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1 Introduction

As banks attempted to repair their balance sheets during the financial crisis of 2008–2009, they

reduced the credit card limits of millions of people in the United States, wiping out nearly a trillion

dollars in available credit and reducing the average limit by about 40 percent (see Figure 1). At

the same time, Americans reduced their credit card debt by a similar amount, and so the average

credit utilization—the fraction of available credit used—was nearly constant from 2000–2015. In

aggregate, the debt reductions were approximately double the value of the tax rebates from the

Economic Stimulus Act (Parker et al. 2013), and the average fall in debt was more than $1,000

dollars per cardholder. Why did so many Americans pay back so much debt during a severe

recession?

Underneath the dramatic cyclical changes in credit and debt, even larger changes occur over the

life cycle and for individuals. Using a large panel from the credit bureau Equifax and collected by

the Federal Reserve Bank of New York, we show that average credit card limits increase by more

than 700 percent from ages 20–40 and continue to increase after age 40, although at a slightly

slower rate (see Figure 2). Because many households hold little or no liquid assets, these increases

in credit are one of the largest sources of “savings” early in life. Despite the massive increases in

credit with age, debt increases at almost the same rate, and so the fraction of credit used declines

very slowly over the life cycle. Average utilization is from 40 percent to 50 percent of available

credit until age 50. Individuals also face substantial credit limit volatility—several times greater

than income volatility (Fulford 2015)—but we show individual credit utilization is extremely per-

sistent, with shocks dying out almost completely after about two years. Changes in credit and debt

are intimately linked over time.

This paper uses this link to study savings, debt, and consumption decisions. Credit cards

combine three central aspects of individual decision-making. As precautionary liquidity, credit

cards can help people smooth over shocks. By revolving debt over the short and long term, credit

cards are a way of allocating life-cycle consumption. And as a payment mechanism, spending on
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credit cards forms part of consumer expenditures.1 Credit cards are the most widespread form of

unsecured consumer credit, particularly early in the life cycle, and their credit limits are directly

observable, unlike most other forms of consumer credit. High-frequency long-term observation of

credit card debt and credit at the individual level is thus a powerful vehicle for understanding not

just consumer finance and liquidity constraints, but consumption behavior more generally.2

To understand what the tight link between credit and debt tells us, we incorporate all three

aspects of credit cards into a structural model of life-cycle consumption and savings. Our model

allows for saving at a low rate of interest and borrowing at a high rate, the large life-cycle variation

in credit, and the life-cycle variation in income with uninsured income shocks previously studied

by Gourinchas and Parker (2002) and Cagetti (2003). Within the model, we allow the consumer

to endogenously decide how much of current consumption to pay for with a credit card. Using

new data from the Federal Reserve Bank of Boston’s Diary of Consumer Payment Choice, we

estimate that non-revolvers would be willing to pay 0.319 percent of their consumption to continue

using credit cards. In aggregate, given the current payments infrastructure, rewards, and prices,

our calculations suggest that the value to consumers of using credit cards for payments is around

$40 billion a year.

We then embed the value of payment choice in the life-cycle model and estimate the preferences

necessary to match the life-cycle profile of consumption or credit card debt using the Method of

Simulated Moments (McFadden 1989). To match the life cycle of both consumption and debt, we

allow for populations with different preferences in addition to the heterogeneous-agent approach

(Aiyagari 1994, Deaton 1991) of many individuals with the same preferences but distinct shocks.

1In this way, credit cards are similar to debit cards or checks, which may take several days to clear and require an
intermediary who promises to pay the merchant first and collect from the consumer later. This payments aspect of
credit cards, which involves the inter-relationship between credit and liquidity, has been studied recently by Telyukova
and Wright (2008) and Telyukova (2013).

2 Except for some work on mortgages (Iacoviello and Pavan 2013), this paper appears to be the first to study the life
cycle of credit limits. Some recent work has attempted to endogenize borrowing constraints, and much of this work
has direct life-cycle implications. Cocco et al. (2005) build a model of consumption and portfolio choice over the life
cycle and introduce endogenous borrowing constraints as an extension. Lopes (2008) introduces a similar life-cycle
model with default and bankruptcy. Lawrence (1995) appears to have been the first to introduce default in a life-cycle
model. Athreya (2008) develops a life-cycle model with credit constraints, default, and social insurance and examines
the distributional consequences of changing default policy.
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The estimates suggest that more than half the population must be very impatient and care little

about risk to hold the amount of revolving debt we observe. The model successfully predicts the

slow decline in overall credit card utilization.

The key revealed preference that gives the basic intuition and identification for our results is

the different uses for credit cards. Some people, typically called convenience users, use their credit

cards only for payments. They have the option to revolve debt and yet rarely, if ever, do. They

must be willing to save to have a buffer of wealth so that they rarely need to borrow because of a

shocks, and so they must discount the future around the return on liquid savings. Others exercise

the option and revolve debt at 14 percent or higher interest for long periods and so must discount

the future around the rate of borrowing. The rest of the model machinery of heterogeneous agents

over the life cycle is then necessary to account for how individual shocks and the life cycle change

decisions. Even patient people borrow when times are sufficiently bad, and young people may

want to consume more now because their incomes will be higher in the future.

While the heterogeneity among individuals over the life cycle matters, the most important het-

erogeneity is revealed by the different uses for credit cards that separate preferences. Our results

thus hearken to the older heterogeneous approach in Campbell and Mankiw (1989) and Campbell

and Mankiw (1990), who estimate that the relationship between aggregate income and consump-

tion can be explained by dividing the population into two representative consumers, one living

hand to mouth and the other saving for the future. Indeed, our estimate of the share of impatient,

nearly hand-to-mouth consumers is close to the estimates by Campbell and Mankiw (1990). Sim-

ilarly, heterogeneous preferences seem necessary to match wealth inequality (Krusell and Smith

1998) or the average marginal propensity to consume (Carroll et al. 2017). At the individual level,

building on Gross and Souleles (2002), recent estimates of the response of debt to changes in credit

have suggested substantial heterogeneity depending on credit utilization and age (Agarwal et al.

2015, Aydin 2015, Fulford and Schuh 2015). The debt response to credit is closely linked to the

marginal propensity to consume (Fulford and Schuh 2015). Our structural estimates capture the

rich heterogeneity of use necessary to make sense of these results, and in doing so they closely
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match the individual dynamics we estimate from the credit bureau data.

Using our structural estimates, we examine the relative importance of consumer credit for the

business cycle and counter-cyclical policy. We simulate an unexpected decline in consumer credit

of the same size that occurred in 2008–2009, affecting people at different ages and across the

liquidity distribution. By itself, the decline in consumer credit explains one quarter of the decline

in personal consumption over the period, although it cannot explain continuing weakness because

our estimates suggest the adjustment to lower credit limits is rapid.

One of the central concerns for counter-cyclical fiscal policy is how much households respond

to temporary increases in income from, for example, tax rebates (Parker et al. 2013). Kaplan and

Violante (2014) summarize the literature and suggest that households consume approximately 25

percent of rebates within a quarter. Because standard models with one asset and no preference

heterogeneity have trouble explaining this large response, Kaplan and Violante (2014) build and

calibrate a model with an illiquid asset that endogenously generates a large hand-to-mouth popula-

tion. Our approach is different, but complementary, since we model savings and debt with similar

liquidity but different prices.3 The revealed preference of being willing to borrow then suggests a

substantial portion of the population has a high marginal propensity to consume. Our simulated

consumption response to a small unexpected cash rebate is about 28 percent, driven mostly by the

impatient population, a result consistent with recent estimates by Parker (2017). Yet because so

much of the available liquidity of U.S. households comes from credit, the simulated consumption

response to an unexpected increase in credit is nearly as large as a cash rebate.

Allowing for heterogeneous uses for credit suggests an explanation for the hump shape of

life-cycle consumption (Attanasio et al. 1999) that is subtly different from the combination of

precaution and life-cycle savings suggested by Gourinchas and Parker (2002). While all agents

have life-cycle considerations and their own idiosyncratic shocks, our estimates suggest that the

3The approaches also work along different parts of the income/wealth distribution. Kaplan et al. (2014) show that
there are a large number of wealthy hand-to-mouth households who are illiquid-asset rich but cash poor. Revolving
credit card debt suggests a high degree of impatience and corresponding low liquid savings on average. While both
groups have low liquid assets, the Kaplan and Violante (2014) consumers have invested in illiquid assets, and so the
reason for having a high marginal propensity to consume differs, as does how long a household spends living close to
hand to mouth.
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impatient population is impatient enough that it closely resembles the buffer-stock population in

Carroll (1997) over the entire life cycle, with consumption and debt closely following income. The

patient population looks much like a liquidity-constrained life cycle/permanent income hypothesis

consumer. The average of these two populations has a distinct hump shape of consumption formed

mostly by the income profile of the impatient population. Consistent with Gourinchas and Parker

(2002), even our patient population is highly liquidity constrained early in life. We show that the

low credit limits in early life have particularly negative consequences for welfare, comparable to

very large changes in the interest rate. Approaches that do not take into account the large life-cycle

variation in credit are missing something important.

2 Credit card use

Both credit and debt change substantially over the business cycle, the life cycle, and for individuals

in the short term. This section briefly discusses the context of consumer credit in the United States,

introduces our main data sources, and presents some non-parametric and reduced-form results.

Fulford and Schuh (2015) provide additional descriptive statistics, including additional evidence

on the distribution of credit and on credit card holding by age. In the next section, we turn to a

model that helps make sense of these observations.

2.1 The data

The Equifax/Federal Reserve Bank of New York Consumer Credit Panel (CCP) contains a quar-

terly 5 percent sample of all accounts reported to the credit-reporting agency Equifax starting in

1999. We use only a 0.1 percent sample for analytical tractability for much of the analysis. Once

an individual consumer’s account is selected, its entire history is available. The data set contains a

complete picture of the debt of any individual that is reported to the credit agency: all credit-cards,

auto, mortgage, and student-loan debt, as well as some other, smaller categories.4 While the CCP

4Lee and van der Klaauw (2010) provide additional details on the sampling methodology and how closely the
overall sample corresponds to the demographic characteristics of the overall U.S population, and conclude that the
demographics match the overall population very closely: The vast majority of the U.S. population over the age of 18
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gives a detailed panel on credit and debt, its coverage of other variables is extremely limited. It

contains birth year and geography, but not income, sex, or other demographics. One reason to

move to a structural model is to leverage the long, detailed panel on the credit and debt side of the

balance sheet to learn about other decisions. An important advantage of the CCP over other data

sources used by Gross and Souleles (2002), for example, is that it includes all the credit cards held

by an individual. Throughout, we combine all credit cards, giving the complete credit and debt

picture. Importantly, we cannot directly distinguish between revolving debt and debt from new

charges that will be paid off. Both are credit card debt, and accounting for these different uses is

another important reason for introducing the structural model in the next section.

Our analysis is limited to the potential or actual credit-card-using population of the United

States because credit card use is what gives us insight into behavior. More than 70 percent of the

U.S. population has a credit card at any given time, and a larger fraction has a credit card at some

point, because gaining and losing access is common (Fulford 2015). We limit the sample from

the credit bureau to include only accounts that have a birth year and that had an open credit card

account at some point from 1999–2015. A sizable fraction of accounts represents fragmentary

files, typically from incorrect or incomplete reporting to Equifax.5

Our analysis is focused primarily on credit card use rather than whether someone has a credit

card. The likelihood of credit card possession increases for people when they are in their 20s, but

then it quickly stabilizes. We show the age and year distribution of having a positive limit or debt

in Figure A-1 in the appendix. Depending on the analysis, we also limit the sample to those with

current open accounts, debt, or limits.6

has a credit bureau account, although around 11 percent lack credit bureau accounts. See Brevoort et al. (2015) for an
examination of these “credit invisibles.”

5The accounts are based on Social Security numbers, and so reporting an incorrect Social Security number, for
example, can create a fragmentary account that is not associated with other debts. Typically these accounts do not
have credit cards, lack a birth year, and are recorded only for a few quarters. Twenty-six percent of accounts lack an
age, and of these only 14 percent have an open credit card account at any time.

6The CCP reports only the aggregate limit for cards that are updated in a given quarter. Cards with current debt
are updated, but accounts with no debt and no new charges may not be. To deal with this problem, we follow Fulford
(2015) and create an implied aggregate limit by taking the average limit of reported cards times the total number of
open cards. This method is exact if cards that have not been updated have the same limit as updated cards. Estimating
the difference based on changes as new cards are reported and the limit changes, Fulford (2015) finds that non-updated
cards typically have larger limits, and so the overall limit is an underestimate for some consumers with unused lines.
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To estimate our payments model, we also use data from the Federal Reserve Bank of Boston’s

Diary of Consumer Payment Choice, which asks a nationally representative sample of consumers

to record all of their expenditures and how they paid for them over a three-day period (Schuh

2017, Schuh and Stavins 2017). This rich data source allows us to understand how the payments

behavior of revolvers and convenience users differs. In addition, we estimate life-cycle profiles of

consumption from the Consumer Expenditure Survey (CE).

2.2 Credit and debt over the business cycle

Since 2000, overall credit limits and debt have varied tremendously. Figure 1 shows how the

average U.S. consumer’s credit card limit and debt have varied from 2000–2014. Although the

Equifax data set starts in 1999, we exclude the first three quarters of that year, because the limits

initially are not comparable (see Avery et al. (2004) for a discussion of the initial reporting prob-

lems). From 2000–2008, the average credit card limit increased by approximately 40 percent, from

around $10,000 to a peak of $14,000. During 2009, overall limits collapsed rapidly before recov-

ering slightly in 2012. Credit card debt shows a similar variation over time. From 2000–2008,

the average U.S. consumer’s credit card debt increased from just over $4,000 to just under $5,000

before returning to around $4,000 during 2009 and 2010.7

Utilization is much less volatile than credit or debt. The thick line in the middle of Figure 1

shows credit utilization, the average fraction of available credit used. Because the scale on the left

axis of the figure is in logarithms for credit and debt, a 1 percentage point change in utilization on

the right axis has the same vertical distance as a 1 percent change in credit or debt. The similar

scales mean that we can directly compare the relative changes over time in limits, debt, and credit

For consumers who use much of their credit and so may actually be bound by the limit, the limit is accurate because
all their cards are updated.

7The fall in debt is not because of charge-offs in which the bank writes off the debt from its books as unrecoverable.
The consumer still owes the charged-off debt. Banks may eventually sell charged-off debt to a collection agency, in
which case it may no longer appear as credit card debt within credit bureau accounts. Charge-offs are not large enough
to explain the fall in debt, although they did increase in 2009. The average charge-off rate from 2000–2007 was 4.35,
increasing to 5.03 in 2008 and to 6.52 in 2009, before declining again to 4.9 in 2010 and 3.54 in 2011, and averaging
2.41 since then. See https://www.federalreserve.gov/releases/chargeoff/delallsa.htm for
charge-off rates for credit cards.
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utilization. Credit and debt vary together in ways that produce extremely stable utilization that has

no obvious relationship with the overall business cycle. The next two sections examine how the

decisions made by individuals combine to form this aggregate relationship.

2.3 Credit and debt over the life cycle

We next examine how credit, debt, and utilization evolve over the life cycle. Figure 2 shows the

credit card limit and debt in the top panel and credit utilization in the bottom panel. Each line

is for an age cohort that we follow over the entire time possible. The figure therefore makes no

assumptions about cohort, age, or time effects. Credit limits increase very rapidly early in life,

rising by around 400 percent from age 20–30, and continue to increase after age 30, although less

rapidly. Life-cycle variation dominates everything else in Figure 2; while there is clearly some

common variation over the business cycle, cohorts move nearly in line with age. We show a more

formal decomposition into age and year effects in Figure A-3 in the appendix.8 Despite the very

large variation over the business cycle evident in Figure 1, changes over the life cycle are an order

of magnitude greater.

The bottom panel of Figure 2 shows the average credit card utilization—credit card debt di-

vided by the credit limit—for each cohort. Consumers with zero debt have zero credit utilization,

and so they are included in utilization but are excluded from mean debt, which includes only pos-

itive values.9 Credit utilization falls slowly from ages 20–80. On average, 20-year-olds are using

more than 50 percent of their available credit, and 50-year-olds are still using 40 percent of their

8Estimating a simple model that separates the variation between age and year allows us to make the importance of
life-cycle variation even clearer. Figure A-3 in the appendix shows the age and year effects from estimating a simple
regression of the form:

lnDit = θ + θt + θa + εit, (1)

where lnDit is either log debt, log credit limits, or utilization, and allows these to vary between age effects θa and
year effects θt but imposes common cohort effects. The excluded group is age 20 and year 2000, so each panel in
Figure A-3 starts at zero at age 20 and year 2000. The estimated effect is in log units, and so the scale of the figure
suggests that variation over the life cycle in credit is around nine (e2..5/e0.3) times larger than over time, even with a
massive credit contraction.

9The calculations in Figure 2 are the average of log limits and log debts to match later analysis and so exclude
zeros except for utilization. Figure A-1 in the appendix shows the fraction in each cohort who have positive credit and
debt. Including the zeros would lower the average credit limit and debt, but it actually makes the life-cycle variation
larger.
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credit. Credit utilization does not fall to below 20 percent until around age 70.

The slow fall in credit utilization comes from two different sources over the life cycle. Credit

utilization is high early in life when a substantial portion of the population uses much or all of its

available credit. Credit increases more rapidly than debt, however, so credit utilization falls slowly.

In midlife, debt stabilizes, but credit limits continue to increase slowly. Finally, starting around age

60, average debt, conditional on being positive, starts to decline, so credit utilization declines.

2.4 The reduced form evolution of individual utilization

The previous two sections show that credit utilization is remarkably stable despite very large

changes in credit and debt over the life cycle and business cycle. The aggregate data could be

hiding substantial individual volatility in utilization, but this section shows that utilization for an

individual rapidly reverts to the mean. While individuals have different credit utilization ratios that

represent their own steady state, they return rapidly to their own typical ratio. Credit utilization is

best characterized by fixed heterogeneity across individuals and relatively small transitory devia-

tions for an individual over time. We present non-parametric results in Appendix A and Appendix

Figure A-4 and reach almost identical conclusions to the parametric estimates. The non-parametric

results suggest that the simple linear dynamic reduced-form model we employ is surprisingly ac-

curate. Fulford and Schuh (2015) give additional variations for utilization and show results on how

debt and credit co-evolve, rather than fixing the relationship by combining them into utilization.

Relatively little is lost by simplifying only to utilization. Moreover, in a Granger Causality sense,

the direction of causality moves primarily from changes in credit to change in debt.

Changes in credit come from both the supply and demand side. Card-offering banks cancel

cards for their own balance sheet and business reasons—as happened during the crisis—and based

on changes in cardholder credit worthiness. In addition, individual account holders often cancel

credit cards or apply for new credit (Fulford 2015).

Table 1 shows how utilization this quarter relates to utilization in the previous quarter. For
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simplicity, we estimate AR(1) regressions of the form:

υit = θt + θa + αi + βυit−1 + εit, (2)

where υit = Dit/Bit is the credit utilization given the credit limit Bit and the current debt Dit,

conditional on the credit limit Bit > 0, and age (θa) and quarter (θt) effects that allow utilization

to vary systematically by age and year. Column 1 does not include fixed effects and so assumes

a common intercept. Column 2 includes quarter and age effects, while the other columns include

individual fixed effects, quarter effects, and age effects.10

Without fixed effects, credit utilization is very persistent and returns to a non-zero steady state

of approximately 40 percent utilization (α/(1 − β) = 0.38). Note that this utilization is close to

the average in Figure 1, as it should be because both are estimated from the same data, and the

non-parametric conditional expectation function shown in Appendix Figure A-4 is nearly linear.

Including age and year effects in column 2 barely changes the persistence.

The next column shows how credit utilization varies around an individual-specific mean. Nearly

half of the overall variance in utilization comes from these fixed effects. In other words, about half

of the distribution comes from factors that are fixed for an individual, allowing for common age and

year trends, and half from relatively short-term deviations from the mean. After a 10 percentage

point increase in utilization, 6.47 percentage points remain in one quarter, 1.7 percentage points in

a year, and fewer than 0.3 percentage points after two years.

The estimates in Table 1 indicate that while there are deviations from the long-term mean

for individuals, these dissipate quickly and are almost entirely gone within two years. The slow

decline of utilization with age and the quick return to individual credit utilization suggest that the

10The combined age, year, and individual fixed effects in equation (2) are not fully identified. As in the age-cohort-
period problem, it is impossible to fully identify all effects because there can be an observationally equivalent trend
in any one of the age, time, or individual effects. The size of the data set means that rather than estimating individ-
ual coefficients—sometimes referred to as nuisance parameters—we instead must use the within transformation. To
implement the additional necessary restriction, we follow Deaton (1997, pp. 123–126) by recasting the age dummies
such that Îa = Ia − [(a − 1)I21 − (a − 2)I20], where Ia is 1 if the age of person i is a and zero otherwise. This
restriction is innocuous in the sense that there can still be a trend with age because individuals who are older when we
observe them can have larger θi, but that trend will appear in the individual effects rather than in the age effects.
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pass-through from an increase in the credit card limit to an increase in credit card debt is large and

occurs relatively rapidly. In the next section, we describe a model that helps explain this tight link.

3 A model of life-cycle consumption and credit card debt

We have demonstrated that there is a strong tendency for individual debt and credit to change at the

same time, with credit utilization falling only slowly over the life cycle. To explain these observa-

tions, this section describes a life-cycle consumption model that is similar to those of Gourinchas

and Parker (2002) and Cagetti (2003) but includes the addition of a payment choice, the ability to

borrow, and changing credit over the life cycle.

To keep the model numerically tractable and thus able to be estimated, we focus on unsecured

credit card debt of individual consumers and do not directly model the endogenous decision to

take on non-credit card debt or interactions within households. While these other elements likely

affect credit card decisions to some extent, data limitations and numerical complexity make them

difficult to address directly, although we can deal with some indirectly.11

3.1 The decision problem

From any age t, a consumer seeks to maximize her utility for remaining life given current resources

and expected future income. With additively separable preferences, the consumer at age twith cash

11Most other forms of household debt, such as mortgages, home equity, and auto loans, are secured directly against a
household asset, and so their main influence on credit card decisions is how they affect liquidity. The model allows for
asset accumulation and income from illiquid assets in late life, but it does not directly model an endogenous liquidity
decision as in Kaplan and Violante (2014) or Kaboski and Townsend (2011). In diagnostic regressions in Fulford
and Schuh (2015), we have found that the reduced-form relationship between credit card limits and debts explored in
Section 2.4 does not seem to change based on whether someone has a mortgage. Student loans are generally taken
out before our youngest age of decision-making and so they act mainly to modify disposable income. Households
may provide insurance across members (Blundell et al. 2008) and across generations. We observe individual accounts,
not households, in the credit bureau data and so cannot directly observe all relevant household interactions, such as
household formation, and both members of joint credit card accounts. Within the model, the existence of within-
household or intergenerational insurance could be handled indirectly by modifying the uninsurable-income process to
allow for a degree of co-insurance.
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at hand Wt and current credit limit Bt maximizes the discounted value of expected future utility:

max
{Xs,πs}Ts=t

{
E

[
T∑
s=t

βs−tu(Cs) + βT+1S(AT )

]}
subject to

Cs = νsXs

Xs ≤ Ws (3)

Ws = R(As−1)As−1 + Ys +Bs

As−1 = Ws−1 −Bs−1 −Xs−1

νs = ν(πs;As−1),

where she gets period utility u(·) from consumption Ct, which she gets by making expenditures

Xt. The decision at t depends on what she expects her future decisions and utility to be at ages

s ≥ t. Within each period she decides what portion of expenditures to fund using credit versus

liquid funds. Making payments from different sources of funds comes at a price that drives a

small wedge νt between expenditures and consumption, the evolution of which we explain below.

Expenditures are limited by the available liquidity Wt, which is the sum of assets left at the end of

the previous period At−1 (which may be positive or negative), income this period Yt, and the credit

limit this period Bt. Borrowers face a higher interest rate than savers. If the assets At−1 at the end

of the period are positive, her assets grow at the return on savings; if assets are negative, she is

revolving debt, and her debt grows at the rate for borrowers:

R(At−1) =


R if At−1 ≥ 0

RB if At−1 < 0,

with RB ≥ R. The consumer discounts the future with a fixed discounted factor β and so has

time-consistent preferences. We therefore drop the distinction between age t and future ages s ≥ t

for clarity. Most of the elements in this problem are standard. We focus on the nonstandard ones

first.
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The payments wedge between expenditures and consumption Credit card debt includes un-

paid revolving debt from a previous period as well as all new charges. Even if the consumer intends

to pay back the new charges by the next bill, convenience debt from new charges is still debt and

is reported to credit bureaus as debt. To understand credit card debt, we must account for this

convenience use as well as the revolving-debt use of credit cards. Doing so requires us to model

why a consumer might use a credit card for some purchases and not others. Using a credit card im-

plies that the consumer finds this way of accessing liquid funds more valuable than other possible

ways for making those purchases. Removing this option would come at a cost that we measure.

Yet consumers do not use credit cards to pay for all expenditures, and so credit cards must not be

usable or the costs of using them must be greater than other methods for some expenditures. We

model this within-period decision of what portion of expenditures to pay for using credit cards in a

simple way that allows us to estimate it with observable behavior and embed it in the consumption

model.12

A consumer has two choices for converting liquid funds into consumption. She can use a credit

card or some other option that, for simplicity, we will call cash. The consumer must pay a cost

to use each method, although we can measure the costs only relative to each other. Each fraction

of expenditures π ∈ [0, 1] has a value N(π) of using a credit card relative to all other payment

methods, so that if N(π) > 0, using a credit card is less costly than other methods. By making

the value relative to other means, we effectively normalize the cost of using cash to zero. Thus

we ask whether, for that fraction of expenditures, using a credit card is less costly than cash. The

normalization is key to our identification approach, which can identify the value of credit cards only

relative to other choices, not in absolute terms. The normalization is innocuous in the consumption

model because it affects the marginal value of expenditures in all periods. By indexing the value

using the fraction of expenditures, we rule out the possibility that the size of expenditures affects

the costs of paying for them. This simplification is important for fitting the within-period payment

12Doing so necessarily abstracts from some important monetary concerns around acceptance and general equilib-
rium. In particular, we do not model firm decisions, but instead assume that the consumer takes all prices and options
as given and must make choices given these options. The goal is to write a model that allows us to estimate the
consumer’s willingness to pay to use credit cards for payments over other means.
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decision into the consumption decision.

We next put a simple functional form onN(π), which allows us to directly identify willingness-

to-pay given observable behavior. We order expenditures so that the value of using a credit card at

π = 0 is the largest and π = 1 the smallest. With this order, we assume that the relative value of

using a credit card is falling at a linear rate with the fraction of expenditures:

N(π) = ν0 − v1π.

For the first fraction of expenditures, consumers are willing to pay ν0 to use a credit card instead

of cash. For expenditures for which N(π) ≥ 0, the consumer prefers using a credit card. When

N(π) < 0, she prefers cash because it is less costly. By ordering the costs and assuming a contin-

uous and strictly monotonically decreasing function, we have simplified the consumer’s decision

from which option to use for every iota of expenditures to finding the optimal fraction of expendi-

tures π∗, where N(π∗) = 0. The consumer uses a credit card only for the fraction of expenditures

for which she gets positive value, relative to other payment methods.

Consumers who revolved debt the previous period have to immediately pay interest on new

payments, while convenience users do not. The cost of using a card therefore depends on the

borrowing decision in the previous period, creating a feedback from the asset-accumulation de-

cision to the payment decision. Revolving makes consumption slightly more costly, and so the

payment decision influences the consumption decision. If expenditures are spread evenly over the

month, then a revolver will pay additional interest of (rB/12)/2 on her credit card expenditure that

month.13 Assuming the loss of float is the only factor explaining different usage, the cost function

for revolvers shifts down by (rB/24).

Figure 3 illustrates these two cost functions and why these simple assumptions help us find

13This formula comes from the way that annual credit card rates are reported and interest charged. The interest rate
on debt is rB = RB − 1. The Annual Percentage Rate, or APR, is not a compound rate, and so it is appropriate to
divide it by 12 to find the rate of interest. The financing charge on a credit card is calculated based on the average daily
balance within a month, and so the financing charge on consumption spread evenly throughout a month is half the
interest rate. Note that while the APR is not a compound rate, interest charges not paid off each month will compound
in both reality and in our model.
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the payments wedge. As the fraction spent on a credit card increases, the value of paying for the

next bit of expenditures declines. Eventually, expenditures on a credit card are less valuable than

expenditures with cash, and so there is an optimum πC . Because revolvers start at a lower initial

value, their optimum πR is lower, a prediction we see in the data and will discuss more when

we estimate this model in Section 4. Figure 3 also makes clear the identification strategy. With

estimates of πC , πR, and rB, it is possible to solve for the two parameters ν0 and ν1 and find the

area of the wedge for convenience users and revolvers. The area is the sum of the benefits of using

a credit card to access funds instead of using cash when a credit card is a better choice. Because

the consumer has a choice of how to access funds, and can always choose the other option, the

relative cost for the rest of expenditures is zero. The wedge therefore takes on two values:

νt = max
πt

ν(πt, At−1) =


νC = 1 + (πCν0)/2 if not revolving (At−1 ≥ 0)

νR = 1 +
(
πR(ν0 − rB/24

)
/2 if revolving (At−1 < 0),

where πC and πR are the optimum fraction for revolvers and convenience users. Appendix C goes

through the algebra of exact expressions for πC and πR given ν0 and ν1, and it shows how to

calculate standard errors given estimates of πC and πR using the delta method.

Except when including durable goods, it is often convenient to set expenditures equal to con-

sumption so that νt ≡ 1. When there are costs to access funds, however, doing so no longer makes

sense. Some payment means have direct costs. For example, obtaining a cashier’s check from a

bank requires a fee and the time to obtain the check. The consumption paid for with a cashier’s

check is therefore less than the expenditures. Obtaining cash may require indirect costs and direct

costs from ATM fees. To the individual consumer, other payment mechanisms may actually offer

benefits. If a credit card offers cash back, for example, then the cost of consumption may be less

than the amount spent. Similarly, credit cards sometimes offer insurance on some purchases. Our

simple model combines all these costs and benefits into a single value for each iota of expenditures.

To understand why we need to model the payments use of credit cards, consider what the
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model says we will see for convenience use and revolving debt. The observed credit card debt at

age t in the credit bureau data includes both new charges and previous debt for revolvers, but only

convenience debt from charges in the past month for convenience users:

Dt =


πCXt if not revolving so At−1 ≥ 0)

πRXt + At−1 if revolving so At−1 < 0).

Debt evolves differently because for revolvers it includes the stock of previous debt, while for

convenience users it is only the flow of expenditures.

The income process Income or disposable income follows a random walk with drift:

Yt+1 = Pt+1Ut+1

Pt+1 = Gt+1PtMt+1,

whereGt+1 is the known life-cycle income growth rate from period to period, and the “permanent”

or random-walk shocksMt+1 are independently and identically distributed as lognormal with mean

one: lnMt+1 ∼ N(−σ2
M/2, σ

2
M). The transitory shocks are similarly distributed lognormally with

mean one and variance parameter σ2
U . We allow for a temporary low income UL from unemploy-

ment or other shocks with probability pL each period, and we adjust the shocks so that the mean is

always one.14 The structure of the shocks ensures that the expected income next period is always

Et[Yt+1] = Gt+1Pt, because the mean of both transitory and permanent shocks is one.

The credit limit Life-cycle variation in credit limits is proportionally several times larger than

life-cycle variation in income (compare Figure 2 to Appendix Figure A-5), and the dispersion of

credit limits across individuals of the same age is also large (Appendix Figure A-2). We allow for

14Low-income shocks, in addition to lognormal shocks, may matter for precautionary reasons by putting additional
probability on very bad outcomes. Formally, the transitory shocks are distributed as: Ut+1 = ULwith probability
pL and Ũt(1 − ULpL)/(1 − pL) with probability 1 − pL, where Ũ is i.i.d. lognormally distributed with mean one:
ln Ũt+1 ∼ N(−σ2

U/2, σ
2
U ) and UL is unemployment income as a fraction of permanent income.
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dispersion across consumers by assuming that the credit limit Bt is an age-dependent proportion

of permanent income:

Bt = btPt,

where bt ≥ 0 is the age-varying fraction of this amount that can be borrowed, which is set outside

the control of the consumer. This approach means that across consumers, Bt will be in proportion

to income Pt, but it allows credit to follow an average path over the life cycle that is different from

income.15

Iso-elastic preferences and normalization. We assume that period utility displays Constant

Relative Risk Aversion (CRRA):

u(C) =
C1−γ

1− γ
.

With CRRA preferences, it is possible to normalize the problem in terms of permanent income

Pt at any given age. Using lower case to represent the normalized value, we denote ct = Ct/Pt,

wt = Wt/Pt, and at = At/Pt. Appendix B.2 discusses how to rewrite the consumer’s problem re-

cursively in terms of the normalized state variable wt and thus write the solution of the consumer’s

normalized recursive problem as an age-specific expenditure/consumption function ct(wt, at−1).

The beginning and end of life Several important decision parameters affect initial distributions

and decisions late in life. We assume the initial distribution of the wealth/permanent-income ratio

is lognormal with variance that matches the variance of permanent income shocks and mean λ0.

The consumer lives for T periods, where T is a random number that we match to actual life tables,

15The consumer’s problem as written, with Wt as a sufficient period budget constraint, implies that a consumer
must immediately repay all debt over her limit if her credit limit falls. To see this, consider what happens if Bt−1 > 0
and the consumer borrows, leavings negative assets at the end of period At−1 < 0. If Bt = 0, then assets at the end
of period t must be weakly positive (At ≥ 0), and so all debt has been repaid within a single period. A cut in credit
limits implies an immediate repayment of debt in excess of the limit. This debt repayment when credit is cut below
debt does not match credit card contracts, which do not require immediate and complete payment following a fall in
credit (Fulford 2015). Instead, credit card borrowers can pay off their debt under the same terms; they just cannot add
to it. However, allowing for such behavior means that there must be an additional continuous state variable, because
Wt and Bt no longer fully describe the consumer’s problem. This adds substantially to the numerical complexity of
the solution through the curse of dimensionality.
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and we assume she dies with certainty at age T̃ . At death, she receives a final utility S(·) from

leftover positive resources. In our base estimations, we set the bequest motive to allow for an

annuity to heirs. Appendix B.1 discusses the specific function.16

Late in life, consumers may face income and expenses different from those they face during

working years. Labor income may drop, but consumers may start claiming illiquid retirement

benefits such as pensions and Social Security, and they may derive income from other illiquid assets

such as housing. They may also face an increase in necessary expenses from additional medical

care or other needs. We summarize all of these changes by assuming that income starting at TRet

is a fraction λ1 of pre-retirement permanent income (λ1PTRet−1). Allowing for a fall in outside

disposable income is a flexible way of combining the many late-in-life changes that consumers

may want to plan for during working years, including possibly the acquisition of illiquid assets

for retirement. Conwmers still earn the return on their liquid assets accumulated before TRet, but

they face no income volatility and continue to consume optimally given their income and expected

longevity.

Model frequency We model all decisions as being made quarterly and adjust the discount rates

and interest rates accordingly, although we report the yearly equivalent for straightforward com-

parison to other work. Quarterly decision-making is approximately four times more computation-

ally intensive than yearly. Because of data and computational constraints, much of the structural

consumption literature has been limited to examining decisions made at a yearly frequency. Yet

consumption decisions must be made more frequently than yearly. If smoothing within the year is

perfect, then the frequency should not matter. However, the logic of the model and the data sug-

gest that people do occasionally hit their budget constraint, which implies that ignoring decisions

made within the year may miss important facets of consumer behavior. In addition, if we want to
16Recent work has disagreed over the importance of a bequest motive as opposed to other possible motives for

keeping assets late in life, such as long-term care and medical needs (De Nardi et al. 2010). Since we focus primarily
on debt, our model and estimates are not well situated to distinguish between motives. While the exact form of the
bequest motive or another motive for keeping assets late in life is not important, removing it entirely is consequential.
Because the likelihood of dying is increasing with age, people with no bequest motive are effectively getting more
impatient. Therefore, they should not decrease the amount of debt they hold as much as the data shows they do. We
discuss the effects of alternate formulations of the bequest motive more in Section 4.5.
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understand whether the model can match the quarterly dynamics of individual and aggregate credit

utilization, it must have at least a quarterly frequency. We adjust convenience credit card debt

appropriately so that it represents only one month of expenditure when we estimate the model.17

3.2 Numerical solution

For a given set of parameters, we find a numerical approximation of the consumer’s problem by

writing the problem recursively and proceed through backward recursion from the end of life. We

briefly discuss some of the unique characteristics of the problem here and give a more detailed

discussion in Appendix B.3. We follow the method of endogenous gridpoints (Carroll 2006),

which substantially reduces the computation costs. The payments problem can be solved sepa-

rately from the decision problem in each period, which makes the model numerically tractable.

However, the payments problem depends on whether the consumer was borrowing in the previ-

ous period, so At−1 is a state variable. The problem depends only on whether there are separate

expenditure/consumption functions for revolvers and convenience users: ct(wt, ARt−1). Moreover,

consumers take into account the loss of float on new credit card debt when making decisions about

whether to leave debt for the next period. Losing the float makes the decision to borrow slightly

more expensive.

Figure 4 illustrates some of the complexities of the decision problem. Along the x-axis is the

ratio of cash at hand to permanent income wt. Normalizing this way is useful numerically and be-

cause it allows us to compare the decisions of someone earning $20,000 to those of someone earn-

ing $200,000 in terms of their relative liquidity. Because credit limits also scale with permanent

income, only age, previous borrowing, and the current cash-at-hand ratio enter the consumption

decision. The consumption functions then tell how much a consumer at that age with those prefer-

ences will consume at each liquidity. There are three kinks in the consumption function, which are

17This adjustment represents a subtle but important point for matching the model to the data. The CCP is a quarterly
snapshot of total reported debt at the end of a quarter. Some of the debt was revolved from the previous month—a
stock—while other debt is new from the previous month, and represents a monthly flow, since the debt will be paid
off before the consumer revolves it. The consumption in the model is all consumption from the previous quarter and
so would give convenience consumption three times too large if it were not adjusted to a monthly frequency.
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most visible for the impatient 30-year-olds. First, the consumption function has an inflection point

where the consumer goes from leaving nothing for the next to period to leaving some liquidity by

not borrowing up to her credit limit. When the consumer’s liquid resources are below this point,

the Euler equation is instead an inequality, because she would like to spend more today but cannot

(Deaton 1991). The second two inflection points arise because the interest-rate differential means

there are two solutions to the Euler equation for leaving zero assets. One, the limit with assets

approaching zero from below, uses the borrowing rate RB, and the other uses the savings rate R.

The economic intuition is that leaving zero assets for the next period is optimal at a high borrowing

rate well before it is optimal at a low savings rate. For cash at hand between these two points, the

consumer has a marginal propensity to consume of one because the return on savings is not high

enough to induce her to save, but the cost of borrowing is sufficient to keep her from borrowing,

and so additional resources go straight to consumption. In Appendix B.3, we discus how to allow

numerically for these inflection points so that the consumption function is suitably kinky.

4 Estimation

This section describes how we estimate the structural model using life-cycle profiles of consump-

tion and debt. The estimation works in two stages: First, we estimate the payments value of credit

cards for revolvers νR and convenience users νC in Section 4.1. The structure of the payments

problem means it can be estimated separately. We also estimate the processes for life-cycle credit

limit and income in a separate first stage described in Section 4.2. Second, we estimate the param-

eters of the model that minimize the difference between the life-cycle profiles the model produces

and the life-cycle profiles of debt and consumption we observe in the data.

We allow for preference heterogeneity by introducing two sub-populations with different pref-

erences and overall income. Of course, additional preference heterogeneity is possible, but our

results show that this is the minimum heterogeneity necessary, and we prefer this parsimonious

form because it makes obvious the contribution of different populations while not adding too

much complexity to the computational problem. Moreover, it is not clear that more preference
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heterogeneity is identified without additional assumptions or data. We estimate differences in the

income-generating process between the two populations to allow for correlation between prefer-

ences and income.

There are thus three forms of heterogeneity in the estimated model: (1) life cycle, as people

make different decisions at different ages; (2) heterogeneous agents, as people are hit with different

shocks and so have different assets and incomes and make different decisions based on their current

wealth; and (3) population-level preference and income heterogeneity, as distinct sub-groups that

have different preferences and different income processes react differently to shocks.

To combine groups we estimate the share of group A (fA) and the multiple of the average

permanent income earned by group A (ζA). We constrain the population average income of the

two groups to match the empirical income profile so that if population A has a higher income,

then population B must have a lower income. Together fA and ζA directly determine ζB.18 For

each sub-population, the entire decision is described by four parameters: the discount rate β,

the coefficient of relative risk aversion γ, the initial wealth-to-income ratio λ0, and the fraction

of permanent labor income expected from illiquid assets such as housing, pensions, or Social

Security in late life λ1. We therefore estimate 10 parameters jointly in the second stage: θ =

{γA, βA, λA0 , λA1 , γB, βB, λB0 , λB1 , fA, ζA}.

We estimate the parameters of the nonlinear model using the Method of Simulated Moments

(MSM) of McFadden (1989). For a given set of parameters θ ∈ Θ and first-stage parameters χ such

as the interest rates, payments parameters, and income process estimated separately, we numeri-

cally find consumption/expenditure functions at each age. These same θ and χ determine the initial

distribution of assets, income, and credit limits across consumers, and how these processes evolve

stochastically. For each consumer, we draw from the initial distribution, then for each period we

draw from the income-shock distribution. Then the consumer chooses her consumption, and her

assets or debt accumulates for the next period. This process proceeds until the final period, generat-

ing for a large number of simulated consumers their own idiosyncratic paths of expenditure, assets,

18For the average income of the combined populations to equal the average observed income fAζA + fBζB = 1,
which implies that ζB = (1− fAζA)/(1− fA), since fB = 1− fA.
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and debts at every quarter over their entire life cycle. Combining the simulated consumers, a given

set of model parameters generates a life-cycle distribution of consumption, debt, and savings.

The estimation then finds the parameters θ that produce a life-cycle evolution of average sim-

ulated consumption and debt that best matches their quarterly empirical counterparts from ages

24–74. We describe the sources and construction of the empirical moments in more detail in Sec-

tion 4.3. Each profile is quarterly, so there are T = 204 quarters. More formally, for a given θ ∈ Θ,

and first stage parameters χ estimated below, let gt(θ;χ) be the difference between an empirical

moment and a simulated moment for each of 2T total moments. The MSM then seeks to minimize

the weighted square of these differences:

min
θ∈Θ

g(θ;χ)′Wg(θ;χ), (4)

where g(θ;χ) = (g1(θ;χ), . . . , g2T (θ;χ)), andW is a (2T )×(2T ) weighting matrix. We generally

use a weighting matrix proportional to the inverse variance of the empirical moments, which is the

optimal weighting matrix with no first-stage correction. It gives more weight to better-estimated

moments. We also show results using the “optimal” weighting matrix, which takes the estimated

θ̂ using our standard weights and calculates the optimal weights, taking into account the impact

of the first-stage estimates. We adjust the variance-covariance matrix of the estimates of θ for the

first-stage estimates, following Laibson et al. (2007), who improve on the work of Gourinchas and

Parker (2002) by allowing for the empirical moments to have different numbers of observations.

4.1 Estimation and identification of the payments model

Because of the structure of the consumer’s problem, whether the consumer was revolving as of the

previous period is the only way the consumption decision influences the payment decision. We can

thus find the solution to the payments problem first and then allow the solution to the payments

problem to influence the consumption problem. Table 2 shows the fraction of all expenditures

over a three-day period that the nationally representative sample of consumers from the Diary of
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Consumer Payment Choice puts on a credit card. The average consumer pays for 17.2 percent of

expenditure with a credit card. Revolvers pay for slightly less at 15.6 percent, and convenience

users pay for slightly more at 18.2 percent.19

The difference between revolvers and convenience users then exactly identifies the payment

model, as Figure 3 illustrates. We show the algebra for the identification of the payment parameters

ν0 and ν1 and the delta method to calculate their standard errors in Appendix C. Table 2 shows the

estimated coefficients with an interest rate on borrowing of 14.11 percent adjusted for inflation of

2.15 percent (see discussion in Section 4.2 for sources).

The model then directly gives the convenience value of credit cards. For a real borrowing rate of

close to 12 percent, the value of using a credit card for payments over other methods is worth 0.319

percent of expenditures to convenience users and 0.235 percent to revolvers, although with fairly

wide standard errors. The implied aggregate value of using credit cards for payments is around $40

billion a year.20 As a comparison, the fees that banks charge merchants for processing credit cards

are roughly $60 billion per year.21 The value of the intercept ν0 suggests that for the most valuable

purchases, using a credit card has a value of 4.1 percent of all expenditures for these purchases. For

comparison, if all convenience consumers received the equivalent of 1 percent cash back on their

purchases with credit cards, the implied consumer surplus would be 0.182 percent of consumption.

This calculation likely overstates the direct value of rewards because not all cards offer rewards, but

it suggests that about half of the convenience value from credit cards comes from direct rewards or

other card benefits, and the other half comes from their value as a convenient payment mechanism.

19Credit card use is fairly stable with age, although with wide standard errors (Fulford and Schuh 2015). Interest-
ingly, both revolvers and convenience users over 65 tend to spend more on a credit card.

20Personal consumption expenditures were $12.3 trillion in 2015, according to the BEA. If half of the population is
revolving, then 12283 ∗ (0.319/100 + 0.234/100)/2 = 36.6 billion. Note that this calculation is an estimate of the
consumer surplus of credit cards as a payment mechanism over other means, given the current payments ecosystem,
and so does not directly calculate welfare. For example, the calculation does not take into account the costs of operating
the payments system or the producer surplus from additional sales made because some purchases are more convenient,
or the gains to the processors, network operators, and banks.

21The total value of credit card payments was $3.16 trillion in 2015 (see the 2016 Federal Re-
serve Payments Study https://www.federalreserve.gov/newsevents/press/other/
2016-payments-study-20161222.pdf). The percentage charged to merchants varies from approxi-
mately 0.75 percent to 4 percent, but appears to average around 2 percent. Fee revenue is therefore around $60 billion,
most of which is accounted for by the interchange fees shared by banks after payouts to card networks, processors,
and other parties.
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4.2 First-stage estimates

This section describes the sources and estimates from other data sets that identify the ancillary

parameters of the model. We estimate a fifth-order polynomial of the average life cycle of income

to find income growth (Gs) at each age using after-tax income per adult household member from

the Consumer Expenditure Survey from 2000–2015. The raw data and the fitted lines are in Ap-

pendix Figure A-5. Similarly, we take a fifth-order polynomial estimate of the total credit limit per

account from the Equifax/NY Fed CCP to form Bs.22

While average income follows the observed life-cycle path, individual incomes vary based on

their idiosyncratic shocks. We use the estimates of the annual income process from Gourinchas and

Parker (2002), which are updates of Carroll and Samwick (1997), calculated from the Panel Study

of Income Dynamics. We adjust these volatilities for quarterly dynamics so that four quarterly

shocks combine to produce the same variance as one yearly shock. The quarterly transitory vari-

ance is approximately four times the annual variance because quarterly shocks average out, while

the quarterly permanent variance is approximately one-fourth the yearly variance because perma-

nent shocks stack. We estimate the probability of low income pL based on the average monthly

unemployment rate from 2000–2015 of 6.3 percent.

We observe two interest rates directly, although there is likely greater heterogeneity in interest

rates than we incorporate in the model. We set the interest rate on debt Rb − 1 = 14.11 percent

based on the average revolving interest rate over the period, adjusted slightly for the lack of explicit

default risk in the model.23 We would like to capture the returns that people expect to receive on

their savings, but the appropriate rate of return is not obvious because there is only one riskless

asset. We therefore set the return on savings at 5.4 percent, which is the average return on an

22Not smoothing these two budget constraints makes little difference to the overall estimates, but it introduces
distracting jumps in life-cycle consumption and debt as consumers respond to sudden changes in the budget constraint
driven by jumps in income or credit that disappear. Bs is proportional to permanent income for an individual consumer,
and the problem is set up so that the average permanent income across all consumers is the average income, allowing
us to back out bs.

23The Federal Reserve series G19 (Commercial Bank Interest Rate on Credit Card Plans NSA) average over the
period is 14.73 percent (the average credit card interest rate reported in the SCF is 14.22 percent). Based on calculating
the risk of default from the PSID, Edelberg (2006) calculates the zero bankruptcy risk rate would be 0.62 percentage
points lower, a smaller adjustment than in Angeletos et al. (2001), who adjust for default by 2 percentage points.
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all-bond portfolio from 1926–2015 as calculated by the mutual fund company Vanguard. We

adjust both borrowing and saving prices for the geometric average inflation rate from 2000–2015

of 2.15 percent. In the expected growth over the life cycle, we also include expected real aggregate

growth of 1.5 percent, the average compounded rate from 1947–2015 from the Bureau of Economic

Analysis (2009 chained dollars GDP per capita).24

We consider economically active life to last for 51 years (204 quarters) from age 24, when

most people have finished schooling, through age 74, when differential death rates and other end-

of-life concerns dominate. While the Equifax/NY Fed credit data have many observations even for

older ages, the Consumer Expenditure Survey (CE) becomes increasingly sparse and, for privacy

reasons, topcodes ages above 80, with the top age varying by year of the survey. Before age 94,

individuals have a probability of dying and leaving a bequest at each age. We set the probability

of death to match the age structure of the population in 2010.25

4.3 The empirical life-cycle moments

We estimate the model to provide the best fit to two life-cycle profiles: (1) the observed credit

card debt over the life cycle from the Equifax/NY Fed CCP described in Section 2, and (2) the

observed household consumption over the life cycle from the CE from 2000–2014. Because our

observed credit data are for individuals rather than households, we adjust household consumption

by dividing by the number of adults in the household. We allow for some unobserved taste changes

over the life cycle by adjusting consumption for the number of children in the household.26

Using two different life-cycle profiles—one a flow of consumption, the other a stock of debt—presents

some unique challenges relative to other work. We want the model to fit both, and so we want the

24While each of these parameters is volatile, and different agents may experience different prices, there is no sam-
pling variance about them, and so we do not adjust the MSM variance-covariance matrix for them.

25See https://www.cdc.gov/nchs/data/nvsr/nvsr63/nvsr63_07.pdf, accessed 8 August 2017.
26Formally, we estimate:

ln(Ci,t/Adultsi,t) = θa + θt + βChildreni,t + εi,t

and then calculate average household consumption per adult at each age after removing the effect of children at the
individual level. Removing the implied consumption effect of children has a surprisingly small effect. Figure A-5 in
the appendix shows the unadjusted and adjusted consumption. Children slightly raise expenditures per adult household
member from ages 35–45, but the adjustment is small.
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estimates to give approximately equal weight to departures from debt and consumption. The flow

of quarterly consumption is larger than the stock of credit card debt. By dividing each moment by

the average over the entire life cycle, we define our moments in such a way that they are scaled

comparably.27 For example, for the debt moments at each age t we define:

gDt (θ;χ) =
1

D̄

(
(1/Jt)

Jt∑
j=1

Dj,t − (1/K)
K∑
k=1

D̂k,t(θ;χ)

)
,

where D̂k,t(θ;χ) is the simulated debt of person k at age t given parameters θ averaged over the

K people we simulate, and Dj,t is the debt of person j in the CCP at age t, averaged over the Jt

people in the CCP sample. A second potential problem is that the two sets of moments may be

estimated with different degrees of precision, and the standard estimation weights will attempt to

fit one set of moments perfectly at the expense of large departures from the other. Our consumption

and CCP sample sizes are relatively similar, however, and so we avoid this problem.28Appendix

B.4 discusses the construction of the variance-covariance matrix of the combined moments.

4.4 Estimation and identification of the life-cycle model

Using the first-stage estimates of the payments problem and the other parameters, we next estimate

the full life-cycle model and then discuss the variation that helps identify the different parameters.

Table 3 shows the model estimates, while Figure 5 shows how debt and consumption vary over the

life cycle in the model and empirical moments. Because the scales of the two top panels of Figure

5 are in logs, the estimation approximately finds the parameters so that the weighted sum of the

squared differences between the predicted consumption and debt lines is as small as possible. It

27An alternative we have also tried is to define gDt (θ;χ) as the difference in the log of the mean debt and log of mean
simulated debt. Since we have to adjust the variance matrix for estimating logs instead of levels, doing so introduces
a different sort of complication. The results using this approach are similar.

28This problem is not hypothetical. We used a 0.1 percent sample from the CCP for computational reasons, but
we could have calculated the full 5 percent sample, which would have been much more precisely estimated than
the CE. With a standard weighting matrix that is the inverse of the variance-covariance matrix of the moments, the
consumption moments would have had very little weight. One possible solution is to divide each moment block of the
weighting matrix by its trace, which normalizes the overall weight of the blocks relative to each other, but it preserves
the relative weighting within each block.
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is clear that, given the constraints of the life-cycle optimization model, the model estimates can

successfully capture the life-cycle profiles of debt and consumption.

To do so, the model suggests that about 64 percent of the population (fA) must be fairly impa-

tient (βA) and not care very much about risks (γA). This portion of the population, which the figure

and tables call population A, has already acquired some debt (λA0 ) by age 24 and has substantial

revolving debt throughout the life cycle. To match the amount of debt and consumption, the esti-

mates suggest that this population has an income slightly higher than the average (ζA), although

with a large standard error that does not reject average income.29 Because individual credit limits

are proportional to income, the members of this group cannot be too poor, otherwise they would

not be able to hold and make payments on their debts. Because the discount rate is high and risk

aversion is low, most of this population lives essentially hand to mouth over the entire life cycle,

relying on credit for all of their smoothing. This population’s average utilization is high through

much of the life cycle (see the third panel in Figure 5).

The estimates suggest that the other portion of the population must be relatively patient and risk

averse. Population B is too patient to ever want to hold much debt and has not acquired much debt

by age 24 in any case (λB0 ). So consumers in population B rarely borrow except in their 20s, when

some have enough shocks to want to borrow for a brief time. Their credit card debt is thus almost

entirely from convenience use.30 Because this population expects to receive little income after

expenses (λB1 ) in late life and is relatively patient, this population spends early life accumulating

savings for late life. Consumption increases early in the life cycle as income and savings increase,

but it becomes relatively flat afterward as this population smooths consumption over the rest of the

life cycle.

Because this is a nonlinear model, all moments are typically used to identify all parameters,

but it is useful to understand how different sources of variation identify the parameters. Both the

29In comparisons using the SCF, we found that the median income of revolvers was larger than the median income
of convenience users, while the mean income of convenience users was larger. The slightly higher income of revolvers
is likely also a result of using CE income, which may miss high incomes, with administrative debt data in the CCP,
which includes large debt values.

30The added debt from convenience use of credit cards is one month’s worth of consumption (one-third of quarterly
consumption) times the estimated rate of consumption on a credit card for a convenience user from Table 2.
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consumption and debt that we observe over the life cycle are population averages, so the model is

identified from the average of the two model populations. The share of population A (fA) and its

relative income (ζA)) change the mix of the two populations. For the model to produce as much

debt as in the data, a large portion of the population (fA) must be relatively impatient and not

overly concerned about debt. This population’s impatience (βA) is mostly pinned down by the

borrowing rate (RB) to make its members willing to hold debt. If the population is too patient, it

will not accumulate enough debt. If it is too impatient, it will acquire too little debt. It must have

enough income to support the amount of debt it holds, helping to identify ζa. To get an average

consumption profile in which consumption is below income for much of the life cycle therefore

requires the other portion of the population to be relatively patient, with its discount rate (βB) close

to the savings rate R.31

While the levels of consumption and debt come from the average, the life-cycle profiles are

largely determined by only one of the populations. Because the patient population carries almost

no debt—the flow of debt from payments is relatively small compared to the stock of revolving

debt—the profile of credit card debt largely identifies the preferences of the impatient population,

their initial wealth, and their expected residual income late in life. Given this population’s impa-

tience, consumption must closely follow income. The hump shape of debt comes from increases

in credit limits early in life, which allow this population to increase its debts, and the fall in income

after age 50, which makes carrying as much debt less affordable. This population’s risk aversion

(γB) is identified by how much credit it keeps as a buffer.

The more patient and risk-averse population carries little revolving debt, so all of its debt

comes from the convenience use as a share of consumption. The impatient population A has a

strong hump in consumption as it follows income. For the average consumption profile to be

below average income, the patient population B must have a relatively flat consumption profile

31Since we include expected aggregate growth and adjust for inflation, βA and βB are more closely pinned down
relative to RB − Inflation + Real Aggregage Growth. We thank Chris Carroll for pointing out that even if we remove
trends from life-cycle profiles, the economic decision of the agent includes expected aggregate growth, and so we need
to include it to correctly model their decisions. Aggregate growth implies everyone expects to have more income next
period and so should be more impatient.
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without a downturn late in life. Its preference for risk (γB) and expected late-life income after

expenses ζB) are determined by this shape, with its discount rate (βB) pinned down by the rate of

return on savings. Its risk aversion determines the size of the buffer of savings it builds up early in

life, and so the initial level and slope of consumption over the life cycle help identify γB. The risk

aversion and initial wealth (λB) are not particularly well identified by the life-cycle moments, and

their standard errors are relatively large.

The remaining four panels of Figure 5 show model predictions for other life-cycle paths. The

model captures the slow fall in credit utilization over the life cycle. The fall comes primarily

from revolvers using less of their credit as their limits increase and, secondarily, from incomes

decreasing and making debts less affordable. To examine the evolution of wealth, which may be

negative, we take the log of wealth after giving everyone $10,000, which allows us to consider

the full distribution in a single graph. The model estimates predict less wealth accumulation over

the life cycle than estimates from the Survey of Consumer Finances, but it predicts a similar trend

increase and flattening after age 55. The model captures the level of the variance of credit card debt

reasonably well, although it does not predict the shape very well. The variance in debt is largely

coming from the combination of preference heterogeneity and permanent-income heterogeneity.

Because convenience and revolving use both count as debt, there is a big gulf between the average

debt of convenience users and revolvers, and income heterogeneity then adds to this variance.32

The model was not estimated to match these profiles, and so its ability to successfully predict

something close to their level and evolution suggests that the model is capturing important facets

of life-cycle decision-making.

32We have also estimated the variance in the change in debt from quarter to quarter, which controls for the permanent
income and preference heterogeneity. While the cross-section variance of debts is largely a reflection of persistent
differences, the change in debt captures changes for the same individual over time. The variance in the change in
log debt from quarter to quarter in the Equifax/NY Fed data is approximately 1.5 and is nearly constant over the life
cycle. The variance of the change of log debt from our standard estimates is around 0.5, with little life-cycle variation.
Changes in debt come from short-term income shocks, which cause people to want to spend more or less, and long-
term income shocks that change the credit limit. Since our estimates do not include credit limit volatility apart from
income volatility, and Fulford (2015), using the Equifax/NY Fed data, shows that credit-limit volatility is about four
times greater than income volatility, our model has too little credit-limit volatility. We also do not include shocks
to marginal utility other than income, and these are likely to be important. For example, spending for a vacation or
a durable good may increase convenience or revolving debt, but it is a lumpy consumption decision, not an income
shock.
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The heterogeneity in preferences is key to the model’s ability to capture, even approximately,

more than one life-cycle profile. Gourinchas and Parker (2002) estimate parameters to match the

consumption profile and under-predict wealth accumulation, while Cagetti (2003) estimates pa-

rameters to match the wealth profile but needs such a high degree of risk aversion that it is difficult

to capture the consumption profile. Allowing for multiple populations with different preference

lets us come closer to both profiles, even if our primary purpose is to explain debt.

By allowing for preference heterogeneity that is a natural outcome of the multiple uses of credit

cards, our estimates also suggest a mechanism for the life-cycle hump of consumption that is some-

what different from the one in Gourinchas and Parker (2002). The estimates suggest that the hump

is caused by the combination of a very impatient population consuming almost all of its income

and a more patient population with a relatively flat consumption profile consuming less than its

income. The combined population consumes less than its income on average and has the distinct

hump shape in consumption. The hump in our model comes primarily from population hetero-

geneity, rather than from the combination of precaution early in life and retirement accumulation

late in life for a single preference-homogeneous population suggested by Gourinchas and Parker

(2002). While differences in income in the short and long term are still important, the major source

of heterogeneity in outcomes such as debt and consumption come from differences in preferences.

In many ways, this explanation fits with the approach of Campbell and Mankiw (1989) and Camp-

bell and Mankiw (1990), who suggest there might be a fraction of the population living hand to

mouth. Similarly, while Krusell and Smith (1998) do not have a life cycle component, income

differences are not sufficient to explain wealth inequality in their estimates; instead, differences in

discount rates are the major driver of wealth inequality.

One continuing puzzle is that the model predicts the fraction revolving will be approximately

constant over the life cycle, while the surveys suggest it should decline over the life cycle (see

Figure 5).33 The average fraction revolving over all ages in the model is approximately correct,

33Since the SCF sometimes has trouble with credit limits (Zinman 2009) and is at a household rather than individual
level, there is reason to question whether the SCF fraction revolving is the best benchmark. Estimates from the Diary of
Consumer Payments Choice in Fulford and Schuh (2015) suggest that the fraction revolving is approximately constant
until age 50, but then declines steadily. While this profile is closer to the model prediction, the model is still not
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but because the impatient population A is always in debt and the patient population B almost

never revolves, the fraction revolving does not change much over the life cycle. It is possible that

additional heterogeneity across the population could replicate this behavior by allowing part of the

population to be on the edge between revolving and not, with the balance shifting over the life

cycle. The problem with this approach is that the difference between the savings interest rate and

the borrowing rate is so large that it is for only very particular preferences that someone who is not

willing to borrow late in life would be willing to borrow early in life. Such particular preferences

are sensitive to changes in interest rates, which suggests that credit use is sensitive to interest rates.

The stability of utilization in Figure 1 despite changes in interest rates over the period suggests that

the answer likely lies elsewhere. Perhaps reductions in income volatility as people age (Sabelhaus

and Song 2010) might explain it, although other risks seem to be increasing late in life (De Nardi

et al. 2010). Instead, there may be some sort of preference change over the life cycle, such as

increased patience or financial literacy.

4.5 Robustness and variations

In this section, we examine the robustness of the estimates to changes in weighting matrices,

starting points of the estimation, and model choices. Table 3 shows the over-identification statistic

for each estimation, which always decisively rejects the hypothesis that the model is not over-

identified. The choice of weighting matrix is therefore not innocuous; because the model is over-

identified, different weighting matrices will give statistically different results, so the best estimate

we present should be viewed as one of many possible estimates. In this section, we characterize

how the estimation would change based on alternative choices and whether the changes affect

our conclusions. Doing so also provides additional evidence about how different parameters are

identified. While particular parameters are sensitive to estimation and model choices, our overall

conclusions are not.

The second column of Table 3 shows estimates that use the two-stage “optimal” weighting

predicting a movement out of revolving late in life.
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matrix, which first estimates the parameters using our standard weighting matrix and then uses

those estimates to calculate the weights that asymptotically minimize the variance of the estimator.

The estimates are broadly similar; the impatient population is more risk averse but less patient,

and so it carries more debt and is a smaller share of the population. The “optimal” weight matrix

puts weight on different moments, so its predicted life-cycle profiles are somewhat different (see

Appendix Figure A-6) and do not fit the debt profile as well as our standard weighting matrix does.

Our overall conclusions are also robust to alternative starting points for estimation. Our numer-

ical procedure for finding the minimum of equation (4) proceeds by using numerical derivatives

calculated from a starting θ0 to move to a local minimum where the derivatives in all dimensions

are zero to within a small tolerance. This procedure is guaranteed to find only a local minimum,

however. We therefore start the procedure with θ0 in a grid that covers the 10 dimensional pa-

rameter space. Not all starting points produce the same estimate of θ, indicating that the objective

function in equation (4) has multiple local minima. The procedure converged to our best θ∗ from

a wide range of starting θ0, and so θ∗ is a candidate for the global mimum. We discuss other local

minima in Appendix B.5. The overall conclusion holds for all local minima: Around half of the

population must be fairly impatient and close to risk neutral.

In the last two columns of Table 3, we examine how changing the model changes estimates. Our

baseline estimates allow consumers to take into account the effect their consumption decisions will

have on their payments decisions, at the cost of substantial numerical complexity. In column 3, we

remove this feedback. The payments decision still affects consumption, but the consumer does not

take into account this future value when making consumption decisions. Removing endogenous

payments choice leaves the estimates almost exactly the same. Because so few people switch

from revolving to convenience use, the value an individual gets from credit card consumption this

period is almost always the same as next period. Since the value of consumption on a credit card

does not affect the marginal utility tradeoff between today and the future, it does not affect the

decision. Including convenience use as part of credit card debt is necessary, however, because the

debts we observe in the credit bureau data include both revolving and convenience debts. Allowing
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consumers to take into account the impact of consumption choices on payment choices in the future

does not appear to be particularly important for their consumption decisions.

We do not estimate directly the strength of the bequest motive since it is not well identified.

Our bequest function, described in greater detail in Appendix B.1, gives people the discounted

utility from their heirs consuming the annuity value of assets at death as well as the heirs’ own

income. The strength of the bequest motive is determined by how much more income the heirs

have compared to the individual; as the heirs’ income increases, the marginal value of leaving any-

thing to them diminishes. Our baseline estimates assume heirs have twice the permanent income

upon death of the individual. The last column assumes heirs instead have 10 times the permanent

income. The estimates are similar, suggesting that our estimates are robust to other assumptions

about bequests, and that, given our approach and data, the bequest motive is not well identified.

5 Model predictions and welfare analysis

In this section, we take the estimated model and ask how well it predicts phenomena outside the life

cycle. These results provide both an out-of-sample examination of how good the model estimates

are and whether the model can successfully explain other phenomena that we did not estimate it

explicitly to explain. We then examine the welfare impact of changing some parameters of the

model.

5.1 Aggregate credit-fall experiment

We simulate a large population with an age profile matching the population from age 24–74 and

a credit drop of the same size as the one that occurred over 2008–2009. In addition to life-cycle

income growth and individual income volatility, aggregate income grows at a constant rate of 1.5

percent per year, just as the consumers in the model assume. We also adjust the dollar values for

the average inflation rate. Finally, to mimic the fall in credit limits that started in the final quarter

of 2008 and continued through 2009, we introduce a fall in credit of 35 percent for one-sixth of the

population for six quarters. This experiment is the simplest way to produce the approximately 35
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percent drop in credit limits spread over more than a year that is evident in Figure 1, but it is not a

full replication of the changing environment. In particular, it does not include a fall in income or a

possible decline in expectations of future income growth.

The individual dynamics of credit utilization from the simulations closely match the dynamics

from the credit bureau data. Table 1 shows that once we control for fixed unobserved heterogeneity

with fixed effects, shocks to utilization disappear quickly, with 64.7 percent of a shock surviving

each quarter (the third column). The last column performs exactly the same regression on the

simulated data. The simulated consumers experience the large unexpected fall in credit in 2009

and the expected increase over the life cycle, but the only unexpected credit volatility that they face

comes because credit is proportional to volatile permanent income. Because volatility in income

is much less than volatility in credit (Fulford 2015), the consumers in the model face less credit

volatility than actual consumers do over the time period. Nonetheless, their average response to

changes in credit limits is very close to that of actual consumers; the estimated model captures the

dynamics of credit utilization closely, with 72.3 percent of a shock persisting to the next quarter.

We finally examine the business-cycle dynamics with which we started the paper. The bottom

panel of Figure 1 shows the aggregate response of the simulated consumers to the 35 percent fall in

credit introduced over six quarters. Credit continues to increase over the entire period at the same

1.5 percent rate as income, plus 2.1 percent for average inflation, partly counteracting the large

fall. Model credit growth is slightly slower than actual credit growth over the period, suggesting

that pegging credit to income does not fully capture the aggregate growth. Since consumers expect

credit growth, their debt grows at the same time, and credit utilization is stable despite the growth

before and after the crisis, just as in the data. The model successfully predicts about the same credit

utilization as in the data.

During the crisis, debt quickly adjusts to the fall in credit, so utilization is much smoother than

either credit or debt, although not as smooth as the data. As the individual dynamics show, while

shocks at the individual level disappear quickly in both the model and data, it still takes several

quarters for consumers to fully adjust their debt and savings to a 35 percent fall in credit. The
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excessive smoothness of utilization in the credit bureau data suggests that there must be additional

features of the period not captured by the simple simulated shock, because the simulated data

closely matches the individual responses to a fall in credit. The simulation does not match the

distribution of the fall in credit, which was initially concentrated among those consumers with

high credit scores, while later declines occurred among those with lower credit scores (Fulford

2015). Even without these features, our model produces a notably smoother path than a simple

version of the Life Cycle/Permanent Income Hypothesis (LC/PIH) would suggest.34

How important was the fall in credit for consumption? Our model makes clear a causal con-

nection between the fall in credit limits and the fall in debt through a reduction in consumption.

From the second quarter of 2008 to the final quarter of 2009, real consumption per person fell 9.2

percent relative to the trend from 2000–2008. Our simulations suggest that the fall in credit limits

over the same period was responsible for a fall in consumption of 2.3 percent relative to trend,

or about one-quarter of the fall. The fall in consumption from the simulations quickly rebounds,

however, as consumers rebuild their liquidity, and so a fall in credit does not explain the continuing

weakness in consumption after 2009.35

5.2 Implications for stimulus policy

We next briefly examine the welfare and policy consequences of modifying the economic environ-

ment, given our structural estimates. A caveat with all of these results is that our model is in partial

equilibrium, and so it does not reflect any changes in prices that might result in general equilib-

rium. Guerrieri and Lorenzoni (2017) examine some of the complications and amplifications that

34Constructing the path of the LCH/PIH is not entirely trivial or without assumptions. By definition, in the PIH,
liquidity constraints can never bind, otherwise a precautionary motive arises (Carroll and Kimball 2001). Counter-
factually to the results in this paper, credit limits cannot matter for the PIH. We construct the PIH line in Figure 1 by
taking the 2008Q1 debt as the optimal distribution. Since we do not vary the age structure of the population or the
growth rate, that amount of debt, adjusted for inflation, is the correct amount of debt for the entire period. Utilization
is therefore falling until 2008, as limits increase, and then increases proportionally to the fall in credit limits.

35Figure A-7 in the appendix shows the relative paths of consumption from our simulations and real personal con-
sumption per person from the BEA. The fall in consumption in the data, relative to trend, continues even after the
credit contraction stops, while a fall in consumption caused by consumer credit produces a V-shaped path. Consump-
tion from the simulations is actually higher after several years, because debt is lower, and so interest payments decline.
This path is general following credit changes in precautionary models (Fulford 2013).
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occur in a buffer-stock model in general equilibrium.

The ability to temporarily boost consumption is an important tool for counter-cyclical policy.

One way to provide such a boost is with direct cash infusions through tax rebates (Parker et al.

2013). For such a policy to be effective as a stimulus, individuals must increase spending soon after

the rebate. Kaplan and Violante (2014) summarize the literature and suggest that the additional

non-durable consumption within a quarter is around 25 percent of the rebate. Yet standard models,

even with income uncertainty, predict very small responses. Figure 4 illustrates why. Our patient

population B has preferences that look similar to standard assumptions based on calibration or

estimation that attempts to match the level of wealth. The distribution of liquidity for our patient

population at age 30 puts almost no one at a steep part of the consumption function, even this early

in the life cycle, and so rebates have a small impact.

Our population estimates produce responses to temporary payments that are similar to empir-

ical estimates, because our estimates suggest that a large portion of the population has a strong

marginal propensity to consume. Using the estimates from column 1 in Table 3, we simulate the

population response to a temporary, unexpected cash gift of 5 percent of permanent income dis-

tributed evenly over age groups. The results are in Table 4. On average, 28 percent of the gift is

consumed within a quarter, driven by a strong consumption response by the impatient population

A. In Figure 4, the mass of this population is generally along a high marginal propensity to con-

sume part of the consumption function. Our results thus provide an alternate but complementary

explanation to Kaplan and Violante (2014) for why the consumption response to rebates is so large.

Both the reduced-form estimates from the credit bureau data and the structural estimates sug-

gest that changes in consumer credit produce large consumption responses. An alternate way to

increase liquidity is to increase credit rather than income. When we increase the credit limits of

the population by 5 percent in Table 4, we get consumption effects that are almost as large as direct

cash infusions, again driven mostly by our impatient population. While the structural model allows

us to increase credit in a way that is uncorrelated with anything else, our reduced-form estimates

from the credit bureau data give nearly the same estimates in response to an increase in credit that

37



reduces utilization (see Table 1).

5.3 Welfare analysis

We next examine the welfare consequences of changes in the economic environment. Because our

population has heterogeneous preferences, how to conduct welfare analysis is not obvious. We

avoid the normative issue of whose preferences to use by asking how changes affect the welfare

of each population according to its own preferences. For each possible change, we recalculate

the optimal responses using the estimated parameters in column 1 of Table 3 with the change in

environment. Then we ask how much extra consumption we would have to give individuals in each

period to make them indifferent at the start of life between the new environment and our standard

one.

Table 5 shows the results of the consumption-equivalent welfare comparison of changing the

interest rate on debt and the credit limit. Reducing the nominal annual interest rate from 14.11

percent to 8 percent has the utility equivalent of increasing consumption in every period by 1.5

percent for population A, which is generally borrowing, but by only 0.04 percent for population B.

Similarly, doubling the interest rate to 28 percent reduces utility by the consumption equivalent of

0.86 percent for A and by 0.13 for B. Most of the welfare loss from an increase in interest comes

from the first increase; an increase in interest to 60 percent is only slightly worse than 28 percent.

Allowing credit limits to go immediately to their life-cycle maximum multiple of income so

that agents can borrow approximately one year’s worth of income even at the beginning of life

increases welfare by the consumption equivalent of about 1 percent for both populations. Credit

limits have strong welfare consequences, particularly for the young people who are initially quite

credit constrained.

6 Conclusion

This paper uses the consumer’s decision about how to use credit cards to provide a window into

more general savings and consumption decisions. We show that credit changes are very large over
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the business cycle, the life cycle, and for individuals. Changes in credit are therefore some of the

largest changes in liquidity faced by households. On average, people react quickly to these credit

changes, and so credit utilization is stable over the business cycle, life cycle, and for individuals.

We take the insight this tight link between credit and debt gives and estimate a model of life-

cycle consumption, debt, and payments using credit cards. The model has a number of notable

successes. It captures the hump shape of debt and consumption. It predicts the slow decline in

utilization over the life cycle and the steady increase in wealth. It also predicts smooth utilization

over the business cycle, and it closely matches the reduced-form relationship at the individual level

between credit and debt that we estimate from the credit bureau data. The model also reveals an

important puzzle: It predicts a relatively constant fraction borrowing over the life cycle, even as

the amount of debt changes, while surveys suggest that the share should fall over the life cycle.

It seems that life-cycle concerns are not sufficient to cause those willing to borrow in early life to

stop borrowing late in life. Perhaps additional population level heterogeneity is needed, so that life-

cycle concerns are enough to shift a portion of the population out of borrowing. Alternatively—and

intuitively to anyone who is no longer a teenager—it seems likely that people learn and change their

preferences as they age.

Many of our results come directly from the insight that not everyone who has a credit card uses

it to borrow, while some people are willing to borrow at a high rate of interest. Borrowing implies

the consumer places substantial weight on consumption today versus tomorrow because of shocks

or impatience. Other people have a credit card and use it only to make payments, suggesting

they place more equal weight on today and the future. This heterogeneity of use suggests that

preference heterogeneity must be an important part of understanding consumption decisions, and

that a large fraction of the population must have a relatively high marginal propensity to consume.

The preference heterogeneity is key to the estimated model’s ability to match the impact of a cash

infusion (Kaplan and Violante 2014, Parker et al. 2013).

So why is credit utilization stable? Because all the uses for credit cards push toward stability,

although in different ways. Payments use of credit cards is proportional to consumption and so
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moves in the same way it does. Changes in permanent income that increase credit limits also

increase consumption and thus payments use, keeping utilization stable for convenience users.

When credit is useful as a buffer against shocks, an increase in credit effectively makes people

more wealthy, allowing them to spend more in the short run (Fulford 2013) and increasing their

debts at the same time. Finally, because credit limits increase faster than income early in life,

consumers using credit cards to smooth over the life cycle are particularly constrained early on,

and so they increase debt at nearly the same pace as their limits increase.
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Figure 1: Credit card limits, debt, and utilization: 2000–2015
Observed limits, debts, and utilization from credit bureau
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Notes: The top panel shows observed limits, debts, and utilization from credit bureau data (see Section 2 for details).
The bottom panel shows model predictions given an unexpected fall in credit (see section 5 for details). For both
panels, the left axis shows the average credit card limits (top line) and debt (bottom line). Note the log scale. The right
axis shows mean credit utilization (middle line) defined as the credit card debt/credit card limit if the limit is greater
than zero. Source: Authors’ calculations from Equifax/NY Fed CCP.
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Figure 2: Credit card limits, debt, and credit utilization
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1

Notes: Each line represents the average credit card limit (conditional on being positive, log scale), debt (conditional
on being positive, log scale), and utilization (conditional on having a limit, bottom panel) of one birth year cohort from
1999–2014. Source: Author’s calculations from Equifax/NY Fed CCP.
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Figure 3: Value or cost of expenditure using a credit card, relative to other means
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Figure 4: Expenditure functions over the life cycle with borrowing
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Figure 5: Consumption and debt over the life cycle: model estimates
Estimation moments: Debt Estimation moments: Consumption

30 40 50 60 70

Age

200

500

1,000

2,000

5,000

10,000

20,000

C
re

di
t c

ar
d 

de
bt

 a
nd

 li
m

it 
($

, l
og

 s
ca

le
)

Model debt
Equifax credit card debt
Equifax credit card limit
Population A debt
Population B debt

30 40 50 60 70

Age

10,000

15,000

20,000

30,000

40,000

   
   

 C
on

su
m

pt
io

n 
an

d 
in

co
m

e 
($

 y
ea

rl
y,

 lo
g 

sc
al

e)

Model consumption
CEX consumption
CEX income and model income
Population A consumption
Population B consumption

Estimation predictions: Utilization Estimation predictions: Fraction revolving

30 40 50 60 70

Age

0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Model utilization
Equifax utilization
Population A
Population B

30 40 50 60 70

Age

0

0.2

0.4

0.6

0.8

1
Fr

ac
tio

n

Model fraction revolving
SCF fraction revolving
Population A
Population B

Estimation predictions: Wealth path Estimation predictions: Variance of debt

30 40 50 60 70
Age

5,000

10,000

20,000

50,000

100,000

W
ea

lth
 (

$,
 lo

g 
sc

al
e)

Model mean log wealth+10,0000
SCF per person mean log wealth+10,000

30 40 50 60 70

Age

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
ar

ia
nc

e

Model variance log debt
Equifax variance credit card debt

Notes: Life-cycle paths from simulated population using the estimates in column 1 of Table 3.

47



Table 1: Credit utilization
Equifax/NY Fed CCP Model

Credit utilizationt
Credit utilizationt−1 0.874*** 0.868*** 0.647*** 0.723***

(0.000876) (0.000892) (0.00131) (0.000477)
Constant 0.0479***

(0.000461)

Observations 347,642 347,642 347,642 2,168,011
R-squared 0.741 0.743 0.429 0.525
Fixed effects No No Yes Yes
Age and year effects No Yes Yes Yes
Number of accounts 10,451 46,607
Frac. Variance from FE 0.477 0.228

Notes: The sample includes zero credit utilization but excludes individual quarters where the utilization is undefined
since the limit is zero and when utilization is greater than five (a very small fraction, see distributions of utilization in
Fulford and Schuh (2015)). Source: Authors’ calculations from Equifax/NY Fed CCP.

Table 2: Fraction of expenditure on a credit card and value for payments

Fraction on Std. Std.
Credit card error dev.

All consumers 0.172 0.0082 0.310
All revolvers 0.156 0.0130 0.283
All convenience users 0.182 0.0105 0.324

Model Estimates

Level ν0 0.035 0.0216
Slope ν1 0.194 0.1259

Implied value of credit card use (percent of consumption)

Revolvers 0.235 0.1512
Convenience users 0.319 0.0962

Notes: Authors’ calculations from the Federal Reserve Bank of Boston Diary of Consumer Payment Choice. The
standard errors are calculated by bootstrapping.
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Table 3: Model estimates
Standard Optimal No end. Low
Weights Weights payments bequest

Population A
CRRA γA 0.115 0.568 0.115 0.117

(0.034) (0.523) (0.034) (0.038)
Discount βA 0.890 0.801 0.890 0.891

(0.002) (0.196) (0.002) (0.002)
Initial wealth λA0 0.500 0.477 0.500 0.500

(0.046) (0.206) (0.045) (0.046)
Late life inc. λA1 0.599 0.496 0.599 0.598

(0.040) 0.31057 (0.040) (0.039)
Population B

CRRA γA 1.751 1.82511 1.751 1.751
(1.060) 0.67573 (1.059) (0.923)

Discount βB 0.964 0.932 0.964 0.965
(0.018) (0.025) (0.018) (0.016)

Initial wealth λB0 1.700 1.742 1.700 1.700
(1.171) (0.247) (1.170) (1.103)

Late life inc. λB1 0.051 0.442 0.051 0.052
(0.185) (0.071) (0.185) (0.151)

Share A fA 0.640 0.365 0.640 0.637
(0.005) (0.003) (0.005) (0.009)

Inc. mult. A ζA 1.094 1.015 1.094 1.092
(0.099) (0.343) (0.098) (0.101)

J-stat 528.79 1168.80 528.77 571.52
p-val 0 0 0 0
Weights Standard Optimal Standard Standard
Endogenous payments Yes Yes No Yes

Notes: Standard errors in parentheses. Optimal weights are the inverse of the variance of each individual moment. No
endogenous payments removes the consumer’s awareness that revolving affects the value of credit cards for payments.
Low bequest reduces the bequest motive. For a description of each moment and the estimation method, see the
beginning of section 4.
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Table 4: Effects of temporary cash infusion or permanent credit increase

Full pop. Pop. A Pop B. Full pop. Pop. A Pop B.

∆ Expenditure from previous quarter

Transitory income 0.288*** 0.349*** 0.121***
increase (0.0153) (0.0220) (0.00680)

Permanenent credit 0.180*** 0.221*** 0.0524***
limit increase (0.0152) (0.0215) (0.00684)

Observations 533,288 341,544 191,744 533,288 341,544 191,744
R-squared 0.001 0.001 0.002 0.001 0.001 0.001
Age effects Yes Yes Yes Yes Yes Yes

Notes: This table shows the results of experiments using the estimates from column 1 in Table 3. We give a randomly
selected portion of our simulated population a cash gift of 5 percent of permanent income or a 5 percent increase in
individual credit limit. The regression is then ∆Const = α + f(age) + βCasht + εt measuring how much of the
increase in cash or credit limit is consumed within one quarter.

Table 5: Welfare comparisons: Equivalent gain or loss in consumption (percent)

Population A Population B

Reducing the interest 1.5017 0.0401
rate to 8% annually

Increasing the interest -0.8633 -0.0656
rate to 28% annually

Increasing the interest -1.0581 -0.1329
rate to 60% annually

Constant credit limit at 0.928 0.815
life-cycle maximum

Notes: Each cell shows the increase (or decrease) in consumption in every period—discounted back to the beginning of
life—that makes the utility of that population the same, on average, as without the change. For example, if population
A shows an increase of 1.1, then the change in environment has the same utility impact as a 1.1 increase in consumption
in every period for every agent using the preferences of population A.
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A Changes in credit utilization: non-parametric evidence

Figure A-4 shows conditional mean scatter plots of credit utilization in one quarter against credit

utilization in the next quarter, in the next year, and in two years. The top row shows the mean

in the future, conditional only on having the utilization shown on the x-axis in that quarter. The

bottom row instead takes the within transformation and allows for age and year effects. It therefore

shows how far from the individual’s average credit utilization she is in the next quarter, conditional

on differing from her average utilization by the amount on the x-axis this quarter. In other words,

if an individual is 10 percentage points above her typical utilization in one quarter, how far will

she be on average in the next quarter, next year, and in two years? Each dot contains an equal

portion of the sample. Figure A-4 thus captures the relationship between utilization today and in

the future without imposing any parametric assumptions. Each panel also shows the best fit line

for the conditional means and the estimated coefficients.

The top panels show that credit utilization is highly persistent and does not trend to zero on

average. Credit utilization this quarter is typically very close to credit utilization next quarter,

because the conditional means are typically very close to the 45-degree line. For example, on

average, if a person is using 40 percent of her credit this quarter, she will be using about 40 percent

of her credit next quarter. On closer examination, average credit utilization is higher next quarter

for those using less than 20 percent of their credit, and lower for those using more than 80 percent

of their credit. The best fit line through the conditional means suggests that credit utilization is not
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trending to zero. Instead, the long-term steady-state utilization is 0.39.36 The same conclusion is

evident from the conditional changes comparing utilization this quarter to a year from now and to

two years from now. Those consumers using less than approximately 40 percent of their available

credit this quarter are using more of their credit in one year and in two years. Those using more than

40 percent of their credit are using less of their credit on average within one year and two years.

The steady-state credit utilization is around 40 percent (evident by finding where the conditional

expectation function crosses the 45-degree line), although the movement toward the steady state is

fairly slow.

On average, individuals do not trend to zero utilization or to using all their credit. Conditional

on using zero credit this quarter, credit utilization is nearly 5 percent within one quarter and nearly

8 percent in a year. On the other hand, the average person using all her credit in one quarter is

using less than 90 percent of it in a year.

The second row of Figure A-4 allows individuals to return to their own mean and adds sub-

stantial nuance. Credit utilization is so persistent in the top row because individuals have their own

mean to which they actually return quite rapidly. The speed of the return is evident from the slopes

of the lines. Only 67 percent of a shock to utilization remains after one quarter, and 13 percent

remains after two years.

Even if individuals return very rapidly to their own means, it is important to note that those

means are not zero. Credit utilization is persistent in the top row of Figure A-4 because individuals

are typically quite close to their own mean credit utilization. Since credit utilization is the ratio

of debt and credit, the stability of credit utilization implies that an individual with an increase in

credit has increased her debt by 33 percent of the increase in credit within one quarter, and by 87

percent of the increase in credit in two years.

36Since the conditional expectation of utilization next quarter given this quarter is ut+1 = 0.041 + 0.896ut, the
steady-state utilization is 0.39=0.041/(1-0.896).
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B Additional Model Details

This section provides additional discussion of the model’s formulation and numerical solution and

the construction of the variance covariance matrix of moments from credit bureau data.

B.1 Bequests

In our base estimation, we give consumers who die with positive resources some extra utility

from bequests. Bequests end up being important only because they help explain our impatient

group’s decrease in debt after 60, although the exact parameters are not well identified. Without

any bequest motive, as the likelihood of dying increases, it becomes optimal to increase debt for

impatient nearly risk-neutral consumers because they are effectively becoming more impatient. A

bequest motive keeps the increasing probability of death from effectively translating into increased

impatience, and so it allows debt to decline with income after age 60. This appendix outlines one

flexible approach to including bequests.

When introducing bequests in a model with both debt and savings, it is difficult to value what

happens when people die in debt. Unsecured consumer credit is taken out of any estate passed on

to heirs, but is not directly passed on. Simply including bequests in the sub-utility function will

therefore produce negative infinite value from leaving no bequest, which consumers will counter-

factually act to avoid by never being in debt. Instead, we model the bequest motive as the con-

sumer’s considering the marginal utility a bequest to her heirs will bring them on top of the heirs’

own incomes and any non-liquid bequest she may consider leaving. We model these non-liquid

bequests and heirs’ income as a multiple ζ of permanent income on death, adding the annuity value

of the assets left at death and taking the present value using the consumer’s preferences:

S(At) =

 T̃∑
s=0

βs
(ζPt + rBAt)

1−γ

1− γ

 .

The parameter ζ determines the marginal utility of bequests and can be thought of as how much

more or less income children have compared to their parents, and T̃ is the same finite life as the
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parents’. The reason to use finite rather than infinite heirs’ lifetimes is to allow for possibly very

patient parents with β close to or greater than one.

B.2 Recursive formulation and normalization

Rewritten in recursive form and normalized by permanent income Pt, the problem is equivalent to:

vt(wt, bt, at−1) = max
xt,πt

{
u(νtxt) + Et[βt+1(Gt+1Nt+1)1−γvt+1(wt+1, bt+1)]

}
subject to

xt ≤ wt

wt+1 = Rt+1(IRt )at + Ut+1 + bt+1

at = wt − bt − xt

νt = ν(πt; at−1),

where Rt+1(IRt ) = R/(Gt+1Nt+1) if at ≥ 0 and Rt+1(IRt ) = RB/(Gt+1Nt+1) if at < 0. The

expectation at t includes the possibility of death before T and the certainty of death at T̃ , leaving a

bequest worth βt+1s(at), where s(·) is the bequest function normalized by Pt. Note that if bt is not

stochastic and instead follows the average path of the credit limit to permanent income ratio, then

bt, like Gt+1, is not a part of the state space that differs for individuals and the decision simplifies

slightly to vt(wt, at−1). Of course, credit limits and income growth still matter, but they do not

vary individually and so show up in each consumer’s expenditure function xt(wt, at−1). Because

of the structure of the payment problem, ν(πt; at−1) takes on only two values for an optimizing

consumer, νR for revolvers and νC for convenience users. The value expenditure function depends

only on whether at−1 ≥ 1, substantially reducing the dimensionality of the problem.

B.3 Numerical solution

With the problem written recursively, we proceed through backward recursion to find a numerical

approximation of the consumer’s problem. Let IRt indicate revolving status: It is 1 if at−1 < 0

and 0 else. For a given set of parameters, once vT+1(aT , 0, I
R) is given, it is possible to find
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an approximation of vT (w, b, IR) and use the approximation of vT (w, b, IR) to find vT−1(w, b, IR).

Note that in each case we find a separate function for revolvers and convenience users. The solution

to each period’s value function is an expenditure function xt(w, b, IR). We follow several standard

steps (see Carroll (2012) for a more in-depth discussion of many of these approaches). First, we

discretize the lognormal shocks using a Gauss-Hermite quadrature, which turns the integration in

the expectation function into a summation over discrete states. Because the income process is

surely not exactly lognormal, there is no gain or loss in accuracy from doing so; we are simply

replacing one approximation of shocks with another.

Second, we follow the method of endogenous gridpoints (Carroll 2006) to find the optimal

expenditure that leads to end-of-period assets at at a number of gridpoints for at and bt. It is then

possible to very elegantly find optimal consumption that leaves this amount of assets xt(w, b, IR) at

the endogenous gridpoints for w simply by using the accounting identity at = wt− bt− xt. Doing

so avoids a computationally costly numerical root-finding approximation entirely. More precisely,

if the consumer has not consumed all available cash at hand for the next period, and therefore is

not strictly constrained by the credit limit, then the standard first-order conditions and the Euler

equation imply that:

u′(ν(IRt )xt) = Et[βtRt+1(at)(Gt+1Nt+1)1−γu′(νt+1xt+1(wt+1,bt+1, I
R
t+1))],

where, despite its subscript, νt+t = ν(IRt+1) is determined entirely by the choice of whether to

leave positive or negative assets for the next period. Given the next-period expenditure function, it

is straightforward to find the optimal expenditure that leaves end-of-period assets at as:

xat (a, b, I
R) =

(1/νt)
(
Et

[
ββ̂t+1Rt+1(a)(Gt+1Nt+1)1−γ (νt+1x(Rt+1(a)a+ Ut+1 + bt+1, bt+1))−γ

])−1/γ

. (5)

For a vector of end-of-period assets ~a, it is nearly costless to find the optimal consumption at a

vector of endogenous points for cash at hand where ~w = ~a + b + xat (~a, b, I
R) is the amount at
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which consuming xat (a, b, I
R) and leaving a for next period is optimal. We linearly interpolate

between these points to find an approximation of the expenditure function. Note that the expen-

diture function is a function of whether the consumer is revolving by having negative assets last

period, in addition to the current state of cash at hand and the credit limit. While revolving status

is not a continuous state, the addition of another state variable complicates the solution because

we must find the optimal expenditure for convenience users and revolvers, who find consuming

less valuable because they pay for it in a slightly less convenient way. For the most part, someone

who is not revolving this period will not be revolving next period, and so vt = νt+1, and the pay-

ment choice does not affect the expenditure decision directly. It does, however, make revolving

somewhat more costly.

Because the consumer’s problem includes an externally imposed credit limit as well as interest

rates that differ depending on whether assets are positive or negative, there are several additional

complications. The first is that the standard Euler equation does not hold when the consumer is

against her credit limit, and so she spends all available resources because she would like to spend

more today but cannot (Deaton 1991). This problem is relatively easy to deal with, however, by

including the inflection point that is the last point at which the Euler equation holds. At this point

the assets left for the next period are −bt. For any cash at hand less than w∗ = xat (−b, b, IR),

the consumer expends all cash at hand, so xt(w, b, IR) = w if w ≤ w∗. The second problem is

that the interest-rate differential introduces a step in the consumption function, because there are

two solutions to equation (5) for a = 0. One, the limit with assets approaching zero from below,

uses the borrowing rate RB, and the other uses the saving rate R. The economic intuition is that

leaving zero assets for the next period is optimal at a high borrowing rate well before it is optimal

at a low savings rate. For cash at hand between these two points, the consumer has a marginal

propensity to consume of one since the return on savings is not high enough to induce her to save,

but the cost of borrowing is sufficient to keep her from borrowing, and so additional resources go

straight to consumption. To deal with this issue, the endogenous gridpoints include two points

where a = 0: The first, xBt = xat (0, b, I
R;RB), is the solution to equation (5) when a = 0 using
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RB and wBt = 0 + b + xBt ; and the second is xFt = xat (0, b, I
R;R) and wFt . Between the points

(wBt , x
B
t ) and (wFt , x

F
t ), the consumer has a marginal propensity to consume of one.

Figure 4 in the main paper illustrates these kink points, labeling wBt as the point where con-

sumers stop borrowing and wFt as the point where they start saving. Several points are worth

discussing. First, the consumption function generally falls with age. This occurs as the consumer

plans for retirement, when having accumulated a large amount of savings is valuable. Second, for

low cash at hand below w∗, the marginal propensity to consume is one. Between w∗ and wB, the

consumer is leaving debt for next period and so is paying a high interest rate RB. Between wB and

wF , the consumer does not want to borrow, but the return on savings is not high enough, so she

leaves zero assets and has a marginal propensity to consume of one. This kink in the consumption

function implies that there can be a positive fraction of consumers who hold exactly zero assets.

The distance between wB and wF depends on the interest-rate differential, with a wider differential

implying a larger distance.

B.4 Construction of variance-covariance matrix

The variance-covariance matrix for the combined moments is simply block diagonal, because they

are sampled independently from a large population. The Consumer Expenditure Survey block

of the variance-covariance matrix is simply diagonal, since the survey does not repeat the same

households over multiple years.

Because we observe individuals over time in the Equifax/NY Fed CCP data, the credit bureau

portion of the variance-covariance matrix has off-diagonal elements. We populate this matrix by

estimating the co-variance of debts in the population at various lags. Since the data is quarterly, the

full matrix is 204x204, and because our data agreement limited what we could make public (and

the size of the data limited what we could practically calculate), in practice we do not estimate

each element separately. Instead we estimate the covariance at each age from 24–74 at quarterly

lags 1, 2, 3, 4, 8, 12, 16, 32, and 48 and assume that the co-variance at each age changes smoothly

in between them. Since the data cover only 16 years, all covariances beyond 64 quarterly lags are

A-7



zero. The combination of estimating covariances from a sample, constructing intermediate covari-

ances, and numerical precision leaves the resulting covariance matrix with minimum eigenvalues

that are slightly negative, and so the matrix is not positive definite. We make a “ridge adjustment”

by adding a small amount to the diagonal until all eigenvalues are greater than or equal to zero.

This adjustment effectively increases the variance of our main moments, and so it is generally con-

servative although not entirely innocuous, since it changes the variances but not the covariances.

B.5 Characterization and discussion of local minima

While Table 3 presents the best estimate after starting the estimation at a grid of points, given the

over-identification, it is useful to briefly characterize other possible minima. Figure A-8 shows

the starting points and the distribution of optimal estimates for each parameter. There is a high

correlation between many parameters, and many of the estimates come from local maxima that are

much worse than our best estimate, and so these distributions do not represent a menu of equivalent

alternative estimates. Nonetheless, it is clear that the starting point for θ0 does not determine θ∗,

and so the estimation is identified in a narrow numerical sense.

Among the estimates with objective functions close to that produced by θ∗, the only important

variation is that the estimates suggest a somewhat more patient population B (βB ≈ 0.962) with a

lower risk aversion (γB ≈ 1.6) is nearly equivalent to our main estimates. Because the coefficient

of relative risk aversion is the inverse of the intertemporal elasticity of substitution, γ and β have

similar roles in utility. Loosely, β governs how much the consumer cares about expected marginal

utility in the future, while γ shifts expected marginal utility by making bad states better or worse.

Beyond the best estimates, there are larger differences in the parameters at the local maximum,

but the fit was always substantially worse. There are some obvious tradeoffs between certain

parameters. The impatient population could either be very impatient (βA ≈ 0.83) and have some

risk aversion (γA ≈ 1) or be less impatient (βA ≈ 0.88) and have almost no risk aversion (γA ≈ .5

or less). The more patient population B faces a similar tradeoff between βB and γB.

The proportion of population A (fA) changes across the local minima in more substantial ways.
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While allowing for preference heterogeneity is a step forward in our work, imposing only two pop-

ulations is still a simplification, albeit one that is useful both expositionally and computationally.

At each minimum, fA is tightly estimated. However, the range of fA in the local minima suggests

that different weights would produce different estimates of fA. The overall conclusion holds for all

estimates: In order to match the amount of debt we see in the data, half or more of the population

must be fairly impatient and close to risk neutral.

C Identification of the payments model

This section shows how to identify the payment-model parameters and standard errors from ob-

servable moments. It then calculates the consumer surplus and its standard errors. We observe:

πR =
1

N

N∑
i=1

π∗i,t|IRi,t−1 = 1,

the average expenditures by revolvers on a credit card, and similarly πC , the average for con-

venience users. We denote our estimates of the standard errors of these means as σR and σC .

Then the intercept for the average convenience user is just πC = ν0/ν1, and for a revolver it is

πR = (ν0− rB/24)/ν1, where rB is the APR interest charged on payments, which have an average

daily balance of half of the month’s consumption. Solving for ν0 and ν1 gives:

ν1 =
rB/24

πC − πR

ν0 = πCν1 =
(rB/24)πC

πC − πR
.

The presence of a difference of two random variables whose supports may overlap in the de-

nominator of the transformed variables makes calculating their variances potentially tricky. Since

πC −πR may be close to zero, then ν1 and ν0 may be very large, which is a different way of saying

that the model is not identified if there is not a difference in the average behavior of convenience

users and revolvers. We calculate the standard errors of the transformed variables using the delta
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method, which avoids this issue by examining only small changes around the optimum, and so it

does not consider the highly nonlinear increase around πC −πR = 0. For small changes εC and εR

around πC and πR:

ν1 ≈ (rB/24)

(
1

πC − πR
− εC − εR

(πC − πR)2

)
.

Since πR and πC are independent, the variance of ν1 is approximately:

V ar[ν1] ≈
(

rB/24

(πC − πR)2

)2

(σ2
C + σ2

R).

Taking the same expansion for ν0, including the covariance of the numerator and denominator:

V ar[ν0] ≈
(

πCrB/24

(πC − πR)2

)2
(
σ2
C +

(
πR

πC

)2

σ2
R

)
.

Finally, the total additional convenience value of using a credit card over the alternatives for a

convenience user is just the area under the curve:

νC = ν(πC ; IRi,t−1 = 0) = 1 + (πCν0)/2 = 1 +
(rB/48)(πC)2

πC − πR
,

and for revolvers it is:

νR = ν(πR; IRi,t−1 = 1) = 1 +
πR

2

(
(rB/24)πC

πC − πR
− rB

24

)
.

Taking an expansion around πC and πR yields:

V ar[νC ] ≈
(
rB

48

)2
(

2πC

πC − πR
−
(

πC

πC − πR

)2
)2

σ2
C +

(
πC

πC − πR

)2

σ2
R
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and

V ar[νR] ≈
(
rB

48

)2(
πC

πC − πR
− πCπR

(πC − πR)2

)2

σ2
C +

(
πC

πC − πR
− πCπR

(πC − πR)2 − 1

)2

σ2
R.
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Figure A-1: Fraction with positive credit card limit and debt by cohort and age from CCP
(A) Fraction with positive limit (B) Fraction with positive debt
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Notes: Each line represents the fraction with positive credit card limits or debt of one birth cohort, 1999–2014. Source:
Authors’ calculations from Equifax/NY Fed CCP.
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Figure A-2: Credit card limit, debt, and credit utilization distributions and standard deviations by
age
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Figure 8: Percentiles of log credit card limit by cohort (1920, 1930, 1940, 1950, 1960, 1970, 1980).
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Figure 9: Percentiles of log credit limit by age
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Figure 10: Percentiles of log credit debt by age
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(C) Credit utilization
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Figure A-3: Credit card limits, debt, and utilization: age and year effects
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Notes: Each line shows the estimated age or year effects from equation (1). Note the different scales. Source: Authors’
calculations from Equifax/NY Fed CCP.
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Figure A-4: Changes in credit utilization in one quarter, one year, and two years
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Notes: Each point in the top row shows the mean credit utilization in the future, conditional on being in the bin with a
mean credit utilization on x-axis today. The bottom row shows the conditional relationship between deviations from
the individual mean utilization over the entire sample, adjusting for age and year. Source: Authors’ calculations from
Equifax/NY Fed CCP using the program binscatter (Stepner 2013).
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Figure A-5: Consumption and income over the life cycle from the Consumer Expenditure Survey
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Figure A-6: Consumption and debt over the life cycle: model estimates with “optimal” weights
Estimation moments: Debt Estimation moments: Consumption
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Figure A-7: Consumption over the business cycle
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Figure A-8: Estimation robustness: model estimates starting from different points
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Figure A-9: Estimation robustness: model estimates starting from different points
γB βB
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