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Abstract: 
While there is a new and rapidly growing literature on the effects of climatic factors on economic 

and social outcomes, little research has been conducted to understand the fiscal impact of 

weather, especially at the sub-state level. Using data from Massachusetts municipalities from 

1990 through 2019, this paper estimates government spending as a function of temperature and 

precipitation while controlling for municipality and year fixed effects and municipality-specific 

time trends. The results show that weather has statistically significant and economically 

meaningful effects on local government spending. A 1 degree Fahrenheit increase in the average 

temperature results in a 3.2 percent increase in real per capita total general fund expenditures. 

Some government functions, such as public works and general government, are affected more 

by weather than others. The impact of weather may be persistent and heterogeneous across 

municipalities. There is some evidence that municipalities adapt to rising temperatures over 

time. 
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I. Introduction 

The ongoing debate on climate change has generated great interest in understanding how climatic 

factors affect economic and social activities. A new and rapidly growing literature examines the 

impact of weather conditions on various economic outcomes, including output, income, 

employment, productivity, inflation, housing construction and prices, energy demand, household 

finance, and banks’ performance.1 Other research studies the impact of weather on social 

outcomes, such as migration, mortality, hospitalization, crime, time allocation, and political 

stability. However, research on the fiscal impact of weather conditions is extremely limited. 

Furthermore, the few existing studies focus exclusively on how natural disasters affect government 

finances and household receipt of public assistance.2  

 To the best of my knowledge, this paper is the first to examine the impact of temperature 

and precipitation on local government spending. Using data from Massachusetts municipalities 

during a 30-year span from fiscal years (FY) 1990 through 2019, I estimate the relationship 

between government expenditures and a series of weather variables including average temperature, 

total precipitation, and measures of extreme temperature and precipitation. I use a panel data model 

with controls for municipality and FY fixed effects and municipality-specific time trends. By 

exploiting the exogeneity of weather variation within municipalities over time, this model allows 

the estimated effects of weather variables to be interpreted as causal. 

II. Model 

 
1 See Dell, Jones, and Olken (2014) and Kolstad and Moore (2020) for a review of the climate-economy literature. 
2 See Noy and Nualsri (2011), Deryugina (2017), Deryugina, Kawano, and Levitt (2018), Miao, Hou, and Abrigo 
(2018), Jerch, Kahn, and Lin (2021), Tran and Wilson (2021), and Liao and Kousky (2022).  
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Weather can have a direct impact on government expenditures. Governments have to spend more 

on snow removal when their communities receive a larger amount of snowfall. They pay more to 

heat and cool public facilities when their communities experience more cold and hot days, 

respectively. Extreme temperatures and heavy rainfall and snowfall can damage streets and 

sidewalks and increase road maintenance costs. Weather can also have an indirect impact on 

government expenditures. Previous research shows that weather can affect a variety of economic 

and social activities and thereby impact the demand for and costs of providing public services. For 

example, Ranson (2014) finds that higher temperatures increase crime rates, which could raise 

public safety costs. 

 I use a cost-function framework to model the relationship between weather and government 

expenditures. This framework has been used extensively to explore the determinants of state and 

local government spending, especially public school spending. The cost function is typically 

written as  

𝐸𝐸 = 𝑓𝑓(𝐶𝐶, 𝑆𝑆, 𝑒𝑒),                                   (1) 

where E is government spending, C is cost factors, S is service outcomes, and e is efficiency. This 

approach reveals how government spending responds to changes in cost factors, with outcomes 

and efficiency held constant. Cost factors are defined as community characteristics that affect 

government spending but are outside the direct control of government officials at any given time. 

In previous research, the set of cost factors is restricted to socioeconomic characteristics. For 

example, cost factors for public school spending often include the percentage of low-income 

students, the percentage of students with special needs, and the percentage of students who speak 

English as a second language. Building on that previous research, this paper uses weather as a cost 

factor. 
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 I use a panel data model to estimate a reduced form of the cost function. The baseline 

specification is  

𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖 + 𝐼𝐼𝑖𝑖 + 𝛾𝛾𝑖𝑖 × 𝑡𝑡 + 𝜃𝜃 + 𝜀𝜀𝑖𝑖𝑖𝑖,                                   (2) 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖𝑖𝑖 is the logarithm of real per capita government expenditures for municipality i in FY 

t, 3 𝑊𝑊𝑖𝑖𝑖𝑖 is weather variables, 𝑋𝑋𝑖𝑖𝑖𝑖 is time-varying control variables, 𝑇𝑇𝑖𝑖 is FY fixed effects, 𝐼𝐼𝑖𝑖 is 

municipality fixed effects, 𝛾𝛾𝑖𝑖 × 𝑡𝑡 is municipality-specific time trends, 𝜃𝜃 is a constant term, and 𝜀𝜀𝑖𝑖𝑖𝑖 

is an error term. I include two time-varying control variables: log real per capita property tax base 

and log real per capita state grants.4 These are critical determinants of local revenue and spending. 

The per capita property tax base may correlate with weather because municipalities in coastal or 

mountainous regions can have distinct weather patterns, and their property values are often higher 

due to natural amenities. Per capita state grants may correlate with weather through their negative 

relationship with the per capita property tax base. State grants, especially those for public schools, 

are often distributed via equalization formulas, which allocate more aid dollars to places with lower 

per capita property values. The symbol 𝛼𝛼 is the coefficient of interest capturing the total (both 

direct and indirect) effects of weather. Estimated standard errors in this equation are clustered by 

municipality to allow for correlations within municipalities over time. 

III. Data 

 
3 I also ran the same regression model on the log real per capita municipal total outstanding debt. The estimated 
coefficients on weather variables were not significant. 
4 Previous research shows that some socioeconomic and demographic characteristics of a community, such as income, 
age structure, educational attainment levels, and being part of a regional school district, could affect local spending 
(for example, Bradbury and Zhao 2009; Zhao 2022). Because these characteristics either do not change over time or 
move rather slowly, they can be controlled for by municipality and year fixed effects and municipality-specific time 
trends. In addition, data on many of these variables are not available for each municipality in every year, especially in 
the early part of the sample period. 
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I use Massachusetts data from FY1990 through FY2019 to estimate equation (2). The spending 

data were obtained from the Massachusetts Department of Revenue, which gathers detailed annual 

financial information on the state’s 351 municipalities through the “Schedule A” form submitted 

by local government officials. This paper focuses on a city’s or town’s general fund, which is used 

to support daily operations and accounts for most financial activities governed by the normal 

municipal appropriation. It does not include spending funded by capital project,5 trust, enterprise,6 

and other special funds.  

 General fund data include both total expenditures and major subcategory expenditures, 

such as public works, general government, education, police, fire, human services, and culture and 

recreation.7 Because there are no powerful county governments in Massachusetts, municipalities 

are responsible for providing a wide range of public services.8 However, not every municipality 

provides all types of services. Some towns with a small population do not have their own police 

and instead rely on state police. Small towns often also use volunteer firefighters and therefore 

report zero spending on fire safety. I exclude those towns from the regressions for police and fire 

 
5 Data on municipal capital project funds in Massachusetts are available only for FY2003 onward. From FY2003 
through FY2019, 217 out of 351 Massachusetts municipalities reported non-zero, non-missing values of total capital 
project fund expenditures each year. Using this data set, I tried estimating equation (2) with log real per capita capital 
project fund expenditures as the dependent variable. None of the estimated coefficients on weather variables was 
significant. 
6 Enterprise funds are used to fund municipal services for which a fee is charged, such as water and sewer services. 
Data on municipal enterprise funds in Massachusetts are available only for FY2004 onward. From FY2004 through 
FY2019, 206 out of 351 Massachusetts municipalities reported non-zero, non-missing values of total enterprise fund 
expenditures each year. Using this data set, I tried estimating equation (2) with log real per capita enterprise fund 
expenditures as the dependent variable. The estimated coefficients on weather variables were not significant. 
7 “General government” covers legislative, executive, accountant/auditor, collector, treasurer, law department, 
town/city counsel, public building/properties maintenance, assessors, operation support, license and registration, land 
uses, conservation commission, and other functions. “Public works” covers highways/streets snow and ice removal, 
highway/streets other, waste collection and disposal, sewerage collection and disposal, water distribution, parking 
garages, street lighting, and other functions. “Human services” covers health services, clinical services, special 
programs, veterans services, and other functions. “Culture and recreation” covers library, recreation, parks, historical 
commission, celebrations, and other functions. 
8 In Massachusetts, school districts are fiscally dependent on municipal governments. They do not have authority to 
raise tax revenues and instead rely on municipal appropriation and state grants.  
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spending.9 I also exclude municipalities with missing values for the dependent variable in question 

in order to run a balanced panel regression.10 

 Panel (a) in Figure 1 shows that real per capita total expenditures exhibit a linear upward 

trend, which also exists for subcategory expenditures. The empirical model in equation (2) 

accounts for this time trend but also allows it to vary by municipality. 

 I obtain weather data from the Global Historical Climatology Network daily (GHCNd).11 

The data consist of daily weather records from ground stations across the world that undergo a 

common set of quality assurance reviews. While GHCNd includes numerous variables, five of 

them are designated as “core elements” and have the best data availability: minimum temperature, 

maximum temperature, precipitation, snowfall, and snow depth. I use the first four to construct 

weather variables for regression analysis. I compute daily average temperature as a simple average 

of minimum and maximum temperature. GHCNd has sparse information for other weather 

elements, such as wind speed and soil temperature, which are not used in this analysis.  

 Weather data need to be aggregated from the weather-station level to the municipality level 

to align with the spending data. First, I identify all weather stations within 50 miles of the centroid 

of each Massachusetts municipality. I follow Ranson (2014) and Wilson (2017) in using 50 miles 

 
9 Municipalities that are dropped from the regression for police spending include Gosnold, Monroe, Mount 
Washington, and New Ashford. Municipalities that are dropped from the regression for fire spending include Adams, 
Barnstable, Buckland, Dalton, Dartmouth, Deerfield, Gosnold, Montague, Mount Washington, Oxford, Palmer, 
Plympton, South Hadley, Wareham, and Williamstown.  
10 Municipalities that are dropped from the regression for human services spending include Gosnold and New Ashford. 
Municipalities that are dropped from the regression for culture and recreation spending include Gosnold, Hawley, 
Mount Washington, and New Ashford. Due to missing data, Gosnold, which often has fewer than 100 residents and 
is the smallest community in the state, is also dropped from the regressions for total expenditures public works, general 
government, and education spending. 
11 To the best of my knowledge, there are no data on natural disasters at the municipality level. Existing data sets of 
natural disasters—FEMA Disaster Declarations Summaries, NOAA Storm Events Database, and SHELDUS—are 
available only at the county and state levels and thus not suitable for analysis in this paper. 
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as a cutoff to identify relevant stations.12 During the FY1990–FY2019 period, there were more 

than 1,100 unique stations within 50 miles of the centroid of at least one Massachusetts 

municipality. Next, I use the inverse of the distance between the centroid and each relevant weather 

station to weigh that station’s data and use the weighted average for each weather variable as the 

daily value for that municipality.  

 I further aggregate the daily weather data to the fiscal-year level to align with the annual 

spending for each municipality. I calculate the annual mean of daily average temperature and the 

yearly total of precipitation and snowfall. To test the effects of extreme weather events, I also 

calculate the percentage of days in each fiscal year with a maximum temperature of 90 degrees 

Fahrenheit or hotter, the percentage of days with a maximum temperature of 32 degrees Fahrenheit 

or colder, the percentage of days with at least 1 inch of precipitation, and the percentage of days 

with at least 1 inch of snowfall.13 Including these measures of extreme temperature and 

precipitation helps to account for a possible nonlinear relationship between weather and municipal 

spending.14 

Panels (b) through (h) in Figure 1 show that there was considerable variation over time for 

these weather variables. They also suggest that Massachusetts became hotter and wetter over the 

30-year period. The annual average temperature for Massachusetts municipalities increased about 

 
12 I tried reducing the cutoff to 40 miles, but doing so leaves no relevant weather stations for a few municipalities for 
part of the sample period.  
13 I tried including the standard deviation of the daily average temperature for each municipality in each year as a 
measure of annual temperature volatility. It is positive and significant at the 5 percent level in the regression for total 
expenditures when the full sample is used. However, it becomes insignificant and much smaller after I drop the 11 
smallest municipalities (a robustness check conducted in Table 3). Given that the results on this variable are sensitive 
to the sample selection, I exclude it from the main regressions. Including this variable does not affect the results on 
other weather variables. 
14 I tried adding the quadratic terms of all seven weather variables to the model. A Wald test found that these quadratic 
terms are not jointly significantly different from zero and therefore do not need to be included in the regression for 
total expenditures. 
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0.04 degree Fahrenheit per year, on average (Panel b). This is similar to Mohaddes et al.’s (2022) 

estimate that the average yearly rise in temperature for Massachusetts over the period of 1963 

through 2016 was 0.03 degree Celsius or 0.05 degree Fahrenheit. Runkle et al. (2022) also observe 

that the temperature for Massachusetts has been trending upward since 1960. 

IV. Results 

Table 1 shows the baseline regression results.15 Column 1 indicates that total expenditures are 

affected by average temperature and the frequency of very cold days and heavy snowfall. A 1 

degree Fahrenheit rise in the average temperature, on average, results in a 3.2 percent increase in 

real per capita total expenditures. This corresponds to an increase of $100 per capita (in 2019 

dollars) if real per capita total expenditures are set to the statewide average during the FY1990–

FY2019 period, which was $3,108 per capita (in 2019 dollars). A 1 percentage point increase in 

the percentage of days with a maximum temperature of 32 degrees Fahrenheit or colder or in the 

percentage of days with at least 1 inch of snowfall, on average, leads to a 0.4 percent increase in 

real per capita total expenditures, or an increase of $12 per capita if evaluated at the 30-year 

statewide average real per capita total expenditures. 

 Other columns in Table 1 explore heterogeneity of weather effects by government function, 

which helps to shed light on the channels through which weather affects total expenditures. Public 

works, general government, and human services appear to be affected more than other government 

functions, as they have more significant results. Average temperature has a positive effect on 

spending on public works, general government, and fire, but a negative effect on spending on 

 
15 The two time-varying control variables—log real per capita property tax base and log real per capita state grants—
are positive and significant in the regressions. This is consistent with the hypothesis that revenue capacity contributes 
to local spending. I omit their estimates from Table 1 to simplify the presentation. 
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human services.16 The percentage of days with a maximum temperature of 32 degrees Fahrenheit 

or colder positively affects spending on general government, education, and culture and recreation, 

while negatively affecting spending on human services. The effect of the percentage of days with 

at least 1 inch of snowfall on total expenditures is mostly channeled through its impact on general 

government spending. In addition, the coefficient on total snowfall in the regression for public 

works is positive and highly significant. This is consistent with the intuition that more snowfall 

results in higher costs for snow removal and road maintenance. 

 Table 2 tests the robustness of the results to potential measurement error in weather 

variables. I implicitly use weather at the centroid of each municipality to represent weather for the 

whole municipality. This is a reasonable assumption, especially if a municipality has a small and 

circular-shaped area. However, if the municipality is large and far from circular in shape, weather 

at the centroid could be a poor representation of weather for the whole municipality. In 

Massachusetts, most municipalities are indeed small. Almost two-thirds of the municipalities, or 

230, have an area smaller than 25 square miles.17 Another 31 percent, or 110 municipalities, are 

medium sized, with an area of 25 to 50 square miles. Only 11 municipalities (including Boston) 

are larger than 50 square miles. To measure a municipality’s circularity, I calculate the ratio of the 

municipality’s area to the area of its minimum bounding circle. The smaller this ratio, the further 

the municipality’s shape departs from a circle. Among Massachusetts municipalities, the 

circularity measure ranges from 0.07 to 0.80, with a median of 0.49. In Table 2, I drop the 11 

largest municipalities, each of which is larger than 50 square miles, regardless of their circularity 

 
16 In the regression for human services, the estimated coefficients on average temperature and the percentage of days 
with a maximum temperature of 32 degrees Fahrenheit or colder are negative. This is likely because municipal 
governments choose to cut back on human services in order to spend more on other functions in response to 
temperature changes while satisfying the balanced-budget requirement. 
17 The area of these municipalities is smaller than the 5-mile-by-5-mile square that Ranson (2014) and Wilson (2017) 
use to divide the continental U.S. area.  
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measures. I also exclude 14 medium-sized municipalities with a shape that least resembles a circle. 

They each have an area of 25 to 50 square miles and a circularity measure of less than 0.4. These 

25 municipalities are cases where measurement error in weather variables could be the largest. 

This sample restriction turns out to have little impact on the results. The coefficients that are 

significant in Table 1 remain significant with similar magnitudes in Table 2. The one exception is 

the percentage of days with a maximum temperature of 32 degrees Fahrenheit or colder. In the 

regression for education spending, it changes from being significant at the 10 percent level to being 

insignificant, although the point estimates are similar.  

 Table 3 tests whether the results are sensitive to data noise in spending variables. 

Municipalities with a small population often do not have full-time fiscal officers. These 

municipalities’ financial accounts are less likely to be professionally managed and carefully 

recorded. Therefore, the financial data they submit to the state through the “Schedule A” form may 

contain large errors. To reduce the influence of this potential data issue, I drop 11 municipalities 

that had a population smaller than 500 at any time during the FY1990–FY2019 period. The 

coefficients that are significant in Table 1 remain significant in Table 3, except that total 

precipitation becomes insignificant in the regression for police spending. 

 In Table 4, I re-estimate the baseline model using weighted regressions to check whether 

the results remain significant. In Panel (a), municipality area is used as the weight to reduce the 

influence of small municipalities and increase the influence of large municipalities such as Boston. 

I do not use population as the weight because the population distribution in Massachusetts is 

extremely skewed. The 10 largest cities are home to one-quarter of the state’s population, and 

Boston itself hosts nearly 10 percent of the Massachusetts population. The population-weighted 

sample essentially reflects only a small number of the most populous cities. In comparison, the 
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distribution of municipality area is less skewed. While Boston is one of the largest municipalities 

by area (ranking 11th), it accounts for only 0.6 percent of the state’s total area. The significant 

results in the unweighted regressions remain significant in these weighted regressions, with one 

exception: In the regression for fire spending, average temperature turns from being significant at 

the 10 percent level to being insignificant, even though the point estimate does not change much. 

In Panel (b), the weight is the inverse of the coefficient of variation of station count. Due 

to entry and exit of weather stations, the number of relevant stations for each municipality varies 

from year to year. This could introduce measurement error in weather data, since stations in 

different locations within a municipality’s 50-mile radius may be subject to slightly different 

weather conditions. The greater the turnover in weather stations, the larger the potential 

measurement error. I calculate the coefficient of variation of annual station count for each 

municipality during the FY1990–FY2019 period as a measure of station turnover. I then use its 

inverse as a weight so that municipalities with a greater change in station count receive a smaller 

weight in the regression. The results from the weighted regressions in Panel (b) are close to those 

from the unweighted regressions in terms of both statistical significance and magnitude. 

Nevertheless, average temperature becomes insignificant in the regression for fire spending, while 

it is significant at the 10 percent level in the unweighted regression. Also, the percentage of days 

with a maximum temperature of 32 degrees Fahrenheit or colder becomes insignificant in the 

regressions for general government and education spending despite being significant at the 10 

percent level in the unweighted regressions. 

 Weather may affect not only current government spending but also future government 

spending. For example, rainfall and snowfall could cause damage to roads and public facilities that 

is repaired in subsequent years. To test this hypothesis, I add lagged versions of weather variables 
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to the baseline model. A Wald test supports including both one-year and two-year lags of weather 

variables for total expenditures and public works spending, only the one-year lag of weather 

variables for education and police spending, and no lagged variables for other spending categories. 

Table 5 shows that the contemporaneous terms of weather variables that are significant in the 

baseline model remain significant after the inclusion of lagged variables. Some of these lagged 

weather variables are significant and mostly positive, which suggests that weather effects could be 

persistent at least in the short term. In some cases, the one-year lagged variables are significant, 

while the contemporaneous variables are not.18 These results suggest that it may take time for 

municipal governments to adjust their budgets in response to weather changes. 

 Weather effects may be heterogeneous because of geographic and demographic differences 

between municipalities. Runkle et al. (2022) point out that the Massachusetts “coastline is highly 

vulnerable to damage from powerful nor’easters and tropical storms and hurricanes” (P. 3). To test 

whether the effects of weather differ by coastal adjacency, I add interaction terms between weather 

variables and a dummy variable for being a coastal community (Table 6). Massachusetts has 78 

municipalities that are considered coastal communities. The interactions between the coastal 

dummy and temperature variables are not significant in the regression for total expenditures. The 

interactions between the coastal dummy and the percentage of days with at least 1 inch of 

precipitation or snowfall are positive and significant not only for total expenditures but also for 

multiple subcategories. This suggests that heavy rainfall and snowfall cause larger damages to 

coastal municipalities, resulting in higher expenditures. These results may also reflect other 

adverse weather conditions facing coastal municipalities that correlate with heavy rainfall and 

 
18 See the contemporaneous and one-year lagged terms of average temperature in the regressions for education and 
police spending and the contemporaneous and one-year lagged terms of the percentage of days with a maximum 
temperature of 32 degrees Fahrenheit or colder in the regressions for public works and police spending. 
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snowfall. Nor’easters, tropical storms, and hurricanes can bring powerful wind, coastal flooding, 

shoreline erosion, and saltwater intrusion to coastal communities. Because I do not observe and 

control for these other weather elements, their effects on coastal communities could be partly 

captured by the interactions between the coastal dummy and the percentage of days with at least 1 

inch of precipitation or snowfall. 

On the other hand, the interaction term between the coastal dummy and total precipitation 

is negative and significant for both total expenditures and almost all spending subcategories, which 

suggests that an increase in total annual precipitation has a smaller impact on coastal municipalities 

than on inland communities. This may seem counterintuitive, but a possible explanation is that 

coastal municipalities are more likely to take steps to prepare for major storms and hurricanes, 

such as adopting new technologies and employing stricter zoning rules, which could help them 

reduce the fiscal impact of routine precipitation.  

 Densely populated urban areas are often noted as being more vulnerable to climate change 

compared with sparsely populated rural areas (Runkle et al. 2022). Heat waves, storms, and 

flooding could cause greater damage to urban areas with a high density of population and valuable 

properties. However, the economies of urban areas may be less dependent on weather compared 

with the economies of rural areas where agriculture plays an important role. Urban areas also enjoy 

an advantage in economies of scale, which could help them address adverse weather conditions 

better than rural areas. Therefore, the prediction on the difference in weather effects on urban 

versus rural areas is ambiguous. 

 To test for heterogeneity in weather effects on urban versus rural areas, I interact weather 

variables with a density dummy in Table 7. This density dummy is equal to 1 if the FY1990–

FY2019 average population density for a municipality was equal to or greater than 3,000 people 
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per square mile. There are 35 such municipalities in Massachusetts. The results for these 

interaction terms are mixed. On the one hand, the interactions between the density dummy and 

average temperature, the percentage of days with a maximum temperature of 32 degrees 

Fahrenheit or colder, and total precipitation are negative and significant for both total expenditures 

and multiple spending subcategories. This suggests that government spending in high-density 

urban areas is less affected by a change in average temperature, the frequency of very cold days, 

and total precipitation, possibly thanks to their economies of scale and economic structures that 

are less dependent on weather. On the other hand, the interaction term between the density dummy 

and the percentage of days with at least 1 inch of precipitation is positive and significant in the 

regressions for total expenditures and fire spending. This suggests that extreme precipitation events 

could cause greater harm to high-density areas and result in more government spending.  

 Municipalities can mitigate the effects of weather by adapting over time. They can upgrade 

public facilities to be more energy efficient, use new technologies and materials to make roads 

more durable and heat-resistant, and adjust their zoning policies to make buildings more resilient 

to climate change. However, it takes time for these adaptation strategies to be adopted and produce 

results.  

 Table 8 examines whether municipal governments have adapted to their weather in the 

medium run.19 I create a dummy variable to indicate the second half of the sample period (that is, 

FY2005 through FY2019) and then interact it with weather variables. By doing so, I compare 

 
19 I tried exploring the difference between municipalities in their long-term weather patterns to test for municipal 
adaption to their local climate. For example, an increase in total snowfall may have a smaller effect for a municipality 
that tends to receive more snowfall and has adapted to its snowy climate. To test this hypothesis, I added interactions 
between each weather variable and the 30-year average of this variable for each municipality. These interaction terms 
were rarely significant and had mixed signs across spending categories. I consider this test to have a low power because 
the cross-sectional variation in long-term weather patterns is small in this context. All municipalities are from a single 
state that is relatively small, and therefore they face a similar climate.  
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average weather effects in the latter 15 years with average weather effects in the earlier 15 years. 

The interactions with average temperature and the frequency of very cold days are negative and 

significant for total expenditures and multiple spending subcategories. These results support the 

notion that municipal governments have adapted and become less sensitive to temperature over 

the years. However, I do not find strong evidence for adaptation to precipitation in the medium 

run. The interaction between total precipitation and the dummy for the FY2005–FY2019 period is 

positive and significant for total expenditures and fire spending, but it is negative and significant 

for general government spending.  

 V. Conclusion 

This paper fills a gap in the climate-economy literature by examining how weather affects local 

government spending. It uses a panel data model to analyze data from Massachusetts 

municipalities during a 30-year span from FY1990 through FY2019. The analysis shows that 

temperature and precipitation have statistically significant and economically meaningful effects 

on municipal expenditures. For example, a 1 degree Fahrenheit increase in the average 

temperature, on average, results in a 3.2 percent increase in real per capita total general fund 

expenditures. Further analysis suggests that government spending may be affected by not only 

contemporaneous weather conditions but also weather conditions in the preceding two years. 

 Weather effects appear to be heterogeneous across government functions. Spending on 

public works, general government, and human services are affected more than other spending 

categories. Weather also affects different types of municipalities differently. Coastal communities 

and densely populated cities experience a greater impact of heavy precipitation on government 

spending. However, expenditures of densely populated cities are less sensitive to temperature 
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changes. In addition, there is evidence indicating municipal adaptation to rising temperature over 

time. 

 The findings of this paper may be generalizable to other states, particularly those in New 

England. States in the New England region have similar climates, and some of their fiscal 

institutions share similar characteristics, such as school districts that are fiscally dependent and 

county governments (if they have any) that are weak. Therefore, it is plausible that the relationship 

between municipal spending and weather is similar across the region. A parallel study using data 

from a state or states from other parts of the country would be a worthwhile contribution to this 

line of research. 
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Table 1: Baseline Regression Results, 1990-2019

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0323∗∗∗ 0.0840∗∗∗ 0.0577∗∗∗ 0.0136 0.0231 0.0400∗ -0.0617∗∗ 0.0268
(0.00827) (0.0188) (0.0138) (0.0103) (0.0176) (0.0222) (0.0274) (0.0231)

% Days with Maximum Temperature ≥ 90 ◦F 0.00131 -0.000683 0.00650 0.00366 0.00530 -0.00568 0.00157 -0.00673
(0.00179) (0.00420) (0.00413) (0.00242) (0.00411) (0.00622) (0.00737) (0.00526)

% Days with Maximum Temperature ≤ 32 ◦F 0.00406∗∗∗ -0.00101 0.00399∗ 0.00229∗ -0.00275 0.000710 -0.0120∗∗∗ 0.00720∗∗

(0.000936) (0.00265) (0.00205) (0.00121) (0.00244) (0.00460) (0.00416) (0.00312)

Precipitation

Total Precipitation (Inches) 0.0000105 -0.000230 0.000174 0.0000128 0.00203∗∗ 0.00115 -0.00187 -0.000611
(0.000496) (0.00105) (0.000867) (0.000628) (0.000959) (0.00141) (0.00269) (0.00138)

% Days with Precipitation ≥ 1 Inch -0.00323 0.00108 -0.00375 -0.00477 -0.000899 -0.000260 0.0246∗∗ -0.00146
(0.00228) (0.00467) (0.00419) (0.00407) (0.00402) (0.00604) (0.0105) (0.00685)

Total Snowfall (Inches) -0.000106 0.00168∗∗∗ 0.000123 -0.000471 -0.000317 -0.000322 -0.000554 0.000141
(0.000117) (0.000305) (0.000264) (0.000341) (0.000257) (0.000579) (0.000657) (0.000434)

% Days with Snowfall ≥ 1 Inch 0.00420∗∗∗ 0.00527 0.00828∗∗ 0.00225 0.00438 -0.00299 0.000560 -0.00204
(0.00162) (0.00420) (0.00342) (0.00221) (0.00360) (0.00709) (0.00920) (0.00579)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time
trends, log real per capita equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 2: Test for Sensitivity to Potential Measurement Error in Weather Variables

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0342∗∗∗ 0.0850∗∗∗ 0.0592∗∗∗ 0.0149 0.0266 0.0465∗∗ -0.0542∗∗ 0.0320
(0.00878) (0.0201) (0.0147) (0.0110) (0.0184) (0.0233) (0.0266) (0.0247)

% Days with Maximum Temperature ≥ 90 ◦F 0.00157 -0.00160 0.00749∗ 0.00396 0.00567 -0.00562 0.00136 -0.00666
(0.00189) (0.00438) (0.00452) (0.00272) (0.00462) (0.00641) (0.00812) (0.00584)

% Days with Maximum Temperature ≤ 32 ◦F 0.00400∗∗∗ -0.00101 0.00466∗∗ 0.00204 -0.00239 0.00160 -0.0148∗∗∗ 0.00720∗∗

(0.000995) (0.00283) (0.00221) (0.00132) (0.00237) (0.00480) (0.00445) (0.00340)

Precipitation

Total Precipitation (Inches) 0.000106 -0.00109 0.000268 0.0000281 0.00174∗ 0.00117 0.000820 -0.000567
(0.000514) (0.00113) (0.000923) (0.000658) (0.00105) (0.00145) (0.00223) (0.00134)

% Days with Precipitation ≥ 1 Inch -0.00391 0.000673 -0.00356 -0.00530 0.000238 -0.00143 0.0216∗∗ -0.00216
(0.00245) (0.00513) (0.00451) (0.00439) (0.00404) (0.00642) (0.0105) (0.00722)

Total Snowfall (Inches) -0.000123 0.00165∗∗∗ 0.000150 -0.000508 -0.000192 -0.000263 -0.000783 0.0000553
(0.000127) (0.000336) (0.000287) (0.000379) (0.000274) (0.000635) (0.000713) (0.000488)

% Days with Snowfall ≥ 1 Inch 0.00467∗∗∗ 0.00406 0.00958∗∗∗ 0.00269 0.00463 -0.00253 0.00783 -0.00274
(0.00170) (0.00437) (0.00362) (0.00240) (0.00347) (0.00762) (0.00881) (0.00609)

N 9,750 9,750 9,750 9,750 9,660 9,420 9,720 9,660

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time trends,
log real per capita equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality. The 11 largest municipalities,
each of which has an area greater than 50 square miles, are excluded from regressions. Also excluded are 14 municipalities that each have an area greater than 25 square miles
and a shape that least resembles a circle.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 3: Test for Sensitivity to Potential Measurement Error in Spending Variables

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0285∗∗∗ 0.0745∗∗∗ 0.0588∗∗∗ 0.0130 0.0248 0.0400∗ -0.0626∗∗ 0.0383∗

(0.00671) (0.0172) (0.0140) (0.0108) (0.0166) (0.0228) (0.0276) (0.0212)

% Days with Maximum Temperature ≥ 90 ◦F 0.000708 -0.00169 0.00534 0.00220 0.00198 -0.00946 0.00130 -0.00688
(0.00161) (0.00421) (0.00404) (0.00227) (0.00394) (0.00595) (0.00699) (0.00530)

% Days with Maximum Temperature ≤ 32 ◦F 0.00460∗∗∗ -0.000302 0.00434∗∗ 0.00256∗∗ -0.00124 0.00336 -0.0106∗∗∗ 0.00739∗∗

(0.000928) (0.00273) (0.00209) (0.00128) (0.00227) (0.00383) (0.00398) (0.00311)

Precipitation

Total Precipitation (Inches) -0.000347 -0.000703 0.0000803 -0.0000382 0.00133 0.000450 -0.00149 -0.000579
(0.000495) (0.00106) (0.000886) (0.000661) (0.000875) (0.00147) (0.00272) (0.00141)

% Days with Precipitation ≥ 1 Inch -0.00184 0.00299 -0.00289 -0.00484 0.00186 0.00239 0.0240∗∗ -0.00158
(0.00226) (0.00453) (0.00434) (0.00419) (0.00356) (0.00570) (0.00995) (0.00693)

Total Snowfall (Inches) -0.0000384 0.00174∗∗∗ 0.000271 -0.000495 -0.000204 0.0000288 -0.000816 0.0000245
(0.000117) (0.000309) (0.000263) (0.000355) (0.000254) (0.000536) (0.000662) (0.000446)

% Days with Snowfall ≥ 1 Inch 0.00415∗∗ 0.00542 0.00815∗∗ 0.00226 0.00627∗ 0.00159 0.00643 -0.000724
(0.00166) (0.00432) (0.00344) (0.00224) (0.00327) (0.00663) (0.00897) (0.00586)

N 10,170 10,170 10,170 10,170 10,170 9,780 10,170 10,170

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time trends,
log real per capita equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality. Eleven municipalities with a
population smaller than 500 at any time during the FY1990-FY2019 sample period are excluded from regressions.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 4: Results from Weighted Regressions

(a) Using Municipality Area as Weight

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0313∗∗∗ 0.0812∗∗∗ 0.0501∗∗∗ 0.0178 0.0183 0.0440 -0.0740∗∗ 0.0274
(0.00908) (0.0200) (0.0139) (0.0128) (0.0229) (0.0279) (0.0360) (0.0273)

% Days with Maximum Temperature ≥ 90 ◦F 0.00236 0.00348 0.00763∗ 0.00259 0.00779 -0.000190 0.00153 -0.00592
(0.00214) (0.00464) (0.00434) (0.00288) (0.00493) (0.00730) (0.00700) (0.00623)

% Days with Maximum Temperature ≤ 32 ◦F 0.00446∗∗∗ -0.000981 0.00405∗∗ 0.00327∗∗ -0.00280 0.00100 -0.00962∗∗ 0.00776∗∗

(0.000964) (0.00291) (0.00200) (0.00137) (0.00315) (0.00498) (0.00433) (0.00338)

Precipitation

Total Precipitation (Inches) 0.000150 0.000429 -0.00000411 0.000438 0.00255∗∗ 0.000828 -0.00418 -0.000969
(0.000552) (0.00112) (0.000907) (0.000771) (0.00108) (0.00163) (0.00388) (0.00185)

% Days with Precipitation ≥ 1 Inch -0.00404∗ 0.00198 -0.00411 -0.00819 -0.00199 0.00298 0.0343∗∗∗ 0.00141
(0.00237) (0.00452) (0.00463) (0.00545) (0.00484) (0.00682) (0.0128) (0.00841)

Total Snowfall (Inches) -0.0000788 0.00174∗∗∗ 0.0000585 -0.000589 -0.000446 0.000139 -0.000624 -0.0000436
(0.000134) (0.000309) (0.000270) (0.000483) (0.000283) (0.000632) (0.000725) (0.000516)

% Days with Snowfall ≥ 1 Inch 0.00353∗∗ 0.00586 0.00740∗∗ 0.00310 0.00234 -0.00917 0.00313 0.00170
(0.00174) (0.00479) (0.00361) (0.00252) (0.00506) (0.00894) (0.0133) (0.00698)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

(b) Using Inverse of Coefficient of Variation of Station Count as Weight

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0320∗∗∗ 0.0878∗∗∗ 0.0529∗∗∗ 0.0153 0.0172 0.0337 -0.0518∗ 0.0214
(0.00960) (0.0208) (0.0139) (0.0116) (0.0210) (0.0246) (0.0298) (0.0260)

% Days with Maximum Temperature ≥ 90 ◦F 0.00143 -0.000444 0.00728 0.00274 0.00717 -0.00700 0.00196 -0.00651
(0.00209) (0.00442) (0.00447) (0.00319) (0.00558) (0.00764) (0.00870) (0.00601)

% Days with Maximum Temperature ≤ 32 ◦F 0.00389∗∗∗ -0.00135 0.00336 0.00217 -0.00447 -0.000713 -0.0131∗∗∗ 0.00762∗∗

(0.00101) (0.00266) (0.00213) (0.00134) (0.00285) (0.00553) (0.00471) (0.00335)

Precipitation

Total Precipitation (Inches) -0.0000729 -0.000356 0.000212 0.000128 0.00212∗ 0.00127 -0.00151 -0.000835
(0.000509) (0.000989) (0.000893) (0.000717) (0.00114) (0.00156) (0.00267) (0.00136)

% Days with Precipitation ≥ 1 Inch -0.00378 0.0000263 -0.00493 -0.00688 -0.000727 -0.0000284 0.0254∗∗ -0.00281
(0.00251) (0.00472) (0.00447) (0.00537) (0.00479) (0.00698) (0.0116) (0.00741)

Total Snowfall (Inches) -0.000145 0.00164∗∗∗ 0.0000804 -0.000634 -0.000330 -0.000546 -0.000523 0.000246
(0.000130) (0.000318) (0.000286) (0.000480) (0.000318) (0.000665) (0.000787) (0.000498)

% Days with Snowfall ≥ 1 Inch 0.00349∗∗ 0.00434 0.00735∗ 0.00239 0.00258 -0.00563 0.00178 -0.00257
(0.00162) (0.00439) (0.00376) (0.00244) (0.00439) (0.00825) (0.0103) (0.00622)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time
trends, log real per capita equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 5: Test for Lagged Weather Effects

Total
Expenditures Public Works Education Police

Temperature

Average Temperature (◦F) 0.0198∗∗ 0.0559∗∗∗ 0.00269 0.000523
(0.00768) (0.0168) (0.00827) (0.0142)

Average Temperature (◦F), 1-year Lag 0.0266∗∗∗ 0.0525∗∗∗ 0.0263∗∗∗ 0.0407∗∗

(0.00560) (0.0126) (0.00922) (0.0157)

Average Temperature (◦F), 2-year Lag -0.00151 0.0148
(0.00603) (0.0140)

% Days with Maximum Temperature ≥ 90 ◦F -0.000629 -0.00363 0.00306 0.00298
(0.00208) (0.00460) (0.00264) (0.00406)

% Days with Maximum Temperature ≥ 90 ◦F, 1-year Lag -0.00150 -0.00442 0.00240 -0.00214
(0.00201) (0.00473) (0.00218) (0.00398)

% Days with Maximum Temperature ≥ 90 ◦F, 2-year Lag -0.00351∗ -0.000433
(0.00185) (0.00455)

% Days with Maximum Temperature ≤ 32 ◦F 0.00416∗∗∗ -0.000330 0.00254∗ -0.00334
(0.00116) (0.00324) (0.00143) (0.00263)

% Days with Maximum Temperature ≤ 32 ◦F, 1-year Lag 0.00202 0.00752∗∗ 0.00312∗∗ -0.00461∗∗

(0.00145) (0.00356) (0.00141) (0.00232)

% Days with Maximum Temperature ≤ 32 ◦F, 2-year Lag -0.00133 0.00191
(0.00122) (0.00322)

Precipitation

Total Precipitation (Inches) -0.000592 -0.000874 -0.000270 0.00170∗

(0.000537) (0.00125) (0.000612) (0.000927)

Total Precipitation (Inches), 1-year Lag 0.000304 -0.000134 -0.000658 -0.000231
(0.000499) (0.00123) (0.000743) (0.00103)

Total Precipitation (Inches), 2-year Lag -0.000160 -0.000202
(0.000448) (0.00116)

% Days with Precipitation ≥ 1 Inch -0.000884 0.00563 -0.00326 0.00201
(0.00242) (0.00498) (0.00380) (0.00387)

% Days with Precipitation ≥ 1 Inch, 1-year Lag -0.00186 0.00270 -0.0000434 0.00569
(0.00213) (0.00521) (0.00389) (0.00460)

% Days with Precipitation ≥ 1 Inch, 2-year Lag -0.000189 0.00404
(0.00205) (0.00436)

Total Snowfall (Inches) -0.000136 0.00186∗∗∗ -0.000517 -0.000488∗

(0.000127) (0.000337) (0.000352) (0.000268)

Total Snowfall (Inches), 1-year Lag 0.000179 0.0000258 0.000227 0.000425
(0.000127) (0.000335) (0.000196) (0.000334)

Total Snowfall (Inches), 2-year Lag 0.000122 0.00117∗∗∗

(0.000142) (0.000358)

% Days with Snowfall ≥ 1 Inch 0.00530∗∗∗ 0.00471 0.00255 0.00633∗

(0.00181) (0.00476) (0.00254) (0.00381)

% Days with Snowfall ≥ 1 Inch, 1-year Lag 0.00407∗∗ 0.00782 0.00290 0.00944∗∗

(0.00203) (0.00498) (0.00311) (0.00388)

% Days with Snowfall ≥ 1 Inch, 2-year Lag 0.00388∗∗ 0.00196
(0.00191) (0.00490)

N 10,500 10,500 10,500 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed
effects, municipality-specific linear time trends, log real per capita equalized valuations, and log real per capita state grants.
Standard errors are in parentheses and are clustered by municipality.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 6: Test for Heterogeneity of Weather Effects by Coastal Adjacency

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0305∗∗∗ 0.0807∗∗∗ 0.0543∗∗∗ 0.0136 0.0215 0.0323 -0.0663∗∗ 0.0202
(0.00834) (0.0188) (0.0138) (0.0103) (0.0183) (0.0226) (0.0285) (0.0235)

Average Temperature (◦F) × Coastal Dummy 0.00295 0.00307 0.00243 -0.00336 0.0110∗∗ 0.0199∗∗∗ 0.0169 0.000896
(0.00218) (0.00713) (0.00563) (0.00309) (0.00427) (0.00692) (0.0116) (0.00686)

% Days with Maximum Temperature ≥ 90 ◦F 0.000637 -0.000612 0.00621 0.00329 0.00462 -0.00569 0.00197 -0.00778
(0.00183) (0.00417) (0.00418) (0.00242) (0.00407) (0.00621) (0.00730) (0.00533)

% Days with Maximum Temperature ≥ 90 ◦F × Coastal Dummy -0.000737 -0.00728∗∗ -0.00311 -0.000885 -0.000974 -0.00805∗∗∗ 0.000676 0.000598
(0.00100) (0.00356) (0.00378) (0.00154) (0.00144) (0.00299) (0.00603) (0.00435)

% Days with Maximum Temperature ≤ 32 ◦F 0.00401∗∗∗ -0.00270 0.00390∗ 0.00294∗∗ -0.00361 -0.00121 -0.0140∗∗∗ 0.00725∗∗

(0.00103) (0.00284) (0.00224) (0.00134) (0.00257) (0.00489) (0.00468) (0.00332)

% Days with Maximum Temperature ≤ 32 ◦F × Coastal Dummy 0.000135 -0.00218 -0.00286 -0.00172 0.000506 0.00587∗∗ 0.0101∗∗ 0.000382
(0.00107) (0.00363) (0.00245) (0.00130) (0.00185) (0.00297) (0.00504) (0.00326)

Precipitation

Total Precipitation (Inches) 0.000406 0.000605 0.000686 0.000161 0.00229∗∗ 0.00211 -0.00151 0.000359
(0.000514) (0.00103) (0.000919) (0.000655) (0.000940) (0.00144) (0.00267) (0.00144)

Total Precipitation (Inches) × Coastal Dummy -0.00218∗∗∗ -0.00450∗∗ -0.00337∗∗∗ -0.00163∗∗∗ -0.00130∗ -0.00382∗∗∗ 0.00155 -0.00439∗∗∗

(0.000488) (0.00175) (0.00108) (0.000570) (0.000734) (0.00114) (0.00232) (0.00140)

% Days with Precipitation ≥ 1 Inch -0.00870∗∗∗ -0.00535 -0.00971∗ -0.00905∗ -0.00608 -0.00659 0.0308∗∗ -0.00832
(0.00270) (0.00548) (0.00496) (0.00465) (0.00485) (0.00734) (0.0125) (0.00823)

% Days with Precipitation ≥ 1 Inch × Coastal Dummy 0.0233∗∗∗ 0.0321∗∗∗ 0.0281∗∗∗ 0.0190∗∗∗ 0.0199∗∗∗ 0.0293∗∗∗ -0.0278 0.0313∗∗∗

(0.00442) (0.0122) (0.00830) (0.00555) (0.00662) (0.00992) (0.0176) (0.0120)

Total Snowfall (Inches) -0.0000602 0.00165∗∗∗ 0.0000290 -0.000368 -0.000302 -0.000494 -0.000761 -0.0000952
(0.000129) (0.000331) (0.000312) (0.000389) (0.000302) (0.000673) (0.000775) (0.000496)

Total Snowfall (Inches) × Coastal Dummy -0.000380∗ -0.0000951 0.000253 -0.000337 -0.000163 -0.000563 -0.000404 0.000318
(0.000194) (0.000592) (0.000450) (0.000286) (0.000316) (0.000717) (0.000855) (0.000711)

% Days with Snowfall ≥ 1 Inch 0.00205 0.00361 0.00675∗ 0.000271 0.00251 -0.00601 0.00173 -0.00236
(0.00164) (0.00459) (0.00395) (0.00242) (0.00414) (0.00801) (0.0103) (0.00626)

% Days with Snowfall ≥ 1 Inch × Coastal Dummy 0.00956∗∗∗ 0.00446 0.00517 0.00833∗∗ 0.00839∗ 0.0142 -0.00160 0.000593
(0.00283) (0.00764) (0.00563) (0.00397) (0.00436) (0.00958) (0.0120) (0.00916)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time trends, log real per capita
equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality. Coastal Dummy is an indicator variable for coastal adjacency. There are
78 coastal municipalities in Massachusetts.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 7: Test for Heterogeneity of Weather Effects by Population Density

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0315∗∗∗ 0.0881∗∗∗ 0.0594∗∗∗ 0.0130 0.0240 0.0384∗ -0.0643∗∗ 0.0241
(0.00830) (0.0188) (0.0138) (0.0104) (0.0180) (0.0224) (0.0279) (0.0235)

Average Temperature (◦F) × Density Dummy -0.00710∗∗ -0.0212∗∗ -0.0131 -0.00704∗ -0.00694 0.00335 0.00402 0.00183
(0.00321) (0.00863) (0.00839) (0.00385) (0.00563) (0.00658) (0.0133) (0.00740)

% Days with Maximum Temperature ≥ 90 ◦F 0.00111 0.000240 0.00575 0.00319 0.00498 -0.00482 0.00108 -0.00744
(0.00184) (0.00427) (0.00430) (0.00241) (0.00416) (0.00634) (0.00745) (0.00542)

% Days with Maximum Temperature ≥ 90 ◦F × Density Dummy 0.00128 -0.00432 0.00509 0.00242 0.00226 -0.00560∗∗ 0.00110 0.00237
(0.00126) (0.00438) (0.00456) (0.00161) (0.00212) (0.00256) (0.00655) (0.00405)

% Days with Maximum Temperature ≤ 32 ◦F 0.00417∗∗∗ -0.000695 0.00443∗∗ 0.00233∗ -0.00253 0.000251 -0.0124∗∗∗ 0.00671∗∗

(0.000931) (0.00262) (0.00207) (0.00120) (0.00248) (0.00463) (0.00416) (0.00313)

% Days with Maximum Temperature ≤ 32 ◦F × Density Dummy -0.00673∗∗∗ -0.00896∗ -0.00655∗∗ -0.00600∗∗∗ -0.00529∗∗ -0.00330 0.00169 -0.00346
(0.00150) (0.00481) (0.00333) (0.00135) (0.00226) (0.00258) (0.00711) (0.00383)

Precipitation

Total Precipitation (Inches) 0.000229 -0.000489 0.000105 0.000132 0.00209∗∗ 0.00146 -0.00178 -0.000254
(0.000490) (0.00102) (0.000874) (0.000636) (0.000932) (0.00142) (0.00271) (0.00140)

Total Precipitation (Inches) × Density Dummy -0.00271∗∗∗ 0.000911 -0.0000431 -0.00152∗∗ -0.00120 -0.00355∗∗∗ -0.0000501 -0.00312∗

(0.000749) (0.00279) (0.00173) (0.000717) (0.000969) (0.00104) (0.00373) (0.00175)

% Days with Precipitation ≥ 1 Inch -0.00445∗∗ 0.00265 -0.00319 -0.00505 -0.00151 -0.00176 0.0250∗∗ -0.00272
(0.00226) (0.00486) (0.00427) (0.00418) (0.00410) (0.00624) (0.0111) (0.00705)

% Days with Precipitation ≥ 1 Inch × Density Dummy 0.0198∗∗∗ -0.0162 -0.00457 0.00546 0.0110 0.0222∗∗ -0.0104 0.0159
(0.00668) (0.0222) (0.0139) (0.00682) (0.00809) (0.00893) (0.0344) (0.0161)

Total Snowfall (Inches) -0.000100 0.00182∗∗∗ 0.000218 -0.000474 -0.000230 -0.000254 -0.000702 0.000127
(0.000119) (0.000309) (0.000279) (0.000351) (0.000262) (0.000604) (0.000686) (0.000450)

Total Snowfall (Inches) × Density Dummy 0.000533∗ -0.000653 -0.000530 0.000530 -0.000259 -0.000000389 0.00118 0.000704
(0.000293) (0.000774) (0.000606) (0.000348) (0.000387) (0.000527) (0.00121) (0.000701)

% Days with Snowfall ≥ 1 Inch 0.00384∗∗ 0.00472 0.00691∗ 0.00230 0.00322 -0.00431 0.00285 -0.00180
(0.00163) (0.00417) (0.00360) (0.00230) (0.00391) (0.00758) (0.00967) (0.00610)

% Days with Snowfall ≥ 1 Inch × Density Dummy -0.000253 0.000473 0.00911 -0.00368 0.00715 0.00613 -0.0187 -0.00488
(0.00351) (0.0106) (0.00635) (0.00451) (0.00483) (0.00690) (0.0122) (0.00750)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time trends, log real per
capita equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality. Density Dummy is an indicator variable for a 30-year
average population density greater than or equal to 3,000 people per square mile. There were 35 such municipalities in Massachusetts during the FY1990-FY2019 sample period.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 8: Test for Adaptation over Time

Total
Expenditures Public Works

General
Government Education Police Fire

Human
Services

Culture and
Recreation

Temperature

Average Temperature (◦F) 0.0331∗∗∗ 0.0814∗∗∗ 0.0551∗∗∗ 0.0128 0.0157 0.0349 -0.0602∗∗ 0.0396∗

(0.00839) (0.0196) (0.0149) (0.0102) (0.0177) (0.0249) (0.0294) (0.0231)

Average Temperature (◦F) × Dummy for 2005-2019 -0.0161∗∗∗ -0.0174 -0.0142 -0.0171∗∗ 0.0121 -0.0145 -0.0109 -0.0290∗

(0.00574) (0.0139) (0.0116) (0.00792) (0.0116) (0.0184) (0.0282) (0.0163)

% Days with Maximum Temperature ≥ 90 ◦F 0.00225 0.00218 0.0130∗∗ 0.00439 0.0121∗ -0.00117 0.00465 -0.0122
(0.00277) (0.00660) (0.00613) (0.00390) (0.00735) (0.00991) (0.0119) (0.00976)

% Days with Maximum Temperature ≥ 90 ◦F × Dummy for 2005-2019 -0.00363 -0.00675 -0.0157∗ -0.00261 -0.0138 -0.00794 -0.00664 0.00487
(0.00413) (0.0101) (0.00834) (0.00596) (0.00943) (0.0146) (0.0164) (0.0135)

% Days with Maximum Temperature ≤ 32 ◦F 0.00610∗∗∗ -0.00176 -0.000643 0.00477∗∗ -0.0106∗∗ 0.000171 -0.00377 0.0154∗∗∗

(0.00175) (0.00412) (0.00419) (0.00237) (0.00507) (0.00827) (0.00820) (0.00593)

% Days with Maximum Temperature ≤ 32 ◦F × Dummy for 2005-2019 -0.00510∗∗ -0.00137 0.00405 -0.00545∗∗ 0.0111∗ -0.00270 -0.0140 -0.0131∗∗

(0.00210) (0.00516) (0.00503) (0.00261) (0.00634) (0.00945) (0.00976) (0.00648)

Precipitation

Total Precipitation (Inches) -0.00126 -0.000736 0.00287∗∗ -0.00176∗ 0.00164 -0.00245 -0.00445 0.00300
(0.000817) (0.00160) (0.00145) (0.000982) (0.00145) (0.00238) (0.00389) (0.00218)

Total Precipitation (Inches) × Dummy for 2005-2019 0.00213∗∗ 0.000299 -0.00352∗ 0.00182 0.000571 0.00701∗∗ 0.00424 -0.00573∗

(0.000971) (0.00218) (0.00181) (0.00126) (0.00169) (0.00345) (0.00491) (0.00316)

% Days with Precipitation ≥ 1 Inch -0.00572∗ -0.00233 -0.00473 -0.0107 0.00118 0.00934 0.0304∗ -0.0168
(0.00325) (0.00650) (0.00574) (0.00664) (0.00589) (0.00793) (0.0155) (0.0107)

% Days with Precipitation ≥ 1 Inch × Dummy for 2005-2019 0.00496 0.00963 0.00353 0.0145∗ 0.000211 -0.0211 -0.0143 0.0279∗∗

(0.00385) (0.00910) (0.00857) (0.00799) (0.00731) (0.0133) (0.0190) (0.0140)

Total Snowfall (Inches) -0.000148 0.00139∗∗ 0.000814∗ -0.00122 0.000948∗∗ -0.000432 -0.00192∗ -0.000174
(0.000236) (0.000585) (0.000460) (0.000744) (0.000479) (0.000859) (0.00113) (0.000787)

Total Snowfall (Inches) × Dummy for 2005-2019 -0.0000153 0.000689 -0.000606 0.00121 -0.00199∗∗∗ -0.0000812 0.00173 0.000783
(0.000308) (0.000723) (0.000572) (0.000813) (0.000559) (0.000977) (0.00145) (0.00107)

% Days with Snowfall ≥ 1 Inch 0.00315 0.00705 0.0128∗∗∗ 0.00262 -0.00669 0.00172 0.00764 0.00347
(0.00248) (0.00608) (0.00453) (0.00376) (0.00668) (0.00812) (0.0141) (0.00826)

% Days with Snowfall ≥ 1 Inch × Dummy for 2005-2019 0.000646 -0.00413 -0.00959 -0.000992 0.0214∗∗ -0.0145 -0.0136 -0.00877
(0.00326) (0.00793) (0.00613) (0.00464) (0.00915) (0.0118) (0.0174) (0.0100)

N 10,500 10,500 10,500 10,500 10,410 10,080 10,470 10,410

Source: Author’s calculations
Notes: Dependent variables are in log real per capita dollars. Regressions control for fiscal year fixed effects, municipality fixed effects, municipality-specific linear time trends, log real per capita
equalized valuations, and log real per capita state grants. Standard errors are in parentheses and are clustered by municipality. Dummy for 2005-2019 is an indicator variable for the second half
of the sample period.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Figure 1: Massachusetts Municipal Spending and Weather Trends, 1990-2019
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Sources: Massachusetts Department of Revenue and Global Historical Climatology Network daily
Notes: Yearly values are calculated as the average of the 350 municipalities in the sample. The red line in each plot represents
a univariate regression on fiscal year. Yearly expenditure data are in 2019 dollars.
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