shown to have some
attractive features for this class of Euler equation-based models (see, for example, Fuhrer and
Rudebusch (2004) and Fuhrer and Olivei (2004)). In this section, both ML and conventional
GMM estimates of the specification are presented.

The following table displays the ML estimates for the specification in equation (1.1),
using either the output gap or real marginal cost as the driving variable.” For this estimation,
the sample is constrained to the Greenspan era, 1987:Q3 to the present. The discount rate is
constrained to 0.98, and the remaining parameters are estimated freely. Two estimates of the

standard error are presented, the first from the numerical Hessian of the optimization problem,

1 All data definitions appear in the data appendix. Note that the inflation data are annualized quarterly log changes.
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and the second from the BHHH algorithm that uses only first-derivative information (Berndt,
Hall, Hall, and Hausmann, 1974). The table also displays the ratio of the estimated shock

variances.

Table 3
Maximum Likelihood Estimates of Specification (1.1)

Output Gap (CBO estimate of potential)

Parameter Estimate SE BHHH SE
u 0.67 0.14 .071

B 0.98 - -

y 0.011 0.023 0.026

P 0.96 0.036 0.041

o’ /o =1.20

Real marginal cost

Parameter Estimate SE BHHH SE
u 0.71 0.24 0.064

B 0.98 - -

)4 0.001 0.058 0.031

p 0.91 0.059 0.053

o’ /o2=0.65

As the table indicates, ML yields estimates that are consistent with the informal
calibrations in Figures 3 and 5 above. The ML estimate of p centers around 0.7, and is precisely
estimated. It remains difficult to estimate a significant y, and the point estimates are quite small.
Replicating the exercise in Figure 6 around the ML estimates produces virtually identical
results. At these estimates, the persistence inherited by inflation from the driving process is
essentially nil. Note that for both driving variables, the estimate of pis quite high, so in
principle inflation could inherit considerable persistence from the driving variable. But in the
HNKPC specification, it does not.

The following table summarizes GMM estimates for a variety of samples and instrument
sets. The instrument sets vary from “bare-bones” (three lags of inflation and marginal cost) to
the “kitchen sink” (four lags of those two variables, plus an output gap, oil prices, and the

federal funds rate). The baseline estimation sample spans the past 45 years. To examine the
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stability of the estimates, the table provides results for subsets of those years that split at the
current Fed chairman’s term in mid-1987 and more recently.

The estimates of the “forward-looking” and “backward-looking” parameters vary
considerably; in other work we address the difficulties in obtaining reliable estimates of these
parameters via GMM as conventionally implemented (Fuhrer and Rudebusch (2004), Fuhrer
and Olivei (2004)). The basic results for estimating y are similar to those for ML: in no case is the
estimated parameter on real marginal cost significantly different from zero. Only one estimate
exceeds 0.03, and in general the estimates center on about 0.005 for this annualized-change
inflation data. Two of the J-tests reject at conventional levels of significance for instrument set
one. Lagging this instrument set one additional period raises the p-value for the J-statistic to .05
or above, leaving the parameter estimates and significance essentially unaffected. Thus it seems
difficult to attribute the general result of a very small estimated y, to inadequate exogeneity of
the instruments.? A small estimated ), generally 0.01 or smaller on annualized inflation rates, is

the norm, regardless of estimation method, sample period, or instrument set.

Table 3a
GMM Estimates of Hybrid Specification
Annualized inflation data

T, = HT, +(ﬂ_ﬂ)Etﬂ:t+l +7/yt

Estimation | Instrument | Estimated | Estimated Estimated v p-value of t- | p-value of |
period set u (B-w) statistic for y statistic
1960:4-2003:4 1 0.61 0.38 0.0052 0.84 0.27
1960:4-2003:4 2 0.62 0.37 0.0081 0.79 0.48
1960:4-2003:4 3 0.48 0.52 -0.0015 0.95 0.73
1960:4-2003:4 4 0.52 0.48 0.000 0.99 0.66
1987:3-2003:4 1 -0.0044 1.002 0.020 0.55 0.013
1987:3-2003:4 2 0.87 0.14 0.011 0.71 0.55
1987:3-2003:4 3 0.17 0.83 0.0092 0.74 0.71

2 These estimates were run in Eviews version 5.0, using a fixed 4-quarter Bartlett kernel, no pre-whitening, and
simultaneous iteration of the parameter estimates and the weight matrix. A constant is included in each instrument

list.
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1987:3-2003:4 4 0.66 0.34 0.0058 0.79 0.53
1992:1-2003:4 1 0.059 0.94 0.018 0.64 0.015
1992:1-2003:4 2 0.73 0.27 0.0086 0.77 0.81
1992:1-2003:4 3 0.34 0.67 0.032 0.27 0.75
1992:1-2003:4 4 0.45 0.54 -0.0015 0.95 0.62
1960:4-1987:2 1 0.58 0.42 -0.0035 0.93 0.16
1960:4-1987:2 2 0.59 0.40 0.0026 0.95 0.38
1960:4-1987:2 3 0.49 0.51 -0.0098 0.80 0.73
1960:4-1987:2 4 0.54 0.46 -0.013 0.74 0.66

Instrument sets

1: 4 lags of inflation, real unit labor cost, output gap

2: 3 lags of inflation and real unit labor cost

3: 4 lags of inflation, funds rate, real unit labor cost, relative price of oil

4: 3 lags of inflation, funds rate, output gap, real unit labor cost, relative price of oil

Autocorrelated inflation shocks

Many implementations of the NKPC, especially in fully articulated general equilibrium
models such as Christiano, Eichenbaum, and Evans (2005) allow shocks to be autocorrelated,
augmenting the behavioral dynamics of the model. This addition would obviously alter the
model’s implications for the autocorrelation of inflation. The appendix presents the key
matrices A and So for the case of the purely forward-looking model augmented with a serially
correlated shock e:. Not surprisingly, in this version of the model, the autocorrelations of
inflation depend almost entirely on the size of the autocorrelation coefficient for the inflation
shock e:.

That certain types of inflation shocks—“cost-push” shocks, for example, from large
changes in relative prices—might be autocorrelated is not controversial. But how autocorrelated
are such shocks, and how much persistence do they contribute to inflation in the U.S.? We can
get a feel for the degree of serial correlation that might plausibly be added to e: by examining
the autocorrelation of the relative oil price and import price series used in the VARs above.

Interestingly, the autocorrelation of the change in the relative oil price, both over the full sample
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and limited to the decade of the 1970s, is essentially zero. The autocorrelation of the change in
relative import prices for the same two samples, is about 0.5. Adding an autocorrelated shock
with relatively low persistence to the pure forward-looking NKPC would not qualitatively

change the conclusions about the model.?!

III. Some Extensions

Adding explicit monetary policy to the model

There are good reasons to believe that the persistence of inflation should be affected by
the systematic component of monetary policy. For example, Fuhrer and Moore (1995a) show
that in a data-consistent, forward-looking model, policy rules that respond more or less
aggressively to inflation and output imply corresponding changes in the persistence of output
and inflation. Could the addition of inertial interest-rate policy save the purely forward-looking
NKPC?

In the models examined below, changes in the systematic component of monetary policy
do alter the properties of the driving process and of inflation. But the intuition from the
discussion above remains: Monetary policy affects inflation in this model through its effect on
the current and expected values of the driving variable. While more inertial or aggressive
monetary policy generally alters the persistence of the driving process, in the purely forward-
looking model or in the hybrid model with modest i, inflation is relatively unaffected by these
changes.

To demonstrate this result, a simple inertial policy rule is added to the model without

lagged inflation:

2 For example, using the autocorrelations derived for the model with equations (6.9) in the appendix, at
the baseline parameter settings y=.03, 062 =3, p=0.9, and a=.5, the first autocorrelation of inflation is 0.51, a

bit lower than the autocorrelation for the hybrid model with u=0.35 in Figure 3.
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r,=PEx,  +yry +e,

yzzpyz—l_a(iz—l_ﬂ-z)—i'ut (3.1)

i, =si, +(-s)a,z,+a,y,)

Can the addition of inertial monetary policy qualitatively change the conclusions about
inherited versus intrinsic persistence in inflation?

While the algebra becomes more tedious, numerical examples serve to illustrate the
point well. As Figures 7 and 8 demonstrate, without significant intrinsic persistence in the

inflation process, the presence of inertial monetary policy does little to change the implications

2
e

from the simpler model without monetary policy. Regardless of the size of y, &, s, or the vigor

with which monetary policy responds to inflation and output, and thus regardless of the
persistence of y, inflation inherits quite little of the persistence of the driving process. When
compared with the persistence implied by the full-sample VAR, the autocorrelations fall well
outside the 90 percent confidence interval.

Figure 8 displays the results for the hybrid model. With relatively limited intrinsic
persistence, the hybrid model cannot replicate the autocorrelation properties of inflation. Only
setting u=0.6 (the lighter dashed line) puts the autocorrelation into the confidence region for the
full-sample VAR autocorrelation function. If we perform the same comparison for a VAR
estimated beginning in 1984 (not shown), some of the cases lie between the 70t and 90t
percentiles of the distribution. But qualitatively, the results are the same. A data-consistent
representation of inflation, even with inertial monetary policy, requires a significant weight on

lagged inflation.
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Has the persistence of the driving variables changed over the past four decades?

Figure 5 suggests that the estimated persistence of inflation may have declined over the
past two decades. If so, is this the result of a decline in the persistence in the driving variable,
which could be in turn the result of a change in monetary policy (or a change in any other factor
that influences the reduced-form persistence of output or marginal cost)?

In short, the answer is: No. Figure 9 displays a crude measure of persistence, the sample
autocorrelations of an output gap, and a unit labor cost measure for three subsamples. While
volatility of inflation and output have declined (as documented by many, including McConnell
and Perez-Quiros 2000), the persistence of the key driving variables for the Phillips curve has
remained just as it was in earlier decades.?? This observation suggests that one must look not to
monetary policy or other changes in the driving process, but to changes to the intrinsic

persistence in inflation to explain recent declines in inflation persistence.??

2 Of course, these sample autocorrelations implicitly allow for changes in the intercept of the series at the
indicated breakpoints. This has been a significant element of the debate over the possibility of changes in
inflation persistence in recent data.

2 The sum of the lag coefficients in a univariate autoregression for these series varies from 0.89 to 0.91 for
the three samples indicated.
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Figure 9
Sample autocorrelations for output gap and unit labor cost, various subsamples
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A slightly more sophisticated test of change in persistence may be obtained by
performing an unknown (multiple) breakpoint test, using the methodology of Bai (1999). The

test regression is

k
Ayt = ayt—l + ZﬂiAyz—i + ez (3.2)

i=1
where o is an estimate of the sum of the lag coefficients in the univariate autoregression for y.
The full sample begins in 1966:Q1 and ends in 2003:Q4. The smallest admissible subsample is
set to ten percent of the sample size, and the critical value for rejection of n breaks in favor of n-
1 breaks is 0.05. A value of k=2 appears to be sufficient for these two series, although the results
do not depend importantly on the choice of k. The test for the output gap cannot reject a single
break in favor of no breaks. The test for real unit labor cost finds a single break in 2000:Q1, at
which point the a is found to have increased from -0.08 to -0.04, that is, the sum of the lag
coefficients for the level of unit labor costs has increased from 0.92 to 0.96, so that the
persistence of real unit labor cost has increased.

The same test performed on the inflation series used in this paper develops two

breakpoints, one in 1972:Q4 and one in 1981:Q1. The estimated value of a rises from 0.49 in the
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pre-1972 period, to 0.69 in the 1972-81 period, and to 0.77 in the post-1980 period. These
estimates of persistence are lower than the full-sample estimate (0.93), perhaps because of shifts

in the intercept, as suggested by the authors cited above.

IV. Empirical Evidence on the “Inflation Shock” and the Small
Coefficient on the Driving Process

In this section, we examine empirical evidence bearing on the two deterrents to
inheriting inflation persistence, the size of the shock to the inflation process, and the small
estimated coefficient on the driving process. Properties of both unconstrained and constrained
models of inflation are examined to explore further the source of the problems with inheriting

persistence in the NKPC.

What is the shock to inflation?

In the model in which the driving variable is real marginal cost, many candidate
interpretations of the shock —“supply shocks” such as large changes in the relative price of oil
or non-oil imported goods, or shocks to trend productivity that shift the supply relation, or
“mark-up” shocks of price over unit labor cost—are ruled out, as these are incorporated in the
measure of marginal cost, and thus should appear as part of the shocks in the driving process.?
Such shocks may well be autocorrelated, but because they perturb only the driving process,
they would still constitute a source of inherited, not intrinsic persistence. There is no doubt that
some measurement error distorts the measures of real marginal cost commonly used in the
specification; if such error were autocorrelated, this would appear in the inflation shock. If the
inflation shock were fairly small, measurement error might be a reasonable interpretation. The

next section examines the size of the inflation shock.

2 Note that an alternative interpretation of these results is that the lack of correspondence between
changes in the persistence of inflation and the persistence of the driving process could mean that the
NKPC model fits the recent data better than it does the data for the 1960s to 1980s.

2 Shocks to the desired markup, which enters as an element in the nonlinear combination of parameters
that pre-multiplies real marginal cost in the fully-articulated NKPC, would show up as shocks to the
inflation equation.
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How big is the variance of the shock to the inflation process?

Central to the discussion above about how much of inflation’s persistence is inherited

versus intrinsic is the size of o, the variance of the inflation shock. Two approaches are used to

measure the relative size of (73 . The first looks at estimated variances from simple VARs,

computing relative variances for the reduced-form errors. Of course, because of the well-known
difficulties in associating reduced-form VAR errors with any underlying structural disturbance,
this should only be done with some trepidation. Interestingly, the reduced-form errors are
approximately orthogonal. This reduces somewhat the concern that the shock in the VAR’s
inflation equation is a linear combination of other underlying shocks.

The second approach employs the three structural models of inflation from Sections I, II
and III (the NKPC, the HNKPC, and the HNKPC with explicit monetary policy, equations (1.0),
(1.1), and (3.1), respectively). The U.S. data described in the data appendix are used, solving
each of the models for the structural (or pseudo-structural) shocks for a variety of parameter
values. Then, the ratio of the variance of the inflation shock to that of the driving variable is
computed for each case. It is important to note that, in the first two cases, the identification of
the driving process is suspect, as the simple AR(1) process likely serves as a reduced form for a
more fully articulated aggregate demand relation and monetary policy rule. Only in the case of
the HNKPC with explicit monetary policy can one claim to have identified underlying

structural shocks.
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Table 4

How big is the inflation shock?

VAR specifications
Ratio of reduced-form inflation shock to driving variable shock
Estimation m T,y m, 1, ulc m, 1, Y, p°p"° n, 1, ulc, p°,pr°
range
1966:Q1-2003 1.98 2.39 1.66 1.99
1984:Q3-2003 5.45 1.16 4.34 1.07
Structural Models
Ratio of identified inflation shock to driving variable shock
Parameter sets Pure. forward- Hybrid model Hybrid WIH,I
looking model monetary policy
1 7.41 1.08 1.17
2 8.67 0.68 0.59
3 8.93 1.31 1.22
4 4.55 3.68 1.04
Parameter sets

p Y p Y M Y 5
1 98 .03 0.35 .03 0.35 .03 8
2 98 .01 0.5 .03 0.5 .03 8
3 50 .03 0.35 .01 0.35 .01 8
4 98 03 0.15 03 035 | .03 | .0

As Table 4 indicates, it is rather uncommon for the variance of inflation to be less than

that of its driving process. For the VARs, the variance is about twice as large on average as the

variance of the driving process. This finding is relatively invariant to the set of conditioning

variables in the VAR. One might have assumed that partialling out the variation that arises

from oil or non-oil import prices might significantly reduce the variance of the shock to

inflation, but this is not the case.

In the “pure” NKPC model, the estimated variance is five to nine times greater than the

driving process,?® depending on the parameter values chosen. The hybrid model reduces the

relative variance, as the presence of lagged inflation absorbs much of the autocorrelation that

remains in the “pure” model’s errors. Still, the variance of the identified inflation shock is on

26 Of course, some of this blow-up in variance arises from the significant autocorrelation left in the
inflation shock for this model.
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average about as large as that of the driving process. Adding explicit monetary policy leaves
this conclusion unchanged.

While it is difficult to put a compelling economic interpretation on this shock, it is nearly
impossible to relegate it to a small nuisance, perhaps attributable to the measurement error that
no doubt plagues the standard proxy for real marginal cost. If the estimates above are of the
right order of magnitude, there would have to be at least as large a variation in the
measurement error as there is in the shock to the driving process. That seems implausible.
Consequently, it appears that the “inflation shock” is central to the inflation process, and central
to the debate over how much of inflation’s persistence is inherited versus intrinsic. What the

inflation shock is remains an important challenge for inflation modeling.

Reduced-form evidence on the relationship between inflation and the driving process

In the purely forward-looking model, the restrictions imposed by the rational
expectations assumption could force the estimated coefficient on the driving process towards
zero in the following way.?” When the model is purely forward-looking, a shock to the driving
process will imply a “jump” in the response of inflation. To the extent that such jump behavior
is at odds with the relatively inertial behavior of inflation in the data, estimates of y may tend
towards zero to minimize this counter-factual dynamic implication of the model.?

This section examines variance decompositions of unconstrained VARS, which provide
a reduced-form confirmation of the relatively small influence of the driving processes on
inflation. The first step is to examine simple variance decompositions from VARs that
incorporate the key variables in the NKPC system. Then, VARs that include other variables,
including energy and import prices, are examined to determine the extent to which these

reduced-form implications are stable across the full sample. Finally, the combination of

7 Estimation methodology can also affect the estimated coefficients in this class of models, but this lies
outside the scope of the current paper.

28 See Estrella and Fuhrer (2002) for more analysis of this counterfactual “jump” implication of many
dynamic models.

30



structural parameters that is most consistent with the variance decomposition evidence is

determined. Not surprisingly, the conclusions here mirror those above.

Variance decompositions

The variance decomposition from a VAR computes the contribution to inflation’s
variance from the driving process for a particular ordering and orthogonalization of the errors.
For the VARs considered, the covariance matrix of the residuals is close enough to diagonal
that, in general, the ordering does not affect the variance decompositions.?” To preview the
conclusions, regardless of the ordering used in the VAR, or of the driving process, it will be the
case that the fraction of the variance of inflation accounted for by the driving variable is quite
small. The fraction accounted for by the own-lags of inflation is quite large. Thus, it will be
difficult to estimate larger coefficients on the driving process, as to do so would imply an
unrealistically large contribution of the driving process to the variance of inflation, as the
autocorrelation functions above suggest.

First, consider two VARs in inflation, a driving variable (a measure of the output gap or
real marginal cost), and the federal funds rate. The VARs are estimated for two sample periods,
1966:Q1 to 2003:Q4 (corresponding to the estimation period in Gali and Gertler (1999) and
others), and 1984:Q3 to 2003:Q4, in recognition of the decline in the volatility of all variables and
in the persistence of inflation that appears to have occurred over the past twenty years or so.
Four lags of each variable are included, and both the conventional ordering (inflation and
output respond to the funds rate only with a lag, and inflation also responds to output with a
lag) are used, as well as alternative orderings.

Figure 10 displays the variance decomposition for the VAR that includes the output gap.
As the figure shows, the variance of inflation attributed to the output gap is never larger than 12

percent. The contribution of the “inflation shock” drops slowly to 72 percent after 30 quarters.

2 In the five-variable VAR with real marginal costs, there is some mildly significant correlation between
the funds rate and oil prices, and between inflation and relative import prices.
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Figure 10

Variance decomposition of inflation, 3-variable VAR with output gap, 1966-2003
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The next figure displays the same variance decomposition for the VAR in which real marginal
cost (here proxied by real unit labor cost) is the driving variable. The results are similar, but not
identical, for this VAR. For the first two years, the contribution to the variance is below 20
percent. But by five to eight years out, real marginal cost accounts for slightly more than 30
percent of inflation’s variance. Still, the share of the variance attributable to the “inflation

shock” never dips below 61 percent and falls below 75 percent only after 12 quarters.

Figure 11

Variance decomposition of inflation, 3-variable VAR with ULC, 1966-2003
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One explanation for the relatively small contribution of the driving process—or, equivalently,
the large contribution from the “inflation shock” —could be the prevalence of “supply shocks”

in the U.S. data—food and energy, non-oil imported goods prices, etc. The following chart
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depicts the variance decomposition for a VAR in which we explicitly account for the variation
in the relative price of oil and the relative price of non-oil imported goods. Such shocks, if
imperfectly reflected in measures of marginal cost, might contaminate the shock that appears to

disturb the inflation equation.

Figure 12

Variance decomposition of inflation, 5-variable VAR with output gap, 1966-2003
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The inclusion of these variables does not change the qualitative features of the variance
decomposition. The inflation shock still accounts for the largest share of variance, and the
output gap for a relatively small share.

Conditioning on important relative price changes has a more significant effect for the
system with real marginal cost. As Figure 13 indicates, the contribution of real marginal cost
now never exceeds 18 percent, and it looks very similar to the decomposition with the output
gap in Figure 11. Some of the inflation shock is absorbed by the import price and oil price
variables, so that its contribution diminishes to 40 percent over 30 quarters. But the contribution

from the driving variable remains quite small.
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Figure 13

Variance decomposition of inflation, 5-variable VAR with ULC, 1966-2003
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Because we know that persistence and volatility have declined for many variables in recent
years, estimation of the latter VARs is repeated over the period 1984:Q3-2003. Once again, the
basic picture is unchanged. Regardless of the driving process included in the VAR, its
contribution to inflation is quite small. Thus, it will be difficult to estimate a large and

significant parameter on the driving process in the NKPC.

Figure 14

Variance decomposition of inflation, 5-variable VAR with ULC, 1984-2003
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What parameter settings allow the model to match the evidence in the variance
decompositions?

One can readily compute the variance decomposition for the structural model of
equation (1.1). As demonstrated above, the solution for the model has an upper-triangular
contemporaneous coefficient matrix with an (assumed) diagonal shock covariance matrix.
Utilizing standard techniques, the variance decomposition of inflation for the structural model
is computed for the following three parameter settings:

a. “Baseline” case: p=0.6, y =0.03, 0%=3;

b. “Low-u hybrid” case: p=0.35, y =0.03, 0%=1;

c. “Pure forward-looking” case: u =0,y =0.03, 0%=0.1;

The first parameter setting most closely matches the autocorrelation patterns in the reference
VAR. The second corresponds to conventional estimates in the literature that estimates hybrid
NKPC models. The third is a baseline forward-looking case, with no weight on lagged inflation,
and very small variance for the inflation shock. Note that in all cases the variance
decomposition for the driving variable is uninteresting (always 100 percent attributed to the
driving variable, 0 percent to inflation).

As the figure indicates, the “baseline” parameter setting most closely matches the
qualitative features of the reference VARs’ variance decompositions.® Just as the
autocorrelation functions are quite sensitive to modestly lower 1, so too are the variance
decompositions. The pure forward-looking case has little chance of matching the data-
consistent variance decomposition, and the low-u hybrid model with conventional parameter
settings implies much too large a fraction of inflation variance attributed to the driving variable,
and much too little attributed to inflation’s own shock.

These variance decomposition comparisons provide a partial explanation for the
difficulty in estimating a sizable and significant coefficient on the driving process. In the data,

the fraction of inflation’s variance that may be attributed to either the output gap or marginal

% This result should come as no surprise, as the variance decompositions contain the same information as
the vector autocovariance function, presented from a different perspective.
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cost is quite small. The larger is the coefficient on the driving variable, the larger will be the
implied fraction of inflation’s variance attributable to the driving variable. For values of y much
larger than .01, the variance decomposition is strongly at odds with the decomposition found in
the data-consistent VARs.

One competing hypothesis for the presence of a small coefficient on the driving process
is that our proxies for real marginal cost are imperfect, and thus subject to measurement error. If
the measurement error is classical (additive), then the coefficient on the driving process will be
biased downward for the conventional reason. This will be true in both the structural model
and the VAR (variance decomposition) exercises below. However, in the structural models
examined below, to explain the order-of-magnitude shortfall of the estimated coefficient relative
to one that would impart significant persistence from the driving process, the size of the

measurement error would have to be quite large.
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Figure 15

Variance Decomposition of structural model
¥=0.03, p=0.9
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V. Conclusions

Finding a data-consistent, optimizing, rational expectations model of price-setting has
been an important goal in macroeconomics for decades. An emerging consensus suggests that
the New Keynesian Phillips curve, augmented by modest frictions of one flavor or another, is a
good benchmark model for price-setting in dynamic stochastic general equilibrium (DSGE)
models usable for macroeconomic analysis. When the driving process is assumed to be real
marginal cost, the parameter on the driving process can be estimated with the correct sign, and,

in principle, inflation should inherit considerable persistence from this variable.
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This paper reaches conclusions that differ markedly from the prevailing wisdom. It

suggests that:

(1) Using conventional parameter estimates, inflation in the hybrid NKPC inherits little
if any persistence from the driving process.

(2) In part, this lack of inherited persistence derives from the presence of a large
inflation shock whose variance is typically one to five times as large as the shock that
perturbs the driving process.

(3) The lack of inherited persistence also derives from a rather small estimated
coefficient on the driving process.

(4) The predominant source of inflation persistence in the NKPC is the lagged inflation
term. The amount of persistence imparted by the lag is quite sensitive to the size of
the lag, with significant differences in persistence implied by an increase in u from
0.3 to 0.6.

(5) As several papers have noted, the persistence of inflation appears to have declined in
recent years. If that is true, this paper suggests that the reason for that decline in
persistence is unlikely to be related to a decline in the persistence of the driving
process.® First, the standard candidates for the driving process have nearly the same
persistence today as they did two decades ago. Second, to a first approximation, the
NKPC as conventionally implemented does not allow important changes in the
persistence of the driving process to affect the persistence of inflation.

(6) Because monetary policy in the standard models acts through its effect on output
and marginal cost, it becomes more difficult to attribute recent changes in inflation
persistence to changes in monetary policy. This does not necessarily imply that
monetary policy has had no such effects, but it does suggest that the current crop of

models will have difficulty in attributing such changes to monetary policy.

31 There is considerable debate surrounding this observation, much of it methodological. Recent
discussions at the European Central Bank’s Inflation Persistence Network conference highlight the issues.
See especially Session I at http://www.ecb.de/events/conferences/html/inflationpersistence.en.html.
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These conclusions have other important implications for price modeling in DSGE
models. They suggest that the optimizing foundations in the standard specifications are nearly
unrelated to the dynamics observed in the data for inflation and real marginal cost. That is,
lagged inflation is not a second-order add-on to the optimizing model, it is the model. One may
motivate price-setting behavior from these optimizing foundations, but in practice, they tell us
little about why inflation behaves the way it does.

The conclusions also imply that in order to understand inflation dynamics, we will need
to identify the economic source of the large inflation shock in the specification. In turn, the
findings in this paper imply either that this identified shock is itself highly autocorrelated, or
that we require a micro-founded mechanism that generates substantial intrinsic persistence in

inflation.
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Appendix A

Algebraic derivations

The Purely Forward-Looking Model

For the NKPC with p=0, the matrix A in equation (1.2) takes a particularly simple form.
It is the coefficient matrix in the reduced-form solution to the model, which may be expressed

as32

T, 0 _Pr T,
{ } (1-08) [ } 61
O p ytfl

We can use this solution to substitute for Eimt+1in equation (1.1) to obtain the matrix S, which

has partitions So (the contemporaneous block) and S: (the lagged block):

T T e
SO t =S1 t—1 + t

Vi Vi u,
1 ﬁ 7]_[0 o=, [« (62)
0 1 Vi 0 plly. u,

Under the assumption that the covariance matrix of the errors is diagonal, and

normalizing the variance of u to 1 and denoting the variance of e by ¢ , we can derive the

unconditional variance for the vector process as

2

/4 1 o2 Y
V{ﬂ,}: (1-pB)*(1-p%) * (1-pB)(1-p)
v, y 1 (6:3)
(1-pB)(1-p*) I-p*

Then the autocovariances Ci and autocorrelations I'i may be derived from the recursive

equations

32 See Anderson and Moore (1985) for a derivation of the solution coefficient matrix.
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C,=AC,,

| C.(j k)
ik = ; (6.4)
AN AT

where Co is initialized as V.

The Hybrid Model

Now the matrix A from the reduced-form perfect-foresight solution to the model may be

expressed as

T, ﬂ’s P 7T
|: :| = (ﬂ '/u)(ﬂ’b _p) |: :| (6.5)
yt 0 yt—l

Yo,

where As and Avare the “small” and “big” roots (or stable and explosive, with moduli less than
and greater than one, respectively) of the transition matrix for the model. It is important to note
that Av and As depend only on  and 1, and are independent of the parameters governing the y:

process or its interaction with 7.

3 2 IN(-4uprag)

i 26—
1+ (1-4uB+417)
A, = (6.6)
28— )
1 =_H
o B-u

We can use this solution to substitute for Eimt+1in equation (1.1) to obtain
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0 . Y, 0 ol V. u,

We can derive the unconditional variance for the vector process as

V, a S+ 2up +O-—€j
(p=4) (B-wA—pu A 74, v
Vi
7//1/: V 1
(p =)A= B+ p] 1-p*

- . Then the autocorrelations may be derived as above, using the

1
where Vyis V(y), i.e. 1

transition matrix in equation (6.5).

The Forward-looking Model with Autocorrelated Errors

The model is augmented to include an “inflation shock” that follows an AR(1) process:

T, = (IB _ILI)Et”t+1 +tur,_ tyy te,
YVe=PYia Ty, (6.9)
e =ae_,t¢&,

For this model, the key matrices are

pr a A 1
(1-pf) 1-ap l-pf 1-ap
A=|0 p 0 ;S,'=[0 1 0 (6.10)
0 0 a 0 0 1

and the unconditional variance for the vector process is
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r'o. o. yo, A
(-pBy(1-p) (-apy(-a) (1-pp)X1l-p) (1-ap)l-a)
V= /9, _ %, . 0 (6.11)
(1-pp)(1-p) (1-p)
e ; .
(1-ap)1-a)’ (1-a)’

and from these one can derive the autocorrelation function for inflation.3® The first

autocorrelation in this case is

=N

_p@*-)(1-apyrs

L (@ -D(1-ap)ye

+a(p’ -D(1-pp)o. _ pdy’c, +ad,o,
+(p*-1)(1-pB)o; 8y’c, + 6,0,

(6.12)

B )

As the text in Section II suggests, the autocorrelations are dominated by a4, the autocorrelation
parameter on the shock. In essence, this version of the model holds the same implications as the
hybrid model: Here, the correlation of the shock term does all the work in the model, whereas

in the hybrid model, the lagged inflation term plays the same role.

Data Appendix
Inflation: 400 times the log change in the GDP chain-type price index.

Output gap: 100 times the log difference between chain-weighted real GDP and the
Congressional Budget Office’s estimate of potential GDP.

Real marginal cost: proxied by real unit labor costs, i.e 100 times nominal unit labor costs (log
of nonfarm compensation less the log of nonfarm output per hour) less the log of the implicit
price deflator for the nonfarm business sector.

Relative price of oil: the log of West Texas intermediate oil price per barrel less the log of the
GDP chain-type price index.

Relative price of imports: the log of the chain-type import price index less the log of the GDP
price index.

1
33 The roots in the model are particularly simple: [—, p,a].
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