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Abstract

A principal is uncertain of an agent’s preferences and cannot provide mon-
etary transfers. The principal, however, does control the discretion granted to
the agent. In this paper, we provide a simple characterization of when it is
optimal for the principal to screen by offering different terms of discretion to
the agent. When the principal’s utility is sufficiently concave, it is optimal for
the principal to pool and to offer all agents the same discretion. Thus, for
any number of agents and any distribution over agent preferences, the optimal
contract is simple: the principal sets a cap and forbids actions above this cap
(interval delegation). For less concave preferences, it is optimal for the principal
to screen. The principal benefits by providing agents a choice between inter-
val delegation and gap delegation, which allows for more extreme actions but
prohibits intermediate actions. Moreover, we provide new intuition for the op-
timality of interval delegation when the principal knows the agent’s preferences:
the payoff distributions generated by sets containing gaps are mean-preserving
spreads of those generated by intervals.
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1 Introduction

1.1 Motivation

Principals frequently delegate decisions to an agent with greater knowledge of the

impact of these decisions on their intended outcomes. This agent could be a stand-

ing committee drafting a bill for a legislative body (Gilligan and Krehbiel, 1987), a

financial supervisor engaged in rulemaking (Melumad and Shibano, 1994), or a mo-

nopolist setting prices at the behest of a regulatory authority (Amador and Bagwell,

2016). The standing committee may have expert knowledge relevant to the bill being

crafted. The supervisor may have greater knowledge of the institutional detail of

financial markets. Finally, the monopolist may know the precise costs of production.

This knowledge is directly relevant to the objectives of the principal. As the less

informed principal, the legislature would like to make use of the expert and institu-

tional knowledge of the committee to craft an effective bill or rule. In the monopoly

example, the regulator may wish to balance firm profits and consumer welfare.

In these settings, the preferences of the principals may differ from those of the

agents. For example, a committee of climate scientists may have greater concern

for environmental harm than the legislature. For a given environmental state of the

world, the committee would prefer a more aggressive bill targeting climate change

than the legislature. If the committee is an industry group, the committee may

prefer a less aggressive response than the legislature. Hence, we say that, in either

case, the committee is biased away from the principal’s ideal choice given the state

of the world. Thus, the principal faces a trade-off. The more discretion the principal

allows the agent, the better the principal can make use of the agent’s information;

however, the more leeway given to the agent, the more room there is for the agent

to take actions undesirable to the principal. When the principal is uncertain of the
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degree of the agent’s bias, this trade-off is more difficult to solve.

While monetary transfers may help the principal to elicit information to better

solve this tradeoff (Laffont and Martimort, 2002), they may be infeasible in many set-

tings. The legislature may be unable to provide transfers to the standing committee.

The budget for the financial supervisor may be set outside the standard appropria-

tions framework. Thus, the legislature cannot reward (or fine) it for its rulemaking. It

may also be illegal for the monopolist to provide monetary transfers to the regulator.

In the setting studied here, the agent first learns his preferences and then learns

the payoff-relevant state of the world. For example, the standing committee’s views

on the gravity of climate change have generally been developed before learning of the

impact of a particular bill on curbing carbon emissions. While the principal cannot

elicit information using transfers, the principal can elicit information in a manner

similar to that in the transfer setting: by screening. By screening we mean providing

the agent with a menu of different options such that agents with different preferences

will select different options from the menu. By appropriately designing this menu, the

principal can incentivize each preference type of agent to select actions that better

align with the principal’s preferences.

In this setting without transfers, this menu will consist of ranges of possible deci-

sions. Once the agent selects an option from the menu, the agent will be restricted

to make a decision within the selected range. For example, the regulator could allow

the monopolist to choose between multiple regulatory frameworks, but must price

following the chosen framework. For example, Sappington (2002) documents that in

telecommunication regulation, the regional Bell Operating Companies were provided

a choice between different earnings sharing plans and price cap regulation. Similarly,

the legislature can set different guidelines on rulemaking for the supervisor and allow

the supervisor to choose between the different guidelines.

We characterize when it is optimal to screen. In a pooling contract, the agent
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only has one option. The key result in this paper is that screening may be optimal

even when the agent’s (initial) information regarding its preferences is unrelated to

its (later) information regarding the payoff-relevant state. Thus, even if different

standing committees have different biases from the legislature, but have access to the

same scientific and institutional information, the legislature may benefit by screening

between the two types of committees. In the setting studied in this paper, the feature

that determines the structure of the optimal contract is the concavity of the loss

function.

We show that pooling is optimal when the loss function of the principal is suffi-

ciently concave and screening is optimal otherwise. Thus, for sufficiently risk-averse

principals, pooling is always optimal. In this setting of sufficient risk aversion, while

the set of possible contracts is complex, we prove that for any number of agents and

for all distributions over agent preferences, an optimal contract is simple: the prin-

cipal offers a menu of identical intervals. Surprisingly, in this setting, there is no

benefit to the principal from providing the agent a choice over decision rules. What

is important from the principal’s standpoint is the design of this single decision rule.

This result is in contrast with much of the standard results on mechanism design with

transfers. In this mechanism design literature, the principal benefits by providing the

agents with a choice over decisions (Laffont and Martimort, 2002). More formally,

pooling contracts are only optimal on a non-generic subset of parameters. In addition,

this optimal decision rule takes a simple form: the principal sets a cap and allows the

agent to take any decision below this cap (i.e. threshold delegation is optimal).

In contrast, for less concave preferences, the principal benefits from screening.

The principal benefits by offering less biased agents a set of extreme options (a set

which contains gaps), while offering the more biased agents a set of only moderate

options (an interval of options). A legislature that wishes to screen between a more

and less ideological (biased) committee would offer the committee a choice between
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guidelines that allow for more extreme bills and guidelines that only allow moderate

bills. Counterintuitively, the less ideological committee would select the guidelines

with extreme options, while the more ideological committee would select the more

moderate guidelines.

In order to understand the intuition when screening is optimal, notice that a

decision rule is a set on the real line. Thus, when designing this set, the principal has

three instruments at his disposal:

1. The choice of left boundary, the smallest action the agent can take.

2. The choice of right boundary, the largest action the agent can take.

3. Inserting gaps, prohibiting the choice of intermediate actions.

With regard to the choice of the left boundary, optimality reinforces incentive

compatibility. The principal prefers to allow less biased agents to take lower actions.

In addition, less biased agents will prefer sets with a lower left boundary, while more

biased agents will prefer sets with higher boundaries. Yet, since more biased agents

will be disinclined to select low actions, there is no loss to the principal from offering all

agents the opportunity to select these low actions. Thus, tailoring the left boundary

alone will not be enough for the principal to generate additional payoff from screening

beyond that achieved by pooling.

With regard to the right boundary, optimality and incentive-compatibility clash.

The principal would prefer to offer more biased agents lower right boundaries. In

contrast, we will see that incentive compatibility will require the principal to offer the

more biased agents higher right boundaries since they prefer higher actions. Hence,

modifying the left and right boundaries alone will also not yield the principal addition

payoff from screening.

Thus, in order to effectively screen and allow the less biased agents to take higher

actions, the principal must make their delegation sets less appealing to the more biased
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types. The principal can achieve this by inserting gaps into the delegation sets of the

less biased agents. Doing so will discourage the more biased agents from choosing

a set with larger actions because they will be prohibited from taking intermediate

actions. However, notice that this gap forces the agent to choose between extreme

actions. The less biased agents still select the extreme option set because they prefer

the discretion to select low outcomes (the more biased agents do not value these low

outcomes). Returning to the example, the less ideological committee may prefer the

extreme option guidelines since they are willing to craft bills at both ends of the

spectrum. In contrast, while the more ideological committee may be more inclined

to craft bills at one end of the spectrum, it is strongly disinclined to craft bills at

the other end. Thus, the more ideological committee may select the more moderate

guidelines.

In this way, the principal can use gaps to screen and it remains to determine when

inserting these gaps is beneficial to the principal. We will show that a gap increases

the variance over agent choices (and yields a mean-preserving spread of an interval

delegation set). Hence, the more risk-averse the principal, the more costly will be the

insertion of a gap. Hence, for sufficiently risk-averse principals (those most sensitive to

variance) inserting a gap will be suboptimal. The gain from providing the less biased

type the discretion to take higher actions (and preventing the more biased type from

taking excessively high actions) is offset by the uncertainty generated by the extreme

option set. Thus, pooling is optimal for these risk-averse principals. In contrast, for

less risk-averse principals, inserting a gap will not be costly enough to discourage its

use1. Thus, for these less risk-averse principals, screening will be optimal.

We would like to stress that screening is not driven by differing knowledge over

the future payoff-relevant state of the world. In this paper, we show that even when

the information the agent learns is independent over time, the principal still benefits
1In fact, for a principal with absolute value loss, inserting a gap brings no loss to the principal.
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from screening. What drives the optimality of screening is the degree of risk-aversion

of the principal. When the principal’s utility is sufficiently concave and the principal

is sufficiently risk-averse, the principal does not benefit from screening. When the

principal is not as risk-averse, it is optimal for the principal to screen. We note that

screening is optimal for concave functions and is not the result of risk-neutrality.

There are multiple interpretations of the main result. First, this result shows when

threshold delegation, the optimal delegation strategy in the setting of known pref-

erences, is robust to preference uncertainty. In addition, this paper provides insight

into when screening may be observed in regulatory settings. In settings where the

principal can diversify (or is less risk averse) over outcomes, choices among regulatory

frameworks may be observed. In addition, the optimality of screening has important

implications for political science. Mylovanov (2008) has shown that veto rules with

default decisions may be used to implement the optimal contract without transfers.

In the setting where screening is optimal, such a veto rule does not implement the

optimal contract. Thus, if the principal is a legislature delegating a decision to a

committee with an unknown political inclination, a veto rule may not be optimal.

Finally, when a principal is more risk-neutral, the choice of discretion that allows for

extreme actions may signal that the agent is less ideological.

Following a literature review, we present the model in section 2. Section 3 pro-

vides new intuition for the original result of Melumad and Shibano (1991) in settings

of preference certainty when threshold delegation is optimal. This new intuition is

leveraged in the proof of the main result in our setting of preference uncertainty.

Section 3 provides graphical examples that illustrate the main results of this paper.

In section 4, we set the stage for the proof of the main result by analyzing two simple

settings: the case of known preference and the case where preferences are unknown,

but the principal is restricted to offering menus of intervals with no gaps. The proof

that intervals are optimal for known preferences uses only elementary techniques from
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information economics. It shows that the principal benefits from filling in gaps (re-

gardless of the endpoints). This result is useful for characterizing the optimal pooling

contract. We then characterize the optimal menu when the principal is restricted to

offer only interval delegation sets. We show that incentive compatibility requirements

drastically limit the allowable set of contracts and that a pooling contract can out-

perform all of the remaining contracts. In section 5, we use the results from section 4

and prove the main results. We show that pooling is optimal for concave enough loss

functions and screening is optimal for all other loss functions. We provide compara-

tive statics in section 6. In section 7, we show that even when pooling is optimal, the

optimality of pooling hinges on the no transfer restriction. Section 8 concludes the

paper.

1.2 Related Literature

Of the delegation literature, the two most important papers for this project are those

of Holmström (1984) and Melumad and Shibano (1991) (abbreviated as MS). Szalay

(2005) studies a setting where the agent must exert costly effort to acquire infor-

mation. Martimort and Semenov (2006) provide conditions for when the optimal

delegation set is an interval (but still consider the case when the preferences of the

agent are known). Mylovanov (2008) studies veto-based delegation and Kováč and

Mylovanov (2009) also study when stochastic mechanisms yield optimal payoffs to

the principal. In a fundamental paper, Alonso and Matouschek (2008) study the

optimal delegation problem under more general preferences and distributions over

the state space. Amador and Bagwell (2013) provide even more general results and

introduce innovative techniques to analyzing the delegation problem. Ambrus and

Egorov (2017) provide a superb analysis of the setting of delegation with and without

monetary transfers (including the impact of money burning). All these papers differ
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from the present paper in that they assume known preferences of the agent.

Amador and Bagwell (2012, 2013) provide applications of the theory of delegation

to tariff caps. Amador, Werning, and Angeletos (2006) apply the theory of delegation

to study commitment and flexibility in saving rules. Carrasco and Fuchs (2009) con-

sider a setting of implementing a decision with agents who have different preferences.

Once again, these papers assume that the preferences of the agent are known by the

principal. Armstrong (1995) and Frankel (2014) consider the case of preference un-

certainty but do not study the optimal screening contracts. Lewis and Sappington

(1989) study a model of regulatory options, but consider a setting where transfers are

allowed, unlike the setting of this paper.

Another related literature is that of sequential screening, such as Courty and Li

(2000). In that paper, the functional form of the agents’ utility is monotonic. In the

present paper, the utilities are not monotonic. Another difference is that transfers are

allowed in Courty and Li (2000), but are prohibited in the present paper. The closest

work to this paper was the innovative study of sequential delegation by Kováč and

Krähmer (2016). This paper complements their analysis by studying an alternative

preference structure and finding a new setting where screening is optimal (screening

in this paper is analogous to sequential delegation in their paper). Like Kováč and

Krähmer (2016), we find that screening may be optimal and that inserting gaps to

delegation sets may also be optimal. But in our setting we find an additional driver

for the optimality of screening: the degree of risk-aversion of the principal. In this

environment, screening may be optimal when agent types have different biases, but

the same knowledge over future payoff-relevant states. Thus, bias may matter for

screening in addition to knowledge.

This paper also generalizes results from Tanner (2015) by extending the class of

functions where pooling is optimal. In addition, it also characterizes when screening

is optimal. In Tanner (2015), pooling was found to be optimal in all settings ex-
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plored. Hence, this paper provides a simple characterization regarding when pooling

is optimal.

2 The Model

2.1 Preferences

The setting is similar to that of Melumad and Shibano (1991), except that we in-

troduce uncertainty in the bias between the agent and principal. Thus, the payoff

functions of the agent depend on the state of nature (s ∈ [0, 1]), the action imple-

mented by the principal (x ∈ R), and the bias of the agent (k ∈ R+). Let U : R→ R,

where U is a symmetric, differentiable, strictly concave function, that is maximized

at zero (without loss of generality, we normalize U so that U(0) = 0)2. The utility

function of the principal is UP (x, s) = U(x − s). Let 0 ≤ k1 < k2 < · · · < kN . The

utility function of agent i is U i(x, s) = U(x − s − ki), where i ∈ {1, 2, . . . , N} = N .

ki and s are random and statistically independent, where s is distributed uniformly

over [0, 1]. The probability that bias ki is chosen is denoted by pi.

2.2 Actions, Timing, and Solution Concept

Before describing the timing of the game, we first define a delegation set. A delegation

set is a set of actions, D, that the agent will be restricted to take. D must be compact

and we denote the set of compact subsets of the real line by D. (We only need

to restrict attention to closed sets since for every unbounded closed set, there is a

bounded closed set that produces the same outcome and provides identical incentives).

By the taxation principle, the principal will offer the agents a menu of sets, m =

2These conditions also imply that U(·) is strictly decreasing over R+ and strictly increasing over
R−.
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{D1, . . . , DN} (We will describe the timing of the game below). Let DN =M be the

set of all menus of delegation sets. We call a menu, m ∈ M, a convex menu if every

D ∈ m is a convex set. In other words, all the delegation sets in a convex menu are

convex. We call a menu, m ∈M, a nonconvex menu if there exists a nonconvex set,

D′ ∈ m.

The timing of the game is as follows:

Time 0: Nature chooses ki (bias) for the agent. The agent observes this value, but the
principal does not.

Time 1: The principal offers the agent a menu of delegation sets, m = {Di}i∈N ∈M.

Time 2: The agent selects one of the sets, Di, and this selection is observed by the
principal.

Time 3: The state of the world, s, is chosen by nature. It is observed by the the agent
but not the principal.

Time 4: The agent picks a final action d ∈ Di, which is observed by the principal.
Payoffs are then determined.

The interpretation of this formulation is that the final, payoff-relevant action of

the agent is restricted by the principal. The action chosen by the agent must be an

element of his chosen delegation set, which was designed by the principal. Hence, the

principal’s strategy is an element {Di}i∈N ∈M = DN .

The agent’s strategy is an action at each information set in the game tree. Thus,

the agent’s strategy is σ, where

σ : N ×M× [0, 1]→ D × R, (2.1)

σ(i,m, s) = (σM(i,m), σD(i,m, s)) (2.2)

σM(i,m) ∈ m, (2.3)
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σD(i,m, s) ∈ σM(i,m), (2.4)

and

i ∈ N = {1, . . . , N}, s ∈ [0, 1]. (2.5)

σM(i,m) represents the delegation set agent i chooses from the menu offered by the

principal (implied by condition 2.3). σD(i,m, s) represents the final action chosen by

the agent after observing the state of nature. Notice that the final action must be an

element of the delegation set chosen (implied by condition 2.4).

The solution concept used throughout this paper is Perfect Bayes-Nash Equilib-

rium. The principal chooses m = {D1, . . . , DN} to maximize ex-ante expected utility:

max
m∈M

n∑
i=1

pi

(∫ 1

0

UP
(
σD(i,m, s), s

)
ds

)
. (2.6)

Each type of agent (i ∈ {1, . . . , N}), chooses the final action, σD(i,m, s) to maximize

ex-post utility conditional on the original choice of delegation set from the menu,

σM(i,m):

σD(i,m, s) ∈ argmax
x∈σM(i,m)

U i(x, s) = argmax
x∈σM(i,m)

U(x− s− ki). (2.7)

Their are two points to notice. First, notice that σD is determined by σM. We call

the value of σM(i,m), agent i ’s choice of delegation set. Second, we do not need to

assume that the menu contains only bounded closed sets. In other words, σM(i,m)

need not be compact. Since the loss function is symmetric and decreasing in the

distance from s + ki, we know that there exists a Q(i,m) such that |σD(i,m, s)| ≤

Q(i,m), ∀s ∈ [0, 1]. Thus, we know that even for menus containing closed (but not

bounded sets), σD is well-defined. Each agent type, chooses the delegation set, Dj,

from the menu, m = {D1, . . . , DN} in order to maximize interim expected utility
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given his future final actions, EiDj, where:

EiDj =

∫ 1

0

U i
(
σD(i,m, s), s

)
ds, (2.8)

where σD(i,m, s) ∈ Dj.

Before deriving results about the optimal convex and pooling menus, we need

to derive some properties about the equilibrium strategies of the agents. We will

state the useful properties of the equilibrium best responses in the next subsection

(we will characterize σD(i,m, s) and prove some useful lemmas about this function).

Melumad and Shibano (1991) prove the relevant properties of these best response

functions for a general class of utility functions. We will show below that the utility

functions assumed here satisfy the properties necessary for Melumad and Shibano’s

proof. Hence, their results apply in this setting.

2.3 Characterizing the Agent’s Best Response

The agent type’s (i ∈ N ) behavior is very simple conditional on the choice of a

delegation set, σM(i,m) = D ∈ m. Agent type i will choose, for each state s, the

element in D closest to s + ki. We call this point xDi (s). More formally, for every

compact set D ⊆ R (we just need the set to be closed, but we assume compactness

for a smoother description):

xDi (s) ∈ argmax
x∈D

U i(x, s) = argmax
x∈D

U(x− s− ki). (2.9)

Comparing (2.7) and (2.9) we define

xDi (s) := σD(i,m, s), (2.10)

when σM(i,m) = D.
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We call xDi the delegation schedule generated by D for type i. This function maps

the current state, s, to an optimal action of the agent within his chosen delegation

set, D. Let xOi (s) = xRi (s) = argmaxx∈R U(x − s − ki) = s + ki. xOi is the optimal

delegation schedule for type i: for each state, s, xOi yields the best possible final action

for the agent type. Call the range of xOi the set of ideal actions for type i. Notice

that the range of xOi = [ki, 1 + ki]. In addition, the ideal action set of the principal

is [0, 1]. We denote the principal’s optimal delegation schedule by xP (s) = s. The

properties of xDi (·) are listed in Appendix A. The most important result is that the

delegation schedule is an increasing function of the state. Figures 1 and 2 present

plots of delegation schedules of convex and nonconvex sets. They provide intuition

for the behavior of agents given different choices of delegation sets. The left graph

plots the choice of outcome for two interval delegation sets as a function of the state.

Notice that the agent selects the lowest element of each set for a range of low states,

selects his ideal action for an intermediate range, and then selects the highest element

of each delegation set for the remaining interval of states. The right graph plots the

delegation schedule for a set with a gap. The key difference is that the delegation

schedule is discontinuous. The delegation schedule "jumps" from the left endpoint of

the gap to the right endpoint of the gap. This jump will introduce variance to the

principal.

xD1

xD2

xP

xO

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

xD'
xO

xP

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

1.2

x

Figure 1: Delegation schedules of k1 type Figure 2: Schedule for a set with a gap.
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A delegation set D is nonredundant for agent type i if every action in set D is

taken by player i for a particular state. Stated more formally, a delegation set D is

nonredundant for agent type i if I(xDi ) := Image(xDi ) = D. Corollary 9.7 in Appendix

A shows that for every closed set D, there is a nonredundant set D′ = I(xDi ) for

player i (which we know is compact). Thus, we can restrict attention to nonredundant

menus. Corollary 9.7 (the nonredundancy result) will simplify analysis when studying

screening menus (defined below).

The interim expected utility to the agent of type i after choosing the delegation

set D is:

EiD =

∫ 1

0

U
(
xDi (s)− s− ki

)
ds.

Thus, by the Taxation Principle, the principal’s optimization program is :

max
{D1,...,Dn}∈M

n∑
i=1

pi

(∫ 1

0

U
(
xDii (s)− s

)
ds

)
(2.11)

subject to the type incentive constraint for delegation sets (ICi
k):

EiDi ≥ EiDj,∀i, j.

We denote EPi Di :=
∫ 1

0
U(xDii (s) − s)ds as the expected payoff to the principal from

type i. A set D′ improves upon D for type i if EPi D′ > EPi D and EiD′ ≥ EiD. Notice

that the menu that improves upon another only satisfies the ICi
j constraints. Thus,

it may not be incentive compatible since another type, k, may prefer D′ to Dk.

A menu is convex if all sets in it are convex. A menu m ∈ DN is pooling if all sets

in it are identical (m = {D1, . . . , DN}, where D1 = D2 = · · · = DN = D). We call D

the pooling set. A menu m ∈ DN is screening if contains at least two nonredundant

sets that are different. Notice that the restriction to nonredundant sets is not such a
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demanding requirement since I(xDii ) ⊆ Di, and, therefore,

Ei
(
I(xDii )

)
= Ei(Di) ≥ Ei(Dj) ≥ Ei

(
I(x

Dj
j )

)
,

∀i, j ∈ N . Hence, the expected payoff and incentive constraints are preserved.

3 Examples to Illustrate Main Results

We illustrate the main results with graphical examples. In our first example, we

show that screening between agents with different biases is feasible. In addition,

it is feasible using a menu of intervals. In the next example, we show that when

intervals are used, incentive-compatibility conflicts with optimality for the principal.

We then illustrate how gaps may help and harm the principal. In example 3, we show

how inserting gaps into the delegation set may lower the principals payoff. Given

the lesson from example 3, we show an example where the gap may not hurt the

principal (example 4), and inserting a gap may improve the payoff of the principal by

allowing him to screen. In example 5, we provide intuition for the role of concavity of

the principal’s loss function in determining the benefits from screening. In the final

example we illustrate, for sufficiently risk-averse principals, why pooling is optimal.

We now show the feasibility of screening with a menu of intervals.

3.1 Example 1: Feasibility of Screening Menus Consisting Only

of Intervals

First, we show that the problem is feasible (even under the restriction to convex

menus). We show that there exist menus that are convex, incentive compatible, and

screening. Let UP (x, s) = −(x−s)2, U1(x, s) = −(x−s−0.1)2, and U2(x, s) = −(x−
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s − 0.4)2. (Hence, k1 = 0.1 and k2 = 0.4.) Let m = {D1, D2}, where D1 = [0.3, 0.5]

and D2 = [0.8, 0.9]. Figure 1 plots the delegation schedule for type k1 (the delegation

schedule for type k2 is analogous), while figures 3 and 4 plot the loss for the various

delegation sets. The shaded area under each plot represents the expected utility loss

from each set.

D2 Loss

D1 Loss

0.2 0.4 0.6 0.8 1.0
s

0.1

0.2

0.3

0.4

0.5
-U

D2 Loss

D1 Loss

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

-U

Figure 3: Loss to k1 type Figure 4: Loss to k2 type

For each type, D1 yields the agent smaller loss in lower states and larger loss in

higher states than D2. As can be seen from figure 3 by comparing the shaded areas,

type k1 strictly prefers D1 to D2 and type k2 strictly prefers D2 to D1: E1D1 > E1D2

and E2D2 > E2D1. Notice that menu D1 = [0.3, 0.5] is "lower" than menu D2 =

[0.8, 0.9]. Under these delegation sets, type k1 is more sensitive to the losses from

lower states than the losses from the higher states. Hence, type k1 prefers D1 to

D2 (a similar logic applies to the k2 type). This sensitivity will be described more

formally below by a single-crossing lemma (Lemma 4.3). This lemma implies that,

under incentive compatibility, the delegation sets in a screening menu must "increase"

with bias (the delegation set chosen by type i, Di, must be lower than the delegation

set chosen by type j, Dj, for kj > ki). We now show why, with interval menus,

incentive-compatibility conflicts with optimality for the principal. Thus, in order for

screening to be optimal, menus with sets containing gaps will have to be used.
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3.2 Example 2: Interval IC Conflicts with Optimality

In this subsection, we provide an example of how to improve upon an incentive com-

patible menu of intervals with an interval pooling menu (a menu consisting of a single

interval). The menu m = {D1, D2} in Example 1 is incentive compatible, but is

not optimal. Notice that the left endpoint of D1, 0.3, is higher than k1 = 0.1 and

that the left endpoint of D2 is also higher than k2 = 0.4. By thickening each set

to ki (replacing D1 with D′1 = D1 ∪ [0.1, 0.3] and D2 with D′2 = D2 ∪ [0.4, 0.8]) the

principal could increase expected payoff from each type. For example, by thickening

D1, the principal would have a constant loss of U(k1) = −(0.1)2 over the interval

[0.1, 0.3], but this would be an improvement in expected utility. The shaded area in

Figure 5 illustrates the gain from thickening3. In addition, notice that the gain to the

principal from thickening the set to k1 is greater than the gain from the agent (the

shaded area is greater than the area below the curve of the agent’s loss). This will be

useful in proving that menus consisting only of intervals are optimal. The reasoning

for thickening D2 is similar.

D1 Loss : Agent

D1 Loss : Principal

D'1 Loss : Principal

0.2 0.4 0.6 0.8 1.0
s
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Figure 5: Gain from thickening to ki.

3The plot in Figure 5 is for different parameter values in order to provide a clearer figure, but
expected gain is similar for the parameters introduced earlier in this section.
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While the menum′ = {D′1 = [0.1, 0.5], D′2 = [0.4, 0.9]} yields the principal a higher

expected payoff, it is not incentive compatible (type k1 prefers D′2 to D′1). However,

we can find a pooling menu that yields the principal strictly higher expected payoff

from menu m′′ = {[0.3, 0.6]}. D′2 = [0.4, 0.9] is too high: thinning it from the right

(replacing it with D′′2 = [0.4, 0.6], illustrated in Figure 7) would increase the expected

payoff of the principal. In addition, D′1 = [0.1, 0.5] is too low: thickening it from the

right (replacing it with D′′ = [0.1, 0.6], illustrated in Figure 6), would also increase

the expected payoff of the principal. Hence, the menu m′′ = {[0.1, 0.6]} would yield

the principal strictly higher expected payoff than the menu m′, and, therefore, m.

In section 4, we prove that this holds for all incentive compatible menus of intervals.

Thus, using menus containing only intervals, screening will not be optimal. In order

for screening to be optimal, we will need to introduce menus of sets containing gaps.

The next example illustrates the impact of gaps on the principal’s payoff.

3.3 Example 3: New Intuition for Interval Delegation Under

Known Preferences

Example 2 restricted attention to a convex menus. The main result of this paper

shows when this restriction is without loss of generality. In order to prove this result,
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we leverage intuition regarding the optimality of interval delegation in the setting

of known preferences. In other words, we provide new intuition for the result of

Melumad and Shibano (1991) regarding interval optimality. Figures 8-10 below pro-

vide a graphical illustration of this proof. In fact, the proof provides a generalization

of Melumad and Shibano (1991). In order to discuss this intuition, we review some

terms and variables.

xD

xDHΕ L
xP

xO

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Thickening each set to ki.

Let xP (s) = s denote the ideal action of the principal at state s (recall that the

principal’s bias is normalized to 0). Let xD(s) denote the delegation schedule for an

agent with bias k > 0 under set delegation set D. Let xO(s) = s+ k denote the ideal

action of the agent at state s (we do not include a subscript i since there will only be

one agent in this example). Let V P (s) = xD(s)− s denote the deviation of the agent

from the principal’s ideal action at state s when the agent is restricted to delegation

set D. Assume that D has a gap, G = (l, h) ⊆ [k, 1 + k]. Let D(ε) denote the set

D ∪ (l, l+ ε]∪ [h− ε, h). Figures 9 and 10 plot4 the deviation and the distribution of

the deviation (conditional on s ∈ [l − k, h− k] for two sets: D and D(ε).
4In these plots, D = [0.15, 0.25] ∪ [0.85, 0.95], G = (0.25, 0.85), k = 0.15, ε = 0.15, D(ε) =

[0.15, 0.40] ∪ [0.7, 0.95].
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Figure 9: Plots of deviation Figure 10: Plots of cdfs

Since xD(ε)(s) = xD(s) for all s /∈ [l − k, h − k], we condition the distribution on

falling in this particular interval for the plot. Notice that the deviation of the agent

under D is a mean-preserving spread of the deviation under D(ε). Hence, a principal

with any strictly concave utility function would prefer to restrict the agent to D(ε)

over D. In fact, the principal would prefer to completely fill in the gap in D (set

ε = h−l
2
). Hence, under known bias, the optimal delegation set is convex. This is a

result of Melumad and Shibano (1991). In fact, their proof of this result relied on

quadratic loss utility. This proof holds for any strictly concave utility function.

This mean-preserving spread argument can be extended to the case of preference

uncertainty. Notice that the mean-preserving spread argument holds independent of

the bias k. Thus, in a setting with multiple types of agents, filling in the gap would

increase expected payoff to the principal from all types of the agent. Hence, if a

pooling menu had gaps, the expected payoff to the principal from each type of agent

(ki) could be increased by filling in the gaps of the delegation set (see Appendix D).

In this way, we see that the optimal pooling menu is interval. In addition, because

the introduction of a gap yields a mean-preserving spread, we see that the harm to

the principal from gaps is the result of risk aversion. In the next example, we show

that, with a principal with absolute value loss, screening is optimal. In addition, the

principal receives a higher payoff by using a menu containing a set with a gap.
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3.4 Example 4: When Screening is Optimal

In this subsection, we provide a simple example where screening is optimal. Notice

that there is no difference between the types with regard to the information relevant

to the payoff-relevant states. When the contract is offered, both types of agents have

the same information of the future state. They have the same beliefs over the state,

s. (In fact, the principal has the same beliefs regarding the payoff-relevant state).

They differ only in their bias. We show that screening is optimal in this very simple

setting of preference heterogeneity (but no payoff-relevant informational heterogeneity

amongst the agents).

Figure 11: Delegation schedule with gap (0.4, 0.6).

Let the biases be the same as before (k1 = 0.1, k2 = 0.4) and be equally likely (with

probability = 0.5). But let the loss function be absolute value instead of quadratic.

Thus, UP (x, s) = −|x− s|, U1(x, s) = −|x− s− 0.1|, and U2(x, s) = −|x− s− 0.4|.

Figure 11 (above) plots the delegation schedule generated by inserting the gap over

(0.4, 0.6). It shows the outcome chosen by the agent with low bias as a function of

the state. Notice that, due to the gap, there is a jump in the delegation schedule.

This will generate variance in the loss of the principal. Figure 12 plots this loss to

the principal from inserting a gap over [0.4, 0.6]. Figure 13 plots the loss from filling
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in this gap. Notice that for absolute value loss, the principal is indifferent between

adding a gap and filling it in. This will allow the principal to improve upon the

optimal payoff obtained using a pooling menu.
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Figure 12: Plot with Gap Figure 13: Plot with Filled Gap

The optimal payoff to the principal from a pooling menu is achieved by offering

the delegation set D∗ = [0.1, 0.7] (this will follow from our alternative derivation of

the Melumad and Shibano result). The principal would prefer to offer [0.1, .8] to

the less biased agent and [0.4, .6] to the more biased agent, but this is not incentive

compatible (since the more biased agent’s set is strictly contained in the less biased

agent’s set). Hence, notice that the principal wishes to lower the highest action of the

set selected by the more biased type. In addition, the payoff to the principal could

be improved by offering the less biased agent D1 = [0.1, 0.4] ∪ [0.6, 0.7] and the more

biased agent D2 = [0.4, 0.69]. The principal gains since the gap does not impact his

expected payoff (see Figures 12 and 13) and since it lowers the highest action taken

by the more biased agent. The gap induces the more biased agent to select the set

with slightly lower highest action (which strictly increases the expected payoff of the

principal). Finally, the exclusion of all actions in the interval [0.1, 0.4) induces the

less biased agent to select D1 even though it has a gap. Thus, since a screening menu

yields strictly higher payoff than that achieved by the optimal pooling menu. The

optimal menu is screening and contains a set with a gap. In the next example, we
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show why this argument may hold for a range of more risk-averse principals, but may

fail for more risk-averse principals.

3.5 Example 5: The Role of Concavity

Figure 14: Delegation schedule with gap (0.4, 0.6).

In the previous example, we saw why a screening menu with a gap can yield the

principal higher payoff than the optimal pooling menu for absolute value loss. In this

section we illustrate why the concavity of the loss function impacts the structure of

the optimal contract. Figure 14 plots the outcomes chosen by an agent given a set

with a gap over (0.4, 0.6). It shows that the gap induces the agent to select its left

endpoint for a fraction of the states, while selecting the right endpoint for another

fraction. Thus, the gap introduces variance. Figures 15 and 16 illustrate the loss to

the principal from the agent’s choices given this set with a gap. For the states where

the agent selects the left endpoints, the loss is lower. For states where the agent

selects the right endpoint, the gap is higher. As preferences become more concave,

the loss from the right endpoint states outweighs the gain from the left endpoint

states. For absolute value, the loss is equivalent to the gain and the principal is
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indifferent between filling in (small) gaps and keeping them. For more concave losses,

like quadratic (illustrated in Figure 16) the principal prefers to fill in losses.

x
D(s) -s

0.2 0.3 0.4 0.5 0.6
State

0.05

0.10

0.15

0.20

0.25
Loss

xD(s) -s2

0.2 0.3 0.4 0.5 0.6
State

0.01

0.02

0.03

0.04

0.05
Loss

Figure 15: Gap Plot: Absolute Loss Figure 16: Gap Plot: Quadratic Loss

In the final example, we provide an illustration of why pooling is optimal when

the principal is sufficiently risk averse. We show how to take a menu containing a set

with a gap and turn it into a pooling menu that yields the principal a higher expected

payoff.

3.6 Example 6: Improving on Nonconvex Menus

Let UP (x, s) = −(x− s)2 be the utility of the principal, U1(x, s) = −(x− s−0.2)2 be

the utility of the less biased type, and U2(x, s) = −(x− s− .4)2 be the utility of the

biased type. Let m = {D1, D2}, where D1 = [0.2, 0.3]∪{1} and D2 = [0.7, 0.95]. This

menu is incentive compatible ( E1D1 > E1D2, E2D2 > E2D1), see Figures 17 and 18.

In addition, the largest point in D1 is higher than that in D2 and the lowest point

in D1 is lower than that in D2. Hence, unlike the case of convex menus, incentive

compatibility does not guarantee monotonicity in sets.

Notice that D1 has a gap, G = (0.3, 1). We illustrate that we can find a new

incentive compatible menu, m′, consisting only of intervals (a convex menu) that

yields the principal higher expected payoff than m. Hence, as illustrated in the

previous section, there would be a pooling menu that yields the principal higher
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Figure 17: Loss to k1 type Figure 18: Loss to k2 type

expected payoff than m′ (and, hence, m). In order to do this, we fill in the gap in set

D1 (replace D1 with F = [0.2, 0.3]∪ {1} ∪ (0.3, 1) = D1 ∪G = [0.2, 1]), and then thin

it from the right (replace F with a new set, D′ = [.2, a], where a < 1) in such a way

that:

• The unbiased agent is indifferent between the new (convex set), D′ = [0, a], and

the original set, D1: E1D′ = E1D1. Notice that Area A and Area B in Figure

19 are equal. In this case, D′ = [0.2, a], where a ≈ 0.746.

• The new set D′ yields lower expected payoff to the other agent than the original

set, D1: E2D′ < E2D1 < E2D2. Notice that Area C is less than Area D in Figure

20.

• The expected utility to the principal is higher from the new set than the original

set: EP1 D′ > EP1 D1. See Figure 22.

Hence the new menu, m′ = {D′ = [0.2, a], D2}, is incentive compatible and convex

and yields the principal higher expected payoff. Thus, we have reduced the example to

a case of convex menus, which can be improved upon by a pooling menu, as illustrated

in Example 2.

The reason this menu yields the principal strictly higher expected payoff is that

the gain in expected payoff to the principal from filling in a gap is at least as high as
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the gain in expected payoff of the agent (type 1) from filling in a gap. To illustrate

this graphically, the union of Area A and Area A′ in Figure 21 represents the gain

to the agent from filling in a gap. The difference between areas H and G in Figure

22 represents the gain to the principal from filling in the gap. However, the loss

in expected payoff from thinning the filled in set is lower for the principal than the

agent (compare Figures 21 and 22). Thus, the "filled-in and thinned" set keeps type

1 at the same expected payoff (and preserves incentive compatibility), but strictly

benefits the principal. The "fill-in and thin" variational argument will be used to

prove that the restriction to convex menus is without loss for sufficiently risk-averse

principals. Yet, the "fill-in and thin" argument will not hold for preferences that

are less concave than quadratic loss. For absolute value preferences, the principal

does not gain any expected utility from filling in gaps (and this holds for power loss

functions whose exponent is strictly less than 2). Thus, pooling is not necessarily

optimal when preferences are not sufficiently concave.

Note that this "fill-in and thin" modification works because the gap introduces a

mean-preserving spread. Notice that, unlike the absolute value loss case, the principal

was not indifferent between a small gap and no gap. The increase in concavity of the

loss function made the mean-preserving spread more costly to the principal. Observe

that in Figure 17, Area G (the region where the principal gains from introducing a
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Figure 21: Loss to k1 type. Figure 22: Loss to principal.

gap) is dwarfed by Area H (the region where the principal loses from introducing a

gap). Recall that, for quadratic loss, these two areas are equal. The more concave the

loss function, the greater is the difference between the areas and more costly is a gap

to the principal. Thus, there is a parameter above which gaps are no longer effective.

For exponents above this parameter, pooling is optimal. In the setting studied in

this paper, this knife-edge case is quadratic loss. We now state the results precisely,

beginning with those for convex menus.

4 Convex Menus

We first prove that if the principal is restricted to offer convex menus, then the optimal

menu will be a pooling menu. The proof uses a variational argument. We show that

for all incentive compatible screening menus, there is a pooling menu that yields the

principal higher payoff. In order to find this pooling menu we present three lemmas

regarding convex delegation sets. The first establishes that filling in the gap between

zero and the lowest point of the set can only help the principal (no matter what type

of agent). The second lemma will tell us how to select the maximal point of the

pooling delegation set. The final lemma is a version of single-crossing and will allow

us to order the sets in the proposed delegation menu. We use this order to construct
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a pooling menu that yields the principal higher expected payoff.

Recall that the principal’s program is to maximize:

EP (M) = max
m={D1,...,DN}

EP (m) = max
m={D1,...,DN}

N∑
i=1

pi

(∫ 1

0

U(xDii (s)− s)ds
)

subject to the type incentive constraint for delegation sets (ICi
k):

EiDi ≥ EiDj, ∀ i, j.

Note that EP (m = {D1, . . . , DN}) =
∑N

i=1 pi

(∫ 1

0
U(xDii (s)− s)ds

)
. Recall that

EPi Di =

∫ 1

0

U(xDii (s)− s)ds

is the expected payoff to the principal from type i. Since we first restrict attention to

the case when all the Di are convex we may let Di = [ai, bi]. We have the following

lemma:

Lemma 4.1. (Down to ki Lemma) Let D = [a, b], where a > ki ≥ 0, then EPi D <

EPi D′, when D′ = [ki, b].

Proof. See Appendix B.

Thus, if the agent’s type is known, Lemma 4.1 implies that an optimal convex

delegation set is of the form D = [ki, b]. Letting Ψi(b) := EPi [ki, b], the expected

payoff to the principal from the set [ki, b] when 1 + ki ≥ b ≥ ki would be:
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∫ b−ki

0

U(ki)ds+

∫ 1

b−ki
U(b−s)ds = U(k)(b−ki)+

∫ min{1−b,0}

−ki
U(s)ds+

∫ max{1−b,0}

0

U(s)ds.

(4.1)

For b < ki, Ψi(b) =
∫ 1

0
U(b− s)ds. Thus, we have the following lemma:

Lemma 4.2. (Known Bias Optimum Lemma) Let the bias, ki, of the agent be known

by the principal. If ki ≥ 1
2
, then an optimal convex delegation set is D∗i = {1

2
}. If

ki <
1
2
, then an optimal convex delegation set is D∗i = [0, 1 − b∗i ], where b∗i = 1 − ki.

For this case, Ψi(·) is strictly increasing from [0, 1 − ki] and strictly decreasing from

[1− ki, 1 + ki]. Thus, D∗i = [0, qi], where qi = max{1
2
, 1− ki}.

Proof. See Appendix B.

Lemmas 4.1 and 4.2 characterize the delegation sets the principal would choose if

the bias of the agent was known. The forthcoming lemma is a single-crossing result

that will characterize the menu the principal must offer when the bias of the agent

is unknown. In order to derive this result, we first introduce some notation. If we

have two intervals, one contained in the other, then any agent would always select the

larger interval and the incentive constraints would fail. Hence, we define an ordering,

%, on non-nested sets. In this way, if D1 = [a1, b1] and D2 = [a2, b2], then:

(A) a1 < a2 and b1 < b2

(B) a1 > a2 and b1 > b2.

Note that, in a sense, under case (A), D1 is "lower" than D2. Thus, if (A) holds,

we say that D1 - D2. If (B) holds, we say that D1 % D2.

Lemma 4.3. (Single-Crossing Lemma) Let Di, Dj ∈ m such that m is ICk and

ki < kj. If Di � Dj then EiDi ≥ EiDj then EjDi > EjDj, which violates the ICk

condition.
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Proof. See Appendix B.

Lemma 4.3 states that if a lower bias agent prefers a higher interval to a lower

interval, then a higher bias agent prefers the higher interval, as well.

Armed with these three lemmas, we are ready to outline the proof that the optimal

convex menu is pooling (Proposition 4.4). If the bias of all types is ≥ 1
2
, then by the

Known Bias Optimum Lemma (Lemma 4.2), the optimal convex menu is [0, 1
2
]. This

yields the principal the optimal expected utility from each type. Thus, we assume

that at least one type has bias less than 1
2
(k1 <

1
2
).

The goal is to find a pooling menu that yields the principal higher expected payoff.

We construct this pooling menu in three steps. First, we know that an ICk menu

must be of the form m = {D1 = [a1, b1], . . . , DN = [aN , bN ]}, where bi ≤ bj for all

j > i. By Lemma 4.1, we know that if we were to replace each Di by D0
i = [ki, bi],

we would improve the principal’s expected utility. There is one problem though, the

menu of D0
i ’s may not be ICk. However, we can replace this menu with a pooling

menu (which is trivially incentive compatible). From single-crossing, we know that

the bi are increasing in i. In addition, from Lemma 4.2 (Known Bias Optimum

Lemma), we know that the qi = 1 − ki (the optimal end points under known bias)

are decreasing in i. Thus, if some bi > qi, then bj > qj for all j > i. In words, if type

i’s delegation is too large, all higher types’ delegation sets are too large. Thus, by

shrinking the delegation sets of all such types (and expanding the delegation sets of

the types whose sets are not too large) we can achieve a pooling delegation set that

yields the principal higher utility than the original menu m. We now state the result:

Proposition 4.4 (No Need to Screen: Convex Menus). If menus in a delegation set

are restricted to contain only convex sets, then there exists an optimal pooling menu,

m = {P ∗, P ∗, . . . , P ∗} = {P ∗} that is optimal.

Proof. See Appendix B.
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Hence, if an organization is restricted to offering a convex menu of guidelines, then

the organization should set the same guidelines for each member. We also note that

incentive compatibility was only used to show that the sets are ordered (bi < bi+1 for

all i). Once the sets are ordered, the argument does not use incentive compatibility.

Thus, let d∗i = maxd∈Di d. In this way, if we are given a menu m = {D1, . . . , DN}

where (i) each Di is convex and (ii) d∗i ≤ d∗i+1 for all i (and strict inequality holds for,

at least, i = 1), then we can use the argument in the proof to find a (convex) pooling

menu that yields the principal strictly higher expected utility. Call a menu satisfying

(i) and (ii) a nice menu (notice that a nice menu may not be ICk). Hence, we have

the following lemma:

Lemma 4.5. Given a nice menu, m, then there exists a pooling menu (m′) with

convex delegation set D′ = [k1, γ] (m̂ = {[k1, γ]}) such that:

EP (m̂) =
N∑
i=1

piEPi [k1, γ] >
N∑
i=1

piEPi Di = EP (m). (4.2)

Proof. Proof follows immediately from the proof of Proposition 4.4.

This lemma will prove useful in the next section. Suppose an incentive-compatible

menu, m = {D1, . . . , DN}, yields the principal less expected payoff than a nice menu,

mn = {Dn
1 , . . . , D

n
N}:

EP (mn) =
N∑
i=1

piEPi Dn
i >

N∑
i=1

piEPi Di = EP (m). (4.3)

Thus, Lemma 4.5 shows that we can find a pooling menu m̂ = {D̂} such that :

EP (m̂) =
N∑
i=1

piEPi D̂ >
N∑
i=1

piEPi Dn
i = EP (mn) > EP (m). (4.4)
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We state this as the following corollary:

Corollary 4.6. Let m be an incentive-compatible menu. If there is a nice menu (that

is not necessarily incentive-compatible), mn, that yields the principal higher expected

payoff as in equation (4.3), then there is a convex, pooling menu (a singleton dele-

gation set composed of a convex set) that yields the principal strictly higher expected

payoff as in equation (4.4).

In this section, we restricted the analysis to convex menus. In the next section,

we provide conditions for when this analysis is without loss. When it is without loss,

we will do so by showing that, for each incentive compatible menu, there is a nice

menu that yields the principal strictly higher expected payoff. Hence, by Corollary

4.6, there is a convex pooling menu that yields the principal strictly higher expected

payoff.

5 Main Result

In this section, we characterize when it is optimal for the principal to pool. In other

words, we show when the restricted analysis to convex menus is without loss. Note

that when it is with loss, screening is optimal and the menu may include sets with

gaps. We examine the setting where the principal and agent have power loss functions5

of degree ≥ 1: U(·) = −| · |`, where ` ∈ R and ` ≥ 1. Notice that if ` = 2, then

loss functions are quadratic. In order to analyze nonconvex menus, we will need to

analyze nonconvex sets. Hence, we will analyze sets with gaps. A gap in a delegation

set, D, is an interval of the form (l, h) where D ∩ (l, h) = ∅ and l, h ∈ D. It is shown

in Appendix C that a gap exists in every nonconvex delegation set.
5It is also simple to show that the optimal contract under absolute value loss functions is similar

to that of loss functions of degree strictly less than 2.
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In this way, we can define the expected payoff increase from filling in a gap. This

will be used in the proofs to characterize the optimal delegation menu (Proposition

5.4 and Proposition 5.5). This proof for Proposition 5.4 will require us to fill in gaps

to convert (nonconvex) incentive-compatible menus into nice menus. We are now

ready to outline the proof of the main result.

Our goal is to show that, for loss functions of power ≥ 2, for every incentive

compatible menu m = {D1, . . . , DN}, there is a nice menu yielding the principal

higher expected payoff. Thus, by Corollary 4.6, we know that there is a convex

pooling menu that yields the principal strictly higher payoff than m. In order to

construct a nice menu, we first find an interval delegation set of the form I1 = [k1, a
∗
1]

that gives the least biased agent the same payoff as in the original contract:

E1I1 = E1D1. (5.1)

We then show that equation (5.1) implies that I1 also satisfies the following inequal-

ities:

EP I1 ≥ EPD1. (5.2)

and

EjI1 ≤ EjD1, (5.3)

for all j > i. Equation (5.2) states that this modified delegation set, I1, yields the

principal higher expected payoff than the original delegation set for agent 1, D1.

Equation (5.3) states that all higher types, j > 1, prefer their original delegation set,

Di, to the modified delegation set I1 (and, hence, their original delegation sets, Dj,

to I1). We then repeat this construction of replacing the original delegation set with

an interval starting at k1 for each higher type (j > 1). This construction yields a nice

menu that improves upon the original expected payoff of the principal. This holds
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because each modification of the menu improves upon the original expected payoff of

the principal. Second, all the sets in the new delegation menu are intervals. Finally,

by incentive compatibility and equation (5.3) we know that each type prefers their

interval delegation set to those of all lower types. Hence, we have that a∗j ≥ a∗i , for all

j > i. In this way, the menu {I1, . . . , IN} is a nice menu and we have the following

result:

Proposition 5.1. If ` ≥ 2, for every nonconvex screening menu, there exists a convex

pooling menu that yields the principal greater expected utility.

Proof. See Appendix C.

What is critical to the proof of this result is that gains to principal from filling

in a gap are greater than gains to the agent from filling in a gap. In addition, in

all settings, the principal also weakly gains expected payoff from filling in a gap. If

` ≥ 2, the expected gain to the principal from filling in a gap is greater than the

expected gain to an agent from filling in a gap. This is formalized as Lemma 11.3 in

Appendix C. In the quadratic loss setting (` = 2), the gain to the principal is exactly

equal to the gain to the agent. Thus, for sufficiently concave loss functions, we find

a nice menu that yields the principal higher expected payoff than the original menu.

In this way, by Corollary 4.6, we know that there is a pooling menu that yields the

principal higher expected payoff than the original menu. However, we still need to

show the optimal pooling menu is convex.

In order to do this, we first show how to improve upon an arbitrary set with a

gap. We shall show that the same modification strictly improves utility, independent

of the bias of the agent. Thus, if there is a pooling menu with a gap, we can use

this particular modification to raise the principal’s expected payoff. The modification

used in this section will completely fill in the gap. In other words, if D contains a
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gap, (l, h), the set D′ = D ∪ (l, h) will yield the principal strictly higher expected

utility. We call this modification gap filling. We state this in the following lemma:

Lemma 5.2. (Gap Filling Lemma) Let D be a set with gap, G = (l, h). Let

D(ε, l, h) := D ∪ [l, l + ε) ∪ (h − ε, h], where ε ≤ h−l
2
. Then for all ε ∈ [0, h−l

2
],

we have

EPi D =

∫ 1

0

U(xDi (s)− s)ds <
∫ 1

0

U(x
D(ε,l,h)
i (s)− s)ds = EPi D(ε, l, h).

Hence, completely filling in the gap (replacing D with D′ = D ∪ G) would yield the

principle higher utility.

Proof. See Appendix D.

The intuition for this result is simple. The distribution of loss to the principal

generated by a gap is a mean-preserving spread of distribution of the loss generated

by a (partially) filled in gap. Thus, we have further intuition for Melumad and

Shibano’s (1991) result about the optimality of intervals. Gaps in delegation sets

generate "riskier" lotteries for the principal than those generated by intervals. Hence,

intervals are optimal.

In this way, as argued in the previous paragraph we have the following proposition:

Proposition 5.3 (Convex Optimal Pooling). If ` ≥ 2, given any distribution over N

types of agents, their exists a convex set D∗P that could serve as an optimal pooling

set. All other optimal pooling menus differ from D∗P on a set that will be played with

probability zero in equilibrium.

Proof. See Appendix D.

Thus, Proposition 5.1 shows that for every nonconvex screening menu there is a

pooling menu that yields the principal higher expected utility. Proposition 5.3 shows
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that, of the pooling menus, convex menus are optimal. Hence, convex menus are

optimal and the result from section 4 is without loss for ` ≥ 2:

Proposition 5.4. For ` ≥ 2, the restriction to convex sets is without loss: the optimal

delegation menu is pooling and convex.

Proof. This result is immediate from Propositions 5.1 and 5.3.

In the next result, we show when screening is optimal.

Proposition 5.5. If ` < 2 and biases are strictly less than 1
2
, the optimal contract is

screening and certain agents receive gaps.

We first provide intuition for the proof. In the optimal pooling menu, we know

that the right endpoint is too high: the highest type is allowed to choose actions that

are excessively high given this type’s bias. We will introduce a gap in the optimal

pooling set. We will then thin the high type’s set from the right and thin it from

the left (raise the left endpoint up to kN). We will show that incentive compatibility

is still preserved and the principal benefits from this variation. The principal will

benefit since the gain from thinning the high type’s set from the right6 is "higher

order" than the loss from introducing a gap to the delegation sets of all other types.

Proof. From above, we know the optimal pooling menu is achieved by an interval

contract DPOOL = [k1, a
∗]. In addition, we know that a∗ > 1 − kN , where 1 − kN is

the optimal right boundary if the principal knew for sure that the agent had bias,

kN
7. We show that there are ε, δ > 0 such that the following menu yields strictly

higher payoff to the principal: {D′L, D′H}, where D′L = [k1, kN ] ∪ [kN + δ, a∗] and

D′H = [kN , a
∗ − ε]. δ is chosen such that

6The principal does not lose any payoff from thinning from the left in this case.
7If a∗ ≤ 1−kN , then the menu would not be optimal. The principal could strictly increase payoff

by thickening the DPOOL from the right by a small amount.
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END′H = END′L. (5.4)

Thus, we can write δ as a function of ε, δ(ε). Also, notice that for small enough ε,

δ(ε) is a strictly increasing function of epsilon8. Thus, types 1 though N − 1 choose

D′1 and the highest type chooses D′N .

In addition, notice that, in addition, to the lower right boundary, the less biased

agents would lose an additional
∫ kN−ki

0
U(s)ds. Thus, for small enough ε, incentive

compatibility is satisfied. It remains to show that the principal benefits.

Using calculations similar to those used in the proof of Proposition 5.4, the loss

to the principal from inserting a gap from type i is:

PGi(ε) =

∫ ki+δ(ε)

ki−δ(ε)
U(s)ds− 2δ(ε)U(ki). (5.5)

The gain to the principle from lowering the endpoint of type N is:

TN(ε) = −εU(kN) +

∫ 1−a∗+ε

1−a∗
U(s)ds. (5.6)

Note that TN(ε) is positive for small epsilon since a∗ > 1− kN , the right boundary of

the pooling menu is higher than that chosen facing an agent with known bias kN .

Thus, the screening menu improves upon the pooling menu if:

N−1∑
i=1

piPGi(ε) + pNTN(ε) > 0, (5.7)

which holds if the derivative at ε is strictly positive for all small enough ε:

N−1∑
i=1

piPG
′
i(ε) + pNT

′
N(ε) > 0, (5.8)

8And is continuous by the Implicit Function Theorem.
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⇐⇒ 1 >

∑N−1
i=1 piPG

′
i(ε)

−pNT ′N(ε)
=

N−1∑
i=1

piPG
′
i(ε)

−G′N(ε)

−G′N(ε)

−pNT ′N(ε)
, (5.9)

where GN(ε) is the loss9 from a gap to type N and is given by:

GN(ε) = 2

∫ δ(ε)

0

U(s)ds. (5.10)

Note that from equation (5.4), the loss from the gap to the most biased type must

exactly equal the gain from a higher right boundary. Thus, by calculations used in

the proof of Proposition 5.4, we have that:

GN(ε) = 2

∫ δ(ε)

0

U(s)ds =

∫ 1+kN−a∗+ε

1+kN−a∗
U(s)ds = LN(ε), (5.11)

for all small enough ε. Hence, for all small enough ε,

G′N(ε) = L′N(ε). (5.12)

Plugging in the above equality into equation (5.9) we get:

N−1∑
i=1

piPG
′
i(ε)

−G′N(ε)

−L′N(ε)

−pNT ′N(ε)
. (5.13)

Notice that both LN(ε) =
∫ 1+kN−a∗+ε

1+kN−a∗
U(s)ds and TN(ε) = −εU(kN)+

∫ 1−kN+ε

1−kN
U(s)ds

are bounded and nonzero for all ε small. Thus, the ratio:

−L′N(ε)

pNT ′N(ε)
=

−U(1 + kN − a∗ + ε)

pN
(
−U(kN) + U(1− a∗ + ε)

) (5.14)

is bounded for all ε small enough.
9Hence we multiplied by -1 to multiply and divide by a positive term.
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Thus, it remains to show that piPG
′
i(ε)

G′N (ε)
converges to zero as ε converges to zero.

By L’Hopital’s Rule (WLOG ignoring the constant PN):

lim
ε→0

PG′i(ε)

G′N(ε)
= lim

ε→0

PGi(ε)

GN(ε)
= lim

ε→0

∫ ki+δ(ε)
ki−δ(ε) U(s)ds− 2δ(ε)U(ki)

2
∫ δ(ε)

0
U(s)ds

= lim
δ→0

∫ ki+δ
ki−δ U(s)ds− 2δU(ki)

2
∫ δ

0
U(s)ds

,

(5.15)

where the last equality follows since δ(ε) is strictly increasing and continuous in

ε. In this way, with some abuse of notation, we can treat δ as a variable and not a

function.

By repeated application of L’Hopital’s rule we have:

lim
δ→0

∫ ki+δ
ki−δ U(s)ds− 2δU(ki)

2
∫ δ

0
U(s)ds

= lim
δ→0

U(ki + δ) + U(ki − δ)− 2U(ki)

2U(δ)
(5.16)

= lim
δ→0

U ′(ki + δ)− U ′(ki − δ)
2U ′(δ)

= lim
δ→0

U ′′(ki + δ) + U ′′(ki − δ)
2U ′′(δ)

(5.17)

=

`(`− 1)

(
(ki + δ)`−2 + (ki − δ)`−2

)
`(`− 1))(δ)`−2

. (5.18)

But notice that:

lim
δ→0

(δ)`−2 =∞, (5.19)

since 1 < ` < 2. Therefore, since `(` − 1)

(
(ki + δ)`−2 + (ki − δ)`−2

)
is bounded

as δ → 0,

lim
δ→0

`(`− 1)

(
(ki + δ)`−2 + (ki − δ)`−2

)
`(`− 1))(δ)`−2

= 0. (5.20)
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Hence, from equation (5.15)

lim
ε→0

PG′i(ε)

G′N(ε)
= 0. (5.21)

The proof is done for ` such that 1 < ` < 2. For absolute value loss (` = 1), the above

proof is simpler since PGi(ε) = 0 for all ε small (ε < k1) by linearity of the loss (and

the result that gaps introduce a mean-preserving spread- recall Example 4 in section

3). Thus, since TN(ε) > 0, equation (5.7) holds and screening is optimal.

Notice that it was the relative gains from filling in a gap that drove the optimality

result for ` ≥ 2. For less concave preferences, the principal can begin at the opti-

mal pooling contact, introduce a small gap to the less biased types, lower the upper

threshold for the most biased type, while preserving the IC constraints. Thus, less

biased types may take higher actions than more biased types in equilibrium. The

principal screens by placing a gap in the less biased types delegation sets. This dis-

courages the more biased types from choosing these sets with higher actions. In order

to incentivize the less biased types to select sets with gaps, the principal raises the

smallest action of the more biased agents. To the more biased agents, this restriction

of discretion over low actions is much less costly than it is to the less biased agents.

The next subsection describes the comparative statics of the optimal pooling

menu. For ` ≥ 2, pooling is optimal. Thus, for these parameters, the next sub-

section describes the comparative statics of the optimal menu.

6 Comparative Statics of the Optimal Pooling Menu

Let pN := (p1, . . . , pN), where
∑N

i=1 pi ≤ 1 (the subscript N denotes the dimension

of the vector- pL would be an L-tuple). and kN := (k1, . . . , kN) (again, the subscript

N denotes the dimension of the vector- kL would be an L-tuple). Denote the optimal
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nonredundant pooling delegation set by D∗(pN ,kN). We have the following result:

Proposition 6.1. Fix pN . The optimal pooling delegation set, D∗(pN , kN) is weakly

decreasing in kN . Formally,

k′N ≥ kN ⇒ D∗(pN , k
′
N) ⊆ D∗(pN , kN), (6.1)

where k′N ≥ kN iff k′i ≥ ki for all i ∈ {1, . . . , N}.

Proof. See Appendix E.

Now, let F(pN ,kN )(z) denote the cumulative density function of the distribution

of the biases kN under the probability distribution pN . We can extend the previous

result:

Proposition 6.2. The optimal pooling delegation set, D∗(pN , kN) is weakly decreas-

ing in first-order stochastic dominance (%1st). Formally,

(p′N , k
′
N) %1st (pL, kL)⇒ D∗(p′N , k

′
N) ⊆ D∗(pL, kL), (6.2)

where (p′N , k
′
N) %1st (pL, kL) iff F(p′N ,k

′
N )(z) ≤ F(pL,kL)(z) for all z ∈ R.

Proof. We provide a complete proof in Appendix E. The intuition of the proof is to

show that if one lottery, a, over types (first-order) stochastically dominates another,

b, then we can convert a into b through a sequences of monotonic adjustments to the

bias and to the probabilities.

Thus, if one draw of types is "more biased" (according to first-order stochastic

dominance), then the principal will offer the riskier draw a smaller delegation set.
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7 Example with Transfers

In order to show one of the consequences of the no transfers assumption, we provide

an example of delegation with transfers and show a broad class of settings where the

optimal menu is not pooling. The utility functions in this section are a special case

of those in Ambrus and Egorov (2017). The utility of the prinicpal is UP (x, s, T ) =

−(x − s)2 − T . The utility of agent type i is U i(x, s, T ) = −(x − s − ki)2 + T . In

this example, there are two types of agents. For agent 1, k1 = 0 and we denote this

agent as Agent U (unbiased). For the other agent, 0 < k < 1
2
, we denote this agent as

Agent B (biased). In this case, the principal offers the agent a menu10 of delegation

set and transfer pairs mT = {(DU , TU), (DB, TB)}, where (Dj, Tj) ∈ D × R. Let p

denote the probability of an agent of type U (with 1− p denoting the probability of

type B). The timing of the game is the same as in Section 3.

Since there are no restrictions on transfers, the Principal’s problem is different in

this setting. In particular, there will now be individual rationality (IR) constraints.

Thus, the Principal’s problem is to maximize:

max
{(DU ,TU ),(DB ,TB)}

p
(
EPUDU − TU

)
+ (1− p)

(
EPBDB − TB

)
, (7.1)

subject to the IC constraints

EUDU + TU ≥ EUDB + TB, EBDB + TB ≥ EBDU + TU (7.2)

and IR constraints

EUDU + TU ≥ w̄U ,EBDB + TB ≥ w̄B, (7.3)

where w̄U , w̄B ∈ R.
10Once again, we can restrict attention to two-option menus by the Taxation Principle.
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We can now find a broad class of settings where the optimal menu is not pooling.

Proposition 7.1. Denote w̃ :=
∫ k

0
−s2ds. Let w̄B < w̃. Denote µ := w̃− w̄B and let

0 > wU > −µ. For every optimal IC and IR compatible pooling menu, there is an IC

and IR compatible separating menu that yields the principal strictly higher expected

payoff.

Proof. The proof of this result is provided in the online appendix.

The intuition for the argument is that any noninterval pooling delegation set can

be improved upon by an interval pooling delegation set. Thus, like the case without

transfers, the optimal pooling menu is interval. In addition, the marginal expected

payoff from lengthening the interval from the right to the biased type is higher than

that to the low type. Finally, the marginal expected payoff gain from lengthening the

interval from the right to the biased type has a higher magnitude than the expected

marginal change to the principal. Thus, the principal can charge the biased type

their expected return from lengthening the interval. This variation would preserve

the biased type’s utility (and, hence, IC and IR constraints), would preserve the

IC (and IR) constraint of the unbiased type, and would yield the principal strictly

higher expected payoff. Thus, the optimality of pooling is a consequence of the lack

of transfers and not the nonmonotonicity of the utility functions.

Notice that the proof does not rule out optimality of pooling for certain parameter

values11. If the outside option utilities are too high, the optimal menu could be

pooling. However, the proof does show that even if the optimal menu is pooling,

the delegation set is drastically different from the optimal set in the case without

transfers. Either an optimal menu is not pooling, or it cannot be strictly contained

in the unit interval.
11The conditions on the outside utility options ensure that the optimal pooling menu is strictly

contained in the interval [0, 1).
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8 Conclusion

In this paper we have shown that under uncertainty over the preferences of agents, the

optimal contract for delegation depends on the risk-aversion of the principal. When

the principal is more risk-averse, we showed that there is no benefit to screening. In

contrast, when the principal is less risk averse (or can diversify risk over outcomes),

there is a benefit to screening. Surprisingly, under the optimal screening menu, less

biased types choose a set of extreme actions. They do so because they strongly value

the option to take small actions in addition to large actions. In other words, the

less ideological actions select the extreme option set since they place a greater value

on outcomes across the entire spectrum. The more biased agents are discouraged by

the extreme options since they do not value small actions. In addition, screening is

beneficial to the principal since the lower risk-aversion allows the principal to tolerate

the additional variance from the extreme actions chosen by the less biased types.

This paper provides a very simple characterization for when screening is beneficial.

The key insight is that the benefits of screening rely on the degree of risk-aversion of

the principal’s preferences. For less risk-averse principals, screening may be optimal.

Thus, the optimality of screening is not just a result of the knowledge of future payoff-

relevant states. It may also occur when the agents have different biases and have

identical knowledge of future states. Thus, in addition to knowledge, bias matters

for screening.

The results in this paper suggest several directions for future work. First, it re-

mains to generalize the results of this paper to settings where the states are not

distributed uniformly, the bias is not constant, and the utility is not necessarily

quadratic. One can also explore whether stochastic mechanisms yield the principal

higher expected payoff than deterministic mechanisms. In addition, one may gen-

eralize the results of this paper to the case of more than 1 agent (potentially to
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analyze hierarchies). In addition, as in Amador and Bagwell (2012), one may con-

sider alternate quasilinear utilities to incorporate the possibility of money burning in

delegation. One may further consider (finite) repeated interaction to see if there is

a screening menu that yields the principal strictly higher expected payoff than the

optimal (repeated pooling) delegation menu.
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9 Appendix A: Proofs for Results in Section 3

In this Appendix, we show that we can replace any set in a menu with a nonredundant

set (Corollary 9.7). In order prove this, we will need knowledge of the properties of the

delegation schedule (Lemmas 9.1-9.4) and a result that, given a compact delegation

set, the set of outcomes chosen by the agent is compact (Lemma 9.5). These will

directly imply the nonredundancy result.

Lemmas 9.1-9.4 are the delegation schedule analogs of delegation rule lemmas in

Proposition 1 of Melumad and Shibano (1991). Notice that U i = UP , for ki = 0. In

addition, U i is single-peaked (for each s, there is an x such that ∂U i

∂x

(
x− s− ki

)
= 0),

∂2U i

∂x2

(
x−s−ki

)
< 0, and ∂2U i

∂x∂s

(
x−s−ki

)
> 0. These are the conditions on the utility

function for Proposition 1 of Melumad and Shibano (1991). Hence, we can cite a few

results of Proposition 1 from their paper:

Lemma 9.1 (Delegation schedules are weakly increasing). For all i ∈ N , xDi (s) is

weakly increasing in s and the only discontinuities of it are jump discontinuities.

Thus, we know that for all D and i, xDi (s) is weakly increasing and, hence, has

only jump discontinuities. Let xD+
i (s) = limr→s+ x

D
i (s) and xD−i (s) = limr→s− x

D
i (s).

By part (iii) of Proposition 1 of Melumad and Shibano (1991) we have:

Lemma 9.2. At a point of discontinuity, τ ∈ [0, 1], of xDi , we have that: (a) |xD+
i (τ)−

τ − ki| = |xD−i (τ)− τ − ki|. (b) xDi (τ) ∈ {xD−i (τ), xD+
i (τ)}.

In addition, we have the following corollary:

Corollary 9.3. If τ is a point of discontinuity of the delegation schedule,

xD−i (τ) < τ + ki < xD+
i (τ). (9.1)
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Finally, we know that the function xDi achieves both the right and left hand limits

at a point of discontinuity (though not at the same point):

Lemma 9.4. If τ is a point of discontinuity, there exist s1, s2 ∈ [0, 1] such that

xDi (s1) = xD+
i (τ) and xDi (s2) = xD−i (τ).

Proof. By Lemma 9.2, we know that xDi (τ) ∈ {xD−i (τ), xD+
i (τ)}. W.L.O.G. assume

xDi (τ) = xD−i (τ). By Corollary 9.3, we know that there is s1 close enough to τ that

τ + ki < s1 + ki < xD+
i (τ). In addition, we know that xD+

i (τ) ∈ D, by compactness

(and, therefore, closure) of D. Also, we know that
(
xD−i (τ), xD+

i (τ)

)
∩ D = ∅.

Otherwise, xDi (τ) is not optimal. By Lemma 9.2, |xD−i (τ)−τ−ki| = |xD+
i (τ)−τ−ki|.

Thus, |xD−i (τ)− s1 − ki| > |xD+
i (τ)− s1 − ki|. Hence, xD+

i (τ) = xDi (s1).

Lemma 9.5. For all D ∈ D and i ∈ N , I(xDi ) is compact.

Proof. We prove this by showing that the set I(xDi ) is bounded and closed. Hence,

by the Heine-Borel Theorem it is compact.

Step 1: I(xDi ) is bounded.

Proof. First, since xDi weakly-increasing by Lemma 9.1. Thus, its range is bounded:

xDi (0) ≤ xDi (s) ≤ xDi (1) for all s ∈ [0, 1].

Step 2: Admissible sets are closed.

Proof. We prove this step by showing that the complement of I(xDi ) is open.

Let q ∈ R, where q is in the complement of I(xDi ), I(xDi )C . Then, ∃ε > 0 such

that (q− ε, q+ ε) ⊆ I(xDi )C . Otherwise, q would be a right or left hand limit of xDi by

Lemma 9.1. But then, by Lemma 9.4, q ∈ I(xDi ). But this is a contradiction. Thus,

I(xDi )C is open and I(xDi ) is closed.

Since I(xDi ) is closed and bounded, by the Heine-Borel Theorem it is compact.
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Corollary 9.6. For all D ∈ D and i ∈ N , I(x
I(xDi )
i ) = I(xDi ).

The following result combines this lemma and corollary together and allows us to

reduce attention to nonredundant sets:

Corollary 9.7. For every set D ∈ D and i ∈ N , there is a nonredundant set D′ =

I(xD) ∈ D such that I(xD
′

i ) = I(xDi ) and xD′i (s) = xDi (s),∀s ∈ [0, 1].

10 Appendix B: Proofs for Results in Section 4

Proof of Lemma 4.1 (Down to ki Lemma):

Proof. If a ≥ 1 + ki, then U(xDi (s)− s) < U(ki) for all s ∈ [0, 1]. Thus,

EPi D =

∫ 1

0

U(xDi (s)− s)ds <
∫ 1

0

U(ki)ds = EPi D′. (10.1)

If a < 1 + ki, then

EP
i D =

∫ 1

0

U(xDi (s)− s)ds =

∫ a−ki

0

U(ai − s)ds+

∫ 1

a−ki
U(xDi (s)− s)ds (10.2)

=

∫ a

ki

U(s)ds+

∫ 1

a−ki
U(xDi (s)−s)ds <

∫ a−ki

0

U(ki)ds+

∫ 1

a−ki
U(xDi (s)−s)ds = EPi D′

(10.3)

since a > ki. Thus, D is not optimal.

Proof of Lemma 4.2:

Proof. Notice that if ki ≥ 1
2
, then Ψi(ki) > Ψi(b),∀ b > ki ≥ 1

2
. In addition, for

strictly concave U(·), argmaxb∈[0,1]

∫ 1

0
U(b − s)ds = 1

2
. Thus, for ki ≥ 1

2
, an optimal

convex delegation set is [0, 1
2
].
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If ki < 1
2
and b < ki, then Ψi(ki) > Ψi(b) because the agent only takes one action

for b ≤ ki.

But over b ∈ (ki, 1], Ψ(b) is differentiable and strictly concave. Hence, Ψi(b) is

maximized by b∗ such that Ψ′i(b
∗) = U(k) − U(1 − b∗) = 0. Hence, b∗ = 1 − ki (and

the FOC is sufficient because of the strict negative sign of Ψ′′i (b)). Thus, we know

that Ψi(·) is strictly increasing until b∗ and decreasing after.

Proof of Lemma 4.3 (Single-Crossing Lemma):

Proof. Assume that ai > aj and bi > bj. WLOG we can assume (by the nonredun-

dancy result) that bi ≤ 1 + ki and aj ≥ kj.

EjDj =

∫ aj−kj

0

U(aj−s−kj)ds+
∫ 1

bj−kj
U(bj−s−kj)ds =

∫ aj−kj

0

U(s)ds+

∫ 1+kj−bj

0

U(s)ds.

(10.4)

In addition, we have:

EjDi =

∫ ai−kj

0

U(ai−s−kj)ds+
∫ 1

bi−kj
U(bi−s−kj)ds =

∫ ai−kj

0

U(s)ds+

∫ 1+kj−bi

0

U(s)ds.

(10.5)

The ICk condition implies that EjDj ≥ EjDi

⇐⇒
∫ 1+kj−bj

1+kj−bi
U(s)ds ≥

∫ ai−kj

aj−kj
U(s)ds⇐⇒

∫ 1+ki−bj

1+ki−bi
U(s)ds >

∫ ai−ki

aj−ki
U(s)ds,

(10.6)

since ki < kj and U(·) is strictly concave. Thus, EiDj > EiDi and the ICk condition

is violated.

Proof of the No Need to Screen Result for Convex Menus (Proposition 4.4):
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Proof. If there is no type with bias strictly less than 1
2
, then the principal can achieve

optimal expected payoff by offering the menu m = {1
2
}. If there is a type with bias

strictly less than 1
2
, then by the Single-Crossing Lemma (Lemma 4.3), we know that

if a menu m = {D1 = [a1, b1], . . . , DN = [aN , bN ]} satisfies the ICk constraints, we

need

b1 ≤ b2 ≤ · · · ≤ bN . (10.7)

By Lemma 4.1 (Down to k Lemma), we know that if we were to replace each Di

by D0
i = [ki, bi] (forming the menu m0), then EPD0

i ≥ EPDi and therefore:

EP (m0) =
N∑
i=1

piEPD0
i ≥

N∑
i=1

piEPDi = EP (m). (10.8)

Thus, while m0 may yield the principal a higher expected payoff, it may not be

incentive compatible. Thus, we will modify this menu further (making it both a

incentive compatible and a pooling menu).

By the Known Bias Optimum Lemma (Lemma 4.2) we know that the optimal

complete information (over types) delegation set for type i is equal to Di∗ = [0, qi],

where qi = max{1
2
, 1− ki}. Thus, we have:

q1 ≥ q2 ≥ · · · ≥ qN . (10.9)

Roughly, these equations state that the optimal delegation sets (under complete

information) are decreasing12. In contrast, the sets in a non-pooling, but ICk menu,

must be increasing. We will use this contrast to achieve a contradiction.

If b1 ≥ q1, then the pooling menu with pooling set [0, q1] is ICk (trivially) and

yields the principal strictly higher expected payoff than m0 (and m) from the Known
12Also, at least one of the inequalities must hold strictly. Otherwise, the principal can maximize

expected payoff with m = {D}, where D = { 12}.
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Bias Optimum Lemma13. If bN ≤ qN , then the pooling menu with pooling set [0, qN ]

is ICk (trivially) and yields the principal strictly higher expected payoff than m0

(and m) by the Known Bias Optimum Lemma. If b1 < q1 and bN > qN we define the

Turning Point Type, i∗:

i∗ = max{i ∈ N|bi ≤ qi}. (10.10)

By equations (10.7) and (10.9) we know that i∗ is well-defined because for all

i < i∗, bi ≤ bi∗ ≤ qi∗ ≤ qi and for all j > i∗ + 1, bj ≥ bi∗+1 > qi∗+1 ≥ qj.

WLOG assume bi∗ < qi∗+1 ≤ qi∗ < bi∗+1. Let the pooling delegation set be D∗ =

[0, qi∗+1]. From the Known Bias Optimum Lemma, we know the pooling menu yields

the principal strictly higher expected payoff than menu m0 (and m). In addition,

it satisfies ICk (trivially). Hence, we have shown by contradiction that the optimal

convex menu must be pooling.

11 Appendix C: Proofs of Results in Section 5

11.1 A Note on Gaps

In the class of games studied in this paper, the principal offers the agent a menu of

sets. In order to discuss the types of sets the principal may find optimal to offer, we

introduce a useful definition. We define carefully the definition of a gap in a delegation

set. Assume that a delegation set, D, is not convex. Thus, if there exists a point y

such that x, z ∈ D and x < y < z, let G+
D(y) = [y, uDy ), where

uDy = sup
t
{t ∈ R|t > y, [y, t) ∩D = ∅}.

13Since the expected payoff to the principal is decreasing when the delegation set is too large.
Thus, there is a gain from shrinking each D0

i .
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In addition, let G−D(y) = [dDy , y), where

dDy = inf
t
{t ∈ R|y > t, (t, y] ∩D = ∅}.

Thus, define GD(y) := G−D(y) ∪G+
D(y), where GD(y) is the largest gap containing y.

We state one more lemma which will be useful later.

Lemma 11.1. dDy , uDy ∈ D.

Proof. This follows from the openness of the complement of a compact set (D is

compact). Since compact sets are closed, these points must be contained in a compact

set, D.

11.2 Proof of Proposition 5.1

In order to simplify the exposition of the proof, we make two assumptions in this

Appendix: (1) that Di is contained in (−∞, 1 + ki] and (2) that the gap, G, is

contained in [ki, 1+ki]. In Tanner (2018) we show that these assumptions are WLOG.

The proof will modify the set Di twice. The first modification will fill in all of the

gaps inside of Di to obtain a new set, D′′i . The first modification will increase the

expected payoff of the agent and increase the expected utility of the principal, but will

effect the incentive compatibility conditions. In order to preserve these conditions, we

will modify the set again. We will "thin" this set from the right so as to preserve the

indifference of agent i, creating set, Ii. We will then show that all agents j > i prefer

there original sets Dj to Ii. Then we will demonstrate that Ii yields the principal a

higher expected payoff than Di. By performing these modifications for all types of

agent, we will then create a nice menu. By Lemma 4.5, there will then exist a pooling

menu that improves upon this nice menu. Thus, there will exist a pooling menu that

improves on the original menu (which was not necessarily nice).
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11.3 Aligned Thinning Lemma

Before we construct an Ii that satisfies equations (5.1), (5.2), and (5.3), we first prove

a useful lemma. In order to prove this lemma, we introduce some notation. Let

A be a closed (and bounded) set. Denote maxA := maxx∈A x. We call a closed

(and bounded) delegation set D thick at the top if there exists an ε > 0 such that

[maxD − ε,maxD] ⊆ D. We call the set D−(δ) a δ-thinning of D if D−(δ) =

D ∩ (−∞,maxD − δ] and δ ≥ 0 is chosen so that [maxD − δ,maxD] ⊆ D.

Lemma 11.2. (Aligned Thinning Lemma) Let D be thick at the top, let δ > 0, and

let D−(δ) be a δ-thinning of D. We have the following inequality:

∆j(D−(δ), D) < ∆i(D−(δ), D) < ∆P
i (D−(δ), D), (11.1)

for all j > i.

In words, equation (11.1) states that thinning certain thick at the top delegation

sets causes the least expected utility loss to the principal (it may even be a gain)

and causes more expected utility losses for higher-bias types. Thus, thinning sets

will prove to be a powerful variation that preserves incentive compatibility while

maintaining expected utility gains to the principal.

Proof. We let d∗ = maxD. We break this lemma into two results: (i) ∆j(D−(δ), D) <

∆i(D−(δ), D) for all j > i and (ii) ∆i(D−(δ), D) < ∆P
i (D−(δ), D).

Proof of (i): We first show that ∆j(D−(δ), D) < ∆i(D−(δ), D) for all j > i. We

will prove this relation by writing ∆j(D−(δ), D) as a function of kj and show that it

is decreasing in kj: ∆j(D−(δ), D) = EiD−(δ)− EiD

=

∫ 1

max{0,d∗−δ−kj}
U(d∗ − δ − s− kj)ds−

∫ 1

max{0,d∗−kj}
U(d∗ − s− kj)ds (11.2)
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(
since xD

−(δ)
j (s) = xDj (s) for all s ∈ [0,max{0, d∗ − δ − kj}] and U(0) = 0

)
=

∫ 1+kj−d∗+δ

1+kj−d∗
U(s)ds−

∫ max{kj+δ−d∗,0}

max{kj−d∗,0}
U(s)ds >

∫ 1+kl−d∗+δ

1+kl−d∗
U(s)ds−

∫ max{kl+δ−d∗,0}

max{kl−d∗,0}
U(s)ds = ElD−(δ)−ElD,

(11.3)

for all kl > kj since one of three cases holds: (A) kj + δ − d∗ < 0 (B) kj − d∗ < 0 ≤

kj + δ − d∗ (C) kj − d∗ ≥ 0.

If (A) holds, then EjD−(δ)−EjD =
∫ 1+kj−d∗+δ

1+kj−d∗ U(s)ds, which is strictly decreasing

in kj. If (B) holds then EjD−(δ) − EjD =
∫ 1+kj−d∗+δ

1+kj−d∗ U(s)ds −
∫ kj+δ−d∗

0
U(s)ds.

Differentiating with respect to kj we get

U(1+kj−d∗+δ)−U(1+kj−d∗)−
(
U(kj+δ−d∗)−U(0)

)
< U(1+kj−d∗+δ)−U(1+kj−d∗)−

(
U(δ)−U(0)

)
< 0

(11.4)

since kj − d∗ ≤ 0 < kj − d∗ + δ, U(0) = 0, U(·) is strictly decreasing over R+, and

U(·) is strictly concave. If (C) holds, the result follows by an argument identical that

in (B). �

Proof of (ii): ∆i(D−(δ), D) < ∆P
i (D−(δ), D)

We first reduce the analysis to a specific D and δ(D) (where the thinning will be

a function of the set D). The reason we can do this is because if D is thick at the top

and D−(δ) is a δ-thinning, then D−(δ) is also a closed and bounded set. In addition,

recall that ∆P
i (D−(δ), D) = EPi D−(δ) − EP

j D. Hence, letting δ0 = 0,
∑L

r=1 δr = δ,

and Sr =
∑r

h=0 δh, then:

∆P
i (D−(δ), D) = ∆P

i (D−(
L∑
r=1

δr), D) =
L∑
r=1

∆P
i

(
D−(δr + Sr−1), D−(Sr−1)

)
. (11.5)

In this way, if ∆P
i

(
D−(δr + Sr−1), D−(Sr−1)

)
> ∆i

(
D−(δr + Sr−1), D−(Sr−1)

)
, for

all r ∈ {1, . . . , L} then ∆P
j (D−(δ), D) > ∆j(D−(δ), D).
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Cases: (I) maxD > 1,maxD − 1 ≥ δ > 0. (II) 1 ≥ maxD ≥ ki,maxD − ki ≥

δ > 0.

Proof for Case (I), maxD > 1,maxD − 1 ≥ δ > 0: In this case, by removing

an interval of length δ, the principal’s expected utility is strictly increased while the

agent’s expected utility is strictly decreased. It is increased for the principal since the

principal prefers a choice of d′ < d for all d, d′ > 1. For the agent, the preferences are

reversed. Hence, for case (I), ∆P
i (D−(δ), D) > ∆i(D−(δ), D). �

Proof for Case (II), 1 ≥ maxD > ki,maxD − ki ≥ δ > 0

∆P
i (D−(δ), D) = EPi D−(δ)− EPi D =

∫ 1+δ−d∗

1−d∗
U(s)ds− δU(ki) (11.6)

(since xD
−(δ)

i (s) = xDi (s) for all s ∈ [0, d∗ − δ − ki], and D is thick at the top so

xDi (s) = s+ ki for all s ∈ [d∗ − δ − ki, d∗ − ki])

>

∫ 1+ki+δ−d∗

1+ki−d∗
U(s)ds =

∫ 1

d∗−δ−ki
U(d∗−δ−s−ki)ds−

∫ 1

d∗−kj
U(d∗−s−ki)ds = EiD−(δ)−EiD = ∆i(D−(δ), D).

(11.7)

Hence, for case (II), ∆P
i (D−(δ), D) > ∆i(D−(δ), D). �

Thus, from cases (I) and (II) and the argument at the beginning of case (ii)

we know that for all D that are thick at the top, for any δ-thinning we have:

∆P
i (D−(δ), D) > ∆i(D−(δ), D).

From case (i) we know that ∆i(D−(δ), D) > ∆j(D−(δ), D) for all j > i and from

case (ii) we know ∆P
i (D−(δ), D) > ∆i(D−(δ), D). Hence, we have completed the

proof for the Aligned Thinning Lemma (Lemma 11.2).

Now we construct D′′i and Ii.
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11.4 Construction of Ii

Let ai = maxd∈Di d and D′′i = [ki, ai]. In words, we filled in all of the gaps in Di and

thickened Di from the left to ki. This replacement strictly raises agent i’s expected

payoff. We will then replace D′′i with the interval, Ii = [ki, a
∗
i ], such that agent i is

indifferent between Ii and Di (thus, a∗i < ai). Such an a∗i exists by the Intermediate

Value Theorem. Hence, Ii satisfies equation (5.1). It remains to show that it satisfies

equations (5.2) and (5.3).

Equation (5.3) is the easier relation to prove. First, note that D′′i fills in all gaps

in Di and thickens Di to ki if necessary. EjD′′i − EjDi is just the expected gain to

type j > i from filling in all the gaps in Di. The gain from a gap G ⊆ [kj, 1 + kj]

is the same to type j as it is to type i since U(·) is a function of the absolute value

of distance from action d to s + kj. Thus, the only nontrivial case where the change

in expected payoff from filling in a gap is different is for the case when G = (l, h),

h > kj, and l < kj. In this case, the loss to the agent j over the gap is

∫ h+l
2
−kj

0

U(l−s−kj)ds+
∫ h−kj

h+l
2
−kj

U(h−s−kj)ds =

∫ h−l
2

kj−l
U(s)ds+

∫ h−l
2

0

U(s)ds. (11.8)

For type i, the loss over the gap is

∫ h+l
2
−ki

max{0,l−ki}
U(l − s− ki)ds+

∫ h−ki

h+l
2
−ki

U(h− s− ki)ds (11.9)

=

∫ h−l
2

max{ki−l,0}
U(s)ds+

∫ h−l
2

0

U(s)ds <

∫ h−l
2

kj−l
U(s)ds+

∫ h−l
2

0

U(s)ds. (11.10)

Thus, the loss to type i is greater from this kind of gap. Hence, filling it in will

increase the expected payoff of type i by more than that of type j > i. Hence, we

have that ∆i(D′′i , Di) > ∆j(D′′i , Di).
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In addition ∆i(Ii, D
′′
i ) > ∆j(Ii, D

′′
i ) by the Aligned Thinning Lemma (Lemma

11.2). Thus,

EjIi−EjDi = ∆j(Ii, D
′′
i ) + ∆j(D′′i , Di) < ∆i(Ii, D

′′
i ) + ∆i(D′′i , Di) = EiIi−EiDi = 0.

(11.11)

So EjIi < EjDi for all j > i. This shows that equation (5.3)is satisfied by Ii. It

remains to show that Ii satisfies equation (5.2).

Let Lji (G) denote the loss over a gap, G of D, where G = (l, h) ⊆ [ki, 1 + ki], to

an agent j or a principal with agent i. Thus, j ∈ {P, 1, 2, . . . , N} and if j 6= P , then

j = i:

EPi D =

∫ l−ki

0

U(xDi (s)−s)ds+
∫ h+l

2
−ki

l−ki
U(l−s)ds+

∫ h−ki

h+l
2
−ki

U(h−s)ds+
∫ 1

h−ki
U(xDt (s)−s)ds

(11.12)

=

∫ l−ki

0

U(xDi (s)− s)ds+

∫ −ki+h−l
2

−ki
U(s)ds+

∫ −ki
−ki−h−l2

U(s)ds+

∫ 1

h−ki
U(xDt (s)− s)ds

(11.13)

=

∫ l−ki

0

U(xDi (s)− s)ds+

∫ −ki+h−l
2

−ki−h−l2

U(s)ds+

∫ 1

h−ki
U(xDt (s)− s)ds (11.14)

=

∫ l−ki

0

U(xDi (s)− s)ds+

∫ ki+
h−l
2

ki−h−l2

U(s)ds+

∫ 1

h−ki
U(xDt (s)− s)ds. (11.15)

When the gap is filled in, D becomes D ∪G. Thus, the loss to the principal is:
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EPi D∪G =

∫ l−ki

0

U(xDi (s)−s)ds+
∫ h+l

2
−ki

l−ki
U(ki)ds+

∫ h−ki

h+l
2
−ki

U(ki)ds+

∫ 1

h−ki
U(xDt (s)−s)ds

(11.16)

=

∫ l−ki

0

U(xDi (s)− s)ds+ (h− l)U(ki) +

∫ 1

h−ki
U(xDt (s)− s)ds. (11.17)

When the gap is filled in, D becomes D ∪ G. By equations (11.15) and (11.17),

the gain from filling in the gap to the principal, ∆P
i (D ∪G,D) is:

∆P
i (D ∪G,D) = EPi D ∪G− EPi (D) = (h− l)U(ki)−

∫ ki+
h−l
2

ki−h−l2

U(s)ds. (11.18)

The payoff to an agent with bias ki is:

EiD =

∫ l−ki

0

U(xDi (s)− s− ki)ds+

∫ h+l
2
−ki

l−ki
U(l − s− ki)ds (11.19)

+

∫ h−ki

h+l
2
−ki

U(h− s− ki)ds+

∫ 1

h−ki
U(xDt (s)− s− ki)ds

=

∫ l−ki

0

U(xDi (s)−s−ki)ds+

∫ h−l
2

0

U(s)ds+

∫ 0

−h−l
2

U(s)ds+

∫ 1

h−ki
U(xDt (s)−s−ki)ds

(11.20)

=

∫ l−ki

0

U(xDi (s)− s− ki)ds+ 2

∫ h−l
2

0

U(s)ds+

∫ 1

h−ki
U(xDt (s)− s− ki)ds (11.21)
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EiD∪G =

∫ l−ki

0

U(xDi (s)−s−ki)ds+
∫ h+l

2
−ki

l−ki
U(0)ds+

∫ h−ki

h+l
2
−ki

U(0)ds+

∫ 1

h−ki
U(xDt (s)−s−ki)ds

(11.22)

=

∫ l−ki

0

U(xDi (s)− s− ki)ds+

∫ 1

h−ki
U(xDt (s)− s− ki)ds. (11.23)

By equations (11.21) and (11.23), for agent type i, the gain from filling in the gap

∆i(D ∪G,D) is:

∆i(D ∪G,D) = EiD ∪G− EiD = −
∫ h−l

2

−h−l
2

U(s)ds. (11.24)

Thus, the gain is clearly positive since U(·) ≤ 0. We now show that for power loss

functions
(
U(·) = −| · |`, where ` ∈ N

)
and ` ≥ 2, the gain to the principal is at least

as high as the gain to the agent. We state this in the next lemma:

Lemma 11.3. If U(·) = −| · |`, where ` ∈ R and ` ≥ 2, then for Φ = h−l
2
:

∆P
i (D ∪G,D) ≥ ∆i(D ∪G,D). (11.25)

Proof. Notice that the gain to the principal from filling in a gap minus the gain to

agent from filling in a gap is:

f(Φ) := −2ΦU(k) +

∫ k+Φ

k−Φ

U(s)ds− 2

∫ Φ

0

U(s)ds (11.26)

Notice that, f(0) = f ′(0) = 0. Yet,

f ′′(Φ) = U ′(k + Φ)− U ′(k − Φ)− 2U ′(Φ). (11.27)

Hence,

f(Φ) = f ′′(ξ), (11.28)
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for some ξ ∈ (0,Φ). Hence, f(Φ) > 0 ⇐⇒ U ′′′(Φ) < 0.

Notice that this result relies on the fact that U ′(0) = 0. It can be shown that

screening may be optimal for absolute value loss functions.

For quadratic functions (U(s) = −s2), it turns out that these two gains are equal

since, (letting Φ = h−l
2
):

∆i(D ∪G,D) =

∫ Φ

−Φ

s2ds =
2

3
Φ3. (11.29)

In contrast, by equation (11.18) and simple calculation:

∆P
i (D ∪G,D) = −(2Φ)k2

i +

∫ ki+Φ

ki−Φ

s2ds =
2

3
Φ3 = ∆i(D ∪G,D). (11.30)

Recalling from equation (11.24) that ∆i(D ∪G,D) > 0, equation (11.25) implies

that ∆P
i (D ∪G,D) > 0.

Lemma 11.3 held for filling in one gap. But if we fill in multiple (all) gaps, the

result would clearly hold. Thus, we have:

∆P (D′′i , Di) ≥ ∆i(D′′i , Di). (11.31)

We also know from the Aligned Thinning Lemma (Lemma 11.2) that:

∆P (Ii, D
′′
i ) > ∆i(Ii, D

′′
i ). (11.32)

Hence by equations (11.31) and (11.32),

EP Ii − EPDi = ∆P (Ii, D
′′
i ) + ∆P (D′′i , Di) (11.33)

> ∆i(Ii, D
′′
i ) + ∆i(D′′i , Di) = EiIi − EiDi = 0.
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Thus, Ii satisfies equation (5.2) and the proof of Proposition 5.1 is complete.

12 Appendix D: Proof of Proposition 5.3

Proof of Lemma 5.2 (Gap Filling Lemma):

There are two possible cases for the gap G = (l, h): (a) l ≥ k1 or (b) l < k1. We

prove the lemma for case (a) here. The proof of the lemma for case (b) is contained

in Tanner (2018).

In each case we show that the deviation generated by the unfilled set is a mean-

preserving spread of the (partially) filled in set.

12.1 Proof of Case (a)

We track the deviation of the delegation schedule from the ideal point of the principal.

In order to assist the exposition of this section, we again show Figures 23 and 24 from

Section 3.3:
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Figure 23: Plots of deviation Figure 24: Plots of cdfs

The deviations are defined in section 3. These deviations are graphed in figure 23.

V D
i (s) = xDi (s)− s =

 l − s when s ∈ [l − ki, h+l
2
− ki) ,

h− s when s ∈ (h+l
2
− ki, h− ki] .

(12.1)
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Let ε ≤ h−l
2
, D(ε, l, h) = D ∪ [l, l + ε] ∪ [h− ε, h]. First, notice that

xDi (s)− s = x
D(ε,l,h)
i (s)− s, (12.2)

when s ∈ [0, l − ki] ∪ [h− ki, 1]. When s ∈ [l − ki, h− ki],

V
D(ε,l,h)
i (s) = x

D(ε,l,h)
i (s)− s, (12.3)

where

V
D(ε,l,h)
i (s) =



ki when s ∈ [l − ki, l + ε− ki] ,

l + ε− s when s ∈ [l + ε− ki, h+l
2
− ki) ,

h− ε− s when s ∈ (h+l
2
− ki, h− ε− ki] ,

ki when s ∈ [h− ε− ki, h− ki] .

(12.4)

We argue that V D
i is a mean-preserving spread of VD(ε,l,h)(s), when s is uniformly

distributed between the interval [l − ki, h− ki].

Lemma 12.1. V D
i (s) is a mean-preserving spread of V D(ε,l,h)

i (s), when s is uniformly

distributed between the interval [l − ki, h− ki].

Proof. For this proof, we fix l and h. Thus, we denote D(ε, l, h) by D(ε).

Part A: We first show that V D
i (s) and V D(ε)

i (s) have the same mean.

Let η = h− l.

EV D
i =

1

η

(∫ h+l
2
−ki

l−ki
(l−s)ds+

∫ h−ki

h+l
2
−ki

(h−s)ds
)

=
1

η

(∫ h−l
2

0

(ki−t)dt+
∫ 0

−h−l
2

(ki−t)dt
)
,

(12.5)

where equality was obtained by a change of variables s = t+ l−ki in the first integral

and s = t+ h− ki in the second integral.
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But by (12.5) we have that EV D
i = ki and, thus, EV D

i = EV D(ε)
i = ki since

EV D(ε)
i =

1

η

(∫ l+ε−ki

l−ki
kids+

∫ h+l
2
−ki

l+ε−ki
(l+ε−s)ds+

∫ h−ε−ki

h+l
2
−ki

(h−ε−s)ds+

∫ h−ki

h−ε−ki
kids

)
(12.6)

=
1

η

(
2εki +

∫ h−l
2
−ε

0

(ki − s)ds+

∫ 0

−h−l
2

+ε

(ki − s)ds
)

= ki, (12.7)

where the equality between equations (12.6) and (12.7) follows a change of variables

similar to that in (12.5).

Part B: We now show that for all t ∈ R, we have:

∫ t

−∞

(
FD(s)− FD(ε)(s)

)
ds ≥ 0.

(and the inequality holds strictly for s ∈ (ki − h−l
2
, ki + h−l

2
).

Let FD(x) denote the cdf of V D
i and let FD(ε)(x) denote the cdf of VD(ε,l,h).

FD(x) =


0 when s ∈ (∞, ki − h−l

2
] ,

1
η
(s− (ki − h−l

2
)) when s ∈ [ki,

h−l
2

+ ki] ,

1 when s ∈ [h−l
2

+ ki,∞) .

(12.8)

FD(ε)(x) =



0 when s ∈ (−∞, ki − h−l
2

+ ε] ,

1
η
(s− (ki − h−l

2
+ ε)) when s ∈ [ki − h−l

2
+ ε, ki) ,

2ε
η

+ 1
η
(s− (ki − h−l

2
+ ε)) when s ∈ [ki, ki + h−l

2
− ε) ,

1 when s ∈ [ki + h−l
2
− ε,∞) .

(12.9)

Notice that
∫ t
−∞

(
FD(s) − FD(ε)(s)

)
ds ≥ 0, for all t ∈ (−∞, ki) since FD(s) ≥

FD(ε)(s) for all such s (and the inequality is strict from [ki − h−l
2
, ki)).
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Define ψ(·) such that:

ψ(s) := FD(ki + s)− FD(ε)(ki + s).

Notice that for s ∈ [−h−l
2
, h−l

2
], we have ψ(s) = −ψ(s). Thus, since FD(s) =

FD(ε)(s) for s ∈ (−∞, ki− h−l
2

]∪ [ki + h−l
2
,∞) and since FD(s) > FD(ε)(s) for all such

s ∈ [ki−h−l
2
, ki), equations (12.8) and (12.9) we have that

∫ t
−∞

(
FD(s)−FD(ε)(s)

)
ds ≥ 0

for all s ∈ R (and the inequality is strict for s ∈ [ki − h−l
2
, ki + h−l

2
).

Lemma 12.1 shows that filling in a gap (by any amount) strictly increases the

utility of the principal (and, of course, the agent), independent of the agent’s bias!

This is summarized in the following lemma:

Lemma 12.2. (Gap Filling Lemma- Case (a), G ⊆ [ki, 1 + ki]) Let ki ≥ 0. Let

D be a set with gap, G = (l, h), such that G ⊆ [ki, 1 + ki]. Then we know that

EPi D =
∫ 1

0
U(xDi (s) − s)ds <

∫ 1

0
U(x

D(ε)
i (s) − s)ds = EPi D(ε). Hence, completely

filling in the gap (replacing D with D′ = D ∪ G) would yield the principle strictly

higher utility:

EPi D < EPi D′ = EPi (D ∪G). (12.10)

Proof. We know that xDi (s) = x
D(ε)
i (s) for all s ∈ [0, l] ∪ [h, 1]. Thus, we just need to

show that ∫ h

l

U(xDi (s)− s)ds <
∫ h

l

U(x
D(ε)
i (s)− s)ds. (12.11)

But from Lemma 12.1 that V D
i = xDi (s)−s is a mean-preserving spread of V D(ε)

i =

x
D(ε)
i (s)− s. So since U(·) is strictly concave we have that:

1

η

∫ h

l

U(xDi (s)− s)ds < 1

η

∫ h

l

U(x
D(ε)
i (s)− s)ds, (12.12)
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which is equivalent to equation (12.11).

Equation (12.10) is obtained by replacing D with D(ε), where ε = h−l
2

(since

D(h−l
2

) = D ∪G).

13 Appendix E: Proof of Proposition 6.2

Proof of Proposition 6.2:

Proof. Let I(u) = [0, u].

V (ki, u) := Vi(u) = EPi I(u) =


∫ 1

0
U(u− s)ds when u ∈ [0, ki] ,

(u− ki)U(ki) +
∫ 1

u−ki U(u− s)ds when u ∈ [ki, 1 + ki] ,

U(ki) when u ≥ 1 + ki.

(13.1)

Differentiating we get:

∂V

∂u
(ki, u) :=

d

du

(
EPi I(u)

)
=


∫ 1

0
U ′(u− s)ds = U(u)− U(u− 1) when u ∈ [0, ki] ,∫ 1

u−ki U
′(u− s)ds = U(ki)− U(u− 1) when u ∈ [ki, 1 + ki] ,

0 when u ≥ 1 + ki.

(13.2)

Notice that for all ki, Vi(u) is strictly increasing on [0, 1
2
]. Recall that if k1 ≥ 1

2

the optimal delegation menu is {1
2
}. Thus, we can restrict attention to the case

where k1 <
1
2
. Under this restriction, we know that Vi(u) is strictly decreasing (for

all i) for u ∈ [1 − k1, 1 + k1] and is weakly decreasing for s ∈ [1 − k1,∞). Hence,

we know that a u∗ which optimizes
∑N

i=1 piVi(u) must be contained in [k1, 1 − k1].

For each ki, Vi(u) is single-peaked. In addition, it is strictly quasi-concave over this

interval. Hence, an optimal u∗ ∈ [k1, 1 − k1] is unique. In addition, while it may
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not be strictly concave over R+, it is strictly concave over this interval. Thus, first-

order conditions are sufficient to determine optimality. Thus, letting mu = {I(u)}.∑N
i=1 piV (ki, u) = EP (mu), then u∗ satisfies

N∑
i=1

pi
∂V

∂u
(ki, u

∗) = 0. (13.3)

Notice that ∂V
∂u

(ki, u) is nonincreasing in ki: if k′i ≥ ki, then ∂V
∂u

(k′i, u) ≤ ∂V
∂u

(ki, u).

In addition, if the pi are held fixed, and if k′i ≥ ki, then the fact that ∂V
∂u

(ki, u) is

nonincreasing in k′i gives us:

N∑
i=1

pi
∂V

∂u
(ki, u

∗) ≤ 0, (13.4)

where u∗ maximized the expression when biases where ki and not k′i. Thus, the

optimal u is nonincreasing in ki. The nonincreasing partial derivative in ki also implies

that if an ε > 0 of probability is shifted from i to j (p′i = pi + ε and p′j = pj − ε)

where ki > kj (kj < ki), then the optimal u is nonincreasing (nondecreasing) in ε.

Hence, let pN := (p1, . . . , pN), where
∑N

i=1 pi ≤ 1 (the subscript N denotes the

dimension of the vector- pL would be an L-tuple). and kN := (k1, . . . , kN) (again, the

subscript N denotes the dimension of the vector- kL would be an L-tuple). Denote

the optimal pooling delegation set by D∗(pN ,kN).

Let kL be the highest value in the support of F(pL,kL)(z). First-order stochastic

dominance implies that there exist k′N−j+1, k
′
N−j+2, . . . , k

′
N ≥ kL such that:

F(p′N ,k
′
N )(k

′
N−j+1) ≥ pN . (13.5)

(Notice that the rest of the points in the support of F(p′N ,k
′
N ) are < kL.) Hold p′N

fixed, but replace k′N with k2
N (the 2 is a superscript not an exponent) such that

k2
i = k′i for i < N − j + 1 and k2

i = kL for all i ≥ N − j + 1. By Proposition 6.1 we
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know that D∗(p′N ,k
′
N) ⊆ D∗(p′N ,k

2
N).

Notice that (p′N ,k
2
N) = (p2

N−j+1,k
2
N−j+1), where p2

i = p′i if i < N − j + 1 and

p2
N−j+1 =

∑j−1
h=0 pN−h and k2

i = k′i if i < N − j+ 1 and k2
N−j+1 = kL. Then fix k2

N−j+1

but replace p2
N−j+1 with p̂2

N−j+1 such that p̂2
N−j+1 = p2

N−j+1 if N−j+1 is the smallest

index i such that k2
i ≥ kL−1 (and denote this index by i∗2). If not, let p̂2

N−j+1 = pL

and let p̂2
i∗2

= p2
i∗2

+
∑j−1

h=0 pN−h. For all other i, let p̂
2
i = p2

i . Thus, we just transferred

probability from the highest value of of bias in the support F(p′N ,k
2
N ) and transferred

it to a lower value and left all other probabilities fixed. Remembering that ∂V
∂u

(ki, u)

is nonincreasing we can conclude that:

D∗P (p2
N−j+1,k

2
N−j+1) ⊆ D∗P (p̂2

N−j+1,k
2
N−j+1). (13.6)

Continuing in this fashion, we have a finite sequence of (p̂2
N−j+1,k

2
N−j+1), (p̂3

N−j+1,k
3
N−j+1), . . . ,

(p̂qN−j+1,k
q
N−j+1) = (pL,kL), where

D∗P (prN−j+1,k
r
N−j+1) ⊆ D∗P (p̂sN−j+1,k

s
N−j+1), (13.7)

if s > r.

References

[1] Alonso, N. and N. Matouschek. (2008). “Optimal Delegation", Review of Eco-

nomic Studies, 75: 259-293.

[2] Amador, M. and K. Bagwell. (2012). “Tariff Revenue and Tariff Caps", American

Economic Review: Papers and Proceedings, 102: 459-465.

[3] Amador, M. and K. Bagwell. (2013). “The Theory of Delegation with an Appli-

cation to Tariff Caps," Econometrica, 81(4): 1541-600.

67



[4] Amadaor, M. and K. Bagwell. (2016). “Regulating a Monopolist with Uncertain

Costs without Transfers." Working Paper.

[5] Amador, M., Werning, I., and G-M. Angeletos. (2006). “Commitment vs. Flexi-

bility", Econometrica, 74: 365-396.

[6] Ambrus, A. and G. Egorov. (2017). “Delegation and Nonmonetary Incentives",

Journal of Economic Theory, 171: 101-135.

[7] Armstrong, M. (1995). “Delegation and Discretion", Discussion paper no. 9421,

Munich Personal RePEc Archive, Munich.

[8] Avery, C. and M. Meyer. (2011). “Designing Promotion and Hiring Procedures

with Biased Evaluators" (mimeo).

[9] Bertrand, M. and S. Mullainathan. (1999). “Is There a Discretion in Wage Set-

ting? A Test Using Takeover Legislation", RAND Journal of Economics 30,

535-554.

[10] Carrasco, v. and W. Fuchs. (2009). “Dividing and Discarding: A Procedure for

Taking Decisions with Non-transferable Utility" (mimeo).

[11] Courty, P. and H. Li. (2000) “Sequential Screening", Review of Economic Studies,

67, 697-717.

[12] Frankel, A. (2014). “Aligned Delegation," American Economic Review,

104(1):66-83.

[13] Gilligan, T. and K. Krehbiel. (1987). "Collective Decisionmaking and Stand-

ing Committees: An Informational Rationale for Restrictive Amendment Proce-

dures", Journal of Law, Economics, and Organization 3: 287-335.

68



[14] Holmström, B. (1984). “On the Theory of Delegation", in M. Boyer and R.

Kihlstrom (eds.) Bayesian Models in Economic Theory (New York: North-

Holland).

[15] Jensen, M. (1986). “Agency Costs of Free Cash Flow, Corporate Finance, and

Takeovers", American Economic Review 76, 323-329.

[16] Kováč, E. and D. Krähmer. (2016). “Optimal Sequential Delegation", Journal of

Economic Theory 163: 849-888.

[17] Kováč, E. and T. Mylovanov. (2009). “Stochastic Mechanisms in Settings With-

out Monetary Transfers: The Regular Case", Journal of Economic Theory 144:

1373-1395.

[18] Laffont, J-J. and D. Martimort (2002). The Theory of Incentives: The Principal-

Agent Model, Princeton and Oxford: Princeton University Press.

[19] Lewis, T.R. and D.E.M. Sappington (1989). “Regulatory Options and Price-Cap

Regulation", The RAND Journal of Economics 20(3): 405-416.

[20] Martimort, D. and A. Semenov. (2006). “Continuity in Mechanism Design With-

out Transfers", Economics Letters 93: 182-189.

[21] Melumad, N. and T. Shibano. (1991). “Communication in Settings with No

Transfers", The RAND Journal of Economics 22: 173-98.

[22] Melumad, N. and T. Shibano. (1994). “The Securities and Exchange Commission

and the Financial Accounting Standards Board: Regulation Through veto-Based

Delegation", Journal of Accounting Research 32: 1-37.

[23] Mylovanov, T. (2008). “Veto-Based Delegation", Journal of Economic Theory,

138, 297-307.

69



[24] Sappington, D. (2002). “Price Regulation", in M. Cave, S. Majumdar, andI.

Vogelsang, (eds.) The Handbook of Telecommunications Economics, Volume I:

Structure, Regulation, Competition. (Amsterdam: Elsevier Science Publications).

[25] Szalay, Dezsö. (2005). “The Economics of Clear Advice and Extreme Options,"

Review of Economic Studies, 72, 1173-1198.

[26] Tanner, Noam. (2015). "Optimal Delegation Under Uncertain Bias." PhD Dis-

sertation.

[27] Tanner, Noam. (2018). "Optimal Delegation Under Uncertain Bias: Online Ap-

pendix." PhD Dissertation.

[28] Wolinsky, A. (2003). “Information Transmission When the agent’s Preferences

are Uncertain." Games and Economic Behavior 42: 319:326.

70


