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Abstract

This paper introduces a spatial panel quantile model with unobserved heterogeneity. The

proposed model is capable of capturing high-dimensional cross-sectional dependence and

allows heterogeneous regression coefficients. For estimating model parameters, a new estima-

tion procedure is proposed. When both the time and cross-sectional dimensions of the panel

go to infinity, the uniform consistency and the asymptotic normality of the estimated param-

eters are established. In order to determine the dimension of the interactive fixed effects, we

propose a new information criterion. It is shown that the criterion asymptotically selects the

true dimension. Monte Carlo simulations document the satisfactory performance of the pro-

posed method. Finally, the method is applied to study the quantile co-movement structure of

the U.S. stock market by taking into account the input-output linkages as firms are connected

through the input-output production network.
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1 Introduction

The goal of this paper is to develop a new statistical method for analyzing the quantile co-

movement of a large number of time series with explicit allowance of spatial interactions

among them, and to empirically study the quantile co-movement structure of the U.S. stock

market by taking into account the linkages among firms through the input-output production

network.

Studies of searching for factors to explain the co-movement of expected returns in stock

markets can date back at least to Fama and French (1993), and have experienced rapid growth

in the last three decades, see Griffin (2002), Hou et al. (2011), and so forth. The ability of

quantile models to capture the heterogeneous impact of explanatory variable on different

distribution points of the outcome make them appealing for stock return studies. Recently,

Ando and Bai (2020) further introduce the interactive fixed effects to the panel quantile model

to deal with the unobserved endogenous heterogeneity within stock data. In this paper, we

emphasize the linkages through firms’ input-output production network in the study of the

co-movement of expected returns in stock markets.

The production network provides an important transmission channel for the propagation

of various economic shocks in the economy, such as idiosyncratic shocks (Gabaix, 2011; Ace-

moglu et al., 2012), macroeconomic shocks (Ozdagli and Weber, 2020; Pasten et al., 2020),

among others. Ozdagli and Weber (2020) emphasize the input-output production linkages

across firms in the study of the impacts of monetary policy on the stock market. Ahern and

Harford (2014) find that stronger production networks lead to a greater incidence of cross-

industry mergers. Acemoglu et al. (2016) and Barrot and Sauvagnat (2016) show that the

production network is important for the transmission of federal spending, trade, technology

and knowledge shocks. Luo (2016) investigates how these production linkages, together with

financial linkages, lead to the propagation of financial shocks.

In the study of expected returns in stock markets, financial crises or monetary policy

changes can have substantial impacts on the stock market, and their impact on one particu-

lar industry, through the input-output production network, can further affect that industry’s

suppliers by reducing its demand for the goods and services of its suppliers. This assertion
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is supported by the observed fact that the U.S. subprime mortgage crisis of 2007 led to the

automotive industry crisis during 2008-2010 and further affected the suppliers of the auto-

motive industry, such as the rubber and oil industries.1 Monetary policies can also have a

substantial influence on asset prices, see Bernanke and Kuttner (2005), Nakamura and Steins-

son (2018), Gorodnichenko and Weber (2016), among others, and such impacts can be further

decomposed into direct effects and network effects, which originate from the production net-

work (see Ozdagli and Weber (2020)). Therefore, from the perspective of governmental policy

makers, regulators and asset managers, it is important and worthwhile to investigate the pro-

duction linkages and the quantile co-movement of the stock market together.

By studying the quantile co-movement of a large number of stock returns in the U.S.

market and, at the same time, taking into account the production linkages (or the spillover

effect), this paper aims to answer the following empirical questions:

1. What is the strength of the spillover effect through the production network? Does it

change over time?

2. How does monetary policy (specifically, interest rates) affect the stock market, directly

and indirectly, through the production network? How much of its total effect is due to

direct effects and how much is due to network effects?

3. In the presence of the production network, do the quantile common-factor structures

that explain the asset return distribution vary across quantiles? Are they symmetric

across quantiles (in other words, are they identical in the lower and upper tails)?

4. Is there any special economic meaning for the unobservable common factors?

5. Are the co-movements of quantiles captured by the stocks’ sector-level classification

characteristic?

Recently, Ando and Bai (2020) use a panel quantile model with interactive effects to study

the financial stocks in the U.S. market. They find that the common factor structures in the

1For example, as mentioned in Luo (2016), during the automotive crisis period, General Motors Co. significantly
reduced its demand owing to a severe liquidity problem and consequently, American Axle & Manufacturing
Holdings Inc., one of the major suppliers of GM, experienced a net loss of $112.1 million in the fourth quarter of
2008.
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tails and those at the mean are not always identical. Moreover, this unobservable structure

varies over quantiles. However, their approach fails to account for the network effects, a point

as emphasized before, that should be carefully addressed.

In this paper, we propose a spatial panel quantile model with interactive effects to address

the above five important issues. In our model, we use a spatial term to capture the network

effects, and use the factor structure to deal with the unobservable heterogeneity in the data.

Our model is related to two popular models, the spatial panel data model and the panel model

with unobserved factor structure. Previous studies on spatial panel data models include

Kelejian and Prucha (2004), Lee (2004), Baltagi (2011), Reich et al. (2011), Bai and Li (2013,

2021), etc. Previous studies on large-dimensional linear panel models with unobserved factor

structures include Ando and Bai (2017), Bai (2009), Bai and Li (2012), Bai and Liao (2016), Bai

and Ng (2002, 2013), Hallin and Liška (2007), Moon and Weidner (2015), Pesaran (2006), Stock

and Watson (2002), Lu and Su (2016), among others. The existing studies focus primarily on

the panel mean model, studies on panel quantile models with unobserved factor structures

are scant. Ando and Bai (2020) and Harding et al. (2020) study quantile panel models with

unobserved factor structures.2 But spatial effects are absent in these two studies.

This paper makes a thorough investigation on the estimation and inferential theory of

the proposed model. The parameter estimation is a challenging issue and we develop a new

parameter estimation procedure. We establish the asymptotic theory of the estimators, in-

cluding consistency, convergence rates and limiting distributions. To show the asymptotic

properties, we will encounter several theoretical challenges, such as large dimensional inci-

dental parameters due to the loadings and factors, the nonsmooth objective function for the

quantile regression, the nonlinearity arising from the spatial term, the heterogeneous regres-

sion coefficients, as well as separately identifying the factor loadings and the factors because

of the rotational indeterminacy. Partial theoretical challenges have been emphasized by some

recent studies, such as Ando and Bai (2020), Chen et al. (2021) and He et al. (2020). Such

studies provide some useful tools to analyze the current model but we note that these tools

are far from enough to support our theoretical analysis. More new arguments are developed

2 For reference, Chernozhukov and Hansen (2006) proposes an instrumental quantile regression method for
structural and treatment effect models.
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in this paper.

Our contributions are summarized as follows. First, a spatial heterogeneous panel quantile

model with interactive effects is introduced. Second, a new parameter estimation procedure

and a new model selection criterion are proposed. Third, some new arguments are developed

and the asymptotic properties of our estimator are established. Furthermore, we show that

the proposed model selection criterion is able to consistently estimate the true dimension of

interactive effects that may vary across quantiles. Finally, we apply the proposed model and

the estimation method to study the U.S. stock market. We find that the number of common

factors and the strength of the production linkage vary across quantiles. Furthermore, the

number of common factors is smaller at the lower tail than at the upper tail, indicating that

when the market is in stress, there are fewer dominant factors driving the co-movement of the

market. Regarding the production linkage, it is stronger at the tails than at the median. These

findings are new, and are helpful to understand the U.S. stock market.

The paper is organized as follows. Section 2 introduces a new spatial panel quantile model

with interactive fixed effects. In Section 3, we introduce the estimation and model selection

method. Section 4 presents a set of assumptions and Section 5 investigates some asymp-

totic properties of the proposed method. Section 6 contains Monte Carlo simulation results

which indicate that the proposed estimation procedure works well. In Section 7, the proposed

method is applied to the U.S. stock market data. Section 8 provides our concluding remarks.

To save space, all technical proofs are provided in the online supplementary document.

Notations Let ‖A‖ = [tr(A′A)]1/2 be the usual norm of the matrix A, where “tr” denotes

the trace of a square matrix. In addition, for any N × N matrix ‖A‖1 is defined as ‖A‖1 =

max1≤j≤N ∑N
i=1 |aij|where aij is the (i, j)-th element of A. Similarly, ‖A‖∞ = max1≤i≤N ∑N

j=1 |aij|.

The equation an = O(bn) states that the deterministic sequence an is at most of order bn;

cn = Op(dn) states that the random variable cn is at most of order dn in terms of probability

and cn = op(dn) is of a smaller order in terms of probability.
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2 The model

Suppose that, for the i-th unit (i = 1, ..., N) at time t (t = 1, ..., T), its response yit is observed

together with a set of p explanatory variables {xit,1, ..., xit,p}. Our objective is to estimate the τ-

th quantile function of yit by jointly modeling spatial interactions and common shocks. More

specifically, we define the τ-th quantile function of yit as

Qyit

(
τ|Q(−i)t(τ), xit, ρi,τ, bi,τ, f t,τ,λi,τ

)
≡ ρi,τ

N

∑
j=1

wijQyjt

(
τ|Q(−j)t(τ), xjt, ρj,τ, bj,τ, f t,τ,λj,τ

)
+

p

∑
k=1

xit,kbik,τ +
r

∑
k=1

ftk,τλik,τ + G−1
i,eit

(τ)

≡ ρi,τ

N

∑
j=1

wijQyjt

(
τ|Q(−j)t(τ), xjt, ρj,τ, bj,τ, f t,τ,λj,τ

)
+ x′itbi,τ + f ′t,τλi,τ (1)

for i = 1, . . . , N and t = 1, . . . , T. Here wij (i = 1, 2, · · · , N; j = 1, 2, · · · , N) are pre-specified

spatial weights; Q(−i)t(τ) ≡
{

Qyjt

(
τ|Q(−j),t(τ), xjt, ρj,τ, bj,τ, f t,τ,λj,τ

)
; j 6= i

}
is a collection of

quantile functions; ρi,τ is the spatial parameter capturing the strength of the spillover effect,

which may depend on the quantile τ; xit = (1, xit,1, ..., xit,p)
′ is (p + 1) -dimensional vector of

explanatory variables; bi,τ = (bi,0,τ, bi,1,τ, ..., bi,p,τ)
′ is a (p + 1)-dimensional vector of regression

coefficients; eit is the error term and G−1
i,eit

(τ) is the τ-th quantile point of eit with Gi,eit(·)

being the cumulative distribution function of eit. Our definition implicitly assumes that eit

is identically distributed over t while its distribution may vary over i. Notice that the τ-th

quantile of the idiosyncratic error G−1
i,eit

(τ), which depends only on i and τ, is absorbed by the

term x′itbi,τ since the first element of xit is 1.

In this paper, we allow the regression coefficients (ρi,τ, b′i,τ)′ to be heterogeneous across

i. The econometric literature has paid much attention to the heterogeneous coefficients in

interactive-effect models (see, e.g., Pesaran (2006), Ando and Bai (2020), Li, Cui and Lu (2020)),

and recently witnesses growing interests on heterogeneous coefficients in spatial models (see,

e.g., Aquaro et al. (2021), Koopman et al. (2021), Zhu et al. (2020)). So far, the existing studies

focus mostly on the mean regression and the current paper complements the literature with

the quantile regression. An advantage of heterogeneous specification is that the model is

more flexible to fit real data and more robust to misspecification. f t,τ is an rτ -dimensional
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vector of common factors and λi,τ is the corresponding rτ -dimensional vector of unobservable

heterogeneous responses to the common factors, termed the factor loadings. In the literature,

the part f ′t,τλi,τ is also known as the interactive fixed effects, after Bai (2009). In our panel

quantile model, we allow that the loadings, the factors and the dimensionality of interactive

effects all depend on the quantile τ. By assuming that the conditional quantile function in (1)

is monotone function of τ, we have the following equivalent expression:

yit,uit = ρi,uit

N

∑
j=1

wijQyjt(uit|Q(−j)t(uit), xjt, ρj,uit , bj,uit , f t,uit
,λj,uit)

+
p

∑
k=1

xit,kbik,uit +
r

∑
l=1

ftl,uit λil,uit + eit,uit , (2)

for i = 1, . . . , N and t = 1, . . . , T. Here uit are independent and identically distributed fol-

lowing the standard uniform distribution U(0, 1). Throughout the paper, we treat the true

unobservable f t,τ and λi,τ as fixed parameters. To address the five empirical questions pro-

posed in the Introduction section, we integrate the spatial term, heterogeneous coefficients,

and factor structure into model (1). In the input-output production application in Section 7, we

see that the proposed model fits the real data well in the sense that the estimated parameters

vary over a wide range across quantiles and individuals.

Throughout the paper, we treat the weights matrix W = [wij]N×N as exogenous. This

treatment is standard in spatial econometrics, see Kelejian and Prucha (2004), Lee (2004), Yu

et al. (2008) and so forth. An important recent development is to allow the spatial weights

matrix to be endogenous, see Qu and Lee (2015). However, we do not pursue this interesting

extension and leave it as the future work. In empirical applications, the spatial weights matrix

can be constructed by geographic distance, economic distance or social distance, depending

on various research interests. We will discuss the choices of the weights matrix in Remark 1.

It is well documented in the factor literature that the factors and the factor loadings can

only be identified up to a rotation. To eliminate this rotational indeterminacy, we need to im-

pose normalization restrictions to achieve a full identification. In this paper, we follow Bai and

Li (2013) to impose the following restrictions on Fτ = ( f 1,τ, ..., f T,τ)
′ and Λτ = (λ1,τ, ...,λN,τ)

′:

Normalization Conditions :
1
T

F′τ Fτ = Irτ and
1
N

Λ′τΛτ = D, (3)
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where Irτ is an rτ × rτ identity matrix, and D is a diagonal matrix whose diagonal elements

are distinct and are arranged in a descending order. There are alternative choices for full

identification, and readers are referred to Bai and Li (2012), Bai and Li (2013) and others, for

other identification strategies.

Similar to Belloni and Chernozhukov (2011), Tang et al. (2013), Sherwood and Wang (2016),

Ando and Bai (2020) and Chen et al. (2021), this paper focuses on the quantile function under

a particular τ value instead of the entire quantile function over some interval. As emphasized

by one referee, the monotonicity of the quantile function should be guaranteed. Suppose that

the N × N matrix P(ρτ) ≡ (I − ρτW)−1 exists, where ρτ = diag(ρ1,τ, . . . , ρN,τ), and W = [wij]

is the N × N spatial weights matrix. We denote the (i, j)th element of P(ρτ) as pij(ρτ). Then,

model (1) can be rewritten asQy1t

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

)
...

QyNt

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

)
 ≡

∑N
k=1 p1k(ρτ)

(
x′ktbk,τ + f ′t,τλk,τ

)
...

∑N
k=1 pNk(ρτ)

(
x′ktbk,τ + f ′t,τλk,τ

)
 . (4)

or, for each j,

Qyjt

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

)
=

N

∑
k=1

pjk(ρτ)
(

x′ktbk,τ + f ′t,τλk,τ

)
,

where Bτ = (b1,τ, b2,τ, · · · , bN,τ)
′. Taking the first derivative of Qyjt

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

)
in (4),

the monotonicity of the quantile function is equivalent to the following first order condition

∂Qyjt

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

)
∂τ

=
N

∑
k=1

∂pjk(ρτ)

∂τ

(
x′ktbk,τ + f ′t,τλk,τ

)
+

N

∑
k=1

pjk(ρτ)
∂
(
x′ktbk,τ + f ′t,τλk,τ

)
∂τ

> 0 (5)

for τ ∈ (0, 1), j = 1, ...., N and t = 1, ..., T. Although there are some previous studies that

focus on the entire quantile function under the monotonicity of the quantile function (for e.g.,

He (1997), Bondell et al. (2010), Chernozhukov et al. (2010), Dette and Volgushev (2008), Yuan

et al. (2017)), these studies are conducted for cross-sectional regression, not for a quantile

factor model. Even for a pure quantile factor model, yit,τ = f ′t,τλi,τ + ε it,τ, it is not trivial

how to impose both a monotonicity restriction and an identification condition on the factor

structure f ′t,τλi,τ simultaneously for all τ in a satisfactory manner. The previous studies on

quantile factor models such as Ando and Bai (2020) and Chen et al. (2021) focused on a
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specific quantile and thus the monotonicity issue is ignored. In the supplement, we provide

some discussions on the sufficient conditions that guarantee (5).

Remark 1 We present some typical examples of weight choices that are widely adopted in

the literature. In geographic spatial models, Lin and Lee (2010) and Shi and Lee (2017) use a

binary weight matrix, where the weight wij is one if i and j are neighbours, and zero otherwise.

Jeanty et al. (2010) consider two choices of weights based on the geographic distance. One

defines wij as a binary distance-based weight, as wij equals one only if the distance is smaller

than a certain distance threshold, and zero otherwise. The other defines the weight wij as

an inverse distance function d−a
ij , where dij measures the distance, and a is a dampening

coefficient indicating how fast the weight decreases with distance. Furthermore, Cohen-Cole

et al. (2018) and Liu (2014) consider the weights in the multi-choice game framework of a

social network model, where wij is equal to one if individuals i and j are connected; and zero

otherwise. In macroeconomics, the input-output production network has been used when

studying the transmission of various economic shocks in the economy (see Acemoglu et al.

(2016); Ozdagli and Weber (2020)), where wij is defined as the output amount of industry i

used by industry j as input. In international economics, the weight matrix can be constructed

according to the trade flows to capture the trade network, see Lu (2017); Lu and Luo (2020).

3 Estimation and model selection

3.1 Estimation

Because of the spatial term, the conditional quantile function of yit depends on the condi-

tional quantile functions of other yjts. This spatial dependence, together with the existence

of large dimensional incidental parameters λi,τ and f t,τ, poses challenges to estimate the cur-

rent model. Here we give a detailed description on the approach to obtaining the numerical

values.

We estimate the unknown parameters ρτ, Bτ, Λτ, and Fτ simultaneously by minimizing

the following objective function

`τ(Y|X,ρτ, Bτ, Fτ, Λτ) =
1

NT

N

∑
i=1

T

∑
t=1

qτ

(
yit −Qyit

(
τ|Xt,ρτ, Bτ, f t,τ, Λτ

))
(6)
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where Qyit(τ|Xt,ρτ, Bτ, f t,τ, Λτ) is defined in (4), qτ(u) = u(τ − I(u ≤ 0)) is the quantile loss

function, Y ≡ {yit|i = 1, ..., N, t = 1, ..., T} and X ≡ {xit|i = 1, ..., N, t = 1, ..., T}.

Because the objective function is nonlinear in unknown parameters, we update them se-

quentially. As in below, the expression (4) will be useful for developing our estimation al-

gorithm. At this moment, we assume that the number of common factors rτ is known. An

information criterion that can consistently estimate the number of common factors is provided

in Section 3.2. Here we use Aτ,(−k) to denote Aτ excluding the kth unit, and the symbols with

bar to denote the latest values of parameters. Our estimation is an iterative procedure and

each iteration consists of the following three steps.

Step One. For given i and the latest values B̄τ, F̄τ, Λ̄τ, ρ̄τ,(−i), we update ρi,τ as the

minimizer of

`τ(ρτ) =
1

NT

N

∑
i=1

T

∑
t=1

qτ

(
yit −

N

∑
k=1

pik(ρ̆τ)(x′ktb̄k,τ + f̄ ′t,τλ̄k,τ)
)

. (7)

where ρ̆τ = diag(ρ̄1,τ, · · · , ρ̄i−1,τ, ρi,τ, ρ̄i+1,τ, · · · , ρ̄N,τ). We update the diagonal elements of ρτ

one by one from 1 to N.

Step two. For notational simplicity, we use Qyjt(τ) to denote the conditional quantile

function of yjt, Qyjt(τ|Xt,ρτ, Bτ, f t,τ, Λτ) for j = 1, ..., N and t = 1, ..., T. Given i and the latest

values ρ̄τ, B̄τ,(−i), Λ̄τ,(−i) and F̄τ , we update bi,τ and λi,τ by minimizing

`τ(bi,τ,λi,τ) =
1
T

T

∑
t=1

qτ

(
yit − ρ̄i,τ

N

∑
j=1

wijQ̄yjt(τ)− x′itbi,τ − f̄ ′t,τλi,τ

)
(8)

and we update Bτ and Λτ rows by rows. Notice that, in the above formula, Q̄yjt(τ) is defined

as in (4), which depends on ρ̄τ, B̄τ,(−i), Λ̄τ,(−i), F̄τ, bi,τ and λi,τ.

Step three. Given t and the latest values ρ̄τ, B̄τ and Λ̄τ, we update f t,τ as the minimizer

of

`τ( f t,τ) =
1
N

N

∑
i=1

qτ

(
yit − ρ̄i,τ

N

∑
j=1

wijQ̄yjt(τ)− x′itb̄i,τ − f ′t,τλ̄i,τ

)
(9)

for t = 1, ..., T. Again, notice that in the above formula, Q̄yjt(τ) is defined as in (4), which

depends on ρ̄τ, B̄τ, Λ̄τ and f t,τ.

Since we update Λτ given the current Fτ and update Fτ given the current Λτ, the same

rotational matrix passes down from the current iteration to the next one. This implies that the
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rotational indeterminacy issue pointed out in Section 2 can be ignored in our iteration estima-

tion procedure. However, when the tolerance condition is satisfied and the iteration ceases, we

need to normalize the estimator to guarantee that the normalization conditions are satisfied.

Here are the concrete steps. Let (Λ̃τ, F̃τ) be the estimator of the last iteration. First, compute

the covariance matrix of M̃ f f =
1
T F̃′τ F̃τ. Second, compute the matrix M̃1/2

f f
1
N Λ̃′τΛ̃τ M̃1/2

f f and let

R denote the eigenvector matrix of this matrix whose corresponding values are arranged in

the descending order. Third, calculate

Λ̂τ = Λ̃τ M̃1/2
f f R, F̂τ = F̃τ M̃−1/2

f f R. (10)

One can readily check that the estimator (Λ̂τ, F̂τ) satisfies the normalization conditions. Now

we summarize the above estimation procedures into the following algorithm.

Algorithm 1 Algorithm for the spatial quantile panel model with unobserved heterogeneity

Step 1. Initialize ρ̂τ, B̂τ, F̂τ and Λ̂τ.

Step 2. Given B̂τ, F̂τ, Λ̂τ, and ρ̂τ,(−i), update ρi,τ by using (7) for i = 1, 2, . . . , N.

Step 3. Given ρ̂τ, B̂τ,(−i), Λ̂τ,(−i) and F̂τ, update b̂i,τ and λ̂i,τ by using (8) for i = 1, 2, . . . , N.

Step 4. Given ρ̂τ, B̂τ and Λ̂τ, update f̂ t,τ by using (9) for t = 1, 2, . . . T.

Step 5 . Repeat Step 2 ∼ Step 4 until convergence.

Step 6. Apply (10) to ensure that F̂τ and Λ̂τ satisfy the normalization conditions (3).

The tolerance condition to stop the iteration can be based on the difference of the esti-

mators in the last iteration and the current iteration, that is, the tolerance condition can be

formulated as

N−1
N

∑
i=1

(ρ̂new
i,τ − ρ̂old

i,τ )
2 + N−1

N

∑
i=1
‖b̂new

i,τ − b̂
old
i,τ ‖2 +(NT)−1

N

∑
i=1

T

∑
t=1

[
( f̂
′
t,τλ̂i,τ)

new− ( f̂
′
t,τλ̂i,τ)

old
]2

< δ2,

where δ2 is some pre-specified value, which can be, say, 10−3.

Remark 2 The initial values of parameters in Step 1 can be delivered as follows. First, re-

garding the spatial parameter, for each t, we can treat yit as a cross-sectional spatial auto-

regressive model ignoring the explanatory variable and the common factor structure to get
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an estimate of ρi,τ by simple OLS. Next, for each i, we directly apply a cross-sectional quan-

tile regression to the transformed data (yit − ρ̂i,τ,ini ∑N
j=1 wijyjt) to obtain b̂i,τ,ini, ignoring the

common factor structure. Third, we obtain an estimate of F̂τ = ( f̂ 1,τ, ..., f̂ T,τ)
′ by the Prin-

cipal Component Method based on dataset Zτ with its (i, t)-th element being zit = yit −

ρ̂i,τ,ini ∑N
j=1 wijyjt − x′itb̂i,τ,ini, subject to the normalization condition F′τ Fτ/T = Irτ . Finally, we

set Λ̂τ,ini = (λ̂1,τ,ini, · · · , λ̂N,τ,ini)
′ as Zτ F̂τ(F̂′τ F̂τ)−1.

It can be shown that the loss function defined in (6) does not increase in Steps 2-4 of each

iteration due to the fact that the parameters are updated as the local minimizers of the loss

function given the current values of other parameters. So the resultant estimators converge

at least to a local minimizer, although the global minimality cannot be guaranteed because of

the non-convexity of the loss function arising from the interactive-effects term λ′i,τ ft,τ and the

spatial term. In the simulations of Section 6, we find that the estimators from the proposed

algorithm converge quickly under large N and large T, and are robust to the initial values. So

it looks like the proposed algorithm does not suffer from severe local minimizer issues.

3.2 Model selection

Let ρ̂τ(r), b̂k,τ(r), f̂ t,τ(r) and λ̂k,τ(r) be the estimators when the number of common factors is

set to r. According to (4), one can readily compute the conditional quantile function of yit,

Q̂(r)
yit (τ) ≡

N

∑
k=1

pik
(
ρ̂τ(r)

)[
x′ktb̂k,τ(r) + f̂ t,τ(r)

′λ̂k,τ(r)
]
.

The number of factors can be estimated by minimizing the following information criterion

ICτ(r) = log
[ 1

NT

N

∑
i=1

T

∑
t=1

qτ

(
yit − Q̂(r)

yit (τ)
)]

+ r× q(N, T) (11)

where qτ(·) is the quantile loss function defined in (6), and q(N, T) is a penalty on overfitting

of the interactive effects. In the numerical study, we specify this function as

q(N, T) = log
( NT

N + T

)(N + T
NT

)
. (12)

The asymptotic validity of ICτ(r) is justified by Theorem 4 in Section 5.
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4 Assumptions

We denote the true spatial parameter and the true regression coefficient as ρi,0,τ and bi,0,τ,

respectively. Similarly, we denote F0,τ = ( f 1,0,τ, ..., f T,0,τ)
′ and Λ0,τ = (λ1,0,τ, ...,λN,0,τ)

′ as

the true factors and loadings. A set of regularity conditions that are needed for theoretical

analysis are given as follows.

Assumption A: Common factors

Let F be a compact subset of Rrτ . The common factors f t,0,τ ∈ F satisfy T−1 ∑T
t=1 f t,0,τ f ′t,0,τ =

Irτ .

Assumption B: Factor loadings and regression coefficients

(B1) Let P , B and L be compact subsets of R, Rp+1 and Rrτ , respectively. The spatial pa-

rameter ρi,0,τ, the regression coefficient bi,0,τ, and the factor-loading λi,0,τ satisfy that

ρi,0,τ ∈ P , bi,0,τ ∈ B and λi,0,τ ∈ L for each i.

(B2) The factor-loading matrix Λ0,τ = (λ1,0,τ, . . . ,λN,0,τ)
′ satisfies N−1 ∑N

i=1 λi,0,τλ
′
i,0,τ

p−→ ΣΛτ
,

where ΣΛτ
is an rτ× rτ positive definite diagonal matrix with diagonal elements distinct

and arranged in the descending order. In addition, the eigenvalues of ΣΛτ
are distinct.

Assumption C: Idiosyncratic error terms

(C1): The random variable

ε it,τ = yit −
N

∑
k=1

pik(ρ0,τ)
(

x′ktbk,0,τ + f ′t,0,τλk,0,τ

)
satisfies P(ε it,τ ≤ 0) = τ, and is independently distributed over i and t, conditional on

Xt, ρ0,τ, B0,τ, F0,τ and Λ0,τ.

(C2): The conditional density function of ε it,τ given (Xt,ρ0,τ, B0,τ, F0,τ, Λ0,τ), denoted as git(ε it,τ),

is continuous. In addition, for any compact set C, there exists a positive constant g > 0

(depending on C) such that infc∈C git(c) ≥ g for all i and t.

Assumption D: Weight matrix

(D1): W is an exogenous spatial weights matrix whose diagonal elements of W are all zeros.

In addition, W is bounded by some constant C for all N under ‖ · ‖1 and ‖ · ‖∞.
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(D2): Define P(ρτ) = (I − ρτW)−1 for ρτ = diag(ρ1,τ, ρ2,τ, . . . , ρN,τ), an N-dimensional diago-

nal matrix with ρi,τ being an interior point of P for each i. The matrix P(ρτ) is invertible

over PN and satisfies

lim sup
N→∞

‖P(ρτ)‖1 ∨ ‖P(ρτ)‖∞ ≤ C,

for each diag(ρτ) ∈ PN , where C is some positive constant large enough.

Assumption E: Explanatory variables and design matrix

(E1): For a positive constant Cx, explanatory variables satisfy supit ‖xit‖ ≤ Cx almost surely.

(E2): Let X (B) be an N×T matrix with its (i, t)-th entry equal to x′itbi, where B = (b1, b2, . . . , bN)
′.

Define dit,0,τ to be the (i, t)th element of W(IN − ρ0,τW)−1(X (B0,τ) + Λ0,τ F′0,τ). Let

vit,τ = (dit,0,τ, x′it)
′ and Vi,τ = (vi1,τ, vi2,τ, . . . , viT,τ)

′. Define Ai,τ = 1
TV

′
i,τ MFτVi,τ, Bi,τ =

(λi,0,τλ
′
i,0,τ) ⊗ IT, Ci = 1√

T
[λi,0,τ ⊗ (MFτVi,τ)]

′, η = 1√
T

vec(MFτ F0,τ), and MFτ = I −

Fτ(F′τ Fτ)−1F′τ. Let Fτ be the collection of Fτ such that Fτ = {Fτ : F′τ Fτ/T = Irτ}. We

assume that with probability approaching one,

inf
Fτ∈Fτ

λmin

[ 1
N

N

∑
i=1

Ei,τ(Fτ)
]
> 0,

where λmin(M) denotes the smallest eigenvalue of matrix M, and Ei,τ(Fτ) = Bi,τ −

C′i,τ A−1
i,τ Ci,τ.

(E3): Let Vτ(φτ) be the N × T matrix with its (i, t)th entry equal to dit,0,τρi,τ + x′itbi,τ, where

φτ = (φ1,τ,φ2,τ, . . . ,φN,τ)
′ and φi,τ = (ρi,τ, b′i,τ)′. For any nonzero φτ, there exists a

positive constant c̆ > 0 such that with probability approaching one,

1
NT
‖MΛ0,τVτ(φτ)MF0,τ‖2 ≥ c̆

1
N

N

∑
i=1
‖φi,τ‖2,

where MΛ0,τ = I −Λ0,τ(Λ′0,τΛ0,τ)−1Λ′0,τ.

(E4): For each i, we assume that there exists a constant c > 0 such that for each i, with

probability approaching one,

lim inf
T→∞

λmin

( 1
T
V ′i,τ MF0,τVi,τ

)
≥ c.
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Remark 3 Several comments on our assumptions are provided here. Assumptions A and

B are consistent with our normalization conditions (3). In the factor literature, it is more

common to assume that (i) T−1 ∑T
t=1 f t,0,τ f ′t,0,τ

p−→ Σ f ,τ and (ii) 1
N ∑N

i=1 λi,0,τλ
′
i,0,τ

p−→ Σλ,τ, where

Σ f ,τ and Σλ,τ are both positive definite matrices. However, as pointed out in the discussions

related with (10), we can always transform any set that satisfies (i) and (ii) into one that

satisfies (3). For this reason, we directly impose the conditions that feature (3).

Assumption C1 may be relaxed to allow the serial dependency but we do not pursue this

direction in this paper. Assumption C2 is standard in the quantile models. Assumption D1

is a standard assumption for the spatial weights matrix and commonly used in the spatial

modeling literature, such as Kelejian and Prucha (2004), Lee (2004), Yu et al. (2008), Bai and

Li (2013, 2021) and Shi and Lee (2017), among others. Zero values of diagonal element of W

entails no loss of generality. To see this, note that

Qyit

(
τ|Q(−i)t(τ), xit, ρi,0,τ, bi,0,τ, f t,0,τ,λi,0,τ

)
= ρi,0,τ

N

∑
j=1

wijQyjt

(
τ|Q(−j)t(τ), xjt, ρj,0,τ, bj,0,τ, f t,0,τ,λj,0,τ

)
+ x′itbi,0,τ + f ′t,0,τλi,0,τ,

if wii 6= 0, the model can be alternatively written as

(1− ρi,0,τwii)Qyit

(
τ|Q(−i)t(τ), xit, ρi,0,τ, bi,0,τ, f t,0,τ,λi,0,τ

)
= ρi,0,τ

N

∑
j=1,j 6=i

wijQyjt

(
τ|Q(−j)t(τ), xjt, ρj,0,τ, bj,0,τ, f t,0,τ,λj,0,τ

)
+ x′it,τbi,0,τ + λ

′
i,0,τ f t,0,τ.

Let

ρ†
i,0,τ =

ρi,0,τ

1− ρi,0,τwii
, b†

i,0,τ =
bi,0,τ

1− ρi,0,τwii
, and λ†

i,0,τ =
λi,0,τ

1− ρi,τ,0wii
,

We obtain an equivalent model with the diagonal elements of W being zeros. So this condition

is indispensable for the identification of ρ0,τ. Assumption D2 is imposed for the purpose of

theoretical analysis. As seen in the online supplement, the matrix P(ρτ) plays an important

role in our theoretical analysis. This assumption is widely-adopted in the spatial econometrics.

Assumption E is imposed for the identification of parameters. More specifically, Assump-

tion E.2 is imposed for the identification of Λτ F′τ. It has been made in several previous stud-

ies, such as Ando and Bai (2020). Our assumption E.2 is slightly different from those in the

previous studies because it needs to accommodate the presence of the spatial term, but the
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mechanism behind this assumption is the same. This assumption, together with the normal-

ization conditions (3) which are used to preclude the rotational indeterminacy, can give the

identification of Λτ and Fτ (up to column signs).

Assumption E.3 can be viewed as an extended version of the condition infF∈F D(F) > 0

in Assumption A of Bai (2009). Note that since we have already identified F0,τ in Assumption

E.2, we only need D(F0,τ) > 0 instead of infF∈F D(F) > 0. Because of the heterogeneous

coefficients and introduction of the spatial term, we generalize D(F0,τ) > 0 to Assumption E.3.

Basically speaking, Assumption E.3 is imposed for the identification of φi,0,τ = (ρi,0,τ, b′i,0,τ)
′

under the average Frobenius norm. In other words, for any φa = [φa,1, . . . ,φa,N ] and φb =

[φb,1, . . . ,φb,N ] such that

lim inf
N→∞

1
N

N

∑
i=1
‖φa,i −φb,i‖2 ≥ c

for some constant c > 0, φa can be separated from φb in our model. This implies that for the

unknown true values φ0,τ = (φ1,0,τ,φ2,0,τ, . . . ,φN,0,τ), it can be identified from those points φ

such that

lim inf
N→∞

1
N

N

∑
i=1
‖φi −φi,0,τ‖2 ≥ c.

By Assumption E.3 we can establish the global properties of the estimators, but this assump-

tion is still insufficient to achieve the full identification. Consider φ∗ = (φ∗1 ,φ2,0,τ, . . . ,φN,0,τ)

with φ∗1 6= φ1,0,τ. Assumption E.3 would fail to separate φ∗ from φ0,τ. For this reason, we

further impose Assumption E.4 to achieve the individual (or full) identification.

To explain the intuitions of E.4, we start our discussions with the traditional spatial au-

toregressive (SAR) model considered in Lee (2004)

Y = ρ0WY + Xβ0 + e.

We treat X as non-random for simplicity. Taking expectation on both sides, we obtain

E(Y) = (IN − ρ0W)−1Xβ0 = (IN − ρ0W + ρ0W)(IN − ρ0W)−1Xβ0

=
[
W(IN − ρ0W)−1Xβ0

]
︸ ︷︷ ︸

D

ρ0 + Xβ0.

Like the linear regression E(Y) = Xβ0, the spatial model can be viewed as a linear regres-

sion model with a generated regressor D. For this reason, Lee (2004) imposes the following
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condition (Assumption 8 in Lee (2004)) to identify ρ0 and β0:

Identification condition for the SAR model (ICsar): The matrix V = [D, X] is of full

column rank.

In our paper, Assumption E.4 plays the same role as the above ICsar. To see this, first note

that in our paper we also have a generated regressor

D0,τ = W(IN − ρ0,τW)−1
(
X (B0,τ) + Λ0,τ F′0,τ

)
,

which has the same structure as D in the SAR model. Therefore the matrix Vi,τ = (vi1,τ,vi2,τ, . . . ,

viT,τ)
′ with vit,τ = (dit,0,τ,x′it)

′ in our paper is the counterpart of V in the SAR model. Because

of the presence of interactive effects, the model now is

Qyit(τ|X, Λ0,τ, F0,τ,ρ0,τ, B0,τ) = dit,0,τρi,0,τ + x
′
itbi,0,τ + f

′
t,0,τλi,0,τ

Suppose that we observe ft,0,τ. Now the identification condition should be that [Vi,τ, F0,τ] is of

the full column rank. Since the full column rank of F0,τ is guaranteed by Assumption A, one

only needs to impose

lim inf
T→∞

λmin

( 1
T
V ′i,τ MF0,τVi,τ

)
≥ c,

as required by Assumption E.4. Note that the ICsar would break down if β0 = 0. The similar

situation also appears in Assumption E.4, that is, if bi,0,τ = 0 for all i, the above condition

would break down.

Unfortunately, both ft,0,τ and λi,0,τ are unobserved in our model. For this reason, Assump-

tion E.4 alone is not enough to achieve identification. But with assistance of Assumptions E.2

and E.3, the identification conditions in the interactive-effects models, full identification is

obtained.

5 Asymptotic theory

This section presents the asymptotic properties of the estimators. Recent literature pays much

attention on quantile factor models, see Chen et al. (2021) and He et al. (2020). The current

model is an extension of the quantile factor model because we explicitly allow the spatial

term and exogeneous regressors. Because of this feature, the analysis in this paper is more
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complicated. Some difficulties are illustrated below. We first establish the consistency of the

estimators, which is given in the following theorem.

Theorem 1 Under Assumptions A–E, if log N/T → 0, the estimators are uniformly consistent, i.e.,

max
1≤i≤N

|ρ̂i,τ − ρi,0,τ| = op(1), max
1≤i≤N

‖b̂i,τ − bi,0,τ‖ = op(1), max
1≤i≤N

‖λ̂i,τ − λi,0,τ‖ = op(1).

In addition, let ψk,0,τ = (ρk,0,τ, b′k,0,τ,λ′k,0,τ)
′ and ψ̂k,τ be its estimator. We have the following average

consistency result

1
N

N

∑
i=1
‖ψ̂i,τ −ψi,0,τ‖

2 = op(1),
1
T

T

∑
t=1
‖ f̂ t,τ − f t,0,τ‖

2 = op(1).

The proof of Theorem 1 requires considerable amount of work. Apart from the theoretical

difficulties in the quantile factor model pointed out by Chen et al. (2021), such as no closed

form for the estimators, the presence of the spatial term and the exogenous regressors poses

new theoretical challenges to our analysis. For example, we would like to show that the non-

random part of the objective function behaves like a quadratic function in the neighborhood

of the true parameters. To this end, we need to separate the regression coefficients ρτ and Bτ

from the incidental parameters Λτ and Fτ because the latter suffers rotational indeterminacy.

This separation is non-trivial and requires some new arguments.

Given the above results, we can further derive the following average convergence rate of

the estimators. The results of the convergence rates are very useful to give the consistent

information criterion.

Theorem 2 Let δNT = max( 1√
N

, 1√
T
). Under the assumptions of Theorem 1, we have

1
N

N

∑
i=1
‖ψ̂i,τ −ψi,0,τ‖

2 = Op(δ
2
NT),

1
T

T

∑
t=1
‖ f̂ t,τ − f t,0,τ‖

2 = Op(δ
2
NT).

The above theorem indicates that the quantile estimators have the same average conver-

gence rates as in the standard factor model and the mean regression with unobserved hetero-

geneity. This partially explains the results in Theorem 4, which proves that the penalty in the

standard factor model continues to work in the quantile background when determining the

number of factors.

Now we present the asymptotic normality of the estimators, which is summarized in the

following theorem.
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Theorem 3 Under Assumptions A–E, if N/T → C� for some C� ∈ (0, ∞), we have, for each k,

√
T(ψ̂k,τ −ψk,0,τ)

d−→ N(0, Ω̃
−1
k,τ Ωk,τΩ̃

−1
k,τ),

where

Ω̃k,τ = lim
T→∞

1
T

N

∑
i=1

T

∑
t=1

git,0,τ p2
ik,0,τwkt,0,τw′kt,0,τ,

Ωk,τ = lim
T→∞

τ(1− τ)
1
T

N

∑
i=1

T

∑
t=1

p2
ik,0,τwkt,0,τw′kt,0,τ;

with wit,τ = (dit,0,τ, x′it, f ′t,0,τ)
′, git,0,τ = git(G−1

it (τ)) and pik,0,τ is the (i, k)-th element of the matrix

(IN − ρ0,τW)−1, where dit,0,τ is defined in Assumption E.2, git(·) and Git(·) are the density and

cumulative distribution function of ε it, respectively.

For each t,
√

N( f̂ t,τ − f t,0,τ)
d−→ N(0, Ω̃

∗−1
t,τ Ω∗τΩ̃

∗−1
t,τ ).

where

Ω̃
∗
t,τ = plim

N→∞

1
N

N

∑
i=1

git,0,τλ
∗
i,0,τλ

∗′
i,0,τ, Ω∗τ = plim

N→∞
τ(1− τ)

1
N

N

∑
i=1
λ∗i,0,τλ

∗′
i,0,τ,

where λ∗i,0,τ = ∑N
j=1 pij,0,τλj,0,τ.

Theorem 3 implies that the estimator ψ̂k,τ possesses the oracle properties in the sense that

the limiting distribution of ψ̂k,τ is the same as that of the infeasible estimator that is obtained

when assuming the factors are observed a priori. The simulation results in Section 6 support

this result.

In the following theorem, we show that our proposed information criterion is capable of

estimating the true dimension of the interactive effects with probability approaching one. To

this end, we additionally impose Assumption F to ensure that the parameters (ρi,0,τ, b′i,0,τ)
′

(i = 1, . . . , N) are identified in the over-fitted model.

Assumption F: Identification of b for the over-fitted model

For each k, there exists a constant c̆k > 0 such that, with probability approaching one,

inf
Fk , 1

T Fk′Fk=Ik

1
NT
‖MΛ0,τVτ(φτ)MFk‖2 ≥ c̆k

1
N

N

∑
i=1
‖φi,τ‖2,
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where Vτ(φτ) is defined in Assumption E.3.

To see the implication of the above assumption, one may consider the following linear

model

Yi = V ′i φi,0 + F0λi,0 + ε i, or equivalently Y = V(φ0) + Λ′0F0 + ε.

If there exists Fk such that 1
NT‖V(φ)MFk‖2 = op(1) 1

N ∑N
i=1 ‖φi‖2, we can simply post-multiply

M[Fk ,F0]
on both sides, and it is seen that all the useful information (i.e., X (B0) + Λ′0F0) are

projected out. So φi,0 would have an identification issue. Therefore it is plausible to impose

1
NT‖V(φ)MFk‖2 ≥ c 1

N ∑N
i=1 ‖φi‖2 for all k. The above assumption is a little stronger than this

requirement because it still needs to preclude the effect from the loadings Λ0, but the intuition

is the same.

Theorem 4 Under Assumptions A-F, if N/T → c� for some c� ∈ (0, ∞), the model selection criterion

(11) would correctly estimate the dimensionality of the interactive effects with probability approaching

one if the penalty function q(N, T) satisfies

q(N, T)→ 0 and CNT × q(N, T)→ ∞,

where CNT = min{N, T}.

6 Monte Carlo simulation

We run simulations to examine the finite sample performance of the quantile estimators and

the proposed information criterion. We separately evaluate the performance of the quantile

estimators (assuming that the number of factors is known) and the performance of the pro-

posed information criterion because this allows us to see each performance more clearly. In

the appendix, we present the simulation results with the estimated number of factors. Over-

all, it can be seen there that the quantile estimators with the estimated number of factors have

very similar performance as in the known-number case.

6.1 Performance of the quantile estimators

This subsection investigates the finite sample performance of the quantile estimation. Our

data generating process (DGP) is essentially based on the quantile function (1), or equiva-

lently its reduced form (4). Concretely, we first draw uit independently from the uniform
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distribution U[0, 1] as our quantiles for each i and t. Fixing (i, t), based on uit together with

(ρj,uit , bj,uit ,λj,uit) and f t,uit
which are given below, we calculate yit,uit , the (i, t)th element of the

N × T observed data matrix of dependent variable, via the expression

yit,uit =
N

∑
k=1

pik(ρuit)
(
x′ktbk,uit + f ′t,uit

λk,uit

)
,

where the above expression implicitly uses the spatial weights matrix, which is generated as

a decreasing exponential function of the distance between i and j according to wij = 0.3|i−j|

if i 6= j, otherwise 0. Following the tradition of spatial econometrics, we row-normalize the

original spatial weights matrix.

We consider the two types of DGPs for the regressors xit and the remaining parameters

ρj,uit , bj,uit ,λj,uit and f t,uit
. In DGP1, all parameters are constant across quantiles, i.e., they do

not depend on τ. In DGP2, all parameters are extended to allow variation across quantiles,

which is more plausible in viewpoint of applications.

DGP1. The spatial coefficient that varies across individuals is generated via ρk,uit = 0.5 +

k/(100 ∗ N). We set the number of common factors to be one and fixed across quantiles. The

common factor f t,uit
= ft1 and factor loading λk,uit = ξk1, where ft1 and ξk1 are generated in-

dependently from the uniform distribution over [0, 2] and [−2, 2] respectively. The regressors

xkt = (xkt,1, xkt,2, xkt,3)
′, a three dimensional vector, is generated to allow correlations with the

factor structure

xkt,1 = 1, xkt,2 = vkt,1 + 0.01 f 2
t1 + 0.01ξ2

k1, xkt,3 = vkt,2,

where vkt,1 and vkt,2 are both generated independently from a uniform distribution over [0, 1].

The coefficient bk,uit = (bk1,uit , bk2,uit , bk3,uit)
′ is generated by

bk1,uit = Φ−1(uit), bk2,uit = −2 +
k
N

, bk3 = 2 +
k
N

where Φ(·) is the standard accumulative normal distribution. Putting all generated quantities

into (4), we obtain yit, which is the ith element of N-dimensional vector in (4).

DGP2. The regressors xkt are generated by the same way as in DGP1. The spatial coefficient

is generated via ρk,uit = 0.5+ uit/100+ k/(100 ∗ N). The generated ρτ in this subsection has a
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similar magnitude as the estimated spatial coefficients in the empirical application below. We

generate a T× 3 common factor matrix F = ( ftl) (t = 1, 2, · · · , T and k = 1, 2, 3) such that each

element follows a uniform distribution over [0, 2]. Then using the generated uit, we create the

common factors for the i-th unit at time t as

f t,uit
=


( ft1) if uit ≤ 0.2

( ft1, ft2)′ if 0.2 < uit ≤ 0.8

( ft1, ft2, ft3)′ if 0.8 < uit

.

The dimension of the common factor structure varies over i and t since uit ∼ U[0, 1]. We also

specify the factor loadings to be dependent on uit, according to:

λk,uit =


(ξk1 + 0.01uit) if uit ≤ 0.2

(ξk1 + 0.01uit, ξk2 + 0.01uit)
′ if 0.2 < uit ≤ 0.8

(ξk1 + 0.01uit, ξk2 + 0.01uit, ξk3 + 0.01uit)
′ if 0.8 < uit

,

where ξk1, ξk2 and ξk3 are generated from a uniform distribution over [−2, 2], independently.

The coefficient bk,uit = (bk1,uit , bk2,uit , bk3,uit)
′ is generated by:

bk1,uit = Φ−1(uit), bk2,uit = −2 +
k
N

+ 0.01uit, bk3,uit = 2 +
k
N

+ 0.01uit

Putting all generated quantities into (4), we obtain yit, which is the ith element of N-dimensional

vector in (4).

Simulation result. We measure the performance of the estimator by reporting the average

mean squared error (MSE) between the true value and the estimates, defined as

MSEb =
1

SNp

S

∑
s=1

N

∑
i=1
‖b(s)

i,τ,0 − b̂
(s)
i,τ ‖2 (13)

MSEρ =
1

SN

S

∑
s=1

N

∑
i=1

(ρ
(s)
i,τ,0 − ρ̂

(s)
i,τ )

2 (14)

where b(s)
i,τ,0 and ρ

(s)
i,τ,0 are the true values in the sth repetition, and b̂

(s)
i,τ and ρ̂

(s)
i,τ are the cor-

responding estimators; S represents the total number of repetitions and is set to 1000 in this

paper. In our simulations, we are more interested in estimation precision of the coefficients

of the generated regressors, i.e., bi2,τ and bi3,τ for each i. So b(s)
i,τ,0 and b̂

(s)
i,τ are actually two

dimensional vectors obtained by deleting the first element of the original estimates and p = 2

in (13).
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Tables 1 and 2 report the MSEs for bτ and ρτ under different combinations of N and T,

together with the corresponding standard deviations (SE) of the MSEs over 1000 repetitions.

We also report the performance of the infeasible estimates in the case where the factors are

observed a priori. The results of the infeasible estimates serve as a benchmark for comparison.

There are two main findings from the results. First, across quantiles and under both DGP1

and DGP2, the MSEs for both b and ρ do not change much when N increases, but decrease

significantly when T increases. This is consistent with the result in Theorem 3 that the conver-

gence rate of bi,τ and ρi,τ is
√

T when N and T are comparable. Second, it can be seen from

the two tables that both MSE and SE in the case when the factors are unknown are close to

the results in the infeasible case when the factors are assumed known, which collaborates our

theoretical finding that the proposed estimator when the factors are unknown have the same

asymptotic property as the infeasible estimator when the factors are known.

Moreover, we compare the performance of our estimator with other two estimators, one is

the estimator without considering the spatial effect (denoted as b̂
(NoSpatial)
i,τ ), and the other is

the estimator without considering the factor structure (denoted as b̂
(NoFactor)
i,τ and ρ̂

(NoFactor)
i,τ ).

More specifically, b̂
(NoSpatial)
i,τ is computed by minimizing the following loss function (similar

to Ando and Bai (2020))

`τ(Y|X, Bτ, Fτ, Λτ) =
1

NT

N

∑
i=1

T

∑
t=1

qτ

(
yit − x′itbi,τ − λ′i,τ f t,τ

)
.

Also, b̂
(NoFactor)
i,τ and ρ̂

(NoFactor)
i,τ are computed by minimizing the following loss function

`τ(Y|X,ρτ, Bτ) =
1

NT

N

∑
i=1

T

∑
t=1

qτ

(
yit −Qyit

(
τ|Xt,ρτ, Bτ

))
,

where

Qyit

(
τ|Xt,ρτ, Bτ

)
≡

N

∑
k=1

pik(ρτ)x′ktbk,τ

with pik(ρτ) being defined as the (i, k)th entry of the matrix (I − ρτW)−1. The simulation

results of MSEs for the above two estimators are reported in Table 3. The simulation re-

sults imply that the estimator accounting for the spatial effect and the factor structure has

pronounced better performance than both the estimator ignoring the spatial effect, and the

estimator ignoring the factor structure.
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6.2 Performance of the model selection criterion

To investigate the performance of our model selection criterion, we use the same DGPs as in

the previous section. By computing the scores of the IC(r) over all possible r ranging from 0

to 7, the number of common factors is estimated as the minimizer of the IC(r).

The simulation results are presented in Table 4 for DGP1 and Table 5 for DGP2, where both

report the percentages of the estimated number of common factors r̂τ over 1000 repetitions.

As shown in both tables, our information criterion can correctly select the number of common

factors at a high percentage, close to 100%, when T and N are large.

Additionally, we have run simulations to investigate the performance of the quantile esti-

mators using estimated r̂τ rather than the true rτ. The corresponding simulation results are

provided in Table 1 in the online supplement. The results indicate that using the estimated

number of common factors does not change the performance of the proposed estimator much.

A plausible explanation is that the proposed estimators are not sensitive to overestimation of

the number of factors. This nice feature is proved by Moon and Weidner (2015) in the linear

interactive-effects model. Our simulation results indicate that the same feature also holds in

our model.

7 Empirical application

7.1 Data and model

We apply the proposed model to study the quantile co-movement of the US stock market

and its determinants with explicit consideration of the production linkages. We consider

three important periods: the period of the U.S. subprime mortgage crisis, the period of the

European sovereign debt crisis, and the recent period of monetary policy tightening when the

Fed began to increase the Federal Funds rate starting in December 2015. The three periods

correspond to

Period I: January 1, 2007, to April 30, 2009

Period II: September 1, 2009, to December 31, 2012

Period III: December 1, 2015, to June 30, 2018

We look at all firms listed in the U.S. stock market at daily frequency. Our data source

24



is the Center for Research in Security Prices from the Wharton Research Data Services. S-

tocks with no variation are excluded from the sample. To capture the production linkages,

we first aggregate daily firm level stock returns to industry level returns, and next construct

the industry level production network. The industry classification is implemented using the

Input-Output (IO) account data from the Bureau of Economic Analysis (BEA). More details

are provided in Section 7.2. We focus on the industry average returns instead of firms’ returns

for two reasons. First, the input-output linkages among industries are much more stable over

time and are determined by technology rather than by choice. Second, sometimes large and

financially-unconstrained firms dominate industry returns. With industry average returns,

we can isolate the demand effects from other potential effects that might work through finan-

cial frictions. The industry level production network is widely-adopted in literature, see for

instance Ahern and Harford (2014), Pasten et al. (2020), and Ozdagli and Weber (2020).

We consider using the following equation to model the U.S. stock market:

Qyit

(
τ|Q(−i)t(τ), xit, ρi,τ, bi,τ, f t,τ,λi,τ

)
= αi,τ + ρi,τ

N

∑
j=1

wijQyjt

(
τ|Q(−j)t(τ), xjt, ρj,τ, bj,τ f t,τ,λj,τ

)
+ InterestRatet ∗ bi,τ + f ′t,τλi,τ, (15)

where the weight wij is the share of industry i’s output being used by industry j as inputs,

computed using the IO tables from BEA. More details about the weights are given in Section

7.2. The weights measure the intensity of the production linkage.

We include the interest rate change as the regressor, because we would like to see how

the interest rate change affects the stock market directly and indirectly through the produc-

tion network. Throughout the application, we use the U.S. 10-year Treasury yield change to

represent the interest rate change. The 10-year Treasury yield change is at daily frequency.

In the following, Section 7.2 provides details about industry aggregation and weights com-

putation and Section 7.3 presents the empirical results.

7.2 Industry aggregation and weights computation

To compute the industry average stock return, we follow the BEA’s industry classification at

the detailed accounts level, which is the 6-digit IO code level. This detailed classification has
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a total of 405 industries for the U.S. market.3 Figures 1 and 2 in the online supplementary

document plots the empirical production (input-output) network corresponding to U.S. Input-

Output Data. Table 3 in the online supplementary document provides a list of industries.

We follow the same approach used in Ahern and Harford (2014), Pasten et al. (2020) and

Ozdagli and Weber (2020) to construct the weights. From the BEA, we get the Supply Table

(SUPPLY) and the Use Table (USE), where both are an industry-by-commodity matrix of

dollar trade flows. The (i, c) entry in the Supply Table, denoted as SUPPLYic, represents the

dollar amount of commodity c that industry i produces; the (j, c) entry in the Use Table,

denoted as USEjc, represents the dollar amount of commodity c that industry j purchases as

inputs. We first use SUPPLY to compute the share of each commodity c that each industry i

produces. We call this the SHARE matrix, which is industry-by-commodity, and each entry

is computed by SHAREic =
SUPPLYic

∑c∈C SUPPLYic
with C being the collection of all commodities. Then

we compute the dollar amount of commodities that industry j purchases from industry i, used

as j’s inputs. We call this the FLOW matrix, which is industry-by-industry, and each entry is

computed by FLOWij = ∑c∈C SHAREic ∗USEcj. Finally, the weight is computed according to

wij =
FLOWij

∑c∈C SUPPLYic
.

In our empirical analysis, since the IO accounts data (Supply and Use Tables) at the most

disaggregated level (i.e., the 6-digit IO code level) are published by BEA every five years, we

use the IO tables in year 2007 for Period I and use the IO tables in year 2012 for Periods II

and III, as they are the latest. To assess whether the IO tables in 2012 are similar to those in

2007, we implement the Mantel test (see Mantel (1967)) which is a popular statistical test of

the correlation between two matrices. The result indicates the IO tables are statistically similar

between 2007 and 2012.4

3Source: https://www.bea.gov/industry/input-output-accounts-data. IO tables provide IO code and name
together with the corresponding NAICS code, where NAICS code information is also included in the CRSP stock
data. So we aggregate firm level stock return to industry level stock return by matching NAICS with IO code.

4 Additionally, we also compute similarity measures between the two versions, applying existing methods (for
example, the Jaccard metric which is measured as the inverse of the number of links belonging to both networks
divided by the number of links that belong to at least one network, see Anand et al. (2018) for more details), that
give us a measure very close to one, implying the IO tables are very similar between 2007 and 2012.
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7.3 Empirical results

7.3.1 Number of common factors

We consider five different quantiles: τ = 0.05, 0.25, 0.50, 0.75, 0.95. The number of common

factors is selected by the IC method in (11) with the maximum number set to ten. For each

period and each quantile, the number of common factors is determined by the IC method.

Table 6 represents the estimated number of common factors for each period and each

quantile. As we can see, the number of common factors for τ = 0.05 in Period I (the U.S.

subprime mortgage crisis period) is determined as 2. During Period I, the number of common

factors is small and stable across quantiles, while in Period III (after the crisis, the recent pe-

riod of monetary policy tightening), there are fewer detected common factors in the lower tail

than in the upper tail. Basically speaking, our results indicate that during the crisis period,

the degree of financial market heterogeneity after controlling the input-output linkages is rel-

atively low and stable, as there are only one or two common factors driving the co-movement

in the market across the quantiles except for τ = 0.95, while during non-crisis period (Period

III), there is a higher degree of market heterogeneity at the upper tail.

Overall, the common factor structures that explain the asset return distributions vary

across quantiles and across periods. In addition, the common factor structures are not sym-

metric as their structures are different between the lower and upper tails.

7.3.2 The production network and decomposition of effects

The weighted average term on the right hand side of (15) captures the input-output linkages,

where the parameter ρi,τ indicates the strength of such spillover effects or the interconnect-

edness of the market. Table 7 summarizes the average of the estimated value of the spatial

parameter (ρ̂avg,τ = 1
N ∑N

i=1 ρ̂i,τ) for different periods and different quantiles, with standard er-

rors computed from the bootstrap method. Specifically, we consider two bootstrap approach-

es: (a) The bootstrapped residual at time t is drawn from the pool (ε̂1, ε̂2, · · · , ε̂T) where we

treat the N-dimensional vector, ε̂t = (ε̂1t, · · · , ε̂Nt)
′, as one point; (b) The next b-period boot-

strapped residual at time t is drawn from the same pool by treating N × b residuals matrix

ε̂∗t = (ε̂t, ε̂t+1, · · · , ε̂t+b−1) as one point. Following Hou et al. (2021), we set b = 3. The s-
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tandard error results are similar under the above two approaches. Therefore, we report the

results under approach (a) in Table 7 in the main text, and present the results under approach

(b) in Table 3 in the appendix.

From the table, we can see that, overall, the magnitude of spillover effects decreases over

time (as ρ̂avg,τ decreases over periods from Period I to Period III). This indicates that the

spillover effects are stronger during the U.S. subprime mortgage crisis and weaker during

the recent period of monetary policy tightening. Across quantiles, the magnitude of spillover

effects is generally higher at the tails than at the median with more pronounced disparity in

Periods II and III than Period I. This implies that the market is more interconnected during

crisis periods, and is also more interconnected at the tails than at the median. Our finding of

the declining spillover effects is consistent with the existing findings in the related literature.

For example, Diebold and Yilmaz (2014) show that the interconnectedness or spillover effect

in major U.S. financial institutions’ stock return volatilities is higher during the crisis periods,

whereas they measure interconnectedness in terms of the variance decomposition of stock

return volatilities.

To further analyze the production network interaction, we decompose the total effect of

interest rate changes on stock returns into direct effects and network effects. The three effects

are defined in the same spirit of those in LeSage and Pace (2009), Li (2017) and Ozdagli

and Weber (2020). Here are details. Let Qyit = Qyit

(
τ|Q(−i)t(τ), xit, ρi,τ, bi,τ, f t,τ,λi,τ

)
and

Qyt = (Qy1t , Qy2t , · · · , QyNt)
′. Model (15) can be rewritten as:

Qyt = (I − ρτW)−1ατ + (I − ρτW)−1Bτ ∗ InterestRatet + (I − ρτW)−1Λτ ∗ f t,τ (16)

where I is an N-by-N identity matrix; ατ = (α1,τ, α2,τ, · · · , αN,τ)
′; Λτ = (λ1,τ,λ2,τ, · · · ,λN,τ)

′;

ρτ = diag(ρ1,τ, ρ2,τ, . . . , ρN,τ) is an N-by-N matrix with its i-th diagonal entry being ρi,τ; sim-

ilarly, Bτ = diag(b1,τ, b2,τ, · · · , bN,τ) is an N-by-N matrix with its i-th diagonal entry being

bi,τ; InterestRatet is an N-by-1 vector with each element being InterestRatet. From the above

expression, we see that the partial derivative of the conditional quantile with respect to the

interest rate change is (I − ρτW)−1Bτ, which is an N-by-N matrix. Let

Effectτ = (I − ρτW)−1Bτ.
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The diagonal elements of Effect represent the direct effect (also including the feedback effect,

where an industry’s response to the interest rate can travel back to itself through the produc-

tion network); the off-diagonal elements represent the network effect (including high order

network effects). Then the average total effect(ATE), average direct effect (ADE) and average

network effect (ANE) are defined as

ATEτ =
1
N

N

∑
i=1

N

∑
j=1

Effectij,τ, ADEτ =
1
N

N

∑
i=1

Effectii,τ, ANEτ =
1
N

N

∑
i=1

N

∑
j 6=i

Effectij,τ.

We compute the percentage of the average direct effect and the percentage of the average

network effect, in order to compare their size. The results of this decomposition in both

values and percentages are provided in Table 8 and also plotted in Figure 1. The standard

errors reported in Table 8 are computed via the Monte Carlo method. More concretely, we

first compute the standard errors for both ρ̂i,τ and b̂i,τ, then generate new ρs
i,τ and bs

i,τ based

on their distributions given in Theorem 3 and calculate the corresponding total, direct and

network effects. Finally we compute the standard errors for these three effects based on 1000

repetitions (s = 1, 2, · · · , 1000).

There are three main findings from the results. First, the magnitude of the effects vary

across periods. As shown in Figure 1, the total effect is higher in Periods I and II than in III,

and its size is similar between Periods I and II. This is also true for the direct and network

effects. Second, overall, the direct effects are higher than the network effects across all three

periods, and their difference is smallest in Period I while biggest in Period III (as shown in

Table 8, the percentage of the direct effect out of the total effect is highest in Period III while

lowest in Period I). Third, across quantiles, the direct effect contributes more to the total effect

at the upper tail than at the lower tail during Period III, but exhibits a different pattern in

Period I. For comparison, Ozdagli and Weber (2020) focus on how the unexpected changes in

the target federal funds rate affect stock prices, and find that, at the mean, there is a significant

network effect which contributes more than 73 percent to the overall effect, based on a sample

of scheduled FOMC meetings from 1994 to 2008.
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7.3.3 Meaning of common factors

In factor models, the extracted common factors generally do not have an immediate economic

interpretation. So we need an independent step to explore the economic meanings of the

extracted common factors. In this subsection, we fulfill this work by regressing the estimated

factors on some observable variables which are believed to explain stock market returns. We

choose Fama-French North American 5 factors (hereafter, Fama-French 5 factors for short)

and crude oil price return, since both have explanatory powers on stock market returns as

documented in many studies.5 For each period and each quantile, we regress the extracted

factors on both Fama-French 5 Factors and crude oil price return:

f̂ jt,τ = FF′t ∗ δj + OilReturnt ∗ ηj + ejt, j = 1, 2, · · · , r̂τ (17)

where f̂ jt,τ is the estimated j-th common factor at time t and at quantile τ; r̂τ is the esti-

mated number of common factors; OilReturnt is the crude oil price return at time t; FFt =

(Mktt, HMLt, SMBt, RMWt, CMAt)′ is the vector of the Fama-French factors at time t. Since

the Fama-French factors are well-known in the literature, we omit the detailed definition and

refer readers to Fama and French (2015) for a complete description of these five factors. The

historical data of these five factors can be downloaded from the publicly available Fama-

French data library.6

Based on the above regression, we compute the ratio of the number of significant regres-

sion coefficients relative to the total Fama-French factors for all the r̂τ regressions. Likewise,

we compute the ratio for the crude oil price return. The results are summarized in Table 9.

From the results, we can see that for all periods, the estimated common factors are more sig-

nificantly related to the OilReturn than to the Fama-French factors. Regarding the OilReturn,

at the lower tail, the estimated common factors are significantly related to it during all three

periods, while at the upper tail, this relation is weaker in Periods II and III. Regarding the

Fama-French five factors, different periods have different relation patterns, as in Period III,
5 In the literature of asset pricing in finance, the Fama-French 5 factors are commonly used to explain the mean

of returns on stocks (for references, see Fama and French (1993, 2015) and etc). Regarding oil price, many studies
in the literature on analyzing stock market returns find, oil price changes have a significant impact on stock market
returns (for references, see Kilian and Park (2009); Broadstock and Filis (2014); Ready (2018)). In this paper, we
found that the extracted common factors are correlated with both the Fama-French NA 5 factors and oil price
across different quantiles.

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

30



the proportion of significant coefficients varies a lot more across quantiles than it does in Pe-

riods I and II. For illustrative purpose, we plot these estimated common factors together with

Fama-French factors and OilReturn in Figure 7 in the supplement, where we can see both of

them have a similar pattern of volatility starting in late 2008. Moreover, we can associate the

latent common factors with some economic activities and market events (please see the last

paragraph in Section E in the supplement for more details).

7.3.4 Sector-level classification

One advantage of the model (15) is its heterogeneous and quantile-dependent regression co-

efficient bi,τ, which allows us to study how the sensitivity of industry stock returns to yield

changes varies across quantiles, and furthermore, how the sensitivity changes across indus-

tries. In order to see whether the sensitivity varies across quantiles and across industries,

we plot both the point estimate and the 95% confidence interval for b̂i,τ (standard errors are

computed based on the variance formula derived in Theorem 3) for a number of industries

selected from different sectors, presented in Figures 5 and 6 in the supplement. The results

indicate that b̂i,τ indeed varies across different quantiles.

In the following, we study how the sensitivity changes across industries and whether

sector-level information could be helpful to explain it or not. So far, our analysis is based

on detailed industry accounts at the 6-digit IO code level, which could further be classified

into main sectors at the 2-digit IO code level, with a total of 20 sectors (Table 10 provides

a list of sectors).7 It is interesting to investigate the effect of sectors on the industry stock

returns, by applying a clustering approach to both of the estimated regression coefficients and

factor loadings. Our clustering approach aims to assign membership based on the similarities

in the sensitivity to the common factors (both observable and unobservable factors). The

sensitivity to the observable factors (InterestRatet) is captured by b̂i,τ and the sensitivity to the

unobservable factors (i.e., the extracted common factors f̂t,τ) is captured by λ̂i,τ. Note that the

industry-to-sector classification is known, so we can create a two-way table of the assigned

membership against the industry-to-sector classification.

More specifically, because of the resultant 20 sectors, we set the number of groups as 20,

7Table 2 in the online supplementary document presents a list of industries and their corresponding sectors.
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and do clustering based on {(b̂′i,τ, λ̂′i,τ); i = 1, 2, · · · , N}, for each period and each quantile.

The results for quantiles τ = 0.05 and 0.25 are shown in Figure 2. The row presents sector

and the column represents the assigned group. An (i, j)-th element denotes the percentage of

industries included in sector i such that they are assigned to the j-th group. Each row denotes

the distribution of industries included in one particular sector that belong to different assigned

groups. For example, from those tables, we can see that at the sector level, “DURABLE

GOODS” and “NONDURABLE GOODS” are similar to each other in terms of the sensitivity

to the common factors. Moreover, the similarity is stable over different periods and at τ = 0.05

and τ = 0.95 quantiles.

Theoretically, if the source of the sensitivity to the common factors is from sector level

classification, it is expected that the two-way table of the assigned group membership from the

clustering approach against the sector classification would be diagonal. However, as shown

in Figure 2, there is not enough evidence to support the diagonality. Similar results are

found for other quantiles τ = 0.25, 0.50 and 0.75. This indicates that the observable sector

level classification characteristic is insufficient to explain the heterogeneous sensitivities to the

factors.

7.3.5 Concluding discussions

We are now in a position to answer the five questions proposed in the introduction. For the

first question, our analysis shows that there are significant spillover effects in the U.S. stock

market, and their strength is decreasing over periods and is slightly higher at the tails than

at the median. For the second question, by decomposing the total effect of the interest rate

change on the stock market into direct and network effects, we find that the magnitude of

effects is higher in the crisis period, and the direct effect generally contributes more to the

total effect over periods, while the composition pattern across quantiles is different from that

over periods. For the third question, our model selection criterion results indicate that overall,

the number of detected common factors differs across quantiles and periods. Moreover, the

quantile factor structures are not symmetric between the lower and upper tails. For the fourth

question, our analysis indicates that the extracted common factors are more related to the

crude oil price return than the well-known Fama-French factors. For the last question, we
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implement a clustering approach based on the similarity of the sensitivity. Our results imply

that the sector level classification is not sufficient in explaining the sensitivity of the stock

market to the common factors, concluding that a diversified investment strategy only based

on the sector classification is inadequate.

8 Conclusion

In this paper, we introduce a new spatial panel quantile model with interactive fixed effects.

The model allows us to accommodate three interesting features simultaneously, that is spa-

tial effects (spillover effects), heterogeneous regression quantile coefficients and unobservable

common factors that may vary across quantiles.

To estimate the model, a new parameter estimation procedure and a new model selection

criterion are proposed. We establish the asymptotic properties of our estimator including

the consistency, convergence rates and limiting distributions. Moreover, we prove that the

proposed model selection criterion can estimate the dimension of interactive fixed effects with

probability approaching one. We apply the proposed model and estimation method to the

U.S. stock market. Some new findings are uncovered by our new model.

There are still some open problems. First, this paper considers the quantile function at a

particular τ. If the entire quantile function is considered instead, more strict restrictions are

required to ensure monotonicity, the tools to investigate the asymptotic theory in this general

case are still lacking and need to be developed. Second, we assume that the weight matrix

W is exogenous. But it is possible that W is endogenous in real data applications. Further

efforts should be made to address this concern. We would like to investigate these issues in

the future.
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Table 1: Simulation results under DGP1

DGP1 (F is unknown) DGP1 (F is known)
τ N T MSEb SEb MSEρ SEρ MSEb SEb MSEρ SEρ

0.05 100 100 0.1678 0.0183 0.0109 0.0021 0.1545 0.0165 0.0094 0.0017
200 100 0.1692 0.0135 0.0109 0.0016 0.1556 0.0096 0.0096 0.0014
100 200 0.0889 0.0096 0.0085 0.0018 0.0757 0.0088 0.0070 0.0016
200 200 0.0900 0.0086 0.0087 0.0013 0.0734 0.0070 0.0072 0.0015
300 300 0.0641 0.0049 0.0077 0.0011 0.0568 0.0037 0.0065 0.0010
300 400 0.0515 0.0039 0.0074 0.0009 0.0414 0.0031 0.0060 0.0007
300 500 0.0439 0.0034 0.0072 0.0007 0.0371 0.0027 0.0055 0.0005

0.5 100 100 0.0770 0.0108 0.0103 0.0020 0.0640 0.0086 0.0079 0.0019
200 100 0.0765 0.0071 0.0102 0.0016 0.0611 0.0063 0.0074 0.0013
100 200 0.0452 0.0073 0.0087 0.0019 0.0347 0.0066 0.0070 0.0017
200 200 0.0447 0.0050 0.0084 0.0012 0.0329 0.0041 0.0069 0.0011
300 300 0.0338 0.0037 0.0078 0.0009 0.0259 0.0034 0.0066 0.0007
300 400 0.0288 0.0035 0.0076 0.0007 0.0196 0.0031 0.0063 0.0004
300 500 0.0246 0.0032 0.0072 0.0003 0.0192 0.0025 0.0059 0.0003

0.95 100 100 0.1634 0.0180 0.0135 0.0027 0.1443 0.0155 0.0112 0.0020
200 100 0.1668 0.0144 0.0136 0.0019 0.1454 0.0115 0.0115 0.0017
100 200 0.0855 0.0095 0.0084 0.0017 0.0604 0.0083 0.0076 0.0018
200 200 0.0868 0.0083 0.0085 0.0014 0.0572 0.0063 0.0078 0.0013
300 300 0.0624 0.0045 0.0076 0.0012 0.0432 0.0036 0.0068 0.0011
300 400 0.0499 0.0038 0.0073 0.0010 0.0391 0.0029 0.0062 0.0009
300 500 0.0429 0.0034 0.0071 0.0009 0.0325 0.0023 0.0056 0.0007

Note: The results in the left panel when F is known denote the estimation results of our
proposed estimator when all parameters (including factors) are unknown and need to be esti-
mated. With comparison, the results in the right panel when F is known denotes the infeasible
estimation results of our proposed estimator when assuming the factors are observed and do
not need to be estimated. MSE is the averaged mean squared error computed over 1000
repetitions, defined as in (14). SE represents the standard deviations of the mean squared
errors.
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Table 2: Simulation results under DGP2

DGP2 (F is unknown) DGP2 (F is known)
τ N T MSEb SEb MSEρ SEρ MSEb SEb MSEρ SEρ

0.05 100 100 0.1666 0.0206 0.0116 0.0023 0.1591 0.0184 0.0105 0.0020
200 100 0.1694 0.0143 0.0111 0.0013 0.1540 0.0121 0.0107 0.0018
100 200 0.0886 0.0098 0.0094 0.0015 0.0800 0.0088 0.0082 0.0019
200 200 0.0916 0.0086 0.0093 0.0014 0.0781 0.0078 0.0085 0.0014
300 300 0.0655 0.0066 0.0088 0.0012 0.0589 0.0060 0.0078 0.0011
300 400 0.0528 0.0050 0.0078 0.0013 0.0451 0.0045 0.0070 0.0009
300 500 0.0455 0.0039 0.0074 0.0010 0.0432 0.0032 0.0065 0.0007

0.5 100 100 0.0829 0.0114 0.0129 0.0024 0.0682 0.0081 0.0110 0.0019
200 100 0.0814 0.0083 0.0122 0.0017 0.0655 0.0065 0.0113 0.0017
100 200 0.0479 0.0077 0.0117 0.0020 0.0400 0.0070 0.0095 0.0018
200 200 0.0495 0.0062 0.0115 0.0016 0.0371 0.0051 0.0097 0.0015
300 300 0.0393 0.0058 0.0111 0.0014 0.0301 0.0046 0.0090 0.0013
300 400 0.0344 0.0055 0.0111 0.0014 0.0270 0.0040 0.0084 0.0011
300 500 0.0313 0.0052 0.0102 0.0013 0.0267 0.0035 0.0079 0.0010

0.95 100 100 0.1706 0.0177 0.0159 0.0023 0.1664 0.0159 0.0135 0.0020
200 100 0.1731 0.0137 0.0157 0.0018 0.1633 0.0128 0.0136 0.0017
100 200 0.0885 0.0103 0.0135 0.0021 0.0769 0.0096 0.0110 0.0019
200 200 0.0927 0.0070 0.0133 0.0016 0.0790 0.0062 0.0114 0.0015
300 300 0.0694 0.0057 0.0126 0.0014 0.0576 0.0050 0.0098 0.0011
300 400 0.0575 0.0054 0.0120 0.0013 0.0533 0.0049 0.0090 0.0009
300 500 0.0504 0.0048 0.0115 0.0012 0.0463 0.0038 0.0084 0.0007

Note: The results in the left panel when F is known denote the estimation results of our
proposed estimator when all parameters (including factors) are unknown and need to be esti-
mated. With comparison, the results in the right panel when F is known denotes the infeasible
estimation results of our proposed estimator when assuming the factors are observed and do
not need to be estimated. MSE is the averaged mean squared error computed over 1000
repetitions, defined as in (14). SE represents the standard deviations of the mean squared
errors.
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Table 3: Simulation results for two other estimators (NoSpatial and NoFactor)

DGP1 DGP2
NoSpatial NoFactor NoSpatial NoFactor

τ N T MSEb MSEb MSEρ MSEb MSEb MSEρ

0.05 100 100 0.2892 0.2658 0.0214 0.2970 0.2679 0.0215
200 100 0.3037 0.2677 0.0209 0.2942 0.2729 0.0213
100 200 0.1529 0.1593 0.0171 0.1543 0.1577 0.0173
200 200 0.1552 0.1602 0.0167 0.1625 0.1593 0.0173
300 300 0.1138 0.1146 0.0138 0.1197 0.1142 0.0146
300 400 0.0939 0.1011 0.0126 0.0979 0.1032 0.0141
300 500 0.0803 0.0839 0.0112 0.0856 0.0835 0.0127

0.5 100 100 0.1274 0.1772 0.0204 0.1285 0.1816 0.0231
200 100 0.1307 0.1772 0.0200 0.1249 0.1831 0.0224
100 200 0.0793 0.1155 0.0167 0.0815 0.1181 0.0195
200 200 0.0818 0.1159 0.0167 0.0824 0.1192 0.0193
300 300 0.0674 0.0946 0.0139 0.0687 0.0972 0.0168
300 400 0.0595 0.0893 0.0127 0.0613 0.0931 0.0159
300 500 0.0554 0.0746 0.0112 0.0576 0.0826 0.0155

0.95 100 100 0.2900 0.3641 0.0231 0.2966 0.3725 0.0261
200 100 0.3114 0.3687 0.0234 0.3058 0.3787 0.0257
100 200 0.1499 0.1875 0.0170 0.1578 0.1894 0.0218
200 200 0.1569 0.1883 0.0165 0.1603 0.1926 0.0212
300 300 0.1118 0.1428 0.0137 0.1185 0.1480 0.0191
300 400 0.0907 0.1302 0.0125 0.0970 0.1362 0.0179
300 500 0.0780 0.1023 0.0110 0.0852 0.1076 0.0165

Note: The results in the left panel when F is known denote the estimation results of our
proposed estimator when all parameters (including factors) are unknown and need to be esti-
mated. With comparison, the results in the right panel when F is known denotes the infeasible
estimation results of our proposed estimator when assuming the factors are observed and do
not need to be estimated. MSE is the averaged mean squared error computed over 1000
repetitions, defined as in (14).
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Table 4: Simulation results for determining the number of common factors r̂τ under DGP1

r̂τ 0 1 2 3 4 5 6 7 Rtrue
τ T N
0.05 100 100 0 47.6% 52.4% 0 0 0 0 0 1

200 100 0 60.8% 39.2% 0 0 0 0 0 1
100 200 0 69.0% 31.0% 0 0 0 0 0 1
200 200 0 78.8% 21.2% 0 0 0 0 0 1
300 300 0 85.2% 14.8% 0 0 0 0 0 1
300 400 0 90.2% 9.8% 0 0 0 0 0 1
300 500 0 95.4% 4.6% 0 0 0 0 0 1

0.50 100 100 0 100% 0 0 0 0 0 0 1
200 100 0 100% 0 0 0 0 0 0 1
100 200 0 100% 0 0 0 0 0 0 1
200 200 0 100% 0 0 0 0 0 0 1
300 300 0 100% 0 0 0 0 0 0 1
300 400 0 100% 0 0 0 0 0 0 1
300 500 0 100% 0 0 0 0 0 0 1

0.95 100 100 0 42.2% 57.8% 0 0 0 0 0 1
200 100 0 45.8% 54.2% 0 0 0 0 0 1
100 200 0 66.6% 33.4% 0 0 0 0 0 1
200 200 0 77.4% 22.6% 0 0 0 0 0 1
300 300 0 84.0% 16.0% 0 0 0 0 0 1
300 400 0 89.4% 10.6% 0 0 0 0 0 1
300 500 0 94.6% 5.4% 0 0 0 0 0 1

Note: This table reports the percentage of the selected number of common factors r̂τ under
DGP1 over 1000 simulation runs. The results are for τ = 0.05, τ = 0.50 and τ = 0.95 quantile
points. The true number of common factors is one for all the three quantile points as indicated
in the last column.
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Table 5: Simulation results for determining the number of common factors r̂τ under DGP2

r̂τ 0 1 2 3 4 5 6 7 Rtrue
τ T N
0.05 100 100 0 40.8% 59.2% 0 0 0 0 0 1

200 100 0 50.6% 49.4% 0 0 0 0 0 1
100 200 0 58.6% 41.4% 0 0 0 0 0 1
200 200 0 71.0% 29.0% 0 0 0 0 0 1
300 300 0 79.8% 20.2% 0 0 0 0 0 1
300 400 0 86.2% 13.8% 0 0 0 0 0 1
300 500 0 93.4% 6.6% 0 0 0 0 0 1

0.50 100 100 0 0 100% 0 0 0 0 0 2
200 100 0 0 100% 0 0 0 0 0 2
100 200 0 0 100% 0 0 0 0 0 2
200 200 0 0 100% 0 0 0 0 0 2
300 300 0 0 100% 0 0 0 0 0 2
300 400 0 0 100% 0 0 0 0 0 2
300 500 0 0 100% 0 0 0 0 0 2

0.95 100 100 0 0 1.6% 34.6% 63.8% 0 0 0 3
200 100 0 0 0.8% 40.4% 58.8% 0 0 0 3
100 200 0 0 0% 51.0% 49.0% 0 0 0 3
200 200 0 0 0% 63.8% 36.2% 0 0 0 3
300 300 0 0 0% 74.2% 25.8% 0 0 0 3
300 400 0 0 0% 83.6% 16.4% 0 0 0 3
300 500 0 0 0% 92.0% 8.0% 0 0 0 3

Note: This table reports the percentage of the selected number of common factors r̂τ under
DGP2 over 1000 simulation runs. The results are for τ = 0.05, τ = 0.50 and τ = 0.95 quantile
points. The true number of common factors are r(τ=0.05) = 1, r(τ=0.50) = 2 and r(τ=0.95) = 3 as
indicated in the last column.

Table 6: Estimated number of common factors r̂τ

τ Period I Period II Period III
0.05 2 1 1
0.25 2 1 1
0.50 1 2 5
0.75 2 2 4
0.95 3 5 6

Period I: 01/01/2007 - 04/30/2009, N = 324 and T = 582;
Period II: 09/01/2009 - 12/31/2012, N = 323 and T = 831;
Period III: 12/01/2015 - 06/30/2018, N = 307 and T = 647.
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Table 7: Average of the estimated spatial parameter ρ̂avg,τ = 1
N ∑N

i=1 ρ̂i,τ

τ Period I Period II Period III
0.05 0.615 0.537 0.355

(0.009) (0.039) (0.012)
0.25 0.609 0.532 0.353

(0.009) (0.015) (0.036)
0.5 0.610 0.498 0.321

(0.009) (0.017) (0.016)
0.75 0.612 0.555 0.358

(0.007) (0.016) (0.031)
0.95 0.614 0.548 0.351

(0.008) (0.012) (0.026)

Note: Standard errors are in parenthesis.
All estimates are significant at 1% level.

Period I: 01/01/2007 - 04/30/2009, N = 324 and T = 582;
Period II: 09/01/2009 - 12/31/2012, N = 323 and T = 831;
Period III: 12/01/2015 - 06/30/2018, N = 307 and T = 647.
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Table 8: Effect Decomposition: Total, Direct and Network Effects
(1) (2) (3) (4) (5)

Effects in Value Effects in Percentage
Total Effect Direct Effect Network Effect Direct Effect Network Effect

Period I

0.05 0.1211 0.0655 0.0556 54.08% 45.92%
(0.0081) (0.0046) (0.0043)

0.25 0.1056 0.0572 0.0484 54.20% 45.80%
(0.0049) (0.0028) (0.0027)

0.5 0.0964 0.0516 0.0448 53.50% 46.50%
(0.0046) (0.0025) (0.0028)

0.75 0.0982 0.0521 0.0461 53.03% 46.97%
(0.0053) (0.0030) (0.0029)

0.95 0.1050 0.0504 0.0546 48.30% 51.70%
(0.0045) (0.0027) (0.0023)

Period II

0.05 0.1096 0.0608 0.0489 55.43% 44.57%
(0.0010) (0.0007) (0.0005)

0.25 0.0984 0.0589 0.0395 59.88% 40.12%
(0.0014) (0.0009) (0.0007)

0.5 0.0918 0.0595 0.0323 64.80% 35.20%
(0.0019) (0.0009) (0.0014)

0.75 0.1076 0.0655 0.0421 60.90% 39.10%
(0.0019) (0.0012) (0.0009)

0.95 0.1017 0.0624 0.0393 61.31% 38.69%
(0.0015) (0.0009) (0.0007)

Period III

0.05 0.0770 0.0536 0.0234 69.56% 30.44%
(0.0015) (0.0011) (0.0005)

0.25 0.0731 0.0510 0.0221 69.80% 30.20%
(0.0022) (0.0015) (0.0010)

0.5 0.0682 0.0489 0.0194 71.59% 28.41%
(0.0039) (0.0022) (0.0030)

0.75 0.0778 0.0545 0.0233 70.02% 29.98%
(0.0032) (0.0021) (0.0016)

0.95 0.0746 0.0570 0.0176 76.45% 23.55%
(0.0014) (0.0012) (0.0004)

Note: Standard errors are in parenthesis. All the three effects are significant at 1% level. Period I:
01/01/2007 - 04/30/2009; Period II: 09/01/2009 - 12/31/2012; Period III: 12/01/2015 - 06/30/2018.
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Table 9: Link the common factors to Fama-French 5 Factors and Oil Return

(1) (2) (3) (4) (5) (6)
Period I Period II Period III

τ FF 5Factors Oil Return FF 5Factors Oil Return FF 5Factors Oil Return

0.05 0.4 1 0.4 1 0.8 1
0.25 0.3 1 0.4 1 0.8 1
0.5 0.4 1 0.2 0.5 0.2 0.4
0.75 0.6 1 0.2 0.5 0.15 0.5
0.95 0.27 0.67 0.16 0.4 0.2 0.33

Note: See Section 7.3.3 for more details. Period I: 01/01/2007 - 04/30/2009; Period II: 09/01/2009 - 12/31/2012;
Period III: 12/01/2015 - 06/30/2018.
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Figure 1: Effect Decomposition in Value
Note: See Section 7.3.3 and Table 8 for more details. Period I: 01/01/2007 - 04/30/2009; Period II: 09/01/2009 -

12/31/2012; Period III: 12/01/2015 - 06/30/2018.
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Period I (τ = 0.05) Period I (τ = 0.95)

Period II (τ = 0.05) Period II (τ = 0.95)

Period III (τ = 0.05) Period III (τ = 0.95)

Figure 2: Distribution of detailed industries in each of the sectors
Note: See Section 7.3.4 for more details. An (i, j)-th element represents the percentage of industries in sector i

such that they belong to the j-th group. Period I: 01/01/2007 - 04/30/2009; Period II: 09/01/2009 - 12/31/2012;
Period III: 12/01/2015 - 06/30/2018.
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Table 10: List of Sectors (their short names are used in Figure 2)

Sector ID Sector Name Sector Name Short

11
AGRICULTURE,FORESTRY,
FISHING, AND HUNTING

AGRICULTURE

21 MINING MINING
22 UTILITIES UTILITIES
23 CONSTRUCTION CONSTRUCTION
33DG DURABLE GOODS DURABLE GOODS
31ND NONDURABLE GOODS NONDURABLE GOODS
42 WHOLESALE TRADE WHOLESALE TRADE
44RT RETAIL TRADE RETAIL TRADE

48TW
TRANSPORTATION AND
WAREHOUSING,
EXCLUDING POSTAL SERVICE

TRANSPORTATION

51 INFORMATION INFORMATION
52 FINANCE AND INSURANCE FINANCE AND INSURANCE

53
REAL ESTATE AND
RENTAL AND LEASING

REAL ESTATE

54
PROFESSIONAL AND
TECHNICAL SERVICES

PROFESSIONAL

55
MANAGEMENT OF
COMPANIES AND ENTREPRISES

MANAGEMENT

56
ADMINISTRATIVE AND
WASTE SERVICES

ADMINISTRATIVE

61 EDUCATIONAL SERVICES EDUCATIONAL

62
HEALTH CARE AND
SOCIAL ASSISTANCE

HEALTH CARE

71
ARTS, ENTERTAINMENT,
AND RECREATION

RECREATION

72
ACCOMMODATION AND
FOOD SERVICES

FOOD SERVICE

81
OTHER SERVICES,
EXCEPT GOVERNMENT

OTHER SERVICE

48
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