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Abstract

This paper investigates the estimation and inference issues of heterogeneous co-
efficients in panel data models with common shocks. We propose a novel two-step
method to estimate the heterogeneous coefficients. We establish the asymptotic the-
ory of our estimators, including consistency, asymptotic representation, and limiting
distribution. Our two-step method can effectively address the limitations of the ex-
isting methods, such as the common correlated effects method proposed by Pesaran
(2006, Econometrica) and the iterated principal components method proposed by
Song (2013). The two-step estimator is as efficient as the two existing competitors
in the basic model, and more efficient in the model with zero restrictions. Intensive
Monte Carlo simulations show that the proposed estimator performs robustly in a
variety of data setups.
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1 Introduction

It has been long recognized and well documented in the literature that a small number of
factors can explain a large fraction of the comovement of financial, macroeconomic and
sectorial variables, see, for example, Ross (1976), Sargent and Sims (1977), Geweke (1977)
and Stock and Watson (1998). Based on this fact, recent econometric literature places
particular focus on panel data models with common shocks. These models specify that
the dependent variable and explanatory variables both have a factor structure. A typical
example can be written as

yit = αi + x′itβi + λ′i ft + εit,

xit = νi + γ′i ft + vit, i = 1, 2, . . . , N; t = 1, 2, . . . , T.
(1.1)

where yit denotes the dependent variable; xit denotes a k× 1 vector of explanatory vari-
ables; and ft is an r × 1 vector of unknown factors, which represents the unobserved
economic shocks. The factor loadings γi and λi capture the heterogeneous responses to
the shocks. A salient feature of this paper is that the coefficients of xit are assumed to be
individual-dependent. Throughout the paper, we assume that the number of factors is
fixed. For the case where the number of factors increases with the sample size, see Li, Li
and Shi (2017).

Due to the presence of factors ft, the error term of the y equation (i.e., λ′i ft + εit) is
correlated with the explanatory variables. The usual methods, such as ordinary least
squares method, lead to inconsistent estimation. The instrumental variables (IV) method
appears to be an intuitive way to address this issue, but the validity of IV is difficult
to justify in practice. A remarkable result from recent studies is that, even without IV,
model (1.1) can still be consistently estimated. For related studies, see Ahn, Lee and
Schmidt (2001, 2013), Bai (2009), Bai and Li (2014), Moon and Weidner (2009, 2015, 2017),
Pesaran (2006), Su, Jin and Zhang (2015) and Song (2013), among others.

Bai (2009) proposes an iterated principal components (PC) method to estimate a
model with homogeneous coefficients. His analysis has been reexamined and extended
by the perturbation theory in Moon and Weidner (2009, 2015, 2017). Su, Jin and Zhang
(2015) propose a statistic to test the linearity specification of the model. These studies
find that a bias arises from cross-sectional heteroscedasticity. Bai and Li (2014) therefore
consider the quasi maximum likelihood method to eliminate this bias from the estimator.
All the aforementioned studies are based on the assumption of a homogeneous coeffi-
cient. If the underlying coefficients are heterogeneous, misspecification of homogeneity
would lead to inconsistent estimation (see the simulation of Kapetanios, Pesaran and
Yamagata (2011)).

There are several studies on the estimation of heterogeneous coefficients. Pesaran
(2006) proposes the common correlated effect (CCE) estimation method to estimate the
heterogeneous coefficients in (1.1). The intuition of his method is to approximate the
unknown projection space of the factors ft by the space spanned by the cross-sectional
average of the observations (yit, x′it)

′. To this end, some rank condition is needed. Song
(2013) alternatively considers the iterated PC method, which extends the analysis of Bai
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(2009) to the case of heterogeneous coefficients. In this paper, we propose a novel method
to estimate model (1.1) and its extensions. Our estimation method is motivated by limi-
tations of Pesaran’s and Song’s methods in estimating the heterogeneous coefficients for
some particular data setups. The CCE estimator has a reputation for computational sim-
plicity and excellent finite sample properties. However, we note that in some cases rank
condition alone is not enough for a good approximation. When a good approximation
breaks down, the CCE estimator would perform poorly. Song’s method has a remark-
able advantage that it does not need the factor structure specification on X, which makes
it more flexible in applications. Although this advantage is very attractive to applied
studies, Song’s method also has the issue that the minimizer of the objective function is
not easily obtained. In addition, the limiting distribution of the PC estimator relies on
the assumption of cross sectional independence. The limitations of the CCE method and
the PC method are manifested by simulations in Section 5.

Our estimation method consists of two steps. In the first step, we use the maximum
likelihood (ML) method to estimate a pure factor model. Next, the heterogeneous coeffi-
cients are estimated by using relations implied by the model and replacing the unknown
parameters with their ML estimators. Our two-step method can effectively address the
aforementioned limitations. In addition, our two-step estimator has a striking advantage
that it is as efficient as the CCE and PC estimators in model (1.1), and more efficient than
the two competitors in model (4.1) below. The comparison of our two-step estimator and
the two existing ones are discussed in details in Sections 3 and 4.

The proposed method strikes a balance between efficiency and computational econ-
omy. The computational burden in model (1.1) is not an ignorable issue due to a great
number of βs being estimated, especially when N is large. This problem is made worse
because we can only compute βi (i = 1, 2, . . . , N) sequentially, instead of all βi simulta-
neously by matrix algebra. The PC method of Song (2013) seems less attractive in this
perspective because it updates βi sequentially in each iteration, which inevitably entails
heavy computational burden. Our estimation method overcomes this problem by in-
voking the iterated computation method only in the first step to estimate a pure factor
model. In the second step, we compute the estimators of βi with a closed form, which
greatly reduces the computation costs. In addition, the number of iterations can be sub-
stantially reduced in the first step if the PC estimates are chosen as the initial values.
Nevertheless, our computation cost is still considerably larger than the CCE method.

Allowance of coefficients heterogeneity is one key ingredient of our specification,
which has both theoretical and practical relevance. A recent development in economet-
rics is to identify the latent structure of panel data, see Su, Shi and Phillips (2016), Li,
Qian and Su (2016), Su and Ju (2017), Lin and Ng (2012) and so forth. In these stud-
ies, cross sectional units sharing the same regression coefficients are classified into one
group. To determine the membership of each unit, the first step is to estimate the cross
sectional coefficients, assuming that they are unit-dependent. Next, based on the estimate
of heterogeneous coefficients, the membership is determined by invoking some classifi-
cation methods such as the K-means algorithm. Apparently, an efficient estimation of
heterogeneous coefficients, the objective of this paper, is important to entail a better clas-
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sification. In addition, if one is willing to specify the random coefficients as in Swamy
(1970), the mean of coefficients can be easily estimated. This kind of work is considered
in Pesaran (2006), and also pursued in the current paper. In regards to a practical aspect,
Eberhardt, Helmers and Strauss (2013) point out that the existing studies on private re-
turn to R&D either fail to account for spill-over feature of knowledge in the Griliches
knowledge production function, or, if account, specify the spill-over effects with some
contentious spatial weights matrix. To overcome these weaknesses, Eberhardt, Helmers
and Strauss (2013) consider an econometric model which is the same with model (4.1)
below.¬ Their empirical results indicate that the private return to R&D is much smaller
than what existing studies have found.

This paper contributes to the related literature in several dimensions. First, we pro-
pose a new approach to estimate the heterogeneous panels with common shocks, which
to a large extent complements the existing methods. Second, we consider the ML esti-
mation and inference of high dimensional factor models under the misspeficiation that
the covariance matrix of idiosyncratic errors is block-diagonal. This theoretical work has
independent interests. In addition, we also present some maximal results. These re-
sults are of theoretical relevance when developing model extensions. Third, we propose
new statistics to perform the hypothesis testing on the validity of moment conditions.
The proposed statistics share the spirit of the Hansen-Sargan statistic, but have to ac-
commodate the particular issue in the current setup. So the theoretical analysis is more
complicated.

The rest of the paper is organized as follows. Section 2 presents some theoretical
results of the factor model with a block-diagonal covariance matrix of idiosyncratic er-
rors. These results constitute the basis of the subsequent analysis. Section 3 illustrates
the key estimation idea and derives the theoretical results for the basic model. Section
4 considers the model with restrictions on the loadings. We first consider a model with
zero restrictions on the loadings in the y equation. We show that when zero restrictions
are present, the loadings contain information for β, which is helpful to improve the es-
timation efficiency. We propose a minimum distance estimator to achieve the efficiency.
We also propose Hansen-Sargan statistics to test the validity of additional moment con-
ditions. Random slope specification is also investigated and the asymptotic properties
for the slope mean are established. We next consider a model with an observed loadings
in the y equation and a model with time-invariant regressors. Section 5 conducts exten-
sive simulations to investigate the finite sample properties of the proposed estimator and
provides the comparisons with some competitors. Section 6 concludes.

2 Factor models

In this section, we investigate the ML estimation for an approximate factor (AF) model
under the misspecification that the covariance matrix of idiosyncratic errors is block-
diagonal. As will be seen below, this AF model is closely related with model (1.1). Bai
and Li (2016) consider a similar issue but misspecified that the covariance matrix of

¬In fact, Equations (8a) and (8b) in Eberhardt, Helmers and Strauss (2013) are the same as model (4.1).
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idiosyncratic errors is diagonal. In the viewpoint of covariance structure, our analysis
generalizes their results. The primary purpose of this section is to build up some basic
results that are needed for the subsequent analysis. We note that the theoretical analysis
of this section has independent interests. In literature, the factor model with a block-
diagonal variance matrix of errors is called the “multi-battery factor model”, which has a
long history and can date back to Tucker (1958). Our theoretical results would contribute
to this branch of the literature. Throughout the paper, we use the Frobenius norm for
a matrix, i.e., ‖A‖ = [tr(A′A)]1/2 for matrix A. We use the symbols with overbar to
denote the corresponding sample mean over the time, for example, f̄ = 1

T ∑T
s=1 fs; use v̇t

to denote vt − v̄ for any column vector vt and Mwv to denote 1
T ∑T

t=1 ẇtv̇′t for any vectors
wt and vt.

Now consider model (1.1). Substituting the second equation of model (1.1) into the
first one, we have [

yit
xit

]
︸ ︷︷ ︸

zit

=

[
β′iνi + αi

νi

]
︸ ︷︷ ︸

µi

+

[
β′iγ
′
i + λ′i
γ′i

]
︸ ︷︷ ︸

Λ′i

ft +

[
β′ivit + εit

vit

]
︸ ︷︷ ︸

uit

, (2.1)

or equivalently

zit = µi + Λ′i ft + uit, i = 1, 2, . . . , N; t = 1, 2, . . . , T. (2.2)

According to the definitions in (2.1), we see that zit is a K̄ × 1 vector of observations
with K̄ = k + 1; uit is a K̄ × 1 vector of error terms; Λi is an r × K̄ loading matrix;
and ft is an r × 1 vector of factors. Let zt = (z′1t, z′2t, . . . , z′Nt)

′, µ = (µ′1, µ′2, . . . , µ′N)
′,

Λ = (Λ1, Λ2, . . . , ΛN)
′ and ut = (u′1t, u′2t, . . . , u′Nt)

′, then we can rewrite (2.2) as

zt = µ + Λ ft + ut. (2.3)

Without loss of generality, we assume f̄ = T−1 ∑T
t=1 ft = 0 in the paper because the

model can always be written as zt = µ + Λ f̄ + Λ( ft − f̄ ) + ut = µ∗ + Λ f ∗t + ut with
µ∗ = µ + Λ f̄ and f ∗t = ft − f̄ .

2.1 Estimation

We consider the estimation of model (2.2). Suppose that (i) ft is normally distributed with
mean zero and variance M†

f f , (ii) uit is independent and identically normally distributed
over t and independent over i with mean zero and variance Ψ†

i , (iii) ft is independent
with uis for all i, t and s, it can be readily verified that the corresponding likelihood
function after concentrating out the intercept µ is

logL (θ) = − 1
2N

log |Σzz| −
1

2N
tr[MzzΣ−1

zz ] (2.4)

where θ = (Λ†, Ψ†, M†
f f ) and Σ†

zz = Λ† M†
f f Λ†′ + Ψ†; Mzz =

1
T ∑T

t=1 żt ż′t is the data matrix

with żt = zt − 1
T ∑T

s=1 zs, and Ψ† = diag(Ψ†
1, . . . , Ψ†

N) is a block-diagonal matrix with Ψ†
i

being a K̄ × K̄ symmetric positive definite matrix for each i = 1, 2, . . . , N. Here we use
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the symbols with dagger to denote the inputs of the likelihood function. Note that for
any given θ = (Λ†, Ψ†, M†

f f ), we have logL (θ̃) = logL (θ) for θ̃ = (Λ† M†1/2
f f , Ψ†, Ir).

From this perspective, it is no loss of generality to normalize M†
f f = Ir. Therefore Σ†

zz

is simplified as Σ†
zz = Λ†Λ†′ + Ψ†. Although the factors ft are assumed to be fixed

constants in Assumption A below, and the errors uit may have weak correlations and
heteroskedasticities over i and t, we still use the above objective function and call the
maximizer θ̂ = (Λ̂, Ψ̂), defined by

θ̂ = argmax
θ∈Par(θ)

logL (θ),

the quasi maximum likelihood estimator, or the MLE, where Par(θ) is the parameters
space for θ defined by

Par(θ) =
{
(Λ†, Ψ†)

∣∣∣Ψ† = diag(Ψ†
1, . . . , Ψ†

N), 0 < c ≤ τmin(Ψ†
i ) ≤ τmax(Ψ†

i ) ≤ C for each i
}

,

where τmin(·) and τmax(·) denote the respective smallest and largest eigenvalues of its
input, and c and C are two constants given below. The parameters space specifies that
Ψ†

i is estimated in a compact set which is bounded away from zero. This specification is
due to the possible appearance of the so-called Heywood case (see Lawley and Maxwell
(1971)). To be specific, consider the factor model zit = µi + Λ′i ft + uit, which has an
undesirable alternative expression

zit = µi + Λ̃′i ft + 1(i = 1)z1t + ũit =
[
Λ̃′i, IK̄(i = 1)

]
︸ ︷︷ ︸

Λ∗′i

[
ft

z1t

]
︸ ︷︷ ︸

f ∗t

+ũit = µi + Λ∗′i f ∗t + ũit,

with

Λ̃i = Λi

(
1− 1(i = 1)

)
=

{
0 if i = 1;
Λi if i 6= 1.

ũit = uit

(
1− 1(i = 1)

)
=

{
0 if i = 1;
uit if i 6= 1.

where 1(i = 1) is equal to 1 if i = 1, 0 otherwise; and IK̄(i = 1) is equal to a K̄-
dimensional identity matrix if i = 1, and 0 otherwise. Although this peculiar case can
be precluded asymptotically by correctly determining the number of factors (see the
discussion on identification below), it does cause trouble in the finite sample, especially
when implementing the ML estimation. As a response, we require that Ψ†

i be estimated
in a compact set bounded away from zero, see Assumption E below. In practice, one can
choose c = 0.1 mini σ̃2

i , C = 10 maxi σ̃2
i where σ̃2

i is the estimator of idiosyncratic variance
for unit i by the PC method as long as the number of factors is not underestimated. The
estimation procedure for (2.4) is discussed in Appendix E, which is an extension of the
EM algorithm of Bai and Li (2012).

Maximizing the objective function (2.4) with respect to Λ and Ψ gives the following
two first order conditions.

Λ̂′Ψ̂−1(Mzz − Σ̂zz) = 0, (2.5)

Bdiag(Mzz − Σ̂zz) = 0, (2.6)

5



where Bdiag(·) is the block-diagonal operator, which puts the element of its argument to
zero if the counterpart of Ψ is nonzero, otherwise unspecified. Λ̂ and Ψ̂ denote the ML
estimators and Σ̂zz = Λ̂Λ̂′ + Ψ̂. The detailed derivations of the above two equations are
given in Appendix A.

2.2 Assumptions

To analyze (2.3), we make the following assumptions. Hereafter we use C to denote a
generic constant sufficiently large.

Assumption A: The factor ft is a sequence of constants with ‖ ft‖ ≤ C for all t =

1, 2, . . . , T. Let M f f = T−1 ∑T
t=1 ft f ′t . We assume that M f f = lim

T→∞
M f f is a positive definite

matrix.

Assumption B: We make following assumptions on the idiosyncratic error uit:

(B.1) E(uit) = 0 and E(‖uit‖16) ≤ C for each i and t. In addition, E(‖
√

Tūi‖4) ≤ C
for each i, where ūi = T−1 ∑T

t=1 uit

(B.2) Let Σij,t = E(uitu′jt). We assume ∑N
j=1 aij ≤ C for each i, where aij = maxt≤T ‖Σij,t‖.

(B.3) Let Ξi,ts = E(uitu′is). We assume ∑T
s=1 bts ≤ C for each t, where bts = maxi≤N ‖Ξi,ts‖.

(B.4) τmin(Σii,t) ≥ c for each i and t, where c is a generic constant which is strictly
greater than 0, and τmin(·) denotes the smallest eigenvalue of its argument.

Assumption C: We make following assumptions on the loadings:

(C.1) The loadings Λi are fixed values satisfying ‖Λi‖ ≤ C for all i = 1, · · · , N.

(C.2) There exists an r× r positively definite matrix Q such that Q = lim
N→∞

1
N ∑N

i=1 ΛiΣ̄−1
ii Λ′i,

where Σ̄ii =
1
T ∑T

t=1 Σii,t with Σii,t defined in Assumption B.2.

Assumption D: Let uit = (εit + v′itβ, v′it)
′, where εit and vit are the respective idiosyn-

cratic errors of the Y and X equations in model (1.1). We have the following moments
conditions and weak convergence.

(D.1) E
[∥∥∥ 1√

T

T

∑
t=1

uitu′jt − E(uitu′jt)
∥∥∥2
]
≤ C, for each i and j,

(D.2) E
[∥∥∥ 1√

NT

N

∑
j=1

T

∑
t=1

ΛiΣ̄−1
ii [ujtu′it − E(ujtu′it)]

∥∥∥2
]
≤ C, for each i,

(D.3) E
[∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

ΛiΣ̄−1
ii uit f ′t

∥∥∥2
]
≤ C,

(D.4)
1√
T

T

∑
t=1

P̃itεit
d−−→ N(0, Ji), for each i,
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where P̃it = [h?′t , v′it]
′ with h?t implicitly defined by f ?t = [g?′t , h?′t ]

′ = M−1
f f ft, and Ji =

lim
T→∞

1
T ∑T

t=1 ∑T
s=1 E(P̃itP̃′isεitεis).

Assumption E: The variances Σ̄ii for all i are estimated in a compact set; that is, all
the eigenvalues of Ψ̂i (which we also use Σ̂ii to denote in the paper) are in an interval
[c, C] for two positive constants c < C.

Assumption F: We make following three assumptions to further restrict the idiosyn-
cratic errors:

(F.1) For each i, the error sequence uit admits a Wold representation: uit = ∑∞
`=0 Di`ε it−`

with Di0 = Ik+1. Let Dim = ∑`≥m ‖Di`‖. We assume that maxi≤N Dim = O(m−5).

(F.2) For each i, ε it is uniformly L2 bounded, independent, continuous with proba-
bility density function fεit and

sup
t≤T

∫ ∞

−∞
| fεit(x + a)− fεit(x)|dx ≤ C|a|

whenever |a| ≤ c for some c > 0.

(F.3) ∑∞
`=1 Di`x` 6= 0 for all complex numbers x with |x| ≤ 1.

Assumption G: Let f �t = [ f ′t , 1]′. We have the following moments conditions:

(G.1) E
[∥∥∥ 1√

T

T

∑
t=1

f �t u′it
∥∥∥8
]
≤ C, for each i;

(G.2) E
[∥∥∥ 1√

T

T

∑
t=1

[uitu′jt − E(uitu′jt)]
∥∥∥8
]
≤ C, for each i, j;

(G.3) E
[∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

ΛiΣ̄−1
ii uit f �′t

∥∥∥8
]
≤ C;

(G.4) E
[∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

ΛiΣ̄−1
ii [uitu′jt − E(uitu′jt)]

∥∥∥8
]
≤ C, for each j.

We give some comments on the above assumptions. Assumption A is about factors.
The factors are treated as parameters according to this assumption. Similar assump-
tions are made in Bai (2009), Bai and Li (2014), Moon and Weidner (2009), etc. In cases
when factors are random, the analysis in this paper can be viewed as conditioning on
a particular realization of factors. This assumption makes our factor model more flexi-
ble. For example, we can allow one factor to be normalized time trend, i.e., ftk = t/T.
For random factors, the counterpart of Assumption A is E(‖ ft‖8) < ∞ for all t, and
limT→∞

1
T ∑T

t=1 E( ft f ′t ) is positive definite. Assumption B is about idiosyncratic errors. It
allows both cross-sectional and temporal correlations and heteroskedasticities in errors.
So the model considered here is essentially an approximate factor model in the sense
of Chamberlain and Rothschild (1983). Assumption B.1 requires that the finiteness of
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sixteenth moment, which is slightly more stringent than the corresponding assumption
on the eighth moment in the literature. Assumptions B.2 and B.3 aim to control the
correlation magnitudes over the cross section and time, which correspond to Assump-
tions C.2 and C.3 in Bai (2003). With these two assumptions, the correlations from the
idiosyncratic part are weak enough that allow us to separate them from the common
components part. Assumption B.4 requires that the variances of idiosyncratic errors be
bounded away from zeros, which is standard. Note that Assumption B.2 implies that
these variances are bounded from the above. Assumption C is about loadings, which
is standard. We note that, under Assumptions A and C, the factors would have the
so-called pervasive property. Assumption D imposes some moment conditions and as-
sumes a weak convergence result, which corresponds to Assumption F in Bai (2003). This
assumption is for the tractability of theoretical analysis.

Assumption E assumes that partial parameters (i.e., Σ̄ii) are estimated in a compact
set, which corresponds to the parameters space specified above. In econometric or statis-
tical literature, compactness is often made when dealing with nonlinear objective func-
tions, see, for example, Newey and McFadden (1994), Jennirch (1969) and so forth. The
objective function (2.4) in the current paper has severe nonlinearity. We therefore impose
this assumption for theoretical tractability. In addition, Assumption E is also helpful to
preclude the Heywood case mentioned above.

Assumptions F and G are strengthened versions of Assumptions B and D, respec-
tively. These two assumptions are made mainly for the theoretical results in Subsections
4.3 and 4.4 below, where some uniform results are needed. Assumption F.1 assumes
that idiosyncratic errors admit linear processes. This assumption is sufficiently general
to allow a rich class of dependent processes and a similar assumption is also made in a
number of related studies, such as Doz, Giannone and Reichlin (2011). With Assump-
tion F.1, we can invoke the Komlós-Major-Tusnády approximation developed recently by
Berkes, Liu and Wu (2014) to analyze Theorem 4.2 in Subsection 4.3. Assumptions F.2
and F.3 are borrowed from Theorem 14.9 of Davidson (1994), which guarantee that uit

is a α-mixing process. As pointed out in Davidson (1994), they are sufficiently weak.
Assumption G imposes more tight moment conditions, which are helpful to control the
inflating factors when deriving the maximal results. Similar assumptions are also made
in Castagnetti, Rossi and Trapani (2015) and Fan, Liao and Mincheva (2013).

2.3 Asymptotic properties of the ML estimators

This section presents the asymptotic results of the ML estimators of (2.4). It is well known
that the factors and loadings can only be identified up to a rotation. In this section, we
adopt the treatment of Bai (2003), in which the rotational matrix appears in the asymp-
totic representation. This treatment has two advantages in the present context. First,
it simplifies our analysis. Second, it clarifies that the estimation and inferential theory
of β is invariant to the rotational matrix. Alternatively, we can impose some additional
restrictions to uniquely fix the rotational matrix; see Anderson and Rudin (1956) and Bai
and Li (2012) for full identification strategies. The following theorem, which serves as
the base for the subsequent analysis, gives the asymptotic representations of the MLE.

8



Theorem 2.1 Under Assumptions A-E, as N, T → ∞, we have that for each i,

Λ̂i − R′Λi = R′M−1
f f

1
T

T

∑
t=1

ftu′it + Op(
1
N
) + Op(

1
T
)

Σ̂ii − Σ̄ii =
1
T

T

∑
t=1

(uitu′it − Σii,t) + Op(
1
N
) + Op(

1
T
)

where R = M f f Λ′Ψ̂−1Λ̂(Λ̂′Ψ̂−1Λ̂)−1.

From Theorem 2.1, we see that the rotational matrix R only enters in the asymptotic
representation of Λ̂i. This is consistent with only loadings and factors having rotational
indeterminacy and idiosyncratic errors not having such a problem. In addition, we see
Λ̂i − R′Λi = Op(

1√
T
) + Op(

1
N ) and Σ̂ii − Σ̄ii = Op(

1√
T
) + Op(

1
N ). The term O( 1

N ) is a
bias term, which arises from misspecifying the variance matrix of idiosyncratic errors
to be block-diagonal. So if the cross-sectional correlations only exists within group i,
the model is therefore correctly specified and the ML estimator is simply

√
T-consistent.

This result has a strong implication that the CV and LV estimators defined below would
be consistent even when N is finite under this special case. However, the asymptotic
representations will be more complicated when N is finite.

3 Asymptotics of the basic model

Now consider the basic model (1.1), one target of this paper. We make the following
assumption for further analysis:

Assumption H: E(vitεit) = 0.

Assumption I: The coefficients βi (i = 1, 2, . . . , N) are fixed values with ‖βi‖ ≤ C for
some finite constant C.

Assumption H is crucial to the models with common shocks and is maintained by all
the related studies; for example, Bai (2009), Bai and Li (2014), Pesaran (2006), and Moon
and Weidner (2009, 2015, 2017). Assumption I is standard in the heterogeneous model.

Before presenting our estimation method, we discuss on the identification issue re-
lated to our model. We note that for any given i∗ ∈ {1, 2, . . . , N}, model (1.1) has an
alternative expression

yit = αi + x′it
(

βi − 1(i = i∗)(βi − β†)
)
+ λ′i ft + 1(i = i∗)x′it(βi − β†) + εit

= αi + x′it
(

βi − 1(i = i∗)(βi − β†)
)
+ λ′i ft + 1(i = i∗)x′i∗t(βi∗ − β†) + εit

= αi + x′it
(

βi − 1(i = i∗)(βi − β†)
)
+ λ†′

i f †
t + εit, (3.1)

with

λ†
i =

[
λi

1(i = i∗)

]
, f †

t =

[
ft

x′i∗t(βi∗ − β†)

]
.
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Apparently, the equation for xit has a similarly extended expression by setting the load-
ings of the newly-added factor x′i∗t(βi∗ − β†) to be zeros. Now we have an observationally
equivalent model. This ill-posed representation entails an identification issue for the re-
gression coefficient βi which should be precluded in this paper. For model (3.1), the
factor f †

t now is a mixture of random and nonrandom factors. Its nonrandom factors
satisfy Assumption A, and its random factor satisfies the random version of Assumption
A, which is given in the comments of Assumption A. But the loading λ†

i does not satisfy
Assumption C. As a result, the term 1(i = i∗)x′i∗t(βi∗ − β†) should not enter into λ′i ft, but
the remaining expression. There are cases that Assumption C is satisfied but Assumption
A breaks down. In the literature, ft is called strong factors if they satisfy Assumption
A (or, if random, satisfy the random version of Assumption A) and their loadings sat-
isfy Assumption C. Our strong factors assumption has two implications. First, the weak
factors in the sense of Onatski (2012) should not be treated as factors in the current pa-
per even they have signals stronger than the noise. Second, the method to determine
the number of factors should be consistent with this treatment. Fortunately, most of the
existing studies focus on determining the number of strong factors. So we have many
choices at hand such as Bai and Ng (2002), Ahn and Horenstein (2013) and so forth. In
this paper, we use the method of Ahn and Horenstein (2013) to determine the number of
factors.

We now illustrate the idea of our estimation method. Let Ωit be the covariance matrix
of vit and σ2

it the variance of εit. According to equation (2.1), the covariance of uit, which
is Σii,t by Assumption B.2, now is

Σii,t =

[
Σii,t,11 Σii,t,12
Σii,t,21 Σii,t,22

]
=

[
β′iΩitβi + σ2

it β′iΩit
Ωitβi Ωit

]
. (3.2)

This leads to Σii,t,22βi = Σii,t,21. Taking average over t on both sides, we have

Σ̄ii,22βi = Σ̄ii,21. (3.3)

where Σ̄ii,22 and Σ̄ii,21 are implicitly defined in Assumption C.2. According to Theorem
2.1, Σ̂ii is a consistent estimator of Σ̄ii. So βi can be estimated by β̂i = Σ̂−1

ii,22Σ̂ii,21. We
call this estimator CoVariance estimator, denoted by β̂CV

i since the estimation for βi only
involves the covariance of uit.

Theorem 2.1 implies Σ̂ii = Σ̄ii + op(1), so the consistency of β̂CV
i is immediately

obtained by the continuous mapping theorem. Furthermore, by Theorem 2.1,

Σ̂ii − Σ̄ii =
1
T

T

∑
t=1

(uitu′it − Σii,t) + Op(
1
N
) + Op(

1
T
).

Then it follows

Σ̂ii,21 − Σ̄ii,21 =
1
T

T

∑
t=1

[vit(εit + v′itβi)−Ωitβi] + Op(
1
N
) + Op(

1
T
); (3.4)

Σ̂ii,22 − Σ̄ii,22 =
1
T

T

∑
t=1

[vitv′it −Ωit] + Op(
1
N
) + Op(

1
T
). (3.5)
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Notice that

β̂CV
i − βi = (Σ̂ii,22)

−1Σ̂ii,21 − Σ̄−1
ii,22Σ̄ii,21

= (Σ̂ii,22)
−1
[
(Σ̂ii,21 − Σ̄ii,21)− (Σ̂ii,22 − Σ̄ii,22)Σ̄−1

ii,22Σ̄ii,21

] (3.6)

Let Ω̄i = T−1 ∑T
t=1 Ωit. Substituting (3.4) and (3.5) into (3.6) and noting that Σ̂ii,22

p−−→ Ω̄i

and βi = Σ̄−1
ii,22Σ̄ii,21, we have the following theorem about β̂CV

i .

Theorem 3.1 Under Assumptions A-E, H and I, when N, T → ∞ and T/N2 → 0, we have
that for each i,

√
T(β̂CV

i − βi) = Ω̄−1
i

( 1√
T

T

∑
t=1

vitεit

)
+ op(1). (3.7)

Remark 3.1 Consider the equation yit = αi + x′itβi + λ′i ft + εit. Suppose that the factors
are observed for all t, then the (infeasible) ordinary least square estimator is

β̂
in f
i = (X′i MF�Xi)

−1X′i MF�Yi = (V ′i MF�Vi)
−1V ′i MF�Yi.

where F� = (1T, F) and Xi = (xi1, xi2, . . . , xiT)
′ is a T × k matrix; Yi and Vi are defined

similarly. Some straightforward computations show that the infeasible estimator β̂
in f
i has

the asymptotic representation:

√
T(β̂

in f
i − βi) = Ω̄−1

i

( 1√
T

T

∑
t=1

vitεit

)
+ op(1), (3.8)

which is the same as that of Theorem 3.1. The above analysis indicates that the two-step
method amounts to making the unobserved factors observable. In addition, we note that
the CCE estimator of Pesaran (2006) and the iterated PC estimator of Song (2013) both
have this asymptotic representation. So their asymptotic results can be interpreted in the
same way. �

Remark 3.2 Our analysis indicates that if uit is independent across i, the Op(
1
N ) term in

Theorem 2.1 would disappear. As a result, the CV estimator would be consistent in this
special case even when N is finite. However, the asymptotic representation in this special
case will be complicated since the Op(

1√
NT

) terms, which are ignored in large-N setup,
will enter into the asymptotic representation since they have the same magnitude with
Op(

1√
T
). �

Remark 3.3 Our estimation method and Song’s method share the similarity of both es-
timating a factor model, they also have differences. The idea of Song’s method is the
so-called “controlling through estimating” method. Consider the Y equation

yit = αi + x′itβi + λ′i ft + eit.

The endogeneity issue of βi is due to the presence of λ′i ft, so the PC method addresses
this issue by estimating βi simultaneously with λi and ft to control the endogeneity.
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Our estimation method is essentially the generalized method of moments (GMM).
The key point of this paper is that we find some moment conditions for βi, which is
Σ̄ii,22βi = Σ̄ii,21 in the basic model, and ∆iβi = δi in the extended model below. How-
ever, an obstacle to apply these moment conditions is that the parameters Σ̄ii,22, Σ̄ii,21, ∆i

and δi are all unknown. Thus, we have to conduct the factor analysis to estimate these
parameters first. Now we highlight the different purposes of factor analysis in the two
methods. In Song’s method, it aims to estimate λ′i ft to control the endogeneity. In our
method, it aims to estimate the unknown parameters in moment conditions. �

Corollary 3.1 Under the assumptions of Theorem 3.1, we have that for each i,

√
T(β̂CV

i − βi)
d−−→ N

(
0, Ω̄−1

i ΘiΩ̄−1
i

)
,

where

Θi = avar
( 1√

T

T

∑
t=1

vitεit

)
= lim

T→∞

1
T

T

∑
t=1

T

∑
s=1

E(vitv′isεitεis).

Remark 3.4 The limiting variance can be consistently estimated by Σ̂−1
ii,22Θ̂iΣ̂−1

ii,22, where

Θ̂i =
1
T

T

∑
t=1

v̂itv̂′itε̂
2
it +

Si,T

∑
ν=1

K(ν, Si,T)

[
1
T

T

∑
t=ν+1

(v̂itv̂′i,t−ν + v̂i,t−νv̂′it)ε̂itε̂i,t−ν

]
, (3.9)

where K(v, Si,T) is the kernel used to weight the information signals of temporal correla-
tions of different orders and guarantee positive definiteness of the estimated covariance
matrix. Si,T is the bandwidth (lag truncation) parameter for the unit i. If one uses the
Bartlett kernel, then the estimator is

Θ̂i =
1
T

T

∑
t=1

v̂itv̂′itε̂
2
it +

Si,T

∑
ν=1

(1− ν

Si,T + 1
)

[
1
T

T

∑
t=ν+1

(v̂itv̂′i,t−ν + v̂i,t−νv̂′it)ε̂itε̂i,t−ν

]
.

The truncated parameter Si,T can be determined by the data-driven method suggested
by Andrews (1991). The consistency of the above estimator is given in Proposition 4.1
below. �

4 Models with restrictions

In this section, we consider the following restricted model:

yit = αi + x′itβi + ψ′i gt + εit

xit = νi + γ
g′
i gt + γh′

i ht + vit
(4.1)

where the dimensions of gt and ht are r1 × 1 and r2 × 1, respectively. A salient feature of
model (4.1) is that the explanatory variables include more factors than the error of the y
equation.

The restricted model has its empirical motivations. Consider the study on the rela-
tionship between the unemployment rate (UR) and foreign direct investment (FDI). Let
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yit be the UR for state i at time t, and one of xit be FDIit, i.e., the FDI for state i and time
t. One may introduce other control variables such as inflation, government expenditure,
infrastructure, etc. In the above specification, ft can be interpreted as the domestic eco-
nomic shocks such as the economic policy shocks of government over time, which both
affect UR and FDI. However, we note that FDI may have its own particular shocks. For
example, technical advancement of shipment, tariff changes, regional economic cooper-
ation and development agreement, etc. Although we cannot assert with one hundred
percents confidence that these shocks have no direct relations with the UR, these shocks
are indeed loosely related with the local URs according to the economic theory. So it is
plausible that one treats these particular shocks as ht first. In the following subsections,
we develop the estimation procedures to determine whether this treatment is appropri-
ate or not. Beside the above application, Eberhardt, Helmers and Strauss (2013) recently
use the same model to study the private returns to R&D and find that the private returns
to R&D are overestimated in the previous studies. Their empirical work is also a good
motivation for model (4.1).

The y equation of (4.1) can be written as

yit = αi + x′itβi + ψ′i gt + φ′i ht + εit

with φi = 0 for all i. Let ft = (g′t, h′t)
′, λi = (ψ′i , φ′i)

′ and γi = (γ
g′
i , γh′

i )
′, we have the same

representation as (1.1). From this perspective, model (4.1) can be viewed as a restricted
version of model (1.1). This implies that the two-step method proposed in Section 3 is
applicable to (4.1). However, this estimation method is not efficient. Consider the ideal
case that gt is observable. To eliminate the endogenous ingredient ψ′i gt, we post-multiply
MG = I−G(G′G)−1G′ on both sides of the y equation. The remaining part of xit includes
vit and γh′

i (ht−H′G(G′G)−1gt), both of them provide the information for β. However, as
shown in Theorem 3.1, only the variations of vit are used to signal βi in β̂CV

i . Therefore,
partial information is discarded and the two-step method in Section 3 is inefficient.

The preceding discussion provides some insights on the improvement of efficiency.
To efficiently estimate model (4.1), we need to use information contained in the common
components of xit. Rewrite model (4.1) as[

yit
xit

]
=

[
β′iνi + αi

νi

]
+

[
β′iγ

g′
i + ψ′i β′iγ

h′
i

γ
g′
i γh′

i

] [
gt
ht

]
+

[
β′ivit + εit

vit

]
(4.2)

We use Λ′i to denote the loadings matrix in font of ft = (g′t, h′t)
′. The symbols µi, zit and

uit are defined the same as before. We then have the same equation as (2.2). Further
partition the loadings matrix Λi into four blocks,

Λi =

[
Λi,11 Λi,12
Λi,21 Λi,22

]
=

[
ψi + γ

g
i βi γ

g
i

γh
i βi γh

i

]
. (4.3)

So we have Λi,22βi = Λi,21. This result together with (3.3) leads to[
Λi,22
Σii,22

]
βi =

[
Λi,21
Σii,21

]
(4.4)
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Given the above structural relationship, a routine to estimate βi is to replace Λi,22, Λi,21, Σii,22

and Σii,21 with their MLE and minimize the distance between the two sides of the equa-
tion with some prespecified weighting matrix. While this method is intuitive, it is not
correct. The reason is that Λ̂i,22 and Λ̂i,21 are not consistent estimators of Λi,22 and Λi,21

due to the rotational indeterminacy, as shown in Theorem 2.1. Let Λ∗i = R′Λi represent
the underlying parameters that the MLE corresponds to, where R is the rotation matrix
defined in Theorem 2.1. Then

Λ∗′i =

[
Λ∗′i,11 Λ∗′i,21
Λ∗′i,12 Λ∗′i,22

]
= Λ′iR =

[
Λ′i,11 Λ′i,21
Λ′i,12 Λ′i,22

] [
R11 R12
R21 R22

]
=

[
β′iγ

g′
i + ψ′i β′iγ

h′
i

γ
g′
i γh′

i

] [
R11 R12
R21 R22

]
implying

Λ∗i,21 = (R′12γ
g
i + R′22γh

i )βi + R′12ψi (4.5)

Λ∗i,22 = R′12γ
g
i + R′22γh

i (4.6)

From (4.5) and (4.6), we see that unless ψi = 0, Λ∗i,22βi = Λ∗i,21 does not hold. But when
ψi = 0, we see from (4.1) that the model is free of the endogeneity problem and the
ordinary least squares method is applicable. The preceding analysis indicates that the
existence of the rotational indeterminacy for loadings impedes the use of the underlying
relation Λi,22βi = Λi,21 in the estimation of βi.

Although this result is a little disappointing, we now show that with some transfor-
mation, Λi,22βi = Λi,21 can still be used to estimate βi. First by Λ∗′i = Λ′iR,

Λ∗i,11 = (R′11γ
g
i + R′21γh

i )βi + R′11ψi (4.7)

Λ∗i,12 = R′11γ
g
i + R′21γh

i (4.8)

By the expressions (4.5)-(4.8), we have the following equation:

(Λ∗i,21 −Λ∗i,22βi) = R′12R′−1
11 (Λ∗i,11 −Λ∗i,12βi) = V(Λ∗i,11 −Λ∗i,12βi) (4.9)

where V = R′12R′−1
11 , an r2 × r1 rotational matrix. The preceding equation can be written

as
(Λ∗i,22 −VΛ∗i,12)βi = Λ∗i,21 −VΛ∗i,11 (4.10)

Given the above result, together with (3.3), we have[
Λ∗i,22 −VΛ∗i,12

Σ̄ii,22

]
βi =

[
Λ∗i,21 −VΛ∗i,11

Σ̄ii,21

]
(4.11)

If V is known, it suffices to replace Λ∗i,11, Λ∗i,12, Λ∗i,21, Λ∗i,22 with the corresponding esti-
mates to perform the estimation, and βi is efficiently estimated. Although V is unknown,
it can be consistently estimated by (4.9) since βi can be consistently (albeit not efficiently)
estimated by β̂CV

i = Σ̂−1
ii,22Σ̂ii,21. Given the above analysis, we propose the following

estimation procedure:

1. Use the maximum likelihood method to obtain the estimates Σ̂ii, Λ̂i, f̂t for all i and t.
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2. Calculate β̂CV
i = Σ̂−1

ii,22Σ̂ii,21 and

V̂ =

[ N

∑
i=1

(Λ̂i,21− Λ̂i,22 β̂CV
i )(Λ̂i,11− Λ̂i,12 β̂CV

i )′
][ N

∑
i=1

(Λ̂i,11− Λ̂i,12 β̂CV
i )(Λ̂i,11− Λ̂i,12 β̂CV

i )′
]−1

.

3. Calculate β̂i = (∆̂′iW
−1
i ∆̂i)

−1∆̂′iW
−1
i δ̂i, where Wi is a predetermined weighting matrix that

is given in Subsection 4.1 below, and

∆̂i =

[
Λ̂i,22 − V̂Λ̂i,12

Σ̂ii,22

]
, δ̂i =

[
Λ̂i,21 − V̂Λ̂i,11

Σ̂ii,21

]
(4.12)

where we call the resulting estimator the Loading-coVariance estimators, denoted by β̂LV
i .

Remark 4.1 We can iterate the second and third steps by using the updated estimator
of βi to calculate V̂. We call the estimator resulting from this iterating procedure the
Iterated-LV estimator, denoted by β̂ILV

i . The iterated estimator has the same asymptotic
representation as the LV estimator, but better finite sample performance; see the simula-
tion results in Section 5. �

4.1 Optimal weighting matrix

To carry out the estimation procedure, we need to specify the weighting matrix Wi.
According to Hansen (1982), the optimal weighting matrix is

Wi = T · avar
([

Λ̂i,22 − V̂Λ̂i,12

Σ̂ii,22

]
βi −

[
Λ̂i,21 − V̂Λ̂i,11

Σ̂ii,21

])
.

where “avar” denotes the asymptotic variance. By the results in Theorem 2.1 and Lemma
B.5 in the appendix, we can show that

Wi =

[
R′22·1 0

0 IK

]
avar

(
1√
T

T

∑
t=1

[
h?t
vit

]
εit

)[
R22·1 0

0 IK

]
= R′E

[
1

T2

T

∑
t=1

T

∑
s=1

P̃itP̃′isεitεis

]
R.

where R = diag(R22·1, IK) with R22·1 = R22 − R21R−1
11 R12 and P̃it = [h?′t , v′it]

′ with h?t
implicitly defined by f ?t = (g?′t , h?′t )

′ = M−1
f f ft. To estimate this optimal weighting matrix,

we first estimate the factors by

f̂t =

[
ĝt

ĥt

]
=
( N

∑
i=1

Λ̂iΣ̂−1
ii Λ̂′i

)−1( N

∑
i=1

Λ̂iΣ̂−1
ii zit

)
.

Let p̂t = ĥt − V̂ĝt. It can be shown that p̂t − R′22·1h?t = op(1). Let Pit = [h?′t R22·1, v′it]
′ =

R′P̃it and P̂it = [ p̂′t, v̂′it]
′, where v̂it is implicitly given by

ûit =

[
β̂CV′

i v̂it + ε̂it
v̂it

]
= żit − Λ̂′i f̂t.

Given the above analysis, the optimal weight matrix Wi can be consistently estimated by

Ŵi =
1
T

T

∑
t=1

P̂itP̂′itε̂
2
it +

Si,T

∑
ν=1

K(ν, Si,T)

[
1
T

T

∑
t=ν+1

(P̂itP̂′i,t−ν + P̂i,t−νP̂′it)ε̂itε̂i,t−ν

]
.
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where K(v, Si,T) and Si,T are defined the same as in (3.9). If the Bartlett kernel is used,
the estimator then is

Ŵi =
1
T

T

∑
t=1

P̂itP̂′itε̂
2
it +

Si,T

∑
ν=1

(1− ν

Si,T + 1
)

[
1
T

T

∑
t=ν+1

(P̂itP̂′i,t−ν + P̂i,t−νP̂′it)ε̂itε̂i,t−ν

]
. (4.13)

We have the following proposition on Ŵi.

Proposition 4.1 Under Assumptions A-H, if N/T → κ ∈ (0, ∞) and (max Si,T)
16/T → 0,

we have
max
i≤N
‖Ŵi −Wi‖ = op(1).

4.2 Asymptotic results

The following theorem gives the asymptotic representation of the LV estimator with
some remarks following.

Theorem 4.1 Under Assumptions A-E, H and I, when N, T → ∞ and T/N2 → 0, we have
that for each i,

√
T(β̂LV

i − βi) =
[

D′i J−1
i Di

]−1
D′i J−1

i
1√
T

T

∑
t=1

[
h?t
vit

]
εit + op(1).

where Di = [γh′
i , Ω̄i]

′ and

Ji = avar

(
1√
T

T

∑
t=1

[
h?t
vit

]
εit

)
.

Given Theorem 4.1, we have the following corollary.

Corollary 4.1 Under the assumptions of Theorem 4.1, we have that for each i,

√
T(β̂LV

i − βi)
d−−→ N

(
0, (D′i J−1

i Di)
−1
)

.

The above asymptotic result can be alternatively written as

√
T(β̂LV

i − βi)
d−−→ N

(
0,
[

plim
N,T→∞

∆′iW
−1
i ∆i

]−1
)

.

So the limiting variance can be consistently estimated by
(
∆̂′iŴ

−1
i ∆̂i

)−1.

Remark 4.2 We compare our LV estimator with the CCE and PC estimators in terms
of limiting variance. By the fact that Ji is a diagonal matrix, the limiting variance
(D′i J−1

i Di)
−1 in Corollary 4.1 can be alternatively written as­

(D′i J−1
i Di)

−1 =

[
γh′

i

(
avar

( 1√
T

T

∑
t=1

h?t εit
))−1

γh
i + Ω̄i

(
avar

( 1√
T

T

∑
t=1

vitεit
))−1

Ω̄i

]−1

­For square matrices A and B, we say A ≥ B if A− B is positive semidefinite.
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≤
[

Ω̄i

(
avar

( 1√
T

T

∑
t=1

vitεit
))−1

Ω̄i

]−1

= Ω̄−1
i avar

( 1√
T

T

∑
t=1

vitεit

)
Ω̄−1

i .

The last expression is the limiting variance of the CV estimator, see Corollary 3.1. So the
LV estimator is more efficient than the CV. Note that the CCE method, which uses the
cross sectional average values of data as the instruments for unobserved factors, would
deliver the same estimators as in model (1.1). In Remark 3.1, we point out that the CV
estimator and the CCE estimator have the same limiting distribution. Given this, we
conclude that the LV estimator is more efficient than the CCE in model (4.1).

Consider the “y” equation, which can be written as Yi = αi1T + Xiβi + Gψi + εi. The
PC estimator, according to Song (2013)®, has the asymptotic expression

β̂PC
i − βi = (X′i MG�Xi)

−1(X′i MG�εi),

where G� = (1T, G). The PC estimator can be viewed a variant of our GMM estimator
since it has the same limiting variance with the following GMM estimator

β̂†
i =

[
∆̂′iŴ

†−1
i ∆̂i

]−1[
∆̂′iŴ

†−1
i δ̂i

]
,

where Ŵ†−1
i is a consistent estimator of W†

i and

W†
i =

[
R′22·1M−1

hh·gR22·1 0
0 Ω̄i

]
= R′

[
M−1

hh·g 0
0 Ω̄i

]
R.

with Mhh·g = Mhh −Mhg M−1
gg Mgh. To see this, first note that

β̂†
i − βi =

[
∆̂′iŴ

†−1
i ∆̂i

]−1[
∆̂′iŴ

†−1
i (δ̂i − ∆̂iβi)

]
.

Second, by (B.16) in the appendix,

∆̂′iŴ
†−1
i ∆̂i = ∆′iW

†−1
i ∆i + op(1) =

(
γh′

i Mhh·gγh
i + Ω̄i

)
+ op(1) =

1
T

X′i MG�Xi + op(1).

Third, by (B.14) and (B.15), under
√

N/T → 0,
√

T∆̂′iŴ
†−1
i (δ̂i − ∆̂iβi) =

√
T∆′iW

†−1
i (δ̂i − ∆̂iβi) + op(1)

=
1√
T

T

∑
t=1

[
γh′

i Mhh·gh?t + vit

]
εit + op(1).

The last term of the proceeding equation can be alternatively written as 1√
T

X′i MG�εi +

op(1) since Mhh·gh?t = ht −Mhg M−1
gg gt. Given this, we have

√
T(β̂PC

i − βi)
d−−→ N

(
0, (∆′iW

†−1
i ∆i)

−1∆′iW
†−1
i WiW†−1

i ∆i(∆′iW
†−1
i ∆i)

−1
)

.

®We thank an anonymous referee to remind us that Assumption B(iii) in Song (2013) is problematic since
it does not preclude the chance that the observed regressors for a particular unit might be equal to the
unobserved factors.
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According to Proposition 4.45 of White (2001),

(∆′iW
−1
i ∆i)

−1 ≤ (∆′iW
†−1
i ∆i)

−1∆′iW
†−1
i WiW†−1

i ∆i(∆′iW
†−1
i ∆i)

−1,

where the equality holds if W†
i = cWi for some scalar constant c. So the LV estimator

is also more efficient than the PC. Only when εit is independently and identically dis-
tributed over time, W†

i = cWi and the two estimators have the same limiting distribution.
We summarize the above discussion as follows. In the model with zero restrictions,

our two-step method is more efficient than the CCE method because the two-step method
uses more moment conditions, and is also more efficient than the PC method because
the two-step method uses the optimal weights matrix. �

Remark 4.3 Consider the following model, in which zero restrictions exist in both the x
equation and the y equation:

yit = αi + x′itβi + ψ′i gt + εit

xit = νi + γh′
i ht + vit

(4.14)

where gt and ht are assumed to be correlated. Model (4.14) is a special case of (4.1) in
view that γ

g
i is restricted to zero. We note that the LV estimator is still applicable in this

case. To see this point, notice that Λi in model (4.14) is

Λi =

[
Λi,11 Λi,12
Λi,21 Λi,22

]
=

[
ψi 0

γh
i βi γh

i

]
.

The coefficient βi can be estimated by the relations of Λi,21 and Λi,22, which is the same
as Model (4.1). But for model

yit = αi + x′itβi + ψ′i gt + φ′i ht + εit,

xit = νi + γh′
i ht + vit,

the matrix Λi is

Λi =

[
Λi,11 Λi,12
Λi,21 Λi,22

]
=

[
ψi 0

φi + γh
i βi γh

i

]
.

It is easy to see that there is no extra relation between Λi,21 and Λi,22 to identify βi. So
we cannot use the LV method to improve efficiency. �

4.3 Hypothesis testing on the over-identification

In the previous subsection, we have shown that the moment conditions implied in the
loadings can improve the estimation efficiency. However, inclusion of these moment
conditions, if they are not correct, would also lead to the inconsistency of the estimates.
It is necessary to test the validity of these additional moment conditions. This subsection
pursues this work. In the classical GMM framework, such a test is known as the Hansen-
Sargan test. In the current setup, the Hansen-Sargan statistic can be formulated as

HSi = T
(

∆̂i β̂
LV
i − δ̂i

)′
Ŵ−1

i

(
∆̂i β̂

LV
i − δ̂i

)
,
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where

∆̂i =

[
Λ̂i,22 − V̂Λ̂i,12

Σ̂ii,22

]
, δ̂i =

[
Λ̂i,21 − V̂Λ̂i,11

Σ̂ii,21

]
.

When the regressors contain additional factors ht, each unit would have its validly
added moment conditions. So, to test the validity of the added moment conditions as a
whole, it is natural to take the maximum over these N statistics, i.e., we use maxHS =

maxi≤N HSi as the statistic. Since the null would be rejected if the Hansen-Sargan statistic
is large, the maximum statistic would be favorable to the alternative. As a result, the
maximum test “maxHS” would have most conservative size. To analyze the maxHS
statistic, we make the following assumption:

Assumption J: For each pair (i, j) with i 6= j, log N[T−1 ∑T
t=1 ∑T

s=1 E(εitεjs)] → 0 as
N, T → ∞

Assumption J assumes asymptotical independence over cross section in the average
sense uniformly on the pairs (i, j). This assumption is indispensable to use the extreme
value theory. The same assumption is also made in Castagnetti, Rossi and Trapani (2015).

The following theorem gives the theoretical results on HSi and maxHS.

Theorem 4.2 Under Assumptions A-I, as N, T → ∞, N/T → κ ∈ (0, ∞) and (max Si,T)
16/T

→ 0, we have

(a) for each i, HSi
d−−→ χ2

r2
, under H0 : ∆iβi = δi; and HSi −→ ∞ under H1 : ∆iβi 6= δi.

(b) if Assumption J is further satisfied, under H0 : ∆iβi = δi for every i,

P
(

maxHS ≤ 2x + 2BN

)
≤ e−e−x

,

with
BN = log N + (

r2

2
− 1) log log N − log Γ(

r2

2
);

Under H1 : ∆iβi 6= δi for some i, maxHS −→ ∞.

Remark 4.4 The proof of result (a) is relatively easy, but the proof of result (b) requires
considerable amount of work, which is essentially an application of the Extreme Value
Theory (EVT). Recently, Castagnetti, Rossi and Trapani (2015) apply EVT to test factor
structure in heterogeneous panels. The proof of result (b) relies critically on two math-
ematical tools: the maximal inequality and the Komlós-Major-Tusnády approximation.
The maximal inequality says that for some convex, nondecreasing, nonzero function ψ

satisfying ψ(0) = 0 and some boundedness conditions,∥∥∥ max
1≤i≤N

Xi

∥∥∥
ψ
≤ Kψ−1(N) max

1≤i≤N
‖Xi‖ψ,

where ‖ · ‖ψ denotes Orlicz norm, see Lemma 2.2.2 of Van Der Vaart and Wellner (1996).
If Xi = Op(1) for each i, the above inequality implies that max1≤i≤N Xi = Op(ψ−1(N)),
so the magnitude would inflate with a factor ψ−1(N). As a result, we need to impose
more stringent condition on N and T to obtain the desired result. In Theorem 4.2, we
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require N/T → κ ∈ (0, ∞), instead of
√

N/T → 0 in the previous theorems. This
condition, which is also made in a number of related studies such as Moon and Weidner
(2009, 2015, 2017), seems plausible since N is usually comparable to or mildly larger
than T in real data applications in economics and finance. We note that the condition
N/T → κ can be relaxed by paying the cost of more stringent conditions on moments and
correlations. For example, Fan, Liao and Mincheva (2011, 2013) shows that if the errors
have exponential tails and the temporal correlation decays exponentially, the maximal
results can be obtained with an inflating factor

√
log N. Our analysis is closely related to

Castagnetti, Rossi and Trapani (2015), but slightly different in that they make Burkholder-
type conditions but we do not. As a consequence, our condition on N and T is more
stringent than theirs.

Our analysis also involves the approximation of the partial sums of random variables
to a gaussian random variable. This issue is first investigated by Komlós, Major and Tus-
nády (1975) under independently and identically distributed (i.i.d) case, and is known
as Komlós-Major-Tusnády approximation hereafter in statistics. The results in the cur-
rent paper are developed upon the recent work of Berkes, Liu and Wu (2014), which
explore the approximation under dependence. Assumption F.1 guarantees that we can
use Theorem 2.1 of Berkes, Liu and Wu (2014) in our analysis. �

Remark 4.5 Let Cα,N be the critical value for a given significance level α, i.e., P(maxHS ≥
Cα,N) = α. According to Theorem 4.2, we see

Cα,N = 2BN − log | log(1− α)|2.

In practice, we may use F−1
χ2

r2
(1 − 1

N ) instead of 2Bn to achieve a better finite sample

performance, where Fχ2
r
(·) is the cumulative distribution function of a chi-square variable

with r degrees of freedom. We refer readers to Castagnetti, Rossi and Trapani (2015) for
more discussions on this point. �

The LV estimation procedures need to specify the values of r1 and r2. For any prespec-
ified pair (r̃1, r̃2), one can use these two values to obtain the corresponding LV estimator,
and next calculate the maxHS statistic. According to Theorem 4.2(b), one can test the null
hypothesis that the prespecified pair (r̃1, r̃2) is equal to the underlying true one (r1, r2).
An undesirable feature of this hypothesis testing is that it is sensitive to outliers, an is-
sue which is common in super-type statistics. To make the estimation more flexible and
robust to outliers, we propose the following unified robust estimation method, which is
based on the individual statistic HSi:

1. Use the factor analysis to estimate the number of factors, denoted by r̂, and the
covariance matrix of idiosyncratic errors in model (2.2).

2. Calculate the CV estimators and the corresponding t-statistics as suggested in Sec-
tion 3.

3. Use factor analysis to determine the number of factors in the residuals (yit −
x′it β̂

CV
i )N×T by setting the upper bound of the number of factors to be r̂. The

estimated number of factors is denoted by r̂1.
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4. If r̂ = r̂1, the estimation is finished, otherwise goes to the next step.

5. Calculate the LV or ILV estimators and the corresponding t-statistics with r̂1 and
r̂2 = r̂− r̂1 according to the estimation procedures suggested in Section 4 above.

6. For each i, calculate the Hansen-Sargan statistic HSi. If HSi ≥ Cr̂2 , we use the CV
estimator for i, otherwise use the LV or ILV estimator for i, where Cr̂2 is the critical
value. The critical value can be r̂2 log T, which is borrowed from the bayesian
information criterion¯. Note that we cannot choose Cr̂2 to be the 95% quantile of
χ2

r̂2
since it would cause pre-test estimation issue.

The above estimation procedures aim to weaken the sensitiveness of our two-step esti-
mators to the estimated number of factors. First, the simulations in the appendix indicate
that the CV estimators still perform well if the number of factors is slightly overestimated.
So the robustness is maintained to some extent in the CV estimators. Second, although
the number of factors is likely to be wrongly determined for the extended model in a
limited sample size which may cause bias issue of the estimators, the Hansen-Sargan
statistic is helpful to remedy it. More specifically, if the added moment conditions are in-
valid, a direct consequence is that the Hansen-Sargan statistic would be large. With this
signal, we would give up the LV or ILV estimators and move back to the CV estimator.
So the robustness is also maintained in some sense. For these reasons, we call the above
procedures the robust estimation method.

4.4 Estimation and inference for the mean of coefficient

Following Pesaran (2006), we make the following assumption on βi.

Assumption I′: βi = β + vβ
i , where vβ

i is independently and identically distributed
over i with mean zero and variance Σβ. Furthermore, vβ

i is independent with (εjt, v′jt)
′

for all i, j, t.

We can use the within group estimator β̂WG = 1
N ∑N

i=1 β̂LV
i to estimate β. Given that

vβ
i is independent with (εjt, v′jt)

′ for all i, j, t, we can still use the theoretical results in
the previous analysis by conditioning on a particular realization of β1, β2, . . . , βN . More
specifically, for any ε > 0,

P
(∣∣∣ 1√

N

N

∑
i=1

(β̂LV
i − βi)

∣∣∣ > ε
)

=
∫

P
(∣∣∣ 1√

N

N

∑
i=1

(β̂LV
i − βi)

∣∣∣ > ε
∣∣∣β1, β2, . . . , βN

)
g(β1, β2, . . . , βN)dβ1 . . . dβN ,

¯In finite sample applications, this diverging critical value would make our estimation procedure more
inclined to the LV estimator. If ‖φi‖ is small but not equal to zero, the LV estimator would have a bias, which
may make statistical inference size-distorted. If one is not comfortable with the bias, a smaller critical value
can be chosen, say 2r̂2 log log T suggested from the Hannan-Quinn information criterion. How to choose a
critical value to best balance the bias and standard error is an interesting issue, but is beyond the scope of
this paper. We left it as a future work.
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where g(β1, β2, . . . , βN) is the joint density function of β1, β2, . . . , βN . If we can show that
for any ε > 0,

P
(∣∣∣ 1√

N

N

∑
i=1

(β̂LV
i − βi)

∣∣∣ > ε
∣∣∣β1, β2, . . . , βN

)
→ 0,

together with the fact that probability is bounded by 1, we would have

P
(∣∣∣ 1√

N

N

∑
i=1

(β̂LV
i − βi)

∣∣∣ > ε
)
→ 0

by the dominated convergence theorem. The following theorem, which is built upon the
above result, gives the asymptotic property of β̂WG.

Theorem 4.3 Under Assumptions A-H and I’, as N, T → ∞, N/T → κ ∈ (0, ∞) and
(max Si,T)

16/T → 0, we have

√
N(β̂WG − β)

d−−→ N(0, Σβ).

Remark 4.6 For model (1.1), we can use β̂ = 1
N ∑N

i=1 β̂CV
i to estimate β. The limiting result

is the same with Theorem 4.3. In addition, the limiting variance Σβ can be consistently
estimated by

Σ̂β =
1
N

N

∑
i=1

(β̂LV
i − β̂WG)(β̂LV

i − β̂WG)′. �

4.5 Some extensions

A direct extension of model (4.1) is the following one

yit = αi + x′itβi + ψ′i gt + φ′i ht + εit

xit = νi + γ
g′
i gt + γh′

i ht + vit
(4.15)

where φi’s are observable loadings satisfying Φ = [φ1, φ2, . . . , φN ]
′ is of full column rank.

Compared with model (4.1), model (4.15) specifies that Φ is not a zero matrix, but a
general observed data matrix. Now we show that our estimation idea can be used to
estimate (4.15). As in the previous section, rewrite model (4.15) as[

yit
xit

]
=

[
αi + β′iνi

νi

]
+

[
β′iγ

g′
i + ψ′i β′iγ

h′
i + φ′i

γ
g′
i γh′

i

] [
gt
ht

]
+

[
β′ivit + εit

vit

]
Let Λ′i be the loadings matrix in font of ft = (g′t, h′t)

′ and partition it into four blocks, we
have

Λi =

[
Λi,11 Λi,12
Λi,21 Λi,22

]
=

[
ψi + γ

g
i βi γ

g
i

φi + γh
i βi γh

i

]
Let Λ∗i = R′Λi be the underlying parameters that the estimators correspond to. So we
have

Λ∗′i =

[
Λ∗′i,11 Λ∗′i,21
Λ∗′i,12 Λ∗′i,22

]
= Λ′iR =

[
Λ′i,11 Λ′i,21
Λ′i,12 Λ′i,22

] [
R11 R12
R21 R22

]
,

22



which leads to

Λ∗i,11 = (R′11γ
g
i + R′21γh

i )βi + R′11ψi + R′21φi, Λ∗i,12 = R′11γ
g
i + R′21γh

i ,

Λ∗i,21 = (R′12γ
g
i + R′22γh

i )βi + R′12ψi + R′22φi, Λ∗i,22 = R′12γ
g
i + R′22γh

i ,

where ψi = R−1′
11 (Λ∗i,11 −Λ∗i,12βi − R′21γh

i ). Substituting this formula into the expressions
on Λ∗i,21 and Λ∗i,22,

R′12R′−1
11 (Λ∗i,11 −Λ∗i,12βi) + R′22·1φi = (Λ∗i,21 −Λ∗i,22βi) (4.16)

where R22·1 = R22 − R21R−1
11 R12. Equation (4.16) together with Σii,22βi = Σii,21 gives[

Λ∗i,22 −VΛ∗i,12
Σii,22

]
βi =

[
Λ∗i,21 −VΛ∗i,11 − R′22·1φi

Σii,21

]
(4.17)

where V = R′12R′−1
11 . If V and R22·1 are known, we can use (4.17) to efficiently estimate

βi. Similarly as in the previous section, we can use β̂CV
i to get a preliminary estimators

for V and R22·1 through (4.16). This leads to the following estimation procedures:

1. Use the maximum likelihood method to obtain the estimates Σ̂ii, Λ̂i and f̂t for all i and t.

2. Calculate β̂CV
i = Σ̂−1

ii,22Σ̂ii,21 and V̂ and R̂22·1 by

[V̂, R̂′22·1] =
[ N

∑
i=1

(Λ̂i,21 − Λ̂i,22 β̂CV
i )Π̂i

][ N

∑
i=1

Π̂iΠ̂′i
]−1

where Π̂i = [(Λ̂i,11 − Λ̂i,12 β̂CV
i )′, φ′i ]

′.

3. Calculate β̂LV
i = (∆̂′iŴ

−1
i ∆̂i)

−1∆̂′iŴ
−1
i γ̂i, where

∆̂i =

[
Λ̂i,22 − V̂Λ̂i,12

Σ̂ii,22

]
, γ̂i =

[
Λ̂i,21 − V̂Λ̂i,11 − R̂′22·1φi

Σ̂ii,21

]
and Ŵi is the predetermined weighting matrix, which is the same as (4.13).

The asymptotic properties of the LV estimator for model (4.15) is presented in the
following theorem.

Theorem 4.4 Under Assumptions A-E, H and I, when N, T → ∞ and
√

T/N → 0, we have
that for each i, √

T(β̂LV
i − βi)

d−−→ N(0,z−1
a,i ),

where

za,i = γh′
i

[
avar

( 1√
T

T

∑
t=1

h?t εit
)]−1

γh
i + Ω̄i

[
avar

( 1√
T

T

∑
t=1

vitεit
)]−1

Ω̄i.
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The proof of Theorem 4.4 is similar as that of Theorem 4.1, and is sketched in Ap-
pendix C.

In some applications, it is of interest to include some time-invariant variables, such
as gender, race, education, and so forth. To address this concern, consider the following
model with time-invariant variables:

yit = αi + x′itβi + ψ′i gt + φ′i h
y
t + εit,

xitp = νip + γ
g′
ipgt + φ′i h

x
tp + vitp, for p = 1, 2, . . . , k,

(4.18)

where φi denotes the observed time-invariant features of unit i. In the original work
of Pesaran (2006), he considers a heterogeneous-coefficients model with observed time-
varying regressor (observed factors). The model considered here can be viewed as a mir-
ror of his model. Let xit = (xit1, xit2, . . . , xitk)

′, νi = [νi1, νi2, . . . , νik]
′, γ

g
i = [γ

g
i1, γ

g
i2, . . . , γ

g
ik],

hx
t = [hx′

t1, hx′
t2, . . . , hx′

tk ]
′ and vit = [vit1, vit2, . . . , vitk]

′, the second equation now can be writ-
ten as

xit = νi + γ
g′
i gt + (Ik ⊗ φi)

′hx
t + vit.

With some simple manipulations, we have

[
yit
xit

]
=

[
αi + β′iνi

νi

]
+

[
β′iγ

g′
i + ψ′i φ′i β′i ⊗ φ′i
γ

g′
i 0 Ik ⊗ φ′i

] gt

hy
t

hx
t

+

[
β′ivit + εit

vit

]

Similarly, we use Λ′i to denote the loadings in font of ft = (g′t, hy′
t , hx′

t )
′, which we partition

as

Λ′i =
[

Λ′i,11 Λ′i,21 Λ′i,31
Λ′i,12 Λ′i,22 Λ′i,32

]
=

[
β′iγ

g′
i + ψ′i φ′i β′i ⊗ φ′i
γ

g′
i 0 Ik ⊗ φ′i

]
Let Λ∗i = R′Λi be the limit of the ML estimator, where R is the rotational matrix. We
partition matrix R into R = [R11 R12 R13 ; R21 R22 R23 ; R31 R32 R33]. Let Λ∗i,pq be defined
similarly as Λi,pq for p = 1, 2, 3 and q = 1, 2. According to Λ∗i = R′Λi, we have

Λ∗′i,11 = (ψ′i + β′iγ
g′
i )R11 + φ′i R21 + (β′i ⊗ φ′i)R31, Λ∗′i,12 = γ

g′
i R11 + (Ik ⊗ φ′i)R31,

Λ∗′i,21 = (ψ′i + β′iγ
g′
i )R12 + φ′i R22 + (β′i ⊗ φ′i)R32, Λ∗′i,22 = γ

g′
i R12 + (Ik ⊗ φ′i)R32,

Λ∗′i,31 = (ψ′i + β′iγ
g′
i )R13 + φ′i R23 + (β′i ⊗ φ′i)R33, Λ∗′i,32 = γ

g′
i R13 + (Ik ⊗ φ′i)R33,

implying

Λ∗i,11 −Λ∗i,12βi = R′11ψi + R′21φi, Λ∗i,21 −Λ∗i,22βi = R′12ψi + R′22φi,

Λ∗i,31 −Λ∗i,32βi = R′13ψi + R′23φi. (4.19)

By the first equation of (4.19), ψi = R−1′
11 (Λ∗i,11−Λ∗i,12βi−R′21φi). Substituting this formula

into the two remaining expressions to remove ψi, we have[
Λ∗i,22 −VaΛ∗i,12

Λ∗i,32 −VbΛ∗i,12

]
βi =

[
Λ∗i,21 −VaΛ∗i,11 − R′22·1φi

Λ∗i,31 −VbΛ∗i,11 − R′23·1φi

]
,
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where Va = R′12R−1′
11 , Vb = R′13R−1′

11 , R22·1 = R22−R21R−1
11 R12 and R23·1 = R23−R21R−1

11 R13.
The above expression can be alternatively written as

Λ∗i,21 −Λ∗i,22βi =
[
Va R′22·1

] [Λ∗i,11 −Λ∗i,12βi
φi

]
Λ∗i,31 −Λ∗i,32βi =

[
Vb R′23·1

] [Λ∗i,11 −Λ∗i,12βi
φi

]
As a result, the estimation procedure is as follows

1. Use the maximum likelihood method to obtain the estimates Σ̂ii, Λ̂i and f̂t for all i and t.

2. Calculate β̂CV
i = Σ̂−1

ii,22Σ̂ii,21 and V̂a, V̂b, R̂22·1 and R̂23·1 by

[V̂a, R̂′22·1] =
[ N

∑
i=1

(Λ̂i,21 − Λ̂i,22 β̂CV
i )Γ̂′i

][ N

∑
i=1

Γ̂iΓ̂′i
]−1

[V̂b, R̂′23·1] =
[ N

∑
i=1

(Λ̂i,31 − Λ̂i,32 β̂CV
i )Γ̂′i

][ N

∑
i=1

Γ̂iΓ̂′i
]−1

where Γ̂i = [(Λ̂i,11 − Λ̂i,12 β̂CV
i )′, φ′i ]

′.

3. Calculate β̂LV
i = (∆̂′iŴ

−1
i ∆̂i)

−1∆̂′iŴ
−1
i γ̂i, where

∆̂i =

Λ̂i,22 − V̂aΛ̂i,12

Λ̂i,32 − V̂bΛ̂i,12

Σ̂ii,22

 , γ̂i =

Λ̂i,21 − V̂aΛ̂i,11 − R̂′22·1φi

Λ̂i,31 − V̂bΛ̂i,11 − R̂′23·1φi

Σ̂ii,21


and Ŵi is the predetermined weighting matrix, which is the same as (4.13) if we treat
(hy′

t , hx′
t )
′ as the ht in Subsection 4.1.

The asymptotic properties of the LV estimator for model (4.18) is presented in the
following theorem.

Theorem 4.5 Under Assumptions A-E, H and I, as N, T → ∞ and
√

T/N → 0, we have that
for each i, √

T(β̂LV
i − βi)

d−−→ N(0,z−1
b,i ),

where

zb,i = (Ik ⊗ φi)
′I ′
[
avar

( 1√
T

T

∑
t=1

h?t εit
)]−1
I(Ik ⊗ φi) + Ω̄i

[
avar

( 1√
T

T

∑
t=1

vitεit
)]−1

Ω̄i.

with I = [0kr2×r2 , Ikr2 ]
′.

The proof of Theorem 4.5 is similar as that of Theorem 4.4, and is therefore omitted.
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5 Finite sample performance

In this section, we run Monte Carlo simulations to investigate the finite sample perfor-
mance of the proposed estimators. The model considered in the simulation consists of
three explanatory variables (K = 3) and two factors (r = 2), which can be presented as

yit = αi + x′itβi + ψigt + φiht + εit

= αi + xit1βi1 + xit2βi2 + xit3βi3 + ψigt + φiht + εit,

xitk = νik + γ
g
ikgt + γh

ikht + vitk, k = 1, 2, 3.

where gt and ht are both scalars and ft = [gt, ht]′ is generated according to ft =

0.8 ft−1 + 0.6v f
t with the elements of v f

t drawn from N(0, 1) and var(v f
t ) = I2. The other

parameters including αi, νik are all generated independently from N(0, 1). The heteroge-
neous regression coefficients βi are generated by

βi = [0.5, 1, 1.5]′ + [N(0, 0.04), N(0, 0.04), N(0, 0.04)]′

for each i. We consider the following different specifications on the models (M), loadings
(L), errors (E):

M1 (Basic model): ψi and φi are random variables for all i;
M2 (Extended model): φi is zero for all i and ψi is a random variable.
L1 (Independent random loadings): ψi and φi (if not zero) are generated according

to ψi = 0.5 + N(0, 1) and φi = 1 + N(0, 1); similarly γ
g
ik and γh

ik are generated by γ
g
ik =

1 + N(0, 1) and γh
ik = 0.5 + N(0, 1).

L2 (Correlated random loadings): ψi and φi (if not zero) are generated from N(0, 1);
γ

g
ik and γh

ik are generated according to γ
g
ik = ψi + N(0, 1) and γh

ik = φi + N(0, 1).
E1 (Cross sectional homoskedasticity): ϕt is generated according to ϕt =

√
diag(U )ϕ̃t,

where ϕt = (ϕ′1t, ϕ′2t, . . . , ϕ′Nt)
′ with ϕit = (εit, v′it)

′. Here U is the vector used to generate
the cross sectional homoskedasticity or heteroskedasticity, which will be specified below.
ϕ̃t, defined similarly as ϕt, is generated as follows. Let ṽ`t be the `-th element of ṽt with
ṽt = (ṽ′1t, ṽ′2t, . . . , ṽ′Nt)

′. ε̃it and ṽ`t are generated separately according to

ε̃it = ρε
i ε̃it−1 + ςε

it +
i−1

∑
h=max(i−J,1)

$εςε
ht +

min(i+J,N)

∑
h=i+1

$εςε
ht, i = 1, · · · , N

ṽ`t = ρv
i ṽ`t−1 + ςv

`t +
`−1

∑
h=max(`−J,1)

$vςv
ht +

min(`+J,NK)

∑
h=`+1

$vςv
ht, ` = 1, · · · , NK.

All ςε
ht and ςv

ht are drawn from N(0, 1). Following Ahn and Horenstein (2013), we set
ρε

i = ρv
i = 0.7 for all i, $ε = $v = 0.3 and J = min(10, N/20). Let U be a N(K + 1)

dimensional vector with Ui, the i-th element, equal to

Ui =


26(1−ρ2)
4(1+2J$2)

, for M1

13(1−ρ2)
4(1+2J$2)

, for M2
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E2 (Cross sectional heteroskedasticity): Let

Li =

[
ψi φi
γ

g
i γh

i

]
, i = 1, 2, . . . , N

and L = (L′1, L′2, . . . , L′N)
′ an N(K + 1)× 2 matrix. ϕt is generated as in E1 except that

Ui =


2(1−ρ2)
1+2J$2

(
0.1 + ηi

1−ηi
ι′iιi
)

for M1,

(1−ρ2)
1+2J$2

(
0.1 + ηi

1−ηi
ι′iιi
)

for M2

for i = 1, 2, · · · , N(K + 1), where ι′i is the ith row of L, and ηi is drawn independently
from U[u, 1− u] with u = 0.1.

Remark 5.1 Two specifications in M denotes the two models considered in the paper. M1
corresponds to the basic model, and M2 corresponds to the model with zero restrictions.
We consider two different sets of loadings, L1 and L2. Under L1, the correlations among
the loadings are due to non-zero means. If the means are removed, the remaining parts
are actually independent. For this reason, we call L1 the independent random loadings.
In contrast, the correlations of loadings under L2 are due to the fact that they share the
same random ingredient. Both specifications give rise to the endogeneity problem in the
y equation, but as will be seen below, the CCE estimator performs quite differently in
the two setups.

We also consider the cross-sectional homoscedasticity and heteroscedasticity in the
simulation, which correspond to E1 and E2, respectively. When generating heteroscedas-
ticity, we add 0.1 to the expression, avoiding the variance being too close to zero. The
variances of idiosyncratic errors are chosen to guarantee that the signal-to-noise ratio
of regressors is on average 0.5 for M1 and 1 for M2. Our approach to generating the
idiosyncratic errors is similar to Doz, Giannone and Reichlin (2012), Bai and Li (2014),
and Ahn and Horenstein (2013). In both E1 and E2, weak cross-sectional and temporal
correlations are generated.

In this section, we use the average of root mean square error (RMSE) and the average
(empirical) size to evaluate the performance of estimators. We take β1 as the example to
illustrate how there two measures are calculated. The RMSE of β1 is calculated by

RMSE(β1) =

√√√√ 1
NS

S
∑
s=1

N

∑
i=1

(β̂
(s)
i1 − βi1)2,

where β̂
(s)
i1 is the estimator of βi1, the first component of βi, in the s-th experiment, and

S is the number of repetitions. The average size of β1 is defined by

Average Size(β1) =
1

NS
S
∑
s=1

N

∑
i=1

1
(
|t̂(s)βi1
| ≤ z0.05

)
× 100%

where t̂(s)βi1
is the t-statistic for βi1 in the s-th experiment and z0.05 is the two-side critical

value of normal distribution under the 5% significance level. We set S to be 1000 in
Subsections 5.1, 5.2 and 5.4, and 2000 in Subsection 5.3.
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5.1 Finite sample performance of the CV estimator in the basic model

In this subsection, we examine the performance (average RMSE and average empirical
size) of the two-step CV estimator in the basic model. For the purpose of comparison,
we also calculate Pesaran’s CCE estimator and Song’s PC estimator. As pointed out in
Remark 3.1, the CCE, PC and CV estimators have the same limiting distribution with
an infeasible estimator, which can be obtained by the least square method, assuming
that the factors are observed. For this reason, we also calculate this infeasible estimator
to serve as the benchmark for comparison. Throughout the whole section, we assume
that the number of factors is unknown and this value is determined by minimizing the
growth ratio (GR) value of Ahn and Horenstein (2013). The largest possible value for the
number of factors is set to 6.

[Insert Table 1 here]

The left panel of Table 1 presents the percentages of correctly estimating the num-
ber of factors in the basic model. Since both cross sectional and temporal correlations
are present in our generated data, we see that the GR method performs poorly in the
relatively small sample size, but when the sample size increases, the performance is
improved dramatically.

[Insert Tables 2-5 here]

Tables 2-5 report the performance (average RMSE) of the CCE, PC, CV and infeasi-
ble (denoted by INF) estimators under different loadings and error choices in the basic
model. In summary, we see that the CCE estimator performs well under independent
random loadings (L1), but poorly under correlated random loadings (L2); the PC estima-
tor performs moderately under cross sectional homoskedasticity (E1), but very poorly
under cross sectional heteroskedasticity (E2); the CV estimator performs well under all
setups.

First consider the different loadings choices. Under L1, the performance of the CCE
estimator is considerably good in term of the RMSE. Impressively, the CCE estimator
even defeats the infeasible in the small sample size such as N = 50 and T = 50, 150, 250.
When the sample size grows larger, the CV and infeasible estimators catch up the CCE
and perform better. In regards to the average empirical size, the best is the infeasible
estimator, and the next is the CV. The CCE and PC estimators both have relatively larger
size distortions. The performance of the CCE estimator is not satisfactory under L2. Not
only does it have a large average RMSE, but it also has severe size distortions. In contrast,
the CV estimator performs close to the infeasible estimator.

The reason for the different performance of the CCE estimator under different loading
settings is that the space spanned by z̃t =

1
N ∑N

i=1 żit with żit = (ẏit, ẋ′it)
′ provides a good

approximation to the space spanned by ft under L1, but a poor approximation under L2.
To see this point more clearly, consider (2.2), which can be written as żit = Λ′i ft + u̇it.
Taking the average over i, we have z̃t = Λ̃′ ft + ũt, where Λ̃ and ũt are defined similarly to
z̃t. With some transformation, we have ft = (Λ̃Λ̃′)−1Λ̃(z̃t− ũt). So a good approximation
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requires two conditions. First, z̃t dominates ũt so that ũt is negligible. Second, Λ̃Λ̃′ is
invertible when N goes to infinity°. The loadings in L1 satisfy these two conditions, but
the loadings in L2 violate the first one. In fact, the terms Λ̃′ ft and ũt are of the same
magnitude under L2. So a good approximation fails. There are cases in which the second
condition breaks down. For example, if all rows of Λ share the same mean, then Λ̃ is of
rank one asymptotically, which in turn leads to Λ̃′Λ̃ being singular asymptotically. The
simulation results confirm that the CCE estimator performs poorly in this case.

Consider then the different choices of the errors. Tables 4 and 5 show that the PC es-
timator performs poorly in the presence of cross-sectional heteroscedasticity (E2) in term
of the RMSE. In addition, we find that the t-statistics for the PC estimates have severe
size distortions in all the data setups. In Song (2013), he makes the assumption that the
errors are independent over cross section to derive the final limiting distribution. We
find in simulations that this assumption is important for the finite sample performance
of the PC estimates. We note that the comparison with the PC method under the current
simulation setup, where the data of X is generated with a factor structure, is a bit unfair
to the PC method. As mentioned before, a remarkable advantage of the PC method is
that it does not rely on the factor structure assumption on X. So when X fails to have
a factor structure, we will see that the PC still works well but the CCE and our method
break down.

Finally, we emphasize that although the CV estimates have better performance rel-
ative to the CCE and the PC, their t-statistics suffer mild size distortions even in the
large sample size. As seen in Tables 2-5, the actual sizes, where we use the critical value
for the 5% size of normal distribution, are all above 10% in all combinations of N and
T. However, we note that this result is not related with our estimation method, but the
poor performance of the Newey-West estimator. In fact, the t-statistics of the infeasible
estimators do not perform well neither. In addition, the performance of the t-statistics of
the CV is close to that of the infeasible estimator. The poor performance of the Newey-
West estimator in finite sample has been well documented in the literature, see Kiefer
and Vogelsang (2002), Müller (2007, 2014), Sun (2014) and reference therein. One reason
for the bad performance is that the sampling uncertainty of the Newey-West estimator is
ignored when we use the critical values of normal distribution, see Müller (2014).

5.2 Finite sample performance of the LV estimators in the extended model

This subsection examines the performance (average RMSE and average empirical size) of
the two-step LV (ILV) estimators in the extended model. We also calculate the CCE, PC
and CV estimators for comparison. But we do not calculate the infeasible estimator since
its limiting distribution is different from that of the LV in the extended model. So the
performance of the infeasible estimator cannot be viewed as the benchmark any more.
The right panel of Table 1 presents the percentages of correctly determining the number
of factors in X and Y in the extended model by the method of Ahn and Horenstein
(2013). Again, we see that Ahn and Horenstein’s method perform poorly in the small

°The rank condition in Pesaran (2006) is a necessary but not sufficient condition for invertibility of Λ̃Λ̃′.
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sample, but well in the large sample.

[Insert Tables 6-9 here]

Tables 6-9 report the simulation results for the extended model with the number of
factors determined by Ahn and Horenstein’s method. Overall, these tables reaffirm what
we found in the simulations of the previous subsection: the CCE does not perform well
under L2, and the PC performs poorly under E2. Besides this result, there are several
additional points worth mentioning. First, the CCE, PC and CV estimators are inefficient.
In the panels of large size, we see that the RMSEs of the LV and ILV are significantly
smaller than those of the CCE, PC and CV. This is consistent with our theoretical results
in the previous section. Second, several iterations over the LV estimator are helpful to
improve the performance of the t-statistics. Nearly in all the combinations of N and T,
the empirical sizes of the t-statistics for the ILV are slightly smaller than the ones of the
LV, which implies a mild improvement. Third, the CV dominates the LV and ILV in term
of average size. This result is not surprising. As reflected in the estimation procedures,
the LV and ILV estimators depend more closely on the Newey-West estimator. Their
t-statistics have to pay the cost for this dependency.

5.3 Finite sample performance of the robust two-step estimators

A potential weakness of the simulations in the previous two subsections is that the data
in each repetition is generated from the same type of model. In this subsection, we
generate the data randomly from the basic model or from the extended model with equal
probability. We investigate the performance of the robust estimation method suggested
in Subsection 4.3.

[Insert Tables 10-13 here]

Tables 10-13 present the simulation results under different loadings type and different
variance type. The results are obtained by 2000 repetitions. As seen in Tables 10-13, our
estimators perform considerably well in all types of the data setup. The simulation
results shown here are very similar as found in the previous subsections. So we will not
repeat the analysis.

5.4 Empirical size of the over-identification tests

In this subsection, we investigate the finite sample performance of the maxHS statistic.
One difficulty in this simulation is to generate errors satisfying Assumption J. In Castag-
netti, Rossi and Trapani (2015), they address this issue by simply setting independence
over the cross section and the time. In the current setup, we adopt the same treatment
by letting ρε

i = ρv
i = 0 for all i and $ε = $v = 0.

[Insert Table 14 here]
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Table 14 presents the simulation results. As seen, the maxHS statistic suffers severe
size distortion when the sample size is small, but its performance is much improved
as the sample size grows large. The maxHS statistic calculated by the ILV estimator
performs much better than the one of the LV. When the sample size is large, say N =

150, T = 250, the empirical size of the HSmax statistic calculated by the ILV is close to
the nominal size (5%).±

6 Conclusion

This paper considers the estimation of heterogeneous coefficients in panel data models
with common shocks. We propose a novel two-step method to estimate heterogeneous
coefficients, in which the ML method is first used to estimate the loadings and variances
of the idiosyncratic errors in a pure factor model, and heterogeneous coefficients are
then estimated based on the estimates and structural relations implied by the model.
Asymptotic properties of the proposed estimators including the asymptotic representa-
tions and limiting distributions are investigated and provided. We extend our method
to the models with restrictions on the partial loadings in the Y equation. We point out
that efficiency can be gained by using the information contained in the loadings. The
asymptotic representation and limiting distribution of the new two-step estimator are
studied. We also consider the model with time-invariant regressors.

Our two-step method depends on the assumption that the observed data has a factor
structure. If the model is dynamic, this assumption would break down. So it is an
open question whether our two-step method can be applied in the dynamic models.
In addition, our two-step method is applicable to estimate the homogeneous coefficient
with some appropriate modifications. This gives rise to a question that whether our two-
step estimator is more efficient than the existing ones in a general correlations setup,
particularly in comparison with the full information ML estimator proposed by Bai and
Li (2014). We will investigate these two issues in the future work.
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Table 1: The percentage of correctly estimating the number of factors

M1 (%%%) M2 (%%%)
N T L1+E1 L2+E1 L1+E2 L2+E2 L1+E1 L2+E1 L1+E2 L2+E2
50 50 27.2 55.5 35.0 50.0 25.6 22.8 45.5 41.4
100 50 25.7 55.9 35.5 54.1 25.6 19.8 51.3 47.1
150 50 25.6 59.4 37.9 58.5 23.8 17.4 46.0 41.4
50 150 63.6 96.1 75.9 91.5 87.8 72.3 93.5 82.2
100 150 71.4 98.8 84.1 97.5 95.1 83.3 98.8 95.3
150 150 68.2 98.6 85.6 97.6 93.2 81.7 98.8 96.3
50 250 84.4 99.4 89.5 97.3 97.5 90.4 96.3 84.2
100 250 94.9 99.9 97.8 99.9 99.5 96.8 100.0 97.6
150 250 91.1 99.9 97.2 99.9 98.6 97.2 100.0 99.2
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Table 14: Empirical size of the over-identification tests (5% level)

LV (%%%) ILV (%%%)
N T L1+E1 L2+E1 L1+E2 L2+E2 L1+E1 L2+E1 L1+E2 L2+E2
50 50 50.1 44.4 51.3 40.3 15.4 14.7 13.0 13.0
100 50 60.2 54.2 55.3 47.2 18.4 15.1 14.7 13.1
150 50 65.3 57.0 65.8 52.2 18.0 15.2 15.0 14.6
50 150 17.8 13.7 17.6 12.9 10.5 10.0 9.5 9.6
100 150 14.9 15.7 17.9 14.3 7.7 8.4 8.4 6.7
150 150 19.2 18.0 19.7 16.3 9.0 7.7 7.7 8.3
50 250 10.9 9.5 14.8 9.4 8.0 8.5 8.1 7.1
100 250 11.6 10.0 13.6 9.3 7.1 9.1 9.1 4.9
150 250 10.8 11.3 14.3 11.8 6.5 7.0 7.5 6.3
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