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1 Introduction

Important news may come in the form of regular releases of macroeconomic data, policy

announcements, or less frequent events (e.g., political elections, terrorist attacks, or

other crises). The literature has developed with an overwhelming focus on identifying

economically important news.1 However, there have been relatively few attempts to

understand the channels through which news influences subjective beliefs of economic

agents, especially higher moments of beliefs.2 The literature leaves several important

questions unanswered. For example, does more information about the future always

reduce subjective uncertainty? Should news that contradicts existing beliefs about the

future state raise uncertainty? Should we expect a differential effect on subjective

uncertainty when receiving good news in a good state compared with receiving good

news in a bad state? Would bad news have a different effect depending on when it

arrives? To what extent would the behavior of quantities such as subjective uncertainty

change when news is believed to be of greater informative value?

In this paper, we incorporate news into an otherwise standard model in an attempt to

answer these questions. In a parsimonious two-state Markov-switching growth model,

we introduce an agent who receives news in every period that reveals the next period’s

state with some error. We consider cases in which the agent can rationally learn model

parameters, including state transition probabilities or the accuracy of this news, using

Bayes’ rule as new data arrive. This model produces two novel properties of the in-

fluence of news on subjective uncertainty. First, we show that when news contradicts

prior beliefs, uncertainty can increase as the agent’s posterior beliefs are corrected to

a more uniform distribution. For empirically plausible parameter values, the rise in

uncertainty is more apparent when news is believed to be more accurate. This is in

contrast to a Gaussian environment in which news always reduces uncertainty.3 Thus,

1There is a growing literature that attempts to identify economically important news and its impact
on financial markets (e.g., Boyd, Hu, and Jagannathan 2005; Gürkaynak, Sack, and Swanson 2005;
Andersen et al. 2007; Faust et al. 2007; Savor and Wilson 2013; Lucca and Moench 2015; and Tang
2017).

2The existing literature studying the effect of news shocks (see Beaudry and Portier 2006, Jaimovich
and Rebelo 2009, Barsky and Sims 2011, Schmitt-Grohe and Uribe 2012, Kurmann and Otrok 2013,
Beaudry and Portier 2014, and Malkhozov and Tamoni 2015) focuses mainly on the transmission of
these shocks to asset prices or the economy through their effects on agents’ mean beliefs about future
outcomes.

3Veronesi (1999) shows a similar relationship between dividend growth realizations and uncertainty
in a model without news where agents must learn about a hidden dividend growth state. See the
literature review below for a more extensive discussion.
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even without stochastic volatility, the discrete-state environment allows news to drive

large fluctuations in subjective uncertainty.

In addition to the above finding, we show that as the agent learns either the accuracy

of news or the persistence of states, the effect of news on uncertainty is altered, thus

giving rise to history-dependent behavior of uncertainty fluctuations. As a result, pa-

rameter learning can greatly amplify the response of uncertainty to news. To illustrate

the intuition behind this result, suppose that the economy stays in a good state and

that agents receive good news, which is correct ex-post, for an extended period of time.

In this setting, the agent successively increases her estimate of the accuracy of news,

and subjective uncertainty gradually falls as more good news arrives. When bad news

arrives against this backdrop, the agent, now believing the news to be very accurate,

sharply adjusts her beliefs toward a more uniform posterior distribution, which results

in an upward jump in subjective uncertainty. In this example, the jump in uncertainty

upon receiving bad news will be larger for longer runs of consecutive “good state, good

news” realizations prior to the arrival of bad news. In general, parameter learning in-

troduces additional state variables to the model that summarize information from past

states and alter the effect of news on the agent’s beliefs.

In light of these findings, we examine the extent to which news-driven uncertainty

fluctuations can generate variation in asset prices. We consider an agent who has

preference for early resolution of uncertainty in an endowment economy with a two-state

Markov-switching growth process. We first isolate the role of news without parameter

learning. It is interesting to highlight the implications for asset prices when an agent

believes the probabilities of remaining in the same state and the news being correct

to be identical and close to 1. In this setting, switching states, which occur when

news contradicts existing beliefs about the future state, are ones in which the agent

thinks there is equal chance of entering a nearly permanent good or bad state in the

next period. Note that this cannot occur in a standard discrete-state Markov-switching

model without news shocks, because probabilities of future state realizations are tightly

linked to state persistence in that setting. News shocks break this link and thus create

the potential for these episodes of extreme uncertainty and, as a result, highly elevated

risk premia. Even for very moderate values of risk aversion and the intertemporal

elasticity of substitution (both set to 1.5), the implied risk premium on a consumption

claim can reach as much as 5 percent in these switching states, roughly 160 times greater

than the counterfactual risk premium under log utility. In this highly uncertain state,
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demand for the risky consumption claim is very low, and the agent requires a very high

expected excess return on this asset in order to equilibrate shorting demand with the

asset’s zero net supply.

We then consider the theoretical implications of parameter learning in our model with

news shocks. We first illustrate qualitative results using the anticipated utility approach

to price assets.4 We highlight the case of high prior means for the state persistence and

news accuracy parameters in an experiment, similar to the one above, for forecast

uncertainty in which bad news arrives after a prolonged economic boom. The excessive

optimism of the agent with a preference for early resolution of uncertainty, i.e., the

increase in her posterior belief of remaining in the good state, leads to a “Minsky

moment” once she receives news that the future may not be as bright as expected.5

The size of the risk premium is twice as large as the one that would have been obtained

without parameter learning.

Next, we estimate the model. To obtain estimates of news parameters and realizations,

we leverage a forward-looking variable that summarizes agents’ information about the

future state. Since agents in our model generate discrete belief distributions over future

states based on both current fundamentals and potentially noisy news about the future

state, we map their believed bad state probabilities to recession probability forecasts

from the Survey of Professional Forecasters. We make an important technical innovation

that allows us to use this variable to recover parameter estimates and filtered states,

including news realizations. Specifically, we develop a novel filtering technique that uses

both actual GDP growth and recession probability forecasts in the estimation. This

technique can be interpreted as a sequential learning problem of an econometrician who

observes only these two variables. We solve this problem and sample from the joint

posterior of model parameters and states by augmenting the filtering technique with

the particle learning algorithm developed by Carvalho et al. (2010). Using data from

1969:Q1 through 2016:Q3, we obtain the full posterior distribution of model primitives,

including the filtered distribution of news, which characterizes the econometrician’s full

4Johannes, Lochstoer, and Mou (2016) study parameter learning using an anticipated utility ap-
proach in a model with long-run risks but without news shocks and show that revisions in beliefs
about consumption dynamics are quite volatile and that pricing assets using these beliefs improves the
model’s ability to fit moments as well as the historical path of equity prices. Collin-Dufresne, Johannes,
and Lochstoer (2016) show that allowing fully rational pricing of parameter uncertainty further helps
the model match asset pricing facts. See also Bansal and Yaron (2004).

5A “Minsky moment,” which stems from the work of Hyman Minsky, is a sudden collapse of markets
and economies after a long period of growth, sparked by debt or currency pressures.
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learning problem.

This estimation yields three main empirical findings. First, we show that posterior

beliefs vary significantly over time and, in particular, there is a pattern of greater fore-

cast uncertainty driven by bad news during expansions relative to an estimation that

does not allow for news shocks. In light of this property of our model, we expect news-

driven uncertainty fluctuations to be important for generating sizable fluctuations in

endogenous variables within growth regimes. Second, the estimated recession proba-

bility tightly identifies NBER recession dates. When only GDP growth is used in the

estimation (without recession probability forecasts), the model’s filtered recession prob-

abilities tend to be biased upward, with bad states being less tightly identified. Third,

we show that our model-implied probability of receiving bad news correlates strongly

(around 0.6) with an index from the University of Michigan’s Survey of Consumers

that measures the prevalence of bad news. This serves as an external validation check.

We also find that our news measure strongly negatively predicts one-step-ahead GDP

growth after controlling for other factors as implied by the model.

Lastly, to assess our model’s quantitative implications for asset prices, we incorporate

our empirical findings into an asset pricing model in which the agent must learn the tran-

sition probabilities of growth states and this parameter uncertainty is rationally priced.

To do so, we extend the policy function iteration method used by Collin-Dufresne, Jo-

hannes, and Lochstoer (2016) to accommodate a news shock and obtain fully nonlinear

solutions for key variables. Adding news to this model changes the risks from parameter

uncertainty by speeding up learning about transition probabilities. It also changes the

risks coming from regime uncertainty through the mechanisms described above.

Using our estimated model parameters and filtered regime probabilities, we find that

news shocks produce modest increases in both the average risk-free rate and equity risk

premium while making a substantially larger impact on their volatility. This increase

in volatility is particularly pronounced during economic expansions. Including news

shocks in the model increases the standard deviation of equity premia within high

growth states by a factor of more than 6.7. News shocks greatly improve the model’s

ability to match the conditional and unconditional volatilities of the risk-free rate and

equity premium in the data.

This increased volatility is evident in the time series of the equity premia produced by

our estimates. Furthermore, our estimates indicate that the arrival of bad news prior



5

to recessions often leads the equity premium to begin rising several quarters prior to

the onset of recessions. In our model, bad news can also generate large spikes in the

equity premium even when contemporaneous GDP growth remains high, such as during

the Black Monday crash of 1987. This effect is amplified by the increase in subjective

uncertainty when bad news contradicts the contemporaneous growth state. The equity

premium generated by an identically calibrated model without news shocks does not

have these features.

Literature Review. This paper is at the intersection of several literatures. First, it

is related to papers that study news shocks theoretically and empirically in the context

of asset pricing (such as Beaudry and Portier 2006, Kurmann and Otrok 2013, and

Malkhozov and Tamoni 2015) or business cycles (such as Jaimovich and Rebelo 2009,

Barsky and Sims 2011, Schmitt-Grohe and Uribe 2012, and the works surveyed in

Beaudry and Portier 2014). Unlike most of this existing work, which focuses on the

effects of news on mean forecasts of future economy activity, we focus on the additional

effects that news shocks have on uncertainty. We also consider how news shocks affect

parameter learning, and we look at their joint effects on uncertainty.

Our paper is also closely related to studies that examine the sources of uncertainty

fluctuations. In particular, Kozeniauskas, Orlik, and Veldkamp (2016) also study uncer-

tainty in a model that features parameter learning, but without news shocks. Stochastic

volatility and disaster risks are crucial for generating uncertainty fluctuations in their

environment. In contrast, we show that news shocks can generate uncertainty fluctua-

tions even when the true data-generating process does not feature stochastic volatility.

The recent work by Berger, Dew-Becker, and Giglio (2017) uses an estimated vector au-

toregression (VAR) to separate exogenous shocks to expected volatility from movements

in realized volatility. In contrast, our setting does not allow for an exogenous shock to

uncertainty. Instead, uncertainty fluctuates with realizations of actual economic data

and news shocks about future states.

Our finding of a state-dependent relationship between news and uncertainty is related

to that of Veronesi (1999), who also models asset prices in a setting with non-Gaussian

random variables. That paper finds a similar relationship between observations of a

dividend process and uncertainty in a model without news shocks where agents must

infer a hidden Markov state that determines dividend growth. In contrast, we find this

state-dependent relationship in a setting where the agent knows the current state but

receives noisy news about the future state. We further explore the potential for rich
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history-dependent behavior of uncertainty when the agent must also learn particular

parameters of the model. Additionally, we estimate the model and empirically identify

historical episodes in which uncertainty about future GDP growth was elevated because

of news.

On the methodological side, Bianchi (2016) and Bianchi and Melosi (2016) provide

analytical characterizations of uncertainty in Markov-switching models with settings

where there is perfect information or where the agent must infer states and unknown

parameter values through Bayesian learning, respectively. Our paper differs from these

by focusing on the effect of news about the future (rather than signals about the current

state) on uncertainty. We additionally provide an empirical estimation of the model as

well as an analysis of the asset pricing implications of allowing for news.

Our empirical exercise is closely related to Milani and Rajrhandari (2012), Hirose

and Kurozumi (2012), and Miyamoto and Nguyen (2015). These papers all incorporate

forecast data into the estimation of news shocks. Nonetheless, two key differences

remain. First, we develop new econometric methods that allow us to include recession

probability forecasts in the estimation, while these papers focus only on mean forecasts.

Furthermore, these studies estimate dynamic stochastic general equilibrium (DSGE)

models with news shocks about future realizations of particular structural shocks (e.g.,

total factor productivity [TFP], demand, monetary policy, etc.). In contrast, we remain

agnostic about the types of structural shocks that news may pertain to and instead

estimate a latent news variable summarizing all information that is embedded in the

recession probability forecasts and is not already captured by the current GDP growth

state.

In addition to the above-mentioned asset pricing papers that consider parameter

learning, our asset pricing application is related to other papers studying the effect

of information quality on asset price moments. Veronesi (2000) focuses mainly on

the interplay between information quality and risk aversion in determining moments

of returns in a model similar to that of Veronesi (1999) but with agents also receiv-

ing another noisy signal about current dividend growth rates. Ai (2010) shows that,

in a model with endogenous production and Kreps-Porteus preferences, including a

dividend growth state inference problem similar to that of Veronesi (2000) helps to

match moments of the wealth-consumption ratio and the return on wealth. Epstein

and Schneider (2008) study a setting where ambiguity-averse investors behave accord-

ing to a worst-case assessment of information quality that entails judging bad news to
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be of high quality and good news to be of low quality. These preferences thus generate

state-dependent effects of news, similarly to our model, but here the effects depend only

on the news itself and not on the current growth regime. Matsumoto et al. (2011) and

West (1988) both study the effect of news shocks on asset price volatility. West (1988)

finds, in a partial equilibrium environment where asset prices are a discounted linear

sum of future dividends and expectations are formed through linear projections, that

asset price volatility must decrease when news is more accurate. In contrast, we find

that a greater accuracy of news can increase the volatility of risk premia. The main

reason for this opposing result is that expectations are not formed through linear pro-

jections in our setup, because we have Markov-switching growth regimes and discrete

news realizations. Matsumoto et al. (2011) focus on news defined as information that

reduces the ex-ante conditional variance of future fundamentals, which isn’t always the

case for our news shock, but find results opposite to those of West (1988) by allowing

for general equilibrium effects of news on cash flows.

Lastly, this paper is also related to previous literature studying models in which

agents can form beliefs from sources of data other than simply realized GDP growth

rates. The works of Johannes, Lochstoer, and Mou (2016) and Constantinides and

Ghosh (2016) allow agents to form beliefs by incorporating additional information from

multiple sources of macroeconomic data—namely consumption, output, and/or labor

market variables. However, in contrast to our paper, these studies model these addi-

tional variables as being informative only about the current state of the economy and

not about future states. Furthermore, these papers do not use forecast data in their

estimations, while we do. The use of forecast data allows us to be agnostic about

the sources of additional information and instead capture a summary of information

relevant for forecasting future output.

In Section 2, we describe our model of real output growth and news shocks. Section 3

presents the estimation of these exogenous driving processes. Section 4 presents stock

market moments implied by these estimated values, and Section 5 concludes.
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2 Modeling News

2.1 The environment

We begin with the following two-state Markov-switching model for real GDP growth:

yt = µSt + σStεt, εt ∼ N(0, 1), (1)

Pr(St = j|St−1 = i) = qij with
∑
j

qij = 1.

Here yt represents the real GDP growth rates, and St is a discrete Markov state variable

that takes on two values St ∈ {1, 2}. We assume µ1 > µ2 without loss of generality.

We introduce news that provides information about the next period’s state,

nt = St+1, w.p. χ, 0.5 ≤ χ ≤ 1, (2)

which is available in discrete form.6 We assume that nt can predict the future state

with probability χ. The accuracy of the prediction increases with χ. The combination

of two discrete Markov chains, one for the fundamental variable in (1) and the other for

the news component in (2), results in the four-state Markov chain process. The model

parameters are collected in

θ =
{
µ1, µ2, σ

2
1, σ

2
2, χ, σ

2
z

}
, Π = {q11, q22} .

The parameter σ2
z is the variance of an error process that will be introduced in Section 3

when we estimate the model.

In terms of parameter learning, we will focus mainly on the case of learning about

the transition probabilities, q11 and q22, based on observing the true states and news

realizations.7 The Bayesian updating problem is detailed in Appendix A.

6Note that the label switching problem arises for χ values less than 0.5. Therefore, we restrict to
0.5 ≤ χ ≤ 1.

7Our notation will reflect that real GDP growth is also in the information set of agents, but growth
state and news realizations are sufficient for Bayesian learning about q11 and q22.
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2.2 News implications

State prediction and parameter learning accuracy. We demonstrate how the ac-

curacy of news affects the prediction for the future state and posterior beliefs about the

transition probabilities. For ease of illustration, we work with conditional distributions

and assume that a subset of the model parameters and the history of states may be

known at time t when relevant.

We consider two boundary values of χ ∈ {0.5, 1}. We start from the χ = 0.5 case,

in which news contains no information about the future state. Because it assigns equal

probability to both states, the predictive distribution of the future state conditional on

news is identical to the one without conditioning on news

p(St+1 = 1|nt, St,Π, θ) = p(St+1 = 1|St,Π, θ).

Analogously, when agents must learn transition probabilities, we can deduce that news

has no impact on the posterior mean of these parameters when χ = 0.5

E(qii|nt, yt, St, θ) = E(qii|yt, St, θ).

On the other hand, if news contains certain information about the future state, that

is, χ = 1, then knowledge about the current state no longer plays a role in predicting

the future state. The state prediction becomes a degenerate distribution function

p(St+1 = 1|nt, St,Π, θ) = p(St+1 = 1|nt, θ) =

1, if nt = 1

0, otherwise.

Because the future state is known with certainty, the posterior mean of transition prob-

abilities is identical to the one that would have been obtained in time t + 1 in the

absence of news

E(qii|nt, yt, St, θ) = E(qii|yt+1, St+1, θ).

The above examples show that news can lead to improvement in prediction and param-

eter learning accuracy. Detailed derivations are provided in Appendix A and B.

Forecast uncertainty. The above examples illustrate that news improves ex-post
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forecast accuracy, but we now consider the impact of news on ex-ante forecast uncer-

tainty. In this model, one measure of forecast uncertainty is the conditional variance of

one-period-ahead output growth defined as

V ar(yt+1|yt, St, nt,Π, θ) =

∫
(yt+1 − yt+1|t)

2p(yt+1|yt, St, nt,Π, θ)dyt+1 (3)

= σ2
1 + (qB3i + qB4i)(σ

2
2 − σ2

1)︸ ︷︷ ︸
due to second moment

+ (qB1i + qB2i)(q
B
3i + qB4i)(µ1 − µ2)2︸ ︷︷ ︸

due to first moment

,

where yt+1|t =
∫
yt+1p(yt+1|yt, St, nt,Π, θ)dyt+1, and

∑4
j=1 q

B
ji = 1. Transition proba-

bilities of an expanded state space that encompasses the realizations of both St and

nt are denoted by qBji. We refer the reader to equation (A-15) in the Appendix for

the relationship between qji, χ, and qBji. Forecast uncertainty (3) comprises two compo-

nents. The first component captures uncertainty with respect to innovation variances,

and the second component arises from uncertainty about mean values. This is due to

our discrete-state environment.

We now explain the effect of news on the transition probabilities qBji by which uncer-

tainty is determined. For ease of illustration, we assume that persistence of each growth

regime is identical q = q11 = q22 and use µ1 = 0.84, µ2 = −0.22, σ2
1 = 0.47, σ2

2 = 0.56.8

Figure 1 provides the value of forecast uncertainty as a function of χ ∈ [0.5, 1) for

different values of q ∈ [0.5, 1). We are considering only moderately persistent q values

and excluding the end points (q = 1, χ = 1) that would remove all state uncertainty.

Note that because we consider only q ≥ 0.5, the most likely outcome for next period’s

state is always the current state when news is not part of the information set.

Panel (A) of Figure 1 isolates the usual stochastic volatility component of forecast

uncertainty. As the accuracy of news increases, forecast uncertainty converges to the

variance of the state indicated by the news realization. It is interesting to consider panel

(B), which isolates the part of uncertainty arising from different mean values (the final

term in (3)). Note that this panel also illustrates the large fluctuations in uncertainty

that can arise due to the presence of noisy news in a setting without stochastic volatility.

If news suggests that the current regime will persist next period, then forecast uncer-

tainty monotonically decreases as χ increases, as shown in the first and fourth columns.

However, if news contradicts the implication of the current state alone and suggests

switching into a different state, then forecast uncertainty increases in χ for ∀χ ≤ q and

8These are the end-of-sample posterior median estimates presented in Section 3.
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decreases in χ for ∀χ > q. The intuition behind this result is that, with q ∈ [0.5, 1),

the current state is more likely than not to persist. News that suggests a switch in the

state will shift the posterior distribution of next period’s state to a more uniform one in

which weight is placed more equally on the two possible realizations. Note that in order

for this to occur, the news must be moderately informative. Completely uninformative

news will not alter beliefs, while perfectly informative news will shift beliefs to the point

where a switch will occur with certainty.

Panel (C) shows the forecast uncertainty when both channels are at play. It is im-

portant to note that the patterns are qualitatively similar to those shown in panel (B).

The key takeaway is that, in contrast to standard Gaussian setups where more infor-

mation always reduces uncertainty, our discrete-state environment allows moderately

informative news to increase forecast uncertainty when it contradicts existing beliefs.

Having shown the role of news in forecast uncertainty, we discuss how parameter

learning—in particular, learning about the accuracy of news and state persistence—

can give rise to additional fluctuations in uncertainty and history-dependent behavior.9

Consider the following experiment in which we are in a good growth state and receive

good news for t−1 consecutive periods, but we receive bad news while remaining in the

good growth state in the tth period. We calculate the corresponding forecast uncertainty

(3) when the agent learns about either state persistence or news accuracy and continue

to use the assumption of q = q11 = q22, along with µ1 = 0.84, µ2 = −0.22, σ2
1 =

0.47, σ2
2 = 0.56. For this exercise, learning begins with prior beliefs. We assume that

the prior mean of the transition probability q is 0.8 and the prior mean for the news

accuracy χ is 0.6. The length of the prior training sample is set to eight periods. To focus

on learning only about these parameters, we assume that the remaining parameters are

known.

Figure 2 shows the case of t ∈ {4, 9}. We start with the case of learning the accuracy

of news χ while beliefs about q are never updated. Panel (A) of Figure 2 plots the

posterior evolution of χ and the corresponding forecast uncertainty using circles that

darken as time progresses. As news is revealed to be correct for t consecutive periods (see

“good state, good news”), beliefs about news accuracy continually improve. Because

of the improvement in news accuracy, forecast uncertainty gradually falls as more good

9The Bayesian learning process for news accuracy χ is analogous to those for state transition
probabilities detailed in Appendix A. The main difference is that the posterior distribution of χ is
updated in each period as past news is verified to be accurate or not.
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Figure 1: The role of news in forecast uncertainty

(A) Volatility channel
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Notes: We assume q = q11 = q22 and µ1 = 0.84, µ2 = −0.22, σ2
1 = 0.47, σ2

2 = 0.56. Squared lines
indicate when q = 0.5, circled lines are when q = 0.85, and black solid lines are when q = 0.99.

news arrives. The circle corresponding to the arrival of bad news is plotted under “good

state, bad news.” Comparing the circles corresponding to t = 4 and t = 9 reveals that

the longer the economy remains in “good state, good news” (the higher the t), the

larger the jump in forecast uncertainty when bad news arrives. This is driven by two
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Figure 2: The role of learning in forecast uncertainty

(A) Learning news accuracy χ
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(C) Time series of the implied uncertainty

Notes: For illustrative purpose, we assume µ1 = 0.84, µ2 = −0.22, σ2
1 = 0.47, σ2

2 = 0.56. The prior
mean of the transition probability is 0.8. The prior for the news accuracy is 0.6. The length of the
prior training sample is set to eight periods. For t− 1 consecutive periods, we are in a good state and
receive good news. On tth period, we are still in a good state, but receive bad news. We assume that
bad news arrives at t ∈ {4, 9}. In the top and the middle panel, we use progressively darker shading
to indicate the evolution of posterior beliefs. In the bottom panel, we use a dashed box to indicate the
implied uncertainty from bad news.
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forces, both of which stem from the fact that remaining in “good state, good news” for

a longer period leads the agent to have a higher belief about news accuracy. This higher

belief about χ has two implications. One is that, in the period just before the arrival of

bad news, uncertainty is lower because the agent puts more stock in the current good

news realization. Secondly, the agent also believes that the accuracy of the bad news

about the next period is high, thus shifting beliefs about St+1 more in the direction of

a uniform distribution. We plot the time series of the implied uncertainty for these two

cases as circles (compare the first column to the second column) in panel (C).

Panel (B) presents the case of learning only state persistence q, but with beliefs about

χ remaining at the prior mean of 0.6. Note that the first point in this case is the same

as that in panel (A) because we still start from the prior mean q = 0.8. Thus, the line in

panel (A) also appears in panel (B). However, we no longer remain on this line now that

posterior beliefs about q improve over time. This results in further declines in forecast

uncertainty up to (and including) time t− 1 as agents become more sure that they will

remain in the good state. It is at time t, when news contradicts the implication of the

current state and suggests switching into the bad state, that forecast uncertainty jumps

up. However, both the level of uncertainty at time t and the jump from time t− 1 are

lower than those in the case of learning about news accuracy χ. We compare the time

series of the implied uncertainty for these two cases as circles and squares in panel (C).

2.3 Embedding news in an asset pricing model

We have seen from the previous section that news shocks can generate significant vari-

ation in uncertainty, particularly when news contradicts existing beliefs. They can also

produce rich history-dependent dynamics of uncertainty when combined with parame-

ter learning. In light of these findings, we now examine the extent to which news-driven

uncertainty fluctuations can generate variation in asset prices.

We consider an endowment economy with a representative agent that has Epstein

and Zin (1989) preferences and maximizes lifetime utility,

Vt = max
Ct

[
(1− β)C

1−γ
α

t + β(EtV
1−γ
t+1 )

1
α

] α
1−γ

, (4)

subject to budget constraint Wt+1 = WtRc,t+1 − Ct+1, where Ct is consumption of the

agent, Wt is wealth, Rc,t+1 is the return on wealth, β is the discount rate, γ is risk
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aversion, ψ is the intertemporal elasticity of substitution (IES), and α = 1−γ
1−1/ψ

. The

stochastic discount factor (SDF) is

Mt+1 = βα
(
Ct+1

Ct

)−γ(
PCt+1 + 1

PCt

)α−1

, (5)

where PCt is the wealth-consumption ratio.

To precisely understand the role of news, we start from the case of log utility preference

and move to the case of the recursive utility with preference for early resolution of

uncertainty (i.e., γ > 1/ψ). The former is a special (limiting) case of the latter, as

γ → 1 and ψ → 1. We set β = 0.994 for both cases and use moderate values of

γ = 1.5 and ψ = 1.5 for the latter. As with the previous subsection, we assume that

persistence of each growth regime is identical, q = q11 = q22, with values of µ1 =

0.84, µ2 = −0.22, σ2
1 = 0.47, and σ2

2 = 0.56 for illustrative purposes. We also assume

that all assets are in zero net supply, so that ∆ct+1 = ∆yt+1 and follows equation (1).

Figure 3 provides the corresponding values of the risk-free rate and the expected excess

return (i.e., risk premium) on a consumption claim associated with each value of news

accuracy χ and state persistence q. Panel (A) of Figure 3 shows the case of log utility

preference in which the implied SDF is a function only of consumption growth (see

equation (5) when α = 1). We find that the model-implied risk-free rate is procyclical

and risk premium is countercyclical. In the limiting case of completely uninformative

news, χ = 0.5, there exist only two values of the risk-free rate (risk premium), with the

higher (lower) value realized in the good state. As the news accuracy increases toward

the case of perfectly informative news, χ = 1, the risk-free rate (risk premium) converges

to a case in which there are again only two values, but they vary with news, with the

higher (lower) value realized under good news. The intuition from Figure 1 carries

over to the current risk premium graph: news alters the expected path of consumption

growth and can give rise to higher risk premia when it suggests a switch in the state.

Panel (B) of Figure 3 provides the value of the risk-free rate and risk premium for the

recursive utility case with preference for early resolution of uncertainty. For moderate

values of q, we observe patterns of the risk-free rate and risk premium that are similar

to the ones from the log utility case. It is interesting to note the case of q = 0.99 and

χ = 0.99. In this case, both switching news states are ones in which the agent thinks

there is equal chance of entering a nearly permanent good or bad state in the next
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Figure 3: The role of news in asset prices
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(B) Preference for early resolution of uncertainty: γ = 1.5, ψ = 1.5
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Notes: We assume q = q11 = q22 and µ1 = 0.84, µ2 = −0.22, σ2
1 = 0.47, σ2

2 = 0.56. Squared lines
indicate when q = 0.5, circled lines are when q = 0.85, and black solid lines are when q = 0.99. The
numbers on the y-axis are in annualized percent terms.
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period. We already learned from Figure 1 that the q = χ case maximizes the one-period-

ahead uncertainty. When it comes to asset prices, the effect is greatly amplified with

a preference for early resolution of uncertainty when the underlying growth states are

nearly permanent. Note that the implied risk premium can be as much as 5 percent for

the two switching news cases, which is roughly 170 times greater than the 0.03 percent

value of the log utility case. The extremely high uncertainty about very persistent states

produces a strong desire for the agent to save in a safe asset. In equilibrium, returns

on the risk-free asset must be lower to equilibrate the agent’s desire to save with the

zero net supply of risk-free assets. This is reflected in a sharply lower risk-free rate for

the values of q = 0.99 and χ = 0.99 compared with other parameter values. Similarly,

demand for the risky consumption claim is very low in this environment, and the agent

requires a very high expected excess return on this asset in order to equilibrate shorting

demand with the asset’s zero net supply.

We now consider the implications of parameter learning in our model that includes

news shocks. Using a similar model without news shocks, Johannes, Lochstoer, and

Mou (2016) are able to closely match several asset pricing moments.10 One key feature

of their model is that it generates strongly countercyclical return volatility and a high

equity premium in recessions through parameter learning. This is because the infrequent

nature of recessions implies greater parameter updating when the economy visits that

state. Thus, long-run shocks to parameter beliefs will be largest during recessions,

which contributes to the high average equity premium in recessions. It is interesting

that, above and beyond the usual mechanics described in Johannes, Lochstoer, and Mou

(2016), our model is able to generate large fluctuations in growth uncertainty when the

growth regime itself remains unchanged through the addition of news shocks. On top of

this, in our model, revisions in parameter beliefs will further interact with news shocks

in a way that can produce richer dynamics for asset prices.

For illustrative purposes in this subsection, we rely on the anticipated utility approach

to price assets, as in Johannes, Lochstoer, and Mou (2016).11 We later examine the

case of fully rational pricing in which the agent takes into account how future state

realizations will impact future parameter beliefs. As we did in the previous section,

10We briefly summarize the mechanics of the asset pricing model as follows. If agents prefer an
early resolution of uncertainty, changing beliefs are priced risks. Therefore, uncertainty about future
revisions in beliefs leads to higher risk prices, equity premium, and return volatility.

11Under this approach, the agent does not take into account future revisions in beliefs with respect
to parameters, but she fully takes state uncertainty into account.
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Figure 4: The role of learning in risk premium (under anticipated utility)
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Notes: Risk premium is the expected excess return on consumption claim. RU indicates the case of
preference for early resolution of uncertainty: γ = 1.5, ψ = 1.5. LU refers to the log utility case.
We assume µ1 = 0.84, µ2 = −0.22, σ2

1 = 0.47, and σ2
2 = 0.56 to compute the risk premium, which is

provided in annualized percent terms (y-axis). The length of the prior training sample is set to eight
periods. For t − 1 consecutive periods, we are in a good state and receive good news. On tth period,
we are still in a good state, but receive bad news. We consider t ∈ {4, 9}. We compare learning q and
χ cases.

we consider the experiment in which for t − 1 consecutive periods, the agent is in a
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good growth state and receives good news. In the tth period, she receives bad news

while remaining in the good state. We calculate the corresponding risk premium on a

consumption claim under parameter learning with the anticipated utility assumption.

We provide various cases that have different prior means for q and χ and different

values of t to understand the importance of prior beliefs and history dependence in this

exercise.

Panels (A) and (B) of Figure 4 repeat the exercises shown in panel (C) of Figure 2 for

the risk premium under our γ = 1.5, ψ = 1.5 recursive utility calibration. Consistent

with the results for forecast uncertainty, we find that the risk premium jumps up when

bad news arrives and that the jump is greater when the bad news arrives after the agent

has spent a longer time in the good state receiving good news. Also as with the case

of forecast uncertainty, the jump is larger when the agent learns about χ rather than

about q.

Panels (C) and (D) show the same exercise under an alternate prior where E(χ) = 0.8

and E(q) = 0.6. In this case, the jumps are greater when agents learn about q rather

than χ. In these exercises, the prior can be interpreted as the initial belief held by agents

at the start of the simulation. Therefore, the differences seen under different priors

are another illustration of the history-dependent nature of the asset price response to

news in this economy. Panels (E) and (F) further illustrate this fact, and we see that,

overall, the effect of the bad news shock is greater for higher prior mean values of state

persistence q and news accuracy χ.

Parameter learning also induces variations in the risk premium during periods prior

to the arrival of bad news, but the effect is minimal when prior beliefs about q and

χ are high. This can be seen, for example, with high prior means E(χ) = 0.95 and

E(q) = 0.95, a case that is presented in panel (G). The magnitude of the jump in the

risk premium after the arrival of bad news is striking. For example, in the case of

learning q, the risk premium starts at 0.05 percent in period 1 and jumps by a factor

of nearly 15 to 0.77 percent with the arrival of bad news in period 9. It is important

to emphasize that this is achieved with moderate values of γ = 1.5, ψ = 1.5. Without

parameter learning, when beliefs about both q and χ remain at their prior values, the

risk premium jumps to only 0.37 percent after the same sequence of state and news

realizations. That’s less than half the size of the risk premium with parameter learning.

Also, when we repeat the exercise with log utility, displayed in panel (H), the size of the

risk premium upon arrival of bad news reduces significantly to 0.03 percent. The size
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of the risk premium at period 9 is roughly 1.6 times greater than the value at period 1,

a stark contrast to the massive amplification (15 times greater) achieved when learning

about q is combined with a preference for early resolution of uncertainty. Overall,

the optimism built during a long period of economic expansion, i.e., the increase in

posterior probability of remaining in the good state, can lead to a Minsky moment

once the economic agent, endowed with a preference for early resolution of uncertainty,

receives news indicating that the future is not as bright as expected. Parameter learning

amplifies the effect of this news shock to generate a sudden increase in the risk premium

despite no evidence of a recession in contemporaneous real growth rates.

Note that the risk premium associated with the case of learning q increases slightly

over time as the economy remains in “good state, good news.” This is because we keep

q = q11 = q22 identical across states: as the agent stays in the good state for longer,

she learns that not only is the good state more persistent, but that the bad state is

more persistent as well. In a more realistic setting in which the agent believes the two

states differ in persistence and learns only about q11, the risk premium decreases until

period t as the agent remains in “good state, good news.” Our simplifying assumption

that q11 = q22 also amplifies the magnitude of the jump in the risk premium when bad

news arrives. If only q11 is updated in this scenario, then when the bad news comes, the

agent places roughly equal weight on an almost permanent good state and a slightly

less persistent bad state. The corresponding risk premium jumps up by a lesser extent.

However, in the more general case of q11 6= q22 when the agent learns only about q11,

the jump can be still greater for higher prior values of χ, q11 and q22.

3 Estimation

3.1 Finding an empirical proxy for the news component

Our model features news that arrives in discrete form, but there is no direct empirical

proxy with this feature. We therefore look for a forward-looking variable that con-

tains information about agents’ beliefs regarding future states. Imagine that there are

forecasters who know the true model parameters and current states, and they receive

noisy news about the future state. Let It = {nt, St, yt,Π, θ} denote the information set

for these forecasters. Here, we are assuming that these forecasters have full structural
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knowledge of the economy, as in standard rational expectations models. Suppose that

we can observe their probability forecast12

zt = p(St+1 = 1|It). (6)

The Survey of Professional Forecasters’ anxious index—the probability of a decline

in real GDP in the quarter after a survey is taken—is a reasonable real-world proxy

for (6). Professional forecasters have an information set that is closest to It, but in

practice, their information set may not be perfect. Their forecasts could be biased or

inefficient. We allow for this by modeling the anxious index as

zSPF,t = Φ

(
bz + Φ−1

(
p(St+1 = 1|It)

)
+ ut

)
, ut ∼ N(0, σ2

z), (7)

where Φ(·) is a cdf of the standard normal distribution.13 Note that bz and σ2
z capture

potential bias and inefficiency in probability forecasts. If we set bz = σ2
z = 0, then

we recover (6). In the empirical analysis below, we proceed with the assumption that

bz = 0 but allow for errors with σ2
z > 0.

3.2 Information set

In Section 2, we assumed that some or all model parameters and the full history of

states are known at time t to illustrate the implications of news for parameter learning,

state prediction, forecast uncertainty, and asset returns. Here, in the econometrician’s

inference problem, this assumption is relaxed, with all model parameters and states

being unknown. Consider an econometrician who observes past and current output

growth and recession probability forecasts. She updates her beliefs about states and

parameters sequentially using Bayes’ rule as she obtains new data.

3.3 Solving the econometrician’s sequential learning problem

Formally, we develop a novel filtering technique that uses both actual GDP growth yt

and recession probability forecasts zSPF,t from the Survey of Professional Forecasters to

12Note that we could also use mean forecast, E(yt+1|It) =
∑2

i=1 µip(St+1 = i|It), which is a function
of p(St+1 = i|It). Instead, we rely on a direct measure of p(St+1 = i|It).

13The choice of the probit linking function is just for convenience.
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solve the sequential state filtering and parameter learning problem. Both observables

are collected in xt = [yt, zSPF,t]. Using data from 1969:Q1 through 2016:Q3, we obtain

the full joint posterior distribution of the model primitives, including the filtered dis-

tribution of discrete states at each time. The joint posterior p(θ,Π, κt|xt) summarizes

subjective beliefs after observing xt. We use κt to indicate a realization of the combined

Markov state κt = {St, nt}, which can take on four values.

As explained by Johannes, Lochstoer, and Mou (2016), the joint learning of states and

parameters is a high-dimensional problem that incurs confounding effects arising from

multiple sources of uncertainty. We tackle this problem by relying on particle methods

to directly sample from the particle approximation to the joint posterior, which can be

factorized into the product of the conditional posteriors

p(θ,Π, κt|xt) = p(θ,Π|κt, xt)︸ ︷︷ ︸
(i) parameter learning

× p(κt|xt)︸ ︷︷ ︸
(ii) state filtering

. (8)

To sample from (i) and (ii) jointly, we extend the particle learning algorithm developed

by Carvalho et al. (2010), which is a generalization of the mixture Kalman filter of Chen

and Liu (2000). The idea is to utilize conditional sufficient statistics for parameters and

states as particles. The details are provided in Appendix C and E.

Before moving on to the application to the U.S. data, we conduct a simulation ex-

ercise to check the performance of the particle learning algorithm and examine how

news embedded in survey forecasts influences the econometrician’s sequential learning

problem in the presence of multiple confounding effects.

3.4 Simulation exercise

In this exercise, we run the particle learning algorithm over different sets of simulated

data. In all cases, we fix parameters at their prior median values in Table 2 and set

the length of simulated data to match the estimation sample. For all cases, we use

the same set of simulated paths for output growth (yt) and states (St) from equation

(1). We simulate two different sets of time series of news (nt): one in which news is

informative, χ = 0.8, and the other in which it is not, χ = 0.5. Survey forecasts (zSPF,t)

are simulated based on equation (7) for each of these two cases of χ using the simulated

states and the corresponding news series.
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Table 1: Root-mean-squared errors of parameter estimates and output growth forecasts
from simulation exercises

Case 1 Case 2 Case 3

χ = 0.5 χ = 0.8
fix χ fix χ learn χ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Parameter learning

µ1 0.009 0.059 0.142 0.005 0.061 0.131 0.006 0.070 0.138
σ2

1 0.002 0.048 0.114 0.003 0.046 0.118 0.002 0.043 0.122
µ2 0.006 0.060 0.131 0.010 0.065 0.134 0.008 0.071 0.134
σ2

2 0.003 0.037 0.108 0.002 0.038 0.110 0.002 0.037 0.114
q11 0.003 0.018 0.049 0.002 0.016 0.040 0.002 0.016 0.045
q22 0.002 0.017 0.046 0.002 0.015 0.039 0.002 0.015 0.042

Output growth forecast

yt 0.656 0.727 0.783 0.628 0.694 0.750 0.629 0.693 0.752

Notes: We conduct three simulation exercises labeled Case 1, Case 2, and Case 3. In all data sets,
output growth data are assumed to be identical. The survey forecasts, however, are generated based on
uninformative news χ = 0.5 (Case 1) and informative news χ = 0.8 (Cases 2 and 3). In Cases 1 and 2,
we keep the number of estimated parameters identical by fixing χ and σ2

z to their true values. In Case 3,

we learn all parameters including χ and σ2
z . In the top panel, we define RMSE =

√
1
T

∑T
t=1(θ − θt|1:t)2

where θ denotes the true parameter value and θt|1:t is the posterior median estimate of θ conditional on

information at t. In the bottom panel, we define RMSE =
√

1
T−1

∑T
t=2(yt − yt|1:t−1)2, where yt|1:t−1 is

the posterior mean one-step-ahead prediction of yt conditional on information at t− 1. In the table we
report 5th, 50th, and 95th percentiles of RMSE distributions based on 100 Monte Carlo simulations.

For the particle learning algorithm, the details of conjugate prior distributions are

provided in Table 2. We set the length of the prior training sample (prior precision) to

10 years. Note that all simulation results are generated with unbiased priors.

To understand how news would influence the inference of other model parameters,

we start by comparing two cases in which we keep the number of estimated parameters

identical. In Case 1, news is uninformative, and the econometrician correctly fixes χ to

0.5 in the estimation. In Case 2, news is informative (χ = 0.8), and the econometrician

fixes χ and σ2
z to their true values in the estimation and estimates the same set of

parameters as in Case 1. Comparing these first two cases allows us to see how the

presence of news shocks affects the econometrician’s learning problem while holding

fixed the degree of parameter uncertainty. In Case 3, news is as informative as it is
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in Case 2, but the econometrician now must also learn χ and σ2
z . By comparing this

case with Case 2, we aim to understand whether parameter uncertainty with respect to

news makes learning about the other parameters more difficult.

In the top panel of Table 1, we provide 5th, 50th, and 95th percentiles of root-mean-

squared error (RMSE) distributions based on 100 Monte Carlo simulations. The RMSE

of a parameter estimate is defined by
√

1
T

∑T
t=1(θ − θt|1:t)2, where θ denotes the true

parameter value and θt|1:t is the posterior median estimate of θ conditional on infor-

mation at t. Two things are noteworthy. First, the small RMSEs across Monte Carlo

simulations confirm that the particle learning algorithm performs well. Second, we find

a roughly 10 percent improvement in parameter learning accuracy for q11 and q22 when

news is informative. While the differences in absolute magnitudes are small, we find

that RMSEs are uniformly smaller with informative news. The results for the other

parameters are virtually identical across Cases 1 and 2. This is to be expected, because

we impose the same degree of uncertainty in both cases and news in this model is in-

formative about the realization of the future state and not the distribution of growth

conditional on a state. It is only when we learn parameters associated with news, i.e.,

χ and σ2
z in addition to the others, that we find some marginal deterioration of the

econometrician’s learning accuracy for some parameters. The median RMSEs for µ1

and µ2 under Case 3 are larger than those in Case 2. Recognizing the confounding

nature of parameter learning—when more uncertainty about one object makes learning

about another more difficult—is key to understanding this result.

In the bottom panel of Table 1, we compute output growth forecast RMSEs. We find a

5 percent improvement in the median ex-post accuracy of output growth forecasts if the

probability forecasts contain somewhat informative forward-looking news, regardless of

whether we fix or estimate χ and σ2
z . In sum, the simulation results are consistent with

the implications of news that we derived in Section 2.

3.5 Application to U.S. data

We now apply the particle learning algorithm to U.S. data. We impose the same priors

as in the simulation exercise.

Parameter estimates. Table 2 reports 5th, 50th, and 95th percentiles of posterior
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Table 2: Prior and posterior distributions of parameters

Prior Posterior
(1) (2) (3) (4)

With surveys Without surveys
Benchmark χ = 0.5

5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

µ1 -1.00 1.00 3.00 0.73 0.84 0.94 0.76 0.85 0.93 0.74 0.83 0.95
σ2

1 0.12 0.40 1.50 0.34 0.47 0.63 0.37 0.44 0.53 0.22 0.29 0.36
µ2 -2.00 0.00 2.00 -0.55 -0.22 0.12 -0.83 -0.55 -0.24 0.17 0.40 0.60
σ2

2 0.12 0.40 1.50 0.26 0.56 1.10 0.36 0.53 0.98 0.76 1.02 1.42

q11 0.64 0.80 0.93 0.84 0.89 0.94 0.90 0.94 0.96 0.80 0.85 0.89
q22 0.64 0.80 0.93 0.51 0.65 0.78 0.58 0.68 0.78 0.74 0.80 0.86

χ 0.64 0.80 0.93 0.84 0.91 0.96 - 0.50 - - - -
σ2
z 0.06 0.24 0.96 0.39 0.71 1.28 0.28 0.35 0.42 - - -

Notes: This table reports 5th, 50th, and 95th percentiles of posterior distributions in Figure A-1. The
details of prior choices are provided in Table A-1.

distributions.14 The benchmark estimation results are provided in panel (2) of Table 2.

First, the first growth regime (St = 1) is identified with a positive mean and the second

growth regime (St = 2) with a negative mean. Note that we impose µ1 > µ2 only

to deal with the label-switching problem in the estimation. We also find that the

posterior median estimate of variance is larger in the second regime than in the first

regime, which together with mean estimates, provides the natural interpretation that

the first regime is the expansion regime and the second regime is the recession regime.

Second, the posterior intervals associated with the expansion regime are much tighter

than those associated with the recession regime. This is not surprising, because the

average duration of expansions is much longer than the average duration of recessions,

a property that is reflected in much lower estimates of q22 than q11. Third, the posterior

median estimate of χ is 0.91, which implies that news extracted from surveys is quite

informative about the future growth regime.

To understand how news would influence the inference of model parameters, we re-

peat the estimation by fixing χ = 0.5. The corresponding results are provided in panel

(3) of Table 2. We find that the posterior mean and variance estimates for the expan-

14The evolution of parameter learning is provided in Figure A-1. The credible intervals at time 0
correspond to the 90 percent prior intervals. As more information from observed data is incorporated
into the posterior distributions over time, the 90 percent credible intervals shrink. Those at time T
are posterior credible intervals one would obtain from the entire time series of data.
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Figure 5: Filtered estimates of recession and bad news probabilities

Recession probability

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

Bad news probability

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.2

0.4

0.6

0.8

1

-100

-50

0

50
University of Michigan survey

Notes: In the top panel, we compare the two filtered recession probabilities obtained with (gray area)
and without surveys (black solid line). In the bottom panel, the correlation of the model-implied
P (nt = 2) (gray area) and the University of Michigan news index (black solid-line) is 0.60.

sion regime are similar to those reported in panel (2). However, the posterior mean for

the recession regime becomes more negative, and both the mean and variance in the

recession regime are estimated with more precision when we exgenously assume that

there is no news. Similarly, both state transition probabilities are slightly higher and

estimated with more precision. The width of the equal-tail probability 90 percent cred-

ible interval generally decreases for all parameters, highlighting that the confounding

nature of learning news can alter uncertainty associated with parameters as well. This

is consistent with the results from the simulation exercise of Case 3 in Table 1.

Finally, we remove survey forecasts from the estimation to understand how their

presence affects the inference of model parameters. Panel (4) of Table 2 reports posterior

distributions from the estimation in which only output growth is used. We find that
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posterior median estimates associated with the recession regime are very different from

those reported in panels (2) and (3). Specifically, the posterior median estimate of µ2 is

positive and σ2
2 is estimated to be twice as large. Perhaps surprisingly, q22 is estimated

to be much more persistent without surveys. The distinction can be seen clearly in

Figure A-1, where the sequential parameter posterior distributions are plotted.

Regime probabilities. Another way to see the differences between the estimations

with survey data and those without is to look at the filtered regime probabilities.15 The

top panel of Figure 5 combines the probabilities of “bad state, good news” and “bad

state, bad news” and shows that this probability of the bad state roughly coincides with

the NBER recession bars. However, when only output growth is used in the estimation

(the “without survey” line), these recession probabilities tend to be biased upward and

bad states are less tightly identified. This is reflected in the higher estimate of q22 in

panel (4) of Table 2.

The bottom panel of Figure 5 combines the estimated probabilities of “good state,

bad news” and “bad state, bad news” for our baseline case, giving the total probability

of receiving bad news. Note that the correlation of the University of Michigan’s Survey

of Consumers news index (inverted) and our filtered probability of bad news realizations

is around 0.6.16 We also examine another measure of bad news that counts, for each

quarter, the number of stories appearing in the New York Times and the Washington

Post that include the word “recession.”17 We obtain a 0.47 correlation between our

filtered probability of bad news and this index.

Forecasting GDP growth. We regress one-quarter-ahead GDP growth on various

explanatory variables, including our estimated bad news probabilities (henceforth, bad

news). We examine if the estimated news can predict one-period-ahead GDP growth

15Figure A-2 provides the probability of each regime in the benchmark estimation. Note that the
economy spends most of the time in the “good state, good news” regime. However, the probability of
“good state, bad news” is non-negligible. This is the regime in which the economy is currently in the
good state, but news suggests that the economy will enter the bad state in the following period. On
the other hand, the economy assigns very small probabilities to the “bad state, good news” and “bad
state, bad news” regimes. Nevertheless, in periods when the probability of being in a bad state is high,
the conditional probability of receiving good news can be substantial.

16This index is based on responses to the following question in the University of Michigan’s Survey
of Consumers: “During the last few months, have you heard of any favorable or unfavorable changes in
business conditions?” The index is constructed as the percent replying “favorable” minus the percent
replying “unfavorable” plus 100. We compare the negative of this index to our filtered bad news
probability.

17This is a replication of the R-word index developed by The Economist. A description can be found
at http://www.economist.com/node/566293.

http://www.economist.com/node/566293
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Table 3: Predicting GDP growth

(A) (B) (C) (D) (E)

Constant 0.45 0.67 0.54 0.60 0.40
(0.08) (0.05) (0.08) (0.08) (0.10)

Current GDP growth 0.32 0.20 0.10 0.37
(0.08) (0.08) (0.09) (0.12)

Bad news -0.34 -0.29
(0.05) (0.07)

UMich survey -0.33
(0.07)

R-word index -0.04
(0.05)

Adj. R2 0.10 0.18 0.22 0.24 0.15

Notes: We regress one-quarter-ahead GDP growth on various explanatory variables. Bad news refers
to our estimated bad news probability. UMich survey is the University of Michigan bad news index.
The R-word index counts, for each quarter, the number of stories in the New York Times and the
Washington Post that include the word “recession.” The estimation sample for (A), (B), and (C) is
from 1969:Q1 through 2016:Q3; the estimation sample for (D) is from 1978:Q1 through 2016:Q3; the
estimation sample for (E) is from 1985:Q1 through 2016:Q3. The estimation results are qualitatively
similar if we set the estimation sample identical across various specifications from 1985:Q1 through
2016:Q3. We report standard errors in parentheses. Since bad news is a generated regressor, asymptotic
standard errors are constructed using generalized methods of moments.

as implied by the model. The regression results are provided in Table 3. As our

model predicts, bad news significantly predicts lower future GDP growth and has strong

forecasting power above the predictability contained in current GDP growth (compare

across columns (A), (B), and (C)). We compare the forecasting power of our filtered

bad news probability to other measures of bad news. We find that while the University

of Michigan bad news index (column (D)) has the highest predictive power among all

explanatory variables, the adjusted R2 value is not too different from the value obtained

from the benchmark prediction regression (column (C)). This is particularly notable

because our bad news probabilities are filtered from professional forecasts collected

during the middle month of a given quarter, while both the University of Michigan

survey and R-word index contain information collected throughout the entire quarter.

This difference should give these two alternate series a forecasting advantage over our

bad news probabilities.

Forecast uncertainty. The top panel of Figure 6 plots the evolution of forecast error

variance over time. The correlation between posterior median forecast error variance
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Figure 6: Forecast uncertainty
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Notes: In the top panel, we plot posterior median forecast error variance with the 90 percent credible
interval (shaded areas). We compare with the macroeconomic uncertainty (circled line) in Jurado,
Ludvigson, and Ng (2015). The correlation between posterior median forecast error variance and JLN
macro uncertainty is 0.49. In the bottom panel, we plot the conditional posterior median forecast
error variance with the 90 percent credible interval (shaded areas). We compare with the conditional
posterior median forecast error variance that assumes χ = 0.5 (circled line).

and the macroeconomic uncertainty in Jurado, Ludvigson, and Ng (2015) is 0.49.18

The bottom panel provides posterior forecast error variance conditional on each state,

which is plotted against the median conditional posterior forecast error variance derived

from the χ = 0.5 (without news) case. Consistent with the implication in Figure 1, if

news suggests that the current regime will persist next period, then forecast uncertainty

monotonically decreases (first and fourth columns). However, if news contradicts the

implication of the current state alone and suggests switching into a different state, then

18Note that Jurado, Ludvigson, and Ng (2015) provide an estimate of uncertainty that is based on
ex-post forecast errors. In our model, the relationship between ex-ante forecast error variance and
the size of ex-post forecast errors is not monotonic because, as discussed in Section 2.2, news always
reduces ex-post forecast errors, while its relationship with ex-ante forecast variance is state dependent.
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the weight is placed more equally on the two possible state outcomes. It turns out

that for our full-sample posterior median estimates, forecast uncertainty increases with

bad news in good states and decreases with good news in bad states (second and third

columns).

4 Asset Pricing with Priced Parameter Uncertainty

Section 2.3 presented illustrative examples of the qualitative effects of news shocks

on risk premia in the presence of parameter learning when using the anticipated utility

approach. While this approach is highly tractable, taking it abstracts away from pricing

risk due to parameter uncertainty. Instead, assets are priced as if the agent believes that

her current mean estimates of parameter values are the true values. Collin-Dufresne,

Johannes, and Lochstoer (2016) show that rationally pricing parameter uncertainty can

lead to quantitatively large differences from the anticipated utility case. Therefore, in

this section, we use the empirical estimates from Section 3 in a model where parameter

uncertainty is rationally priced to assess the quantitative implications of our model for

asset prices.

To be more precise, we solve an asset pricing problem that features fully rational

sequential learning of unknown {q11, q22}, where the agent observes both the current

true state as well as news about the one-period-ahead state.19 To alleviate the compu-

tational burden, we assume the agent is fully aware of the rest of the model parameters,

including the accuracy of news.20 One reason to allow the agent to learn {q11, q22}
instead of the other parameters is that uncertainty about transition probabilities has

the largest asset pricing impact. Recall that we compared the implied risk premium

under the case of learning news accuracy χ with the case of learning state persistence

q in Figure 4. For prior means of 0.8 or greater for both χ and q, we showed that

learning q produced a larger jump in risk premia upon the arrival of bad news. From

Collin-Dufresne, Johannes, and Lochstoer (2016), we also know that uncertainty about

19Note that in our model, equilibrium asset prices reflect only information already available to the
agent. Therefore, it is sufficient for her to learn parameters only from observations of the true states
and news without explicitly considering asset prices to also be in her information set.

20Each parameter that must be learned increases the number of state variables in the full-fledged
parameter learning model. Therefore, the curse of dimensionality restricts us to considering learning
over only a small number of parameters.
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transition probabilities {q11, q22} has a greater asset pricing impact than does uncer-

tainty about conditional means or variances. Furthermore, as discussed in Section 3,

since the news we are considering is about the future state and not about future growth

rates, it provides information only about {q11, q22} and not the other parameters gov-

erning the consumption or dividend processes in the model. Therefore, news in this

model should interact more strongly with learning about {q11, q22} than learning about

{µi, σ2
i }i=1,2.

4.1 The environment

Preferences. We continue to assume the same preferences represented by equation

(4), which is repeated here for convenience,

Vt = max
Ct

[
(1− β)C

1−γ
α

t + β(EtV
1−γ
t+1 )

1
α

] α
1−γ

. (9)

Solution. The equilibrium expression for the wealth-consumption ratio is

PC(κt, Xt)
α = E

[
βαe(1−γ)(µκt+1+σκt+1εt+1)

(
PC(κt+1, Xt+1) + 1

)α|κt, Xt

]
,

where Xt denotes summary statistics governing the parameter learning problem that

evolve according to

Xt+1 = f(κt+1, κt, Xt).

Transition probability estimates E(qii|nt, yt, St, θ) for i ∈ {1, 2} are functions of {κt, Xt},
while f(·) is from Bayes’ rule. The details are provided in Appendix A. Following Collin-

Dufresne, Johannes, and Lochstoer (2016), we price an equity claim on an exogenous

dividend whose growth is described by

∆dt+1 = µ̄+ ρ(∆ct+1 − µ̄) + σdεd,t+1, εd,t+1 ∼ N(0, 1), (10)

and we similarly solve for the price-dividend ratio of this claim. Here µ̄ is the uncondi-

tional mean of consumption growth. Its dependence on the state transition probabilities

imply that the agent’s beliefs about this quantity also evolve over time.

In this economy, the agent’s beliefs about {q11, q22} converge to the truth and her

uncertainty about these parameters vanishes as time progresses. Therefore, the model
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is solved by iterating the policy functions for the wealth-consumption and price-dividend

ratios back from a distant endpoint that is approximated by an economy in which all

parameters are known. Solutions for risk-free rates and risk premia are readily obtained

from the solutions for the wealth-consumption and price-dividend ratios. Details on the

numerical solution algorithm are provided in Appendix F.

4.2 Model-implied asset prices

We simulate asset prices using the calibrated values in Johannes, Lochstoer, and Mou

(2016)
β = 0.994, γ = 10, ψ = 1.5, ρ = 4.5, σd = 4.81,

along with the “Benchmark” posterior median estimates of the growth and news process

parameters in Table 2.

Quantitative effect of pricing parameter uncertainty. We first attempt to un-

derstand the quantitative effect of pricing parameter uncertainty on the risk premium

of an agent compared to the anticipated utility case discussed in Section 2.3. For ease of

comparison with Figure 4, we set q = q11 = q22 and compute the expected excess return

on a consumption claim.21 Figure 7 compares this consumption claim risk premium

with parameter uncertainty to the one under anticipated utility, as in Figure 4. Here,

we set the prior value for news accuracy χ = 0.91 and consider two prior values, 0.80

and 0.95, for state persistence q. As shown in the figure, we find a significant increase

in the magnitude of risk premium jump upon the arrival of bad news when parameter

uncertainty is priced. This is consistent with the finding in Collin-Dufresne, Johannes,

and Lochstoer (2016) that parameter uncertainty gives rise to a quantitatively signif-

icant effect on asset prices. We find that, compared with the value obtained under

the anticipated utility approach, the risk premium value is at least twice as large with

priced parameter uncertainty. Consistent with the findings discussed in the previous

section, the quantitative difference is more apparent for a higher prior mean for q. As

21Note that for this example we use the solution of the more general model described above, where
the agent believes that q11 and q22 can differ and her beliefs about these parameters follow separate
Bayesian updating processes. However, to facilitate comparison with Figure 4, we exogenously set the
path of q22 beliefs to be equal to that for q11, even though in our example the agent should learn only
q11. In a model where the agent believes that a single parameter governs both transition probabilities,
q = q11 = q22, the parameter uncertainty and corresponding risk premia would likely be lower, though
our qualitative results should still hold.
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Figure 7: The role of priced parameter uncertainty in the behavior of the risk premium
on a consumption claim
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Notes: Risk premium is the expected excess return on consumption claim, which is derived under the
case of preference for early resolution of uncertainty: γ = 10, ψ = 1.5. We solve an asset pricing
problem that features fully rational sequential learning of unknown q = q11 = q22. We compare this
with the risk premium when parameter uncertainty is not priced. The numbers on the y-axis are in
annualized percent terms.

in the anticipated utility case, we continue to see that bad news causes a larger jump

in risk premia when it arrives after a longer expansion.

Simulated asset price moments. For the rest of the paper, we revert to the more

general case of learning separate transition probabilities q11 6= q22. We simulate asset

prices based on the posterior parameter estimates in Table 2 and the filtered states

underlying Figure 5.22 In Table 4, we present moments from the data and the 5th, 50th,

22The particle filter produces a set of draws from the posterior distribution at each point in time. It
does not yield draws of complete time series from the posterior distribution. Therefore, these draws can
be used to produce moments for ex-ante returns that depend only on current observations, but they
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and 95th percentiles of moments based on our model simulations. The table contains

three cases. The first is our benchmark case and the second is a case without news

shocks, which is equivalent to fixing χ = 0.5 while keeping all other parameters the

same. That is, the parameters used in both the “Benchmark” and χ = 0.5 cases here

come from the “Benchmark” posterior median estimates in Table 2. Both cases also

use the same set of filtered states. Comparing these two cases isolates the effect of

news shocks in this model conditional on our other benchmark parameters. In the

third case, there are no news shocks and all parameters governing the data-generating

process of consumption are estimated without the use of survey data. That is, we

use the “Without surveys” posterior median estimates from Table 2. We include this

case because it features an estimation method commonly used to obtain parameter and

regime estimates in many macroeconomic and asset pricing contexts. Comparing this

case with the benchmark illustrates the role of news shocks while also highlighting how

the change in inference from the addition of survey data affects asset prices.

Focusing first on the average risk-free rate and ex-ante equity premium, we see that

adding news has an effect, though not a large one. The greatest difference, in terms of

these first two moments, comes from including survey data in the estimation. We see

from the “Without surveys” case that applying the same set of asset pricing parameters

while estimating the data-generating process of output using only real GDP growth

data produces a higher average risk-free rate and a substantially lower average equity

premium, particularly in the bad state. Given these asset pricing parameters, it is

clear that the data-generating process estimated by using both actual real GDP growth

and recession-probability forecasts does a better job of matching average risk-free rates

and equity premia. Another interpretation of these results is that a researcher using a

data-generating process estimated from only real GDP growth data would infer that an

alternate set of asset pricing parameters is needed to match average risk-free rates and

equity premia.

Next, we turn to volatilities of risk-free rates and equity premia. Now it becomes

clear that the main effect of allowing for moderately informative news in this asset

pricing model is the amplification of these volatilities. The within-state volatility of

the risk-free rate grows by 5.4 and 4.5 times in the good and bad states, respectively,

relative to the case where news is irrelevant, thus bringing the model much closer to

matching the data in this dimension. In terms of the equity premium, we see a similar

cannot be used to compute ex-post returns that are a function of both current and lagged observations.
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Table 4: Asset pricing moments

Data With surveys Without surveys
Benchmark χ = 0.5

5% 50% 95% 5% 50% 95% 5% 50% 95%

Average risk-free rate

Full sample 0.93 3.22 3.57 3.78 3.25 3.36 3.47 3.79 3.84 3.89
St = 1 1.04 3.49 3.79 3.96 3.60 3.67 3.71 4.19 4.20 4.22
St = 2 0.44 1.41 2.33 2.94 1.31 1.64 2.02 3.29 3.30 3.33

Average ex-ante equity premium

Full sample 7.70 3.16 4.21 6.40 3.33 4.00 4.96 1.76 1.82 1.87
St = 1 7.18 2.75 3.48 5.17 2.91 3.41 4.25 1.40 1.44 1.46
St = 2 9.37 5.36 8.28 14.09 5.61 7.15 9.67 2.33 2.38 2.44

Standard deviation of risk-free rate

Full sample 1.96 0.93 1.08 1.31 0.60 0.74 0.86 0.43 0.44 0.46
St = 1 1.81 0.81 0.97 1.19 0.15 0.18 0.21 0.04 0.05 0.06
St = 2 2.36 0.39 0.72 0.96 0.05 0.16 0.30 0.04 0.05 0.06

Standard deviation of ex-ante equity premium

Full sample 2.35 1.67 2.85 5.17 0.99 1.42 2.06 0.46 0.48 0.51
St = 1 2.00 1.28 2.16 3.98 0.15 0.32 0.56 0.06 0.07 0.10
St = 2 2.59 1.05 2.61 5.76 0.39 0.81 1.86 0.12 0.15 0.19

Notes: We report the conditional averages of the log risk-free rate, log price-dividend ratio, and equity
premium. We use the model-implied equity premium from Schorfheide, Song, and Yaron (2016). In
the data, the conditional averages are computed based on expansion and recession states.

amplification of volatility, particularly in the good state where the within-state standard

deviation grows by more than 6.7 times relative to the case without news. The model-

implied conditional and unconditional equity premium standard deviations come close

to matching the corresponding data moments.

This increase in volatilities of ex-ante returns follows from the effect of news on un-

certainty that was highlighted in Section 2.2. In that section, for a simplified case with

q11 = q22, we show that news can increase uncertainty in switching states. Consistent

with this intuition, we see that equity premia are higher in switching states, thus in-

creasing equity premia volatility conditional on the growth state. The results from this

simplified case also suggest that when news contradicts the current growth state, equity

premia are at their highest when χ = q. Since our posterior estimates feature a χ that

is much closer to q11 than q22, this suggests that news shocks should increase equity
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Figure 8: Time series of the equity premium
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Notes: We provide the model-implied median equity premium with the 90 percent credible intervals
(shaded areas). We compare it to the median equity premium computed without news (circled line).
We assume β = 0.994, γ = 10, ψ = 1.5, ρ = 4.5, and σd = 4.81. The numbers on the y-axis are in
annualized percent terms.

premia volatility by more in the St = 1 growth state than in the St = 2 state. This is

consistent with the results in Table 4.

Model-implied equity premium. Figure 8 provides the time series of the model-

implied equity premium for our benchmark model and the case without news shocks.

We find that allowing for news shocks produces an equity premium that fluctuates

substantially more during recession and expansion periods. The additional volatility

generated by news shocks is particularly prominent during the expansion of the late

1980s. Note also that our estimates indicate the arrival of bad news prior to recessions

often leads the model-implied equity premium to begin rising several quarters prior

to the onset of recessions. For example, the equity premium soared from (roughly)

3 percent in 1978:Q2 to 8 percent in 1979:Q2 and remained there until the recession

started in 1980:Q2. The benchmark model with news also generates a spike in the equity

premium in 1987:Q4 and 1988:Q1 that corresponds to the Black Monday crash. Even

though we do not include asset prices directly in the estimation, the survey recession

probabilities in these periods reflect an economic outlook darkened by the stock market

crash. Our estimation interprets this as a heightened filtered probability of bad news

about future GDP growth (as seen in Figure 5) that produces a high equity premium

during this period despite high contemporaneous GDP growth. The arrival of this

bad news at a time when the economy had been expanding for quite a while amplified
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its effect on the equity premium, creating a Minsky moment.23 The equity premium

generated in the absence of news does not have these features.

5 Conclusion

Economic agents consider news as well as current fundamentals when forming beliefs

about the future. In this paper, we study the channels through which news influences

subjective beliefs of economic agents, with particular focus on their subjective uncer-

tainty. In a two-state Markov-switching economy, we consider what happens when an

agent receives news each period that reveals the next period’s growth state with some

error. We show that when news contradicts the agent’s existing beliefs, the beliefs are

revised toward a uniform distribution, raising subjective uncertainty. When the agent

rationally learns model parameters, the response of uncertainty to news depends on past

states as well as the current state. In this environment, parameter learning introduces

additional state variables to the model that summarize information from past states,

altering the effects of news on the agent’s beliefs.

Given these properties of our model, we examine the extent to which news-driven

uncertainty fluctuations can generate variation in asset prices. We show that the op-

timism built during a long period of economic boom, i.e., the increase in the believed

probability of remaining in the good state, can trigger a Minsky moment when the agent

receives news that the future may not be as bright as expected. The effect is greater

when the expansion has been longer lasting, the prior beliefs about state persistence or

news accuracy have been stronger, and the agent prefers early resolution of uncertainty.

We employ a novel filtering technique and estimate the model using recession proba-

bility forecasts from the Survey of Professional Forecasters. Our filtered probability of

bad news correlates strongly with survey- and media-based measures and strongly neg-

atively predicts one-step-ahead GDP growth after controlling for current GDP growth

as implied by the model. Posterior beliefs vary significantly over time, with bad news

frequently raising uncertainty during expansions.

Based on model estimates, we assess our model’s quantitative implications for asset

prices in a setting where the agent prefers an early resolution of uncertainty. We show

23Relative to a model with only Gaussian growth and news shocks, this increase in the equity
premium is also amplified by the increase in uncertainty when bad news contradicts the current high-
growth state.
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that the main effect of allowing for informative news in this asset pricing model is the

amplification of asset return volatilities. This is because news can increase uncertainty

when it contradicts the agent’s existing beliefs. In sum, news shocks greatly improve

the model’s ability to match both conditional and unconditional moments in the data.

Finally, we identify historical periods when equity premia were elevated due to news.
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A Posterior of the Markov-Transition Probabilities

A.1 Without news

Prior. At t = 0, the agent is given an initial (potentially truncated) beta-distributed

prior over each of these parameters, and thereafter she updates her beliefs sequentially

upon observing the time series of realized regimes, St.

p(Π|θ) = p(q11)p(q22) (A-1)

∝ q
a1,0−1
11 (1− q11)b1,0−1q

a2,0−1
22 (1− q22)b2,0−1,

where {a1,0, b1,0, a2,0, b2,0} can be interpreted as observations from a training sample of

a1,0 + b1,0 + a2,0 + b2,0− 4 periods that contained ai,0− 1 observations of state i to state

i transitions and bi,0 − 1 observations of state i to state j 6= i transitions.

Likelihood. The binomial likelihood is

p(St|Π, θ) = q
a1,t−a1,0−1
11 (1− q11)b1,t−b1,0−1q

a2,t−a2,0−1
22 (1− q22)b2,t−b2,0−1. (A-2)

Observations. The standard Bayes’ rule shows that the updating equations count the

number of times state i has been followed by state i versus the number of times state i

has been followed by state j.

ai,t = ai,0 + # (state i has been followed by state i), (A-3)

bi,t = bi,0 + # (state i has been followed by state j).

The law of motions for ai,t and bi,t are

ai,t+1 = ai,t + I{St+1=i}I{St=i} (A-4)

bi,t+1 = bi,t + (1− I{St+1=i})I{St=i}.
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Posterior. The prior beta distribution, coupled with the realization of regimes, leads to

a conjugate prior, and so posterior beliefs are also beta distributed. Using this prior (A-

1) and the binomial likelihood (A-2) associated with observations {a1,t, b1,t, a2,t, b2,t}Tt=1,

the posterior is

p(Π|yt, St, θ) =
p(yt, St|Π, θ)p(Π|θ)

p(yt, St|θ)
(A-5)

=
p(yt|St,Π, θ)p(St|Π, θ)p(Π|θ)

p(yt|St, θ)p(St|θ)

=
p(St|Π, θ)p(Π|θ)

p(St|θ)
since p(yt|St,Π, θ) = p(yt|St, θ)

=
q
a1,t−1
11 (1− q11)b1,t−1q

a2,t−1
22 (1− q22)b2,t−1

B(a1,t, b1,t)B(a2,t, b2,t)
.

From (A-1) and (A-2)

p(St|θ) =

∫
p(St|Π, θ)p(Π|θ)dΠ (A-6)

=

∫
q
a1,t−1
11 (1− q11)b1,t−1dq11

∫
q
a2,t−1
22 (1− q22)b2,t−1dq22

= B(a1,t, b1,t)B(a2,t, b2,t).

Posterior (A-5) is independent and equal to

p(Π|yt, St, θ) = p(q11|yt, St, θ) · p(q22|yt, St, θ) (A-7)

= p(q11|St, θ) · p(q22|St, θ)

=
q
a1,t−1
11 (1− q11)b1,t−1

B(a1,t, b1,t)
· q

a2,t−1
22 (1− q22)b2,t−1

B(a2,t, b2,t)
,
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and the posterior means are

E(q11|yt, St, θ) =

∫
q11p(Π|yt, St, θ)dΠ (A-8)

=

∫
q
a1,t
11 (1− q11)b1,t−1

B(a1,t, b1,t)
dq11

∫
q
a2,t−1
22 (1− q22)b2,t−1

B(a2,t, b2,t)
dq22

=
B(a1,t + 1, b1,t)

B(a1,t, b1,t)

=
a1,t

a1,t + b1,t

E(q22|yt, St, θ) =
a2,t

a2,t + b2,t

,

where the last two lines follow from the definition of beta and gamma distribution

• p(y) = yα−1(1−y)β−1

B(α,β)
for 0 ≤ y ≤ 1

• B(α, β) = Γ(α)Γ(β)
Γ(α+β)

• Γ(α + n) = (α+n−1)!
(α−1)!

Γ(α)

• E(yn) = B(α+n,β)
B(α,β)

= Γ(α+n)Γ(α+β)
Γ(α+β+n)Γ(α)

.

A.2 With news

We can compute

p(St|Π, θ)p(Π|θ) = q
a1,t−1
11 (1− q11)b1,t−1q

a2,t−1
22 (1− q22)b2,t−1 (A-9)

and

p(nt|St,Π, θ) =
∑

St+1∈{1,2}

p(nt|St+1, S
t,Π, θ)p(St+1|St,Π, θ) (A-10)

=

χq11 + (1− χ)(1− q11) = 1− χ+ (2χ− 1)q11, if nt = 1, St = 1

(1− χ)q11 + χ(1− q11) = χ− (2χ− 1)q11, if nt = 2, St = 1
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and from (A-9), (A-10),

p(nt, S
t|θ) =

∫
p(nt|St,Π, θ)p(St|Π, θ)p(Π|θ)dΠ (A-11)

=


(

1− χ+ (2χ− 1) a1,t
a1,t+b1,t

)
B(a1,t, b1,t)B(a2,t, b2,t), if nt = 1, St = 1(

1− χ+ (2χ− 1) b1,t
a1,t+b1,t

)
B(a1,t, b1,t)B(a2,t, b2,t), if nt = 2, St = 1.

From (A-11), we can deduce that the conditional posterior distribution of the Markov-

switching transition probability matrix is

p(Π|nt, yt,St, θ) = p(Π|nt, St, θ) = p(q11|nt, St, θ)p(q22|nt, St, θ) (A-12)

=



(
1−χ+(2χ−1)q11

)(
1−χ+(2χ−1)

a1,t
a1,t+b1,t

) · qa1,t−1

11 (1−q11)b1,t−1

B(a1,t,b1,t)
· q

a2,t−1

22 (1−q22)b2,t−1

B(a2,t,b2,t)
, if n1

t = 1, St = 1

q
a1,t−1

11 (1−q11)b1,t−1

B(a1,t,b1,t)
·

(
1−χ+(2χ−1)q22

)(
1−χ+(2χ−1)

a2,t
a2,t+b2,t

) · qa2,t−1

22 (1−q22)b2,t−1

B(a2,t,b2,t)
, if n1

t = 2, St = 2(
1−χ+(2χ−1)(1−q11)

)(
1−χ+(2χ−1)

b1,t
a1,t+b1,t

) · qa1,t−1

11 (1−q11)b1,t−1

B(a1,t,b1,t)
· q

a2,t−1

22 (1−q22)b2,t−1

B(a2,t,b2,t)
, if n1

t = 2, St = 1

q
a1,t−1

11 (1−q11)b1,t−1

B(a1,t,b1,t)
·
(

1−χ+(2χ−1)(1−q22)
)(

1−χ+(2χ−1)
b2,t

a2,t+b2,t

) · qa2,t−1

22 (1−q22)b2,t−1

B(a2,t,b2,t)
, if n1

t = 1, St = 2.

The posterior means are

E(q11|n1
t , y

t, St, θ) =


χ(a1,t+1)+(1−χ)b1,t
χa1,t+(1−χ)b1,t

· a1,t
a1,t+b1,t+1

, if n1
t = 1, St = 1

(1−χ)(a1,t+1)+χb1,t
(1−χ)a1,t+χb1,t

· a1,t
a1,t+b1,t+1

, if n1
t = 2, St = 1

a1,t
a1,t+b1,t

, if n1
t ∈ {1, 2} , St = 2

and

E(q22|n1
t , y

t, St, θ) =


χ(a2,t+1)+(1−χ)b2,t
χa2,t+(1−χ)b2,t

a2,t
a2,t+b2,t+1

, if n1
t = 2, St = 2

(1−χ)(a2,t+1)+χb2,t
(1−χ)a2,t+χb2,t

a2,t
a2,t+b2,t+1

, if n1
t = 1, St = 2

a2,t
a2,t+b2,t

, if n1
t ∈ {1, 2} , St = 1.
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To calculate the posterior variances, we need E(q2
ii|n1

t , y
t, St, θ)− (E(qii|n1

t , y
t, St, θ))2

E(q2
11|n1

t , y
t, St, θ) =


χ(a1,t+2)+(1−χ)b1,t
χa1,t+(1−χ)b1,t

a1,t
a1,t+b1,t+1

a1,t+1

a1,t+b1,t+2
, if n1

t = 1, St = 1

(1−χ)(a1,t+2)+χb1,t
(1−χ)a1,t+χb1,t

a1,t
a1,t+b1,t+1

a1,t+1

a1,t+b1,t+2
, if n1

t = 2, St = 1

a1,t
a1,t+b1,t

a1,t+1

a1,t+b1,t+1
, if n1

t ∈ {1, 2} , St = 2

and

E(q2
22|n1

t , y
t, St, θ) =


χ(a2,t+2)+(1−χ)b2,t
χa2,t+(1−χ)b2,t

a2,t
a2,t+b2,t+1

a2,t+1

a2,t+b2,t+2
, if n1

t = 2, St = 2

(1−χ)(a2,t+2)+χb2,t
(1−χ)a2,t+χb2,t

a2,t
a2,t+b2,t+1

a2,t+1

a2,t+b2,t+2
, if n1

t = 1, St = 2

a2,t
a2,t+b2,t

a2,t+1

a2,t+b2,t+1
, if n1

t ∈ {1, 2} , St = 1.

B The State Transition Probability

We compute the state transition probabilities

p(St+1, nt+1|St, nt, yt,Π, θ) = p(nt+1|St+1, St, nt, yt,Π, θ)p(St+1|St, nt, yt,Π, θ). (A-13)

The first component of (A-13) can be expressed by

p(nt+1|St+1, St, nt, yt,Π, θ) =
∑
St+2

p(nt+1|St+2, St+1, St, nt, yt,Π, θ)p(St+2|St+1, St, nt, yt,Π, θ)

=
∑
St+2

p(nt+1|St+2,Π, θ)p(St+2|St+1,Π, θ)

=



(1− χ) + (2χ− 1)q11, if St+1 = 1, nt+1 = 1

χ− (2χ− 1)q11, if St+1 = 1, nt+1 = 2

χ− (2χ− 1)q22, if St+1 = 2, nt+1 = 1

(1− χ) + (2χ− 1)q22, if St+1 = 2, nt+1 = 2.
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The second component of (A-13) can be expressed by

p(St+1|nt, St,Π, θ) =
p(nt|St+1, S

t,Π, θ)p(St+1|St,Π, θ)
p(nt|St,Π, θ)

(A-14)

=



χq11
(1−χ)+(2χ−1)q11

, if nt = 1, St = 1, St+1 = 1

(1−χ)(1−q11)
(1−χ)+(2χ−1)q11

, if nt = 1, St = 1, St+1 = 2

(1−χ)q11
χ−(2χ−1)q11

, if nt = 2, St = 1, St+1 = 1

χ(1−q11)
χ−(2χ−1)q11

, if nt = 2, St = 1, St+1 = 2,

=



χ(1−q22)
χ−(2χ−1)q22

, if nt = 1, St = 2, St+1 = 1

(1−χ)q22
χ−(2χ−1)q22

, if nt = 1, St = 2, St+1 = 2

(1−χ)(1−q22)
1−χ+(2χ−1)q22

, if nt = 2, St = 2, St+1 = 1

χq22
1−χ+(2χ−1)q22

, if nt = 2, St = 2, St+1 = 2.

Putting these two back into (A-13) gives a four-state transition matrix

p(St+1, nt+1|St, nt, yt,Π, θ) = Π′B =
χq11

(
1−χ+(2χ−1)q11

)
1−χ+(2χ−1)q11

χq11

(
χ−(2χ−1)q11

)
1−χ+(2χ−1)q11

(1−χ)(1−q11)
(
χ−(2χ−1)q22

)
1−χ+(2χ−1)q11

(1−χ)(1−q11)
(
1−χ+(2χ−1)q22

)
1−χ+(2χ−1)q11

(1−χ)q11

(
1−χ+(2χ−1)q11

)
χ−(2χ−1)q11

(1−χ)q11

(
χ−(2χ−1)q11

)
χ−(2χ−1)q11

χ(1−q11)
(
χ−(2χ−1)q22

)
χ−(2χ−1)q11

χ(1−q11)
(
1−χ+(2χ−1)q22

)
χ−(2χ−1)q11

χ(1−q22)
(
1−χ+(2χ−1)q11

)
χ−(2χ−1)q22

χ(1−q22)
(
χ−(2χ−1)q11

)
χ−(2χ−1)q22

(1−χ)q22

(
χ−(2χ−1)q22

)
χ−(2χ−1)q22

(1−χ)q22

(
1−χ+(2χ−1)q22

)
χ−(2χ−1)q22

(1−χ)(1−q22)
(
1−χ+(2χ−1)q11

)
1−χ+(2χ−1)q22

(1−χ)(1−q22)
(
χ−(2χ−1)q11

)
1−χ+(2χ−1)q22

χq22

(
χ−(2χ−1)q22

)
1−χ+(2χ−1)q22

χq22

(
1−χ+(2χ−1)q22

)
1−χ+(2χ−1)q22

.
(A-15)

The rows and columns of the transition matrix correspond to κt ∈ {1, 2, 3, 4}, where

κt =



1 if St = 1, nt = 1

2 if St = 1, nt = 2

3 if St = 2, nt = 1

4 if St = 2, nt = 2.

(A-16)

The rows are time t and columns are time t + 1, so that one can compute conditional

means in time t by pre-multiplying outcomes with this matrix .
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C Hamilton Filter

Define αt as the 4 × 1 vector with ith element equal to 1 when κt = i and all other

elements equal to 0 (refer to A-16). This implies that E(αt|αt−1) = ΠBαt−1, or

αt = ΠBαt−1 + ξt, (A-17)

where ξt is a disturbance vector uncorrelated with αt−1. Note that the transition prob-

abilities satisfy the condition
∑

i πij = 1 for j = 1, ..., 4. The disturbance term ξt can

take one of a possible set of 42 discrete values and so is not normally distributed.

Note that p(St+1|St, nt,Π, θ) = ΨΠBαt where Ψ =
[

1 1 0 0
]
. We define

zt = Φ(wt), where wt ∼ N(ξt, σ
2
z), (A-18)

where

ξt = bz + Φ−1
(
p(St+1 = 1|St, nt,Π, θ)

)
= bz + Φ−1

(
ΨΠBαt

)
. (A-19)

Then,

p(zt|St, nt, yt,Π, θ) = fw(Φ−1(zt); ξt, σ
2
z)×

∣∣∣ 1

φ(Φ−1(zt))

∣∣∣, (A-20)

where fw(·) is a density function of N (ξt, σ
2
z), and φ(·) is a pdf of the standard normal

distribution.24

Define xt = [yt, zt] and It = xt. The Hamilton filter is an iterative algorithm for

calculating the distribution of the state variable αt.

αt|t = E(αt|It)

αt|t−1 = E(αt|It−1),

with the ith element given by Pr(κt = i|It) and Pr(κt = i|It−1), respectively. The

24Note that Φ(Φ−1(zt)) = zt, thus

∂Φ(Φ−1(zt))

∂zt
= φ(Φ−1(zt))

∂(Φ−1(zt))

∂zt
= 1

∂(Φ−1(zt))

∂zt
=

1

φ(Φ−1(zt))
.
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Hamilton filter comprises two recursive equations: (1) the prediction equation, defining

αt|t−1, and (2) the updating equation, defining αt|t.

Prediction Equation. The Hamilton filter prediction equation is

αt|t−1 = ΠBαt−1. (A-21)

Updating Equation. The log-likelihood function of the observations xt is given by

L =
T∑
t=1

log p(xt|κt, It−1,Π, θ), (A-22)

where

p(xt|κt, It−1) = p(yt|κt, It−1,Π, θ)p(zt|yt, κt, It−1,Π, θ)

= N

(
[µ1, µ1, µ2, µ2]αt, [σ

2
1, σ

2
1, σ

2
2, σ

2
2]αt

)
fw(Φ−1(zt); ξt, σ

2
z)
∣∣∣ 1

φ(Φ−1(zt))

∣∣∣.
The ratio of the two represents the optimal inference on κt based on It:

Pr(κt = i|It,Π, θ) =
p(xt, κt = i|It−1,Π, θ)

p(xt|It−1,Π, θ)
. (A-23)

Define vt to be the n× 1 vector with ith element given by p(xt|κt = i, It−1,Π, θ). Then

the marginal distribution is

p(xt|It−1,Π, θ) = v′tαt|t−1, (A-24)

and p(xt, κt = i|It−1,Π, θ) is the ith element of the n× 1 vector

vt � αt|t−1, (A-25)

where � is the element-wise multiplication operator. Thus, equation (A-23) can be

written as the (nonlinear) updating equation for αt|t

αt|t =
vt � αt|t−1

v′tαt|t−1

. (A-26)
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D Parameter Learning (without News)

Parameters. The joint prior over the mean µi and the variance σ2
i is normal-inverse-

gamma, where

p(σ2
i |yt, St,Π) = IG(

vi,t
2
,
Ki,t

2
) (A-27)

p(µi|σ2
i , y

t, St,Π) = N(mi,t, σ
2
iCi,t).

Since they are independent,

p(µ|σ2, yt, St,Π) = p(µi|σ2, yt, St,Π)p(µj|σ2, yt, St,Π) (A-28)

p(σ2|yt, St,Π) = p(σ2
i |yt, St,Π)p(σ2

j |yt, St,Π).

These prior beliefs lead to posterior beliefs that are of the same form. The joint posterior

distribution of the mean µ and the variance σ2 can be factorized as

p(µ, σ2|yt+1, St+1,Π) = p(µ|σ2, yt+1, St+1,Π)p(σ2|yt+1, St+1,Π). (A-29)

Note that

p(µ|σ2, yt+1, St+1,Π) ∝ p(yt+1, St+1|µ, σ2, yt, St,Π)p(µ|σ2, yt, St,Π) (A-30)

= p(yt+1|µ, σ2, yt, St+1,Π)p(St+1|µ, σ2, yt, St,Π)p(µ|σ2, yt, St,Π)

and

p(σ2|yt+1, St+1,Π) ∝ p(yt+1, St+1|σ2, yt, St,Π)p(σ2|yt, St,Π) (A-31)

= p(yt+1|St+1, σ
2, yt, St,Π)p(St+1|σ2, yt, St,Π)p(σ2|yt, St,Π).
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Assume that St+1 = i. We re-express (A-30) as

p(µ|σ2, yt+1, St+1) ∝ p(yt+1|St+1, µ, σ
2, yt, St,Π)p(St+1|µ, σ2, yt, St,Π)p(µ|σ2, yt, St,Π)

(A-32)

∝ p(yt+1|St+1, µ, σ
2, yt, St,Π)p(µ|σ2, yt, St,Π)

=

( 2∑
i=1

I{St+1=i}
1√

2πσ2
i

exp

{
− 1

2σ2
i

(yt+1 − µi)2

})

× 1√
2πσ2

iCi,t

exp

{
− (µi −mi,t)

2

2σ2Ci,t

}
× 1√

2πσ2
jCj,t

exp

{
− (µj −mj,t)

2

2σ2Cj,t

}

∝ 1√
2π
(
1 + 1

Ci,t

)−1
σ2
i

exp

{
− 1

2σ2
i

(
1 +

1

Ci,t

)(
µi −

yt+1 +
mi,t
Ci,t

1 + 1
Ci,t

)2}
= N(mi,t+1, Ci,t+1σ

2
i ).

We can deduce that, ∀i = {1, 2},

Ci,t+1 =
(
I{St+1=i} +

1

Ci,t

)−1
(A-33)

1

Ci,t+1

=
1

Ci,t
+ I{St+1=i}

mi,t+1 =
(
I{St+1=i} +

1

Ci,t

)−1
(I{St+1=i}yt+1 +

mi,t

Ci,t
)

= Ci,t+1(yt+1I{St+1=i} +
mi,t

Ci,t
)

mi,t+1

Ci,t+1

=
mi,t

Ci,t
+ yt+1I{St+1=i}.

Analogously for σ2,

p(σ2|yt+1, St+1,Π) ∝ p(yt+1|σ2, yt, St+1,Π)p(St+1|σ2, yt, St,Π)p(σ2|yt, St,Π) (A-34)

∝
( 2∑

i=1

I{St+1=i}
1√

2π(Ci,t + 1)σ2
i

exp

{
− 1

2σ2
i

(yt+1 −mi,t)
2

(Ci,t + 1)

})

×
(
Ki,t

2
)(
vi,t
2

)

Γ(
vi,t
2

)
(σ2

i )
−
vi,t
2
−1e
−
Kj,t

2σ2
j ×

(
Kj,t

2
)(
vj,t
2

)

Γ(
vj,t
2

)
(σ2

j )
−
vj,t
2
−1e
−
Kj,t

2σ2
j

∝ (σ2
i )
−
vi,t+1

2
−1 exp

{
− 1

σ2
i

(
Ki,t +

(yt+1−mi,t)2
(Ci,t+1)

)
2

}
,
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from which we can deduce that

vi,t+1 = vi,t + I{St+1=i} (A-35)

Ki,t+1 = Ki,t +
(yt+1 −mi,t)

2

(Ci,t + 1)
I{St+1=i}.

Transition Probabilities. At t = 0, the agent is given an initial (potentially trun-

cated) beta-distributed prior over each of these parameters, and thereafter she updates

beliefs sequentially upon observing the time series of realized regimes, St. The prior

beta distribution, coupled with the realization of regimes, leads to a conjugate prior,

and so posterior beliefs are also beta distributed. The probability density function of

the beta distribution is

p(π|a, b) =
πa−1(1− π)b−1

B(a, b)
, (A-36)

where B(a, b) is the beta function (a normalization constant). The parameters a and b

govern the shape of the distribution. The expected value is

E(π|a, b) =
a

a+ b
. (A-37)

The standard Bayes’ rule shows that the updating equations count the number of times

state i has been followed by state i versus the number of times state i has been followed

by state j. Given this sequential updating, we let the a and b parameters have a

subscript for the relevant state (1 or 2) and a time subscript

ai,t = ai,0 + # (state i has been followed by state i), (A-38)

bi,t = bi,0 + # (state i has been followed by state j).

The law of motions for ai,t and bi,t are

ai,t+1 = ai,t + I{St+1=i}I{St=i} (A-39)

bi,t+1 = bi,t + (1− I{St+1=i})I{St=i}.

We can deduce that posterior distribution of Π is

p(Π|yt+1, St+1, θ) = B(a1,t+1, b1,t+1)B(a2,t+1, b2,t+1). (A-40)
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E Particle Learning

We collect two observations in

xt = [yt, zt],

and the model parameters are collected in

θ = (µ1, µ2, σ
2
1, σ

2
2), Π = (q11, q22), Λ = (χ, σ2

z).

Denote sufficient statistics for θ, Π, and Λ by Fθ,t, FΠ,t, and FΛ,t respectively. Specifi-

cally,

Fθ,t = {mi,t, Ci,t, vi,t, Ki,t}2
i=1 , FΠ,t = {ai,t, bi,t}2

i=1 , FΛ,t = {az,t, bz,t, vz,t, Kz,t} .
(A-41)

Sufficient statistics imply that the full posterior distribution of the parameters condi-

tional on the entire history of latent states and data takes a known functional form

conditional on a vector of sufficient statistics

p(θ,Π,Λ|xt, κt) = p(θ,Π,Λ|Fθ,t, FΠ,t, FΛ,t) = p(θ|Fθ,t)p(Π|FΠ,t)p(Λ|FΛ,t). (A-42)

Ultimately, we are interested in

p(θ,Π,Λ, κt|xt) = p(θ,Π,Λ|κt, xt)p(κt|xt). (A-43)

The idea of particle learning is to sample from p(θ,Π,Λ, Fθ,t, FΠ,t, FΛ,t, κ
t|xt) and then

from p(θ,Π,Λ, κt|xt).

p(θ,Π,Λ, Fθ,t, FΠ,t, FΛ,t, κ
t|xt) = p(θ,Π,Λ|Fθ,t, FΠ,t, FΛ,t)︸ ︷︷ ︸

(4) Drawing Parameters

× p(Fθ,t, FΠ,t, FΛ,t, κ
t|xt)︸ ︷︷ ︸

Propagating (2) State,
(3) Sufficient Statistics

.

(A-44)

The particle learning algorithm can be described through the following steps.
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E.1 Algorithm

Assume at time t, we have particles
{
κ

(k)
t , θ(k),Π(k),Λ(k), F

(k)
θ,t , F

(k)
Π,t , F

(k)
Λ,t

}N
k=1

.

1. Resample Particles:

Resample
{
κ

(k)
t , θ(k),Π(k),Λ(k), F

(k)
θ,t , F

(k)
Π,t , F

(k)
Λ,t

}
with weights w

(k)
t ,

w
(k)
t+1 ∝

2∑
i=1

p

(
xt+1|κt+1 = i,

{
κ

(k)
t , θ(k),Π(k),Λ(k), F

(k)
θ,t , F

(k)
Π,t , F

(k)
Λ,t

})
(A-45)

×p
(
κt+1 = i|

{
κ

(k)
t , θ(k),Π(k),Λ(k), F

(k)
θ,t , F

(k)
Π,t , F

(k)
Λ,t

})
.

Denote them by
{
κ̃

(k)
t , θ̃(k), Π̃(k), Λ̃(k), F̃

(k)
θ,t , F̃

(k)
Π,t , F̃

(k)
Λ,t

}N
k=1

.

2. Propagate State:

κ
(k)
t+1 ∼ p

(
κt+1|xt+1,

{
κ̃

(k)
t , θ̃(k), Π̃(k), Λ̃(k), F̃

(k)
θ,t , F̃

(k)
Π,t , F̃

(k)
χ,t

})
.

3. Propagate Sufficient Statistics:

(a) Fθ,t+1 ∼ F(F̃
(k)
θ,t , S

(k)
t+1, xt+1).

m
(k)
i,t+1

C
(k)
i,t+1

=
m̃

(k)
i,t

C̃
(k)
i,t

+ yt+1I{S(k)
t+1=i

} (A-46)

1

C
(k)
i,t+1

=
1

C̃
(k)
i,t

+ I{
S
(k)
t+1=i

}
v

(k)
i,t+1 = ṽ

(k)
i,t + I{

S
(k)
t+1=i

}

K
(k)
i,t+1 = K̃

(k)
i,t +

(yt+1 − m̃(k)
i,t )2

(C̃
(k)
i,t + 1)

I{
S
(k)
t+1=i

}.

(b) FΠ,t+1 ∼ F(F̃
(k)
Π,t , S

(k)
t+1, xt+1).

a
(k)
i,t+1 = ã

(k)
i,t + I{

S
(k)
t+1=i

}I{
S
(k)
t =i

} (A-47)

b
(k)
i,t+1 = b̃

(k)
i,t + (1− I{

S
(k)
t+1=i

})I{
S
(k)
t =i

}.
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(c) FΛ,t+1 ∼ F(F̃
(k)
Λ,t , S

(k)
t+1, n

(k)
t+1, xt+1).

a
(k)
z,t+1 = ã

(k)
z,t + I{

S
(k)
t+1=i

}I{
n
(k)
t =i

} (A-48)

b
(k)
z,t+1 = b̃

(k)
z,t + (1− I{

S
(k)
t+1=i

})I{
n
(k)
t =i

}
v

(k)
z,t+1 = ṽ

(k)
z,t + 1

K
(k)
z,t+1 = K̃

(k)
z,t + (Φ−1(zt)− ξ̃t)2

where ξ̃t is provided in (A-19).

Note that Fs are analytically known.

4. Draw Parameters:

(a) θ(k) ∼ p(θ|Fθ,t+1).

σ
2,(k)
i ∼ IG(

v
(k)
i,t+1

2
,
K

(k)
i,t+1

2
) (A-49)

µ
(k)
i ∼ N(m

(k)
i,t+1, σ

2,(k)
i C

(k)
i,t+1).

(b) Π(k) ∼ p(Π|FΠ,t+1).

q
(k)
11 ∼ B(a

(k)
1,t+1, b

(k)
1,t+1) (A-50)

q
(k)
22 ∼ B(a

(k)
2,t+1, b

(k)
2,t+1).

(c) Λ(k) ∼ p(Λ|FΛ,t+1).

χ(k) ∼ B(a
(k)
z,t+1, b

(k)
z,t+1) (A-51)

σ2,(k)
z ∼ IG(

v
(k)
z,t+1

2
,
K

(k)
z,t+1

2
). (A-52)

To initialize the algorithm, we provide the priors in Table A-1. The length of the prior

training sample (prior precision), T prior, is set to 10 years.
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Table A-1: Priors

Parameter 5% 50% 95% Sufficient Statistics Distribution

µ1 -1.0 1.0 3.0 m1,0, C1,0 N(1, 0.5), IG(1, 2/3)
σ2

1 0.12 0.40 1.50 v1,0, K1,0 G(5, 5), G(5, 2)
µ2 -2.0 0.0 2.0 m2,0, C2,0 N(0, 0.5), IG(1, 2/3)
σ2

2 0.12 0.40 1.50 v2,0, K2,0 G(5, 5), G(5, 2)

q11 0.64 0.80 0.93 a1,0, b1,0 Mult(T prior, 0.8, 0.2)
q22 0.64 0.80 0.93 a2,0, b2,0 Mult(T prior, 0.8, 0.2)

χ 0.64 0.80 0.93 az,0, bz,0 Mult(T prior, 0.8, 0.2)
σ2
z 0.06 0.24 0.96 vz,0, Kz,0 G(5, 5), G(3, 2)

Notes: N , G, IG, Mult are normal distribution, gamma distribution, inverse gamma distribution, and
multinomial distribution, respectively.

F Asset Pricing Solution

F.1 Sufficient statistics

In our asset pricing model, we assume that the agent’s information sets at time t are

It = {κt, yt, θ} and she rationally learns the transition probabilities Π using observed

data. To conserve notation, we now add to the parameter vector θ parameters governing

the prior beliefs about Π as well as preference and dividend process parameters from

the asset pricing model. We follow Collin-Dufresne, Johannes, and Lochstoer (2016)

in mapping the sufficient statistics of the Bayesian learning problem in Appendix A to

an alternative set of statistics that yields a more convenient solution method. More

specifically, we map {a1,t, b1,t, a2,t, b2,t} to Xt ≡ {λ1,t, τ1,t, λ2,t, τ2,t} as follows:

τ1,t = a1,t − a1,0 + b1,t − b1,0

λ1,t =
a1,t

a1,t + b1,t

τ2,t = a2,t − a2,0 + b2,t − b2,0

λ2,t =
a2,t

a2,t + b2,t

.

Note that the expressions for the posterior estimates of Π given in Appendix A can be

rewritten in terms of {λ1,t, τ1,t, λ2,t, τ2,t, θ}. Further, note that Xt follows a process that
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depends only on its own lag as well as {κt, κt−1}:

λ1,t = λ1 (κt, κt−1, Xt−1, θ) = λ1,t−1 +
I {St = 1} − λ1,t−1

a1,0 + b1,0 + τ1,t−1 + 1
, (A-53)

τ1,t = τ1 (κt, κt−1, Xt−1, θ) = τ1,t−1 + I {St−1 = 1}

λ2,t = λ2 (κt, κt−1, Xt−1, θ) = λ2,t−1 +
I {St = 2} − λ2,t−1

a2,0 + b2,0 + τ2,t−1 + 1

τ2,t = τ1 (κt, κt−1, Xt−1θ) = τ2,t−1 + I {St−1 = 2} .

Lastly, this set of sufficient statistics simplifies the solution method, because now

only two of the sufficient statistics grow without bound (τ1,t and τ2,t) while λ1,t, λ2,t ∈
[0, 1].

For the solution below, the agent’s belief about the probability of κt+1 conditional on

It is given by:

p(κt+1|It) = p(κt+1|κt, yt, Xt, θ)

=

∫
p(κt+1|κt, Xt, yt,Π, θ)p(Π|κt, yt, Xt, θ)dΠ,

where p(κt+1|κt, Xt, yt,Π, θ) = ΠT
B as defined in (A-15), and p(Π|κt, yt, Xt, θ) = p(Π|nt, St, θ)

as given in (A-12). Solving this integration yields:

ΠT
B,t ≡ p(κt+1|κt, Xt, yt,Π, θ) = (A-54)



λ1χ[χλ′1+(1−χ)(1−λ′1)]
λ1χ+(1−λ1)(1−χ)

λ1χ[(1−χ)λ′1+χ(1−λ′1)]
λ1χ+(1−λ1)(1−χ)

(1−λ1)(1−χ)[χ(1−λ′2)+(1−χ)λ′2]
λ1χ+(1−λ1)(1−χ)

(1−λ1)(1−χ)[(1−χ)(1−λ′2)+χλ′2]
λ1χ+(1−λ1)(1−χ)

λ1(1−χ)[χλ′1+(1−χ)(1−λ′1)]
λ1(1−χ)+(1−λ1)χ

λ1(1−χ)[(1−χ)λ′1+χ(1−λ′1)]
λ1(1−χ)+(1−λ1)χ

(1−λ1)χ[χ(1−λ′2)+(1−χ)λ′2]
λ1χ+(1−λ1)(1−χ)

(1−λ1)χ[(1−χ)(1−λ′2)+χλ′2]
λ1χ+(1−λ1)(1−χ)

(1−λ2)χ[χλ′1+(1−χ)(1−λ′1)]
(1−λ2)χ+λ2(1−χ)

(1−λ2)χ[(1−χ)λ′1+χ(1−λ′1)]
(1−λ2)χ+λ2(1−χ)

λ2(1−χ)[χ(1−λ′2)+(1−χ)λ′2]
(1−λ2)χ+λ2(1−χ)

λ2(1−χ)[(1−χ)(1−λ′2)+χλ′2]
(1−λ2)χ+λ2(1−χ)

(1−λ2)(1−χ)[χλ′1+(1−χ)(1−λ′1)]
(1−λ2)(1−χ)+λ2χ

(1−λ2)(1−χ)[(1−χ)λ′1+χ(1−λ′1)]
(1−λ2)(1−χ)+λ2χ

λ2χ[χ(1−λ′2)+(1−χ)λ′2]
(1−λ2)(1−χ)+λ2χ

λ2χ[(1−χ)(1−λ′2)+χλ′2]
(1−λ2)(1−χ)+λ2χ

 ,

where we use the shorthand notation λi ≡ λi,t and λ′i ≡ λi,t+1 = λi (κt+1, κt, Xt, θ) for

i ∈ {1, 2}. Note that in this section, the superscript T will be used to denote matrix

transposition, while
′

will be used to denote next-period variables.
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F.2 Wealth-consumption and price-dividend ratios

Agents have Epstein-Zin preferences given by

Vt =

{
(1− β)C

1− 1
ψ

t + β
[
EtV

1−γ
t+1

] 1− 1
ψ

1−γ

} 1

1− 1
ψ

.

The consumption process is governed by the exogenous process for output as follows:

∆ct = ∆yt = µst + σstεt.

Lastly, we assume that the dividend process is given by

∆dt+1 = µ̄+ ρ (∆ct+1 − µ̄) + σdηt+1.

The solution for the wealth-consumption ratio in this setting is

PCα
t = E[βαe(1−γ)∆ct+1(PCt+1 + 1)α|It]

= E[βαE
[
e(1−γ)∆ct+1|It, St+1

]
(PCt+1 + 1)α|It]

= E[βαe(1−γ)µ̃κt+1+ 1
2

(1−γ)2σ̃2
κt+1 (PCt+1 + 1)α|It],

where α ≡ 1−γ
1−1/ψ

and

µ̃1 = µ̃2 = µ1, µ̃3 = µ̃4 = µ2,

σ̃1 = σ̃2 = µ1, σ̃3 = σ̃4 = µ2.

Similarly, the price-dividend ratio is

PDt = E

[
βαe(ρ−γ)µ̃κt+1+ 1

2
(ρ−γ)2σ̃2

κt+1
+(1−ρ)µ̄(q11,q22)

(
PCt+1 + 1

PCt

)α−1

(PDt+1 + 1)

∣∣∣∣∣ It
]
,

where µ̄ (q11, q22) is the long-run mean of consumption growth as a function of {q11, q22}.

Since the exogenous states are Markov and the sufficient statistics of the Bayesian

learning problem satisfy Xt+1 = F (St+1, St, Xt) for a function F that summarizes (A-

53), the equilibrium wealth-consumption and price-dividend ratios can be written as

functions of state variables and known parameters {κt, Xt, θ} that satisfy the following
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recursions:

PC (κt, Xt, θ)
α = E

[
βαe(1−γ)µ̃κt+1+ 1

2
(1−γ)2σ̃2

κt+1 (PC (κt+1, Xt+1, θ) + 1)α|It
]

PD (κt, Xt, θ) = E
[
βαe(ρ−γ)µ̃κt+1+ 1

2
(ρ−γ)2σ̃2

κt+1
+(1−ρ)µ̄(q11,q22)

×
(
PC (κt+1, Xt+1, θ) + 1

PC (κt, Xt, θ)

)α−1

(PD (κt+1, Xt+1, θ) + 1)

∣∣∣∣∣ It
]

.

We follow Collin-Dufresne, Johannes, and Lochstoer (2016) in solving this recursion

by using the property that beliefs about {q11, q22} converge to the true values under

Bayesian learning as {τ1,t, τ2,t} grow. This allows us to iterate back from the known

parameters solution. Details on this procedure are provided below:

F.3 Full information case (both q11, q22 known)

Although news has no impact on parameter learning in this case, nt still serves as a

signal about St+1. The relevant state transition matrix is the one given in (A-15). In

this case, we solve for the equilibrium wealth-consumption and price-dividend ratios on

a three-dimensional grid of values for {κ, q11, q22}.

F.3.1 Wealth-consumption ratio

The equilibrium condition for the wealth-consumption ratio when {q11, q22} are known

is

PC◦α = Π
T

B

(
βαe(1−γ)µ̃′+ 1

2
(1−γ)2(σ̃′)◦2 � (PC′ + 1)◦α

)
,

where bolded variables now denote 4×1 vectors indexed by κ and dependence on {Π, θ}
is suppressed for brevity. The symbol ◦ is used to denote element-wise exponentiation.

For fixed values of {Π, θ}, this is simply a system of four nonlinear equations that can

be solved numerically.
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F.3.2 Price-dividend ratio

Similarly, the price-dividend ratio can be obtained by solving the following system of

equations:

PD = Π
T

B

(
βαe(ρ−γ)µ̃′+ 1

2
(ρ−γ)2(σ̃′)◦2+(1−ρ)µ̄ � ((PC′ + 1)�PC)

◦(α−1) � (PD′ + 1)
)
,

where � denotes element-wise division.

F.4 Case with qii known and qjj unknown

In this case, we need to carry a subset of the sufficient statistics Xj,t ≡ {λj,t, τj,t}. The

relevant state transition matrix is denoted by ΠT
B,t,ii ≡ p(κt+1|κt, Xj,t, yt, qii, θ). One

can show that this matrix is equal to (A-54) with the substitution λi = qii in all time

periods. For both sets of {i, j}, we solve for the equilibrium wealth-consumption and

price-dividend ratios on a four-dimensional grid of values for {κ, λj, τj, qii}, where τj,t is

truncated at a large value τj,T .

F.4.1 Wealth-consumption ratio

Now, the wealth-consumption ratio is no longer stationary, because τj,t grows without

bound. It must satisfy the recursion

PC (κt, Xj,t, qii, θ)
α = E

[
βαe(1−γ)µ̃κt+1+ 1

2
(1−γ)2σ̃2

κt+1 (PC (κt+1, Xj,t+1, qii, θ) + 1)α|It
]
.

To obtain the PC solution for a given qii, we start with the approximation that

PC (κT , Xj,T , qii, θ) = PC (κT ,Π, θ) for some large τj,T , because this relationship be-

comes exact as τj,T →∞. We then iterate back by repeating the following two steps:

1. If St = j, λj,t+1 and τj,t+1 will update as above for both St+1 = 1 and St+1 = 2, and

any observation nt would be informative, so the values of PC for κt corresponding

to St = j are a function of the values of PC with τj incremented by one. That is,
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we iterate τj back one step as follows:[
PC(κt = 2j − 1, λj,t, τj,t)

α

PC(κt = 2j, λj,t, τj,t)
α

]
= βαΠT

B,t,ii,[2j−1:2j] ×
(
e(1−γ)µ̃′+ 1

2
(1−γ)2(σ̃′)◦2

�



PC(κt = 1, λj,t+1, τj,t + 1)

PC(κt = 2, λj,t+1, τj,t + 1)

PC(κt = 3, λj,t+1, τj,t + 1)

PC(κt = 4, λj,t+1, τj,t + 1)

+ 1


◦α ,

where we use the fact that κt = 2 (St − 1) + nt, and ΠT
B,t,ii,[2j−1:2j] is the 2 × 4

submatrix formed by rows 2j − 1 and 2j of matrix ΠT
B,t,ii. The dependence on

{qii, θ} is suppressed here for brevity.

2. If St = i, nothing can be learned about qjj in the next period regardless of the

value of St+1 or nt. In other words, λj,t+1 = λj,t and τj,t+1 = τj,t for St = i. Thus,

given the values from the left-hand side of the previous step, we can directly solve

for PC for the remaining values of κt using this system of equations:[
PC(κt = 2i− 1, λj,t, τj,t)

α

PC(κt = 2i, λj,t, τj,t)
α

]
= βαΠT

B,t,ii,[2i−1:2i]

(
e(1−γ)µ̃′+ 1

2
(1−γ)2(σ̃′)◦2 � (PC′ + 1)◦α

)
,

where PC′ is formed by stacking[
PC(κt = 2i− 1, λj,t, τj,t)

PC(κt = 2i, λj,t, τj,t)

]
,

[
PC(κt = 2j − 1, λj,t, τj,t)

PC(κt = 2j, λj,t, τj,t)

]

appropriately given the values of i and j.

F.4.2 Price-dividend ratio

Once we have the solution for PC, the solution for the price-dividend ratio procedes

analogously based on the recursion

PD (κt, Xj,t, qii, θ) = E
[
βαe

(ρ−γ)µ̃κt+1+ 1
2

(ρ−γ)2σ̃2
κt+1

+(1−ρ)µ̄(qii,qjj)

×
(
PC (κt+1, Xj,t+1, qii, θ) + 1

PC (κt, Xj,t+1, qii, θ)

)α−1

(PD (κt+1, Xj,t+1, qii, θ) + 1)

∣∣∣∣∣ It
]

.
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We start with an analogous approximation that PD (κT , Xj,T , qii, θ) = PD (κT ,Π, θ)

for some large τj,T and then iterate back by repeating the same two steps:

1. If St = j, we again iterate τj back one step as follows:[
PD(κt = 2j − 1, λj,t, τj,t)

PD(κt = 2j, λj,t, τj,t)

]
= βαΠT

B,t,ii,[2j−1:2j] ×
(
e(ρ−γ)µ̃′+ 1

2
(ρ−γ)2(σ̃′)◦2+(1−ρ)µ̄(qii,q̂jj)

� ((PC′ + 1)�PC)
◦(α−1) �



PD(κt = 1, λj,t+1, τj,t + 1)

PD(κt = 2, λj,t+1, τj,t + 1)

PD(κt = 3, λj,t+1, τj,t + 1)

PD(κt = 4, λj,t+1, τj,t + 1)

+ 1


 .

In this expression, q̂jj denotes E [qjj|It] .

2. If St = i, we use the result from step 1 to solve for PD for the remaining values

of κt and the same {λj,t, τj,t}.[
PD(κt = 2i− 1, λj,t, τj,t)

PD(κt = 2i, λj,t, τj,t)

]
= βαΠT

B,t,ii,[2i−1:2i]

×
(
e(ρ−γ)µ̃′+ 1

2
(ρ−γ)2(σ̃′)◦2+(1−ρ)µ̄(qii,q̂jj)

� ((PC′ + 1)�PC)
◦(α−1) � (PD′ + 1)

)
,

where PD′ is formed by stacking[
PD(κt = 2i− 1, λj,t, τj,t)

PD(κt = 2i, λj,t, τj,t)

]
,

[
PC(κt = 2j − 1, λj,t, τj,t)

PC(κt = 2j, λj,t, τj,t)

]

appropriately given the values of i and j.

F.5 Both {q11, q22} unknown

Using the solutions for both cases of a single known transition probability, we can

obtain the solution for the case in which both transition probabilities are unknown.

The transition matrix is now the one given in (A-54). We solve for the equilibrium

wealth-consumption and price-dividend ratios on a five-dimensional grid of values for
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{κ, λ1, τ1, λ2, τ2}, where τ1 and τ2 are both truncated at large values τ1,T and τ2,T ,

respectively.

F.5.1 Wealth-consumption ratio

We start with the following two approximations:

PC (κT , XT , θ) = PC (κT , λ2,t, τ2,t, q11, θ) for some large τ1,T and all (λ2,t, τ2,t)

PC (κT , XT , θ) = PC (κT , λ1,t, τ1,t, q22, θ) for some large τ2,T and all (λ1,t, τ1,t) .

From here, we iterate back in both the τ1 and τ2 dimensions alternatingly as follows:

1. If St = 1, λ1,t+1 and τ1,t+1 will update as above for both St+1 = 1 and St+1 = 2.

This allows us to iterate back one step for τ1:[
PC(κt = 1, λ1,t, τ1,t, λ2,t, τ2,t)

α

PC(κt = 2, λ1,t, τ1,t, λ2,t, τ2,t)
α

]
= βαΠT

B,t,ii,[1:2] ×
(
e(1−γ)µ̃′+ 1

2
(1−γ)2(σ̃′)◦2

�



PC(κt = 1, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PC(κt = 2, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PC(κt = 3, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PC(κt = 4, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

+ 1


◦α .

2. If St = 2, we analogously iterate back one step for τ2:[
PC(κt = 3, λ1,t, τ1,t, λ2,t, τ2,t)

α

PC(κt = 4, λ1,t, τ1,t, λ2,t, τ2,t)
α

]
= βαΠT

B,t,ii,[3:4] ×
(
e(1−γ)µ̃′+ 1

2
(1−γ)2(σ̃′)◦2

�



PC(κt = 1, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PC(κt = 2, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PC(κt = 3, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PC(κt = 4, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

+ 1


◦α .



Online Appendix A-23

F.5.2 Price-dividend ratio

The price-dividend ratio solution is obtained analogously again starting with the fol-

lowing two approximations:

PD (κT , XT , θ) = PD (κT , λ2,t, τ2,t, q11, θ) for some large τ1,T and all (λ2,t, τ2,t)

PD (κT , XT , θ) = PD (κT , λ1,t, τ1,t, q22, θ) for some large τ2,T and all (λ1,t, τ1,t) .

From here, we iterate back in both the τ1 and τ2 dimensions alternatingly as follows:

1. If St = 1, we iterate back one step for τ1:[
PD(κt = 1, λ1,t, τ1,t, λ2,t, τ2,t)

PD(κt = 2, λ1,t, τ1,t, λ2,t, τ2,t)

]
= βαΠT

B,t,ii,[1:2] ×
(
e(ρ−γ)µ̃′+ 1

2
(ρ−γ)2(σ̃′)◦2+(1−ρ)µ̄(qii,q̂jj) � ((PC′ + 1)�PC)

◦(α−1)

�



PD(κt = 1, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PD(κt = 2, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PD(κt = 3, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

PD(κt = 4, λ1,t+1, τ1,t + 1, λ2,t, τ2,t)

+ 1


 .

2. If St = 2, we iterate back one step for τ2:[
PD(κt = 3, λ1,t, τ1,t, λ2,t, τ2,t)

PD(κt = 4, λ1,t, τ1,t, λ2,t, τ2,t)

]
= βαΠT

B,t,ii,[3:4] ×
(
e(ρ−γ)µ̃′+ 1

2
(ρ−γ)2(σ̃′)◦2+(1−ρ)µ̄(qii,q̂jj) � ((PC′ + 1)�PC)

◦(α−1)

�



PD(κt = 1, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PD(κt = 2, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PD(κt = 3, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

PD(κt = 4, λ1,t, τ1,t, λ2,t+1, τ2,t + 1)

+ 1


 .

F.6 Asset pricing moments

Using our five-dimensional solutions for PC and PD, we can obtain analogous solu-

tion arrays for the risk-free rate and ex-ante equity risk premium on the same grid of

{κ, λ1, τ1, λ2, τ2} values using the following equations.
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• Risk-free rate:

The risk-free rate in the model is

1

1 +Rf
t

= Et [Mt+1]

= βθEt

[
e−γµ̃κt+1+ 1

2
γ2σ̃2

κt+1

(
PCt+1 + 1

PCt

)θ−1
]
.

Therefore, the log risk-free rate can be approximated by:

rft ≈ ln
(

1 +Rf
t

)
= − ln

(
βθEt

[
exp

{
−γµ̃κt+1 +

1

2
γ2σ̃2

κt+1

}(
PCt+1 + 1

PCt

)θ−1
])

.

• Risk premium on equity:

The expected return on equity is

Et [1 +Re,t+1] = Et

[
PDt+1 + 1

PDt

Dt+1

Dt

]
= Et

[
e(1−ρ)µ̄t+1+ρµ̃κt+1+ 1

2
ρ2σ̃2

κt+1
+ 1

2
σ2
d
PDt+1 + 1

PDt

]
,

where µ̄ varies over time as beliefs about {q11, q22} evolve. Therefore, the log ex-

ante expected excess return on equity (adjusted by the Jensen’s inequality term)

is

ln

(
Et [1 +Re,t+1]

1 +Rf
t

)
− 1

2
σ2
d

= ln

(
Et

[
exp

{
(1− ρ) µ̄t+1 + ρµ̃κt+1 +

1

2
ρ2σ̃2

κt+1

}
PDt+1 + 1

PDt

])
− rft.
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G Supplementary Figures

Figure A-1: Filtered estimates: Parameters
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Notes: Gray solid lines are posterior median values that are overlaid with the 90 percent credible
interval (gray shaded areas). Black circled lines are posterior median values obtained without survey
forecasts. To deal with label switching problem, we impose that µ1 > µ2.

Figure A-2: Probability of each regime
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Notes: Black solid lines are posterior median values.
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