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Introduction

The market for US Treasury securities is one of the most important financial markets in the

world, with more than $33 trillion outstanding at the end of 2023. Treasuries play a crucial role

in the global economy, serving as the primary means of financing the US federal government,

a significant investment instrument and hedging vehicle for global investors, a risk-free

benchmark for many other financial instruments, and an important tool for the Federal

Reserve’s implementation of monetary policy. However, despite its size and importance, the

market is intermediated by a select group of market-making financial firms—typically affiliated

with large banking organizations. These so-called primary dealers participate directly in the

primary market for Treasuries, where the US government auctions new debt issuance; then,

they resell the Treasuries to investors in the secondary markets. Primary dealers are also

direct business counterparties to the Federal Reserve’s monetary policy operations.

Against the backdrop of several recent disruptions in the Treasury market and increasing

federal deficits, commentators have pointed out the potential vulnerability of this dealer-

centric market to changes in primary dealers’ constraints and their ability to efficiently

intermediate the Treasury market (see, for example, Duffie, 2018, 2020).1 Because banks

comprise multiple organizational layers, these constraints might be at the bank level or

individual business-unit level, and they may be driven by regulatory requirements or internal

risk management. However, empirical evidence on the role of dealer constraints, regardless

of the specific constraint, has been scarce due to the lack of available (micro) data needed

for identification. Moreover, identification of the effect of dealer constraints on the Treasury

market remains challenging because constraints respond endogenously to broader market

conditions.

Our paper overcomes both challenges. We combine two detailed and rarely explored

confidential sets of microdata, collected by the Federal Reserve for supervisory and monitoring

purposes, that provide a unique window into primary dealers’ risk limits, positions, turnover,

and trading income.2 Furthermore, we exploit two separate causal identification frameworks

to analyze the effect of constraints on various business levels of the dealer-bank. First, we

use a difference-in-differences strategy to study the impact of the supplementary leverage

ratio (SLR), a regulatory constraint that targets the overall bank balance sheet. Second,

1For example, https://www.wsj.com/finance/why-treasury-auctions-have-wall-street-on-

edge-8385f15e.
2As we explain in the data section, we use supervisory FR VV-1 data on risk limits of the trading desks of

large banking organizations supervised by the Board of Governors of the Federal Reserve. We also use the
confidential FR 2004 data that are used to monitor the performance of the primary dealers and the condition
of the US government securities market. Although the FR 2004 does not constitute supervisory information,
participation is required to obtain primary dealer status.
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following Gabaix and Koijen (2020), we study the impact of internal risk-holding constraints

(value-at-risk, or VaR, limits) at the trading-desk level by examining the aggregate impact of

idiosyncratic shocks. By construction, these idiosyncratic shocks are exogenous to the broader

market conditions that govern return dynamics and liquidity, yet they affect aggregate prices

and quantities due to the granularity of the Treasury dealer market.

Our key results are as follows. Consistent with a model of a spread-charging intermediary

with costly position holdings, we find that primary dealers reduce their Treasury holdings

when they are faced with tighter constraints. The reduction in positions is accompanied

by lower liquidity in the Treasury market because turnover decreases while bid–ask spreads

increase. These core findings hold across the two constraints that we analyze, and they are

economically sizable. First, when a bank’s SLR decreases by 1 percentage point relative

to other banks, the bank-affiliated primary dealer sees a 9.1 percentage point lower gross

Treasury position, a 7.4 percentage point lower turnover, and a 9.8 percentage point stronger

increase in margin. Second, when the primary dealers’ trading desks, in aggregate, face

a one-standard-deviation tighter risk-limit shock, they experience a 2.1 percent fall in net

position and a 1.7 percent fall in turnover, while market-level bid–ask spreads increase by 2.4

percent.3

We verify the robustness of our results using differently constructed limit shocks, and we

show that using raw limit changes leads to an attenuated and insignificant effect, underscoring

the need to use idiosyncratic limit shocks that are orthogonal to general market developments.

Moreover, when we study the risk-sensitive VaR constraints, we find that the reduction in

exposure after tighter limit shocks is greater in securities with higher past return volatility—a

key contributing factor to VaR-limit usage. Consistent with such a risk-sensitive adjustment,

VaR-limit shocks have no significant effects on positions in Treasury bills (T-bills), which

have a very low return variability; all results are concentrated in notes and bonds. On the

other hand, we find that T-bills do react to changes in risk-insensitive SLR constraints.

How costly are the constraints imposed on primary dealers’ exposure to Treasuries? The

equilibrium condition of our model shows that these costs can be backed out from the bid–ask

spread elasticities of turnover and positions. Using the estimates from the analysis of VaR

limits and the SLR constraint, we obtain spread elasticities of turnover that are in the same

ballpark: from –0.71 to –0.76. These estimates from our data are substantially lower (in

absolute value) than the optimal elasticities that would prevail under profit maximization

without constraints. We estimate larger spread elasticities of dealer positions, from –0.87

to –0.93; thus, positions respond more strongly to spread increases than to turnover. Taken

together, our estimates of these spread elasticities imply a sizable economic cost of the position

3As we explain later, the SLR targets gross exposure, while VaR constrains net exposure.
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constraints, with shadow costs accounting for about 26 to 33 percent of the intermediation

spread, or about $2.4 billion to $3 billion per year.

Because the identification method used in our trading-desk-level analysis allows us to

aggregate effects across banks, we also examine aggregate effects on Treasury prices and

auctions. We show that changes in risk limits do affect yields in the secondary market.

Specifically, we find that yields rise when dealers are more constrained against a backdrop

of heightened net Treasury demand. We proxy Treasury demand by using declines in the

effective duration of mortgage-backed securities (MBS), a connection explained by heightened

refinancing expectations. As Hanson (2014) shows, when a large number of MBS refinance,

bond investors will put the received funds into the Treasury market. This increase in net

demand for Treasuries drives up prices, thereby lowering yields. We show that these effects

are significantly stronger (about one-third greater) when dealers’ intermediation capacity is

constrained due to tighter risk constraints. Our results are robust to using foreign interest

changes as demand shifters.

In addition to the liquidity and yield effects in the secondary market, we also find that

primary dealers’ constraints affect outcomes in the primary market. Specifically, we show that

in response to a one-standard-deviation tighter risk limit, primary dealers bid less in Treasury

auctions, as measured by their 5 percent lower bid-to-cover ratio. Non-primary dealers, on the

other hand, experience no change in their bid-to-cover ratios, lending additional credibility

to our results. Moreover, we find that when dealer risk limits are tight, the high yield of the

auction—that is, the yield that clears the auction—increases significantly, by about 1 percent.

This constitutes an increase in the government’s cost of financing itself.

Related Literature Our findings provide direct support for theoretical contributions that

highlight the role of constrained intermediaries in asset pricing (see, for example, He and

Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014). Like seminal work by Bernanke and

Gertler (1989), these macro-finance models emphasize the general role of equity constraints

of financial intermediaries in driving asset pricing cycles, thereby affecting the business cycle.

They also follow in the tradition of Grossman and Miller (1988) in emphasizing how the

risk-bearing capacity of intermediaries amplifies price responses to upswings in supply and

demand.

A host of papers seek to provide empirical support for these theories. One strand of the

literature examines return reversals and price surges, a phenomenon consistent with these

theories (see, for example, Hendershott and Seasholes, 2007; Hendershott and Menkveld, 2014;

Nagel, 2012).4 Our approach allows us to more directly tie intermediary constraints to both

4See Duffie (2010) for a more complete review.
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price dynamics and quantity responses because we employ detailed data on the specific actors

in the Treasury market (primary dealers) and their constraints (for example, VaR constraints).

There is also a segment of the literature that empirically ties a reduction in dealer balance

sheet capacity to prices of risky assets. For example, Adrian, Moench and Shin (2010) and

Adrian, Etula and Shin (2015) use publicly available bank balance sheet data to forecast asset

prices. He, Kelly and Manela (2017) use a series of predictive time-series regressions to show

that primary dealers’ capital ratios have significant explanatory power for cross-sectional

variation in expected asset returns. In recent work that also examines the Treasury market,

Duffie et al. (2023) show that Treasury markets experience higher-than-expected illiquidity

when dealers have higher inventories. Favara, Infante and Rezende (2022) study the effect

of leverage constraints, and He, Nagel and Song (2022) incorporate an SLR constraint in

a model of Treasury market liquidity. Our analysis has two distinct advantages over that

segment of the literature. First, while those papers approximate intermediaries’ limited

inventory-carrying capacity with their inventory positions, we observe a direct measure of

risk-bearing constraints. Second, our granular identification approach directly addresses the

primary endogeneity concern in this literature: Capacity utilization and prices are both

affected by market conditions. While much of the literature neglects to address this concern,

Duffie et al. (2023) do seek to address it by orthogonalizing capacity utilization to yield

volatility. Our granular identification approach is not subject to the concern that yield

volatility might not be a sufficient control.

Our paper is also closely tied to the literature on government bond auctions and their

effects on dealer inventory and debt prices. Fleming, Nguyen and Rosenberg (2023) highlight

that Treasury issuance is the main driver of dealers’ weekly inventory changes, finding that

dealers are compensated for inventory risk by means of subsequent price appreciation of their

holdings. Similarly, Lou, Yan and Zhang (2013) document that Treasury prices dip before

auctions and recover afterward, and Beetsma et al. (2016) do the same for Italian debt. As

in the return reversal literature, these papers all point to dealer balance sheet constraints as

an underlying mechanism. We take this a step further by empirically showing the effects of

dealer constraints using novel microdata.

The remainder of the paper is organized as follows. Section 1 introduces a conceptual

framework to guide our empirical analysis. Section 2 discusses our data sources. Section 3

presents the empirical results and combines the insights into estimates of the shadow cost of

the constraints. Section 4 concludes.
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1 Conceptual Framework

To understand the implications of primary dealers’ constraints in driving Treasury market

liquidity, we present a basic model that formulates the key channel and from which we derive

testable predictions. The model is an adapted version of the one in Barbiero et al. (2024).

Consider a representative dealer that intermediates demand and supply for Treasuries.

The dealer charges a spread on its intermediation activities and can hold nonzero Treasury

exposure at the end of the period. The model is set up in one period. The price of the

Treasury is P , and we assume a symmetric bid–ask spread of 2s around the mid-price P . We

work with the log price throughout: p ≡ log(P ).

The bank takes as given the demand for Treasuries, D(p+ s), with D′ < 0.5 The supply

of Treasuries is given by S(p− s), with S ′ > 0. Let δ be the Treasury position that the bank

holds at the end of the period, which is simply the difference between Treasuries sold and

purchased. In this static model, the bank sells all this exposure in the future at E[p1] = 0.

However, a generic marginal cost λ is imposed on the position, which can be motivated by a

myriad of factors, including risk management and regulation, as we discuss later.6

The bank’s expected profit is equal to the sum of the total margin from intermediation

and the expected return of its exposure. The bank takes prices as given and chooses a spread

and exposure to maximize expected profits:

max
s,δ

π = s (D(e+ s) + S(e− s))− pδ − λδ (1)

s.t. δ = D(e+ s)− S(e− s), (2)

where λ > 0 parameterizes the bank’s marginal cost of holding nonzero net positions. A

larger λ means that it is more costly for the bank to hold a nonzero exposure. Note that the

minus sign before the term pδ comes from the fact that we normalize the expected future

log price to zero, so the log return is E[p1]− p = −p. We also define turnover as the sum of

supply and demand: t = D(e+ s) + S(e− s). Further, without loss of generality, fix p = 0,

meaning that, in expectation, there are zero profits from holding positions, such that we focus

only on the intermediation business of the bank. The first-order condition of the general

problem is then given by

t+ st′ = λδ′, (3)

which says that the marginal intermediation income from increasing the spread needs to

5Note that D̃(P ) = D̃(elog(P )), so any demand function D̃(P ) can be expressed as D(p) with D = D̃ ∗ p.
Also note that log(P (1 + s)) = p+ log(1 + s) ≈ p+ s.

6In the appendix, we consider the case in which a convex cost is imposed.
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be equal to the change in the position resulting from the spread increase multiplied by the

marginal cost of holding the position. We use this key insight in the final section of this

paper to compute key elasticities and to estimate the marginal cost of the constraint.

For now, to obtain a closed-form solution that guides our empirical analysis, assume

linearity (in the log price) of the demand and supply functions of the formD(p+s) = a−b(p+s)

and S(p − s) = c + d(p − s), with a, b, c, d > 0. Solving the first-order condition for the

optimal spread and deriving the optimal exposure and turnover gives:

s∗ =
(a+ c) + λ(b− d)

2(b+ d)
(4)

δ∗ =
2(a− c)(b+ d)− (a+ c)(b− d)− λ(b− d)2

2(b+ d)
(5)

t∗ =
(a+ c)− λ(b− d)

2
. (6)

We build intuition for Equation 4 by recalling that the spread is chosen based on its dual

impact on profit. First is its impact on intermediation income: A larger spread leads to

a higher intermediation profit, all else being equal, though it distorts supply and demand.

Second is its impact on holding cost: Because the spread distorts supply and demand, the

bank may need to hold a larger position to clear the market, which is costly. An increase

in supply and demand (a+ c) increases the size of the market, which increases the optimal

spread due to the intermediation motive. However, an increase in the combined elasticities

of supply and demand (b+ d) makes the spread increase more distortionary, decreasing the

optimal spread. The position δ that the bank needs to take to clear the market decreases with

the slope differences in supply and demand (b− d). Thus, due to the holding cost motive,

the optimal spread the bank charges rises with the slope differences for a given λ.

To ensure that all equilibrium quantities (D∗ and S∗) are positive, we need the following

parameter restrictions:
ad− cd− 2bc

d(b− d)
< λ <

ab+ 2ad− bc

b(b− d)
.

Without loss of generality, we can simplify to the case in which c = 0. It is clear that because

λ is positive, it must be the case that b > d.
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We then derive the following derivatives that are at the core of our analysis:

∂s

∂λ
=

(b− d)

2(b+ d)
> 0 (7)

∂δ

∂λ
= − (b− d)2

2(b+ d)
< 0 (8)

∂t

∂λ
= −(b− d)

2
< 0. (9)

Thus, when it becomes more costly to hold Treasury exposure, the bank will increase the

spread and reduce its exposure, and turnover will decline. In other words, an impairment in

intermediation and Treasury market liquidity occurs. These three comparative statics serve

as core testable predictions that guide our empirical analysis throughout the remainder of

this paper.

What types of constraints do primary dealers face that make their Treasury exposure

costly—in our highly stylized model captured by the parameter λ? As mentioned earlier, we

focus on internal constraints imposed by risk-management practices as well as regulatory

constraints, specifically those imposed by banking regulation. Banking regulations are relevant

because the most important primary dealers are bank affiliated and therefore subject to

banking regulation, which has been considerably expanded and tightened after the 2007–2008

financial crisis.

Because banks are composed of different businesses, different regulatory constraints may

target the overall banking organization or individual business units. Furthermore, constraints

may be of different natures—they may be risk sensitive or risk insensitive, and they may

constrain different exposures, such as gross or net exposures. For example, capital regulation

typically applies to the overall bank balance sheet, and there are both risk-weighted capital

constraints and risk-insensitive leverage ratios. Other constraints target specific activity

centered in certain business units, such as restrictions on trading desks. Generally, however,

the constraints are intended to allocate resources (equity capital) across different bank

businesses according to managerial or regulatory preferences.

In this paper, we focus on two key regulations—both enacted in response to the 2007–2008

financial crisis—to understand the effects of dealer constraints on the Treasury market. First,

we study the effects of the supplementary leverage ratio (SLR), the US implementation of

the leverage ratio outlined in the Basel III accords. The SLR is a risk-insensitive capital

ratio that applies generally to large banks with more than $250 billion in total consolidated

assets. Current regulation requires banks to hold a minimum ratio of 3 percent of Tier 1
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capital measured against their total leverage exposure.7 Total leverage exposure includes

both on- and off-balance-sheet positions. Importantly, exposure also includes gross positions

in securities held by bank-owned primary dealers. As a result, SLR-constrained banks may

have to reduce or not be able to expand their trading assets, potentially impairing Treasury

market making and liquidity.

Second, we focus on constraints on banks’ trading activity and trading-desk exposure.

Specifically, the Volcker rule set forth in the Dodd–Frank Act generally restricts banking

entities from engaging in proprietary trading, except for certain purposes, such as market

making.8 Importantly, the rule generally also requires banking entities to establish internal

mechanisms to ensure and monitor the risks from trading activity. For the largest banks, the

rule includes reporting requirements of quantitative measurements to the supervisors. Such

measurements include internal risk limits and usage. Although US Treasury securities are

exempt from Volcker rule proprietary trading restrictions, in practice, all desks report these

internal limits, even desks that solely trade Treasuries. Typically, such limits are formulated

as VaR or sensitivity constraints that effectively restrict desks’ net positions depending on the

riskiness of the assets. Thus, while the Volcker rule does not directly restrict dealers’ Treasury

exposure, the associated risk-monitoring and reporting requirements provide a unique and

detailed view into the internal risk limits of primary dealers.

Figure 1, Panel (a) shows the average SLR and VaR-limit usage, indicating substantial

variation in both series as well as periods of co-movement.9 Using bank-quarter data, the

binned scatterplot in Panel (b) shows a negative correlation between changes in VaR-limit

usage and changes in the SLR; that is, periods when trading desks’ limits are heavily utilized

are also periods when the SLR compresses. This could be because the Treasury holdings

(positions) factor into both the utilization of VaR limits as well as the SLR through its

exposure measure. Or it could be that when more equity capital is available at the bank

level, VaR limits are eased. As we detail later, we exploit reasonably exogenous variation

in these constraints—SLR and VaR—in two complementary analyses to assess the general

relevance of dealer constraints on Treasury market functioning.10

7More stringent requirements for the largest and most systemic financial institutions add a capital buffer
of 2 percent, for a total of 5 percent.

8Under this exemption, a market-making trading desk is allowed to hold inventory to meet but not exceed,
on an ongoing basis, the reasonably expected near-term demands of customers. A market-making desk may
also hedge the risks of its market-making activity under this exemption.

9Both SLR and VaR are constrained to exceed a certain threshold (imposed by regulation or management),
but the optimal target SLR and VaR may well diverge from the constraint in practice. Therefore, the SLR-
and VaR-utilization ratio is not necessarily informative about how constrained a given bank is.

10We are not arguing that one constraint is more important than the other, and we are not conducting
an empirical horse race between the two constraints. In fact, given their different natures, how binding one
constraint is versus the other likely depends on the individual bank as well as market conditions.
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Figure 1: Dealer Constraint Utilization: Leverage Ratio and Value-at-Risk
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Notes : Panel (a) shows the average SLR and the average percentage VaR-limit usages of dealers in our sample
based on a constant sample of dealers. A lower SLR means higher utilization of equity capital. For VaR-limit
utilization, a higher percentage represents higher usage of the set limit. In Panel (b), using variation at
the dealer-quarter level, we show a binned scatter plot and linear fit between quarterly SLR changes and
quarterly VaR usage changes. Sources: FR VV-1, FR Y-9C, authors’ calculations.

2 Data

Our analysis uses two main confidential data sets: the FR 2004 Government Securities Dealers

Reports and the Regulation VV Quantitative Measurements (henceforth VV-1).11

The FR 2004 is at the core of our analysis, as it includes information on outright positions

(FR 2004a) and turnover (FR 2004b)—important response variables to changes in constraints

according to our theoretical predictions—of all primary dealers of US government securities.12

Note that the FR 2004 does not constitute supervisory information, but the Federal Reserve

uses these data to monitor the performance of its business counterparties (the primary dealers)

and the condition of the US government securities market. This information enables the

Federal Reserve to fulfill its responsibilities in open market operations and act as a fiscal agent

for the US Department of the Treasury. The FR 2004 has been collected since the 1960s,

and participation is required to obtain primary dealer status. Position and turnover data are

collected weekly for various maturity buckets and security types; we focus on US Treasury

securities, excluding Treasury Inflation-protected Securities (TIPS). Aggregate statistics of

the FR 2004 data are available to the public on the Federal Reserve Bank of New York’s

website.

11The reported data are confidential, but the reporting form and instructions, including the list of
variables collected by the Federal Reserve, are publicly available at https://www.federalreserve.gov/

apps/reportforms/Default.aspx.
12A full list of the 24 primary dealers (as of March 20, 2024) is available at https://www.newyorkfed.

org/markets/primarydealers.
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Figure 4, panels (a) and (b) show the evolution of turnover and net positions (long minus

short) during our sample period for relevant maturity buckets taken from the FR 2004 and

aggregated across the banks in our sample.13 Panel (a) shows that weekly turnover ranges

from about $100 billion to $600 billion and tends to be highest for bills. Net positions are

orders of magnitude smaller but still sizable, ranging from about $5 billion to as much as $70
billion for bills during the onset of the COVID-19 pandemic, when the Treasury Department

issued large volumes of bills to fund the unprecedented fiscal stimulus. Appendix Figure A.1

breaks down the net position into long and short positions, showing that net positions are

driven mostly by long positions, while short positions are generally small.

The second key data set is the supervisory FR VV-1, which provides desk-specific internal

VaR limits and usage for the trading desks of banking organizations with average gross

trading assets and liabilities over the preceding four calendar quarters equal to $20 billion or

more (see Barbiero et al., 2024). This data set has been collected since July 2014 to monitor

compliance with the 2013 Volcker rule of the Dodd–Frank Act, which prohibits banks from

engaging in proprietary trading. Banks are required to report their internal organization of

trading desks, recording desk names and descriptions.14 For each desk, a bank reports all

internal risk limits as well as the usage of these limits. Risk limits fall primarily into two

categories: sensitivity (for example, dollar duration) and VaR. We focus primarily on VaR

limits. When desks report an upper and a lower limit, which may be relevant for two-sided

sensitivity limits, we focus on the limit with the larger absolute value, which we call the “max

limit.” The VV-1 data also report desk-day-level profits, which we use to construct margin

measures.

Fourteen of the banks in the VV-1 data are affiliated with primary dealers of Treasuries

during our sample period. The primary dealers covered in our merged data sets are the most

important ones affiliated with the largest bank holding companies (BHCs) in the United

States. The primary dealers in our merged data account, on average, for about 75 percent of

both total turnover and total net positions during our sample period. Hence, focusing on

these institutions is relevant for estimating aggregate market effects. Using publicly available

information, Appendix Table B.1 reports the primary dealers in our sample period and their

coverage in the different data sets used in this study. Appendix Figure A.2 shows the number

of primary dealers covered in the FR 2004 data during our sample period. The figure also

shows the number of dealer-owning BHCs in the VV-1 data.

13We exclude from the graph securities with coupons due in more than 11 years but not more than 21 years
and with coupons due in more that 21 years. These two maturity buckets generally have low volume.

14The Volcker rule defines a desk as a unit of organization that purchases or sells financial instruments for
the bank’s trading account. Desks are structured according to business strategies and to set and monitor
trading limits, losses, and strategies. See 12 CFR § 248.3(e)(14)(ii).
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Figure 2: Aggregate Turnover and Net Positions of Primary Dealers
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Notes: Four-week moving averages based on weekly FR 2004 data. Sources: FR 2004, FR VV-1, authors’
calculations.

Because desk delineations in the VV-1 data vary according to internal bank organiza-

tion, rather than product, we select for the analysis desks that, based on their names and
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descriptions, are likely to be the primary dealer desks. A few desk descriptions actually say,

“This desk is a primary dealer in US Treasuries.” For banks that do not indicate which desks

are primary dealers, we select the desks that trade US Treasury securities. In general, most

banks have only one desk that trades US Treasury securities at a time, though there are a

couple exceptions. Thus, we aggregate desks to the bank level.

We employ a few additional data sets in our analysis. First, to collect information on the

capitalization of the primary dealers’ BHCs, we employ the publicly available FR Y-9C data.

These data provide quarterly balance sheet and income statements for the largest BHCs in

the United States, including intermediate holding companies of foreign banking organizations.

Crucially, the data also include regulatory capital ratios, such as the SLR. We also collect

information on the BHCs’ total Treasury and reserves holdings to assess their contribution to

risk-insensitive exposure. For simplicity, we refer to BHCs as banks in the rest of this article.

Second, we use information from individual Treasury auctions. These publicly available

data include security information, such as initial maturity; auction characteristics, such as

the auction date and type; and details on the auction outcome, such as the high-yield and the

bid-to-cover ratio as well bids submitted and accepted by primary dealers and other auction

participants.15

Third, we collect comprehensive data on all Treasury yields and bid–ask spreads at the

CUSIP–day level from the Center for Research in Security Prices (CRSP). In most of our

analysis, we aggregate these data into maturity buckets to match the buckets in the FR

2004 data. We aggregate the spreads and yields into maturity buckets according to weighted

means using the publicly outstanding amount of each security as weights.

Finally, in our analysis on Treasury yields, we proxy Treasury demand using two sources:

the index of modified adjusted duration of US fixed-rate MBS from Bloomberg and the Euro

Interbank Offered Rate (EURIBOR) changes from Haver.

3 Results

In this section, we estimate the effects of dealer constraints on the Treasury market. Guided

by the model insights, we focus on the effects on dealers’ positions and their intermediation

ability as measured by turnover and intermediation spread. We also look at the impact on

yields and study Treasury auctions. We then use identified shifts in quantities and prices to

compute key elasticities that characterize the cost of the constraints.

A key empirical identification challenge is that risk constraints may respond endogenously

to broad market conditions. Neglecting the endogeneity of risk limits generally leads to

15See https://fiscaldata.treasury.gov/datasets/treasury-securities-auctions-data/.
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biased estimates of their effects. We identify the limit shock and its transmission using two

different identification schemes that, in turn, exploit different constraints—regulatory capital

constraints (SLR) and internal risk limits (VaR)—and empirical methods. Yet, as we show,

they produce similar results, as we estimate similar spread elasticities of turnover and position

and the related shadow cost of the constraints.

For identification of the effects of the SLR, we exploit a surprise change in the SLR

regulation that excludes Treasury holdings from the SLR exposure measures. This change

allows us to study the effect of the SLR using a standard difference-in-differences framework.

In our second approach, we estimate the effect of VaR-limit changes on the Treasury market.

For shock identification, we exploit the supervisory microdata on daily internal risk limit to

construct shocks to dealers’ aggregate risk-taking capacity that are driven by idiosyncratic

factors—that is, they are exogenous to the aggregate dynamics in the Treasury market by

construction—following the granular shock identification of Gabaix and Koijen (2020).

We discuss the identification and estimation results of each approach in the next two

subsections.

3.1 Results on SLR Constraint

Identification On April 1, 2020, amid severe strains in the Treasury market at the onset of

the COVID-19 outbreak, the Board of Governors of the Federal Reserve System announced

that US Treasury securities would be excluded from the SLR-relevant exposure and that the

change would take effect immediately.16 As a result, primary dealers could increase their

position in Treasury securities without impairing their banks’ SLRs. Figure 3 shows that

the exemption of Treasuries and reserves from the SLR computation boosted banks’ capital

ratios. Compared with a hypothetical SLR that would prevail without the exemptions, the

actual SLR is about 1 percentage point higher. The figure also reveals an improvement in

Treasury market liquidity that was concurrent with the SLR relief, as shown by a decline in

the Merrill Lynch Option Volatility Estimate (MOVE) index.

We estimate the effects of the SLR policy change using a standard difference-in-differences

approach. We expect the effect of the temporary exemption of Treasuries from the SLR to

boost the holdings of lower SLR dealers more than those of high SLR dealers, as lower SLR

dealers were presumably more constrained by the rule and should have had a higher marginal

16Deposits at Federal Reserve banks were excluded from the exposure. The stated goal of the temporary
change was “to ease strains in the Treasury market resulting from the coronavirus and increase banking
organizations’ ability to provide credit to households and businesses.” At the time of the announcement,
the Fed estimated that the change would temporarily decrease Tier 1 capital requirements for bank holding
companies by approximately 2 percent in aggregate. The change was in effect until March 31, 2021. See
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20200401a.htm.
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Figure 3: SLR Change and Treasury Market Liquidity
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Notes: This figure shows the effect of the exemption of exposure in Treasury securities and reserves on the
SLR. Reported are the average SLR (blue line) and the hypothetical SLR that would prevail without the
exemption. The sample is restricted to BHCs that own a primary dealer. The MOVE index, reported on the
right-hand side scale, is a market-implied measure of bond market volatility. The shaded area indicates the
period when the exemption was in effect. Sources: FR Y-9C, Haver, authors’ calculations.

(shadow) cost of adding exposure in Treasuries before the regulatory change. Our formal

regression model is:

Log(Position)i,t = βPost-Changet × SLR2019q4
i + αi + αt + ϵi,t, (10)

where the dependent variable is the gross position in Treasuries of dealer i at the end of week

t. The dummy variable Post-Change equals one as of week 14, 2020, that is, when the policy

change was announced and became effective. We measure the continuous treatment variable,

SLR, of dealer i as of 2019:Q4, that is, before the COVID-19 outbreak, although results are

similar using 2020:Q1. Our regression also includes time fixed effects to account for common

time trends in the Treasury market, such as issuance by the US Department of Treasury.

Dealer fixed effects account for structural cross-sectional differences in holdings. Note that

those fixed effects also absorb the level (uninteracted) effects of SLR and Post-Change.

The key parameter of interest is β, which measures the differential effect of the policy
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change depending on the dealer’s SLR after partialling out the fixed effects.17 Given the

difference-in-differences setup, we cannot identify the level effect of the policy change (the

aggregate effect) that is absorbed by the time fixed effects. For statistical inference, we

compute standard errors clustered at the week level. Given the small numbers of dealers in

the sample, we do not (additionally) cluster by dealer. Our baseline sample includes 2020:W8

through 2020:W28, a narrow window around the change, but later, we discuss the robustness

of our results using different windows. Table 1 shows the summary statistics for our baseline

regression sample.

Table 1: Summary Statistics of Bank-Week-Level Data

mean sd p25 p50 p75 count

Turnover ($B) 209.45 122.68 131.64 203.46 275.62 171
Net Position ($B) 16.31 18.27 3.70 11.88 18.35 171
Gross Position ($B) 34.27 27.62 14.36 27.65 45.93 171
Margin (P&L over Gross Position, %) 0.08 0.12 0.00 0.04 0.12 171
SLR (%) 7.13 1.85 6.21 6.36 7.07 171
SLR Diff (%) 0.57 0.25 0.47 0.66 0.73 171

Notes: Data are at the bank-week frequency, and summary statistics are reported for the baseline sample
from 2020:W8 through 2020:W28. The margin is computed as primary dealers’ trading-desk profits and
losses reported in the VV-1 data as a percentage of their gross position reported in the 2004 data. SLR is the
2019:Q4 SLR ratio, and SLR Diff is the hypothetical change in the 2019:Q4 SLR if Treasuries and reserves
were exempt from the exposure. Sources: FR 2004, FR Y-9C, authors’ calculations.

One key assumption for causal identification in the difference-in-differences approach is

the parallel trends assumption, which holds in our application, as we show below. Another

assumption requires that the policy change is not concurrent with other events that could

affect the treated group differentially from the control group. This means that the change

in the SLR rule must not be concurrent with other changes that differentially affect banks’

Treasury trading positions depending on their SLR.18 The high frequency of the dealers’

positions and turnover observed in the FR 2004 data allows us to convincingly mitigate such

concerns.19 Specifically, we can rule out that, during the week of the SLR policy change,

17A comparison between BHC-affiliated dealers—that are subject to SLR regulation—and dealers that
are unaffiliated with BHCs shows that the two groups were on different trends before the policy change,
invalidating an important identification assumption (see below). We therefore cannot use this control group.

18For example, lower SLR banks may have higher exposure to commercial credit risk. If concurrent with
the change in the SLR rule, the default risk of firms declined—for example, because another public policy
intended to foster firm health was enacted—this could lead to a reduction in corporate-loan-loss provisions
by lower SLR banks. The freed-up capital could then be redeployed to their affiliated dealers for trading
purposes. In such a case, we would spuriously attribute a change in trading by lower SLR banks to the
change in the SLR rule, when, in reality, it could come from changes in corporate credit risk.

19Most financial statements available to the public, such as those for public firms (Compustat) or commercial
banks (Call reports), are at the quarterly frequency.
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other relevant policy changes were announced or implemented, or that any relevant financial

market developments or broader economic events occurred. For example, the potentially

relevant Primary Dealer Credit Facility (PDCF) was announced on March 17, 2020, and

began operating on March 20, which was two weeks before the change in the SLR rule.

Appendix Figure A.3 reports key responses of the Federal Reserve to the COVID-19 crisis,

showing that at the time of the SLR change, no other policy changes occurred.

Table 2: Effect of SLR Change on Dealers’ Positions

Log(Position)

Bank Level Bank-Maturity Level
(1) (2) (3)

Post-Change × SLR2019q4 -0.102∗∗∗ -0.091∗∗∗

(0.009) (0.007)
Post-Change × ∆SLR 0.672∗∗∗

(0.096)

Week FE Yes
Bank FE Yes
Week*Maturity FE Yes Yes
Bank*Maturity FE Yes Yes
R2 0.969 0.940 0.940
R2 within 0.224 0.064 0.063
N 171 1,026 1,026

Notes : The table reports the differential effects of the SLR policy on primary dealers’ net positions, depending
on their SLR. In column (1), the data are at the bank-week level, and the dependent variable is the logarithm
of total gross position in Treasury securities of dealer i in week t. In columns (2) and (3), the data are at the
bank-maturity-week level, and the dependent variable is the logarithm of gross position in Treasury securities
in maturity bucket m of dealer i in week t. Post-SLR is an indicator that equals one as of week 14, 2020, and
zero otherwise. SLR is the 2019:Q4 SLR ratio as a percentage. ∆SLR is the (hypothetical) increase in the
2019:Q4 SLR if the policy enacted on week 14 of 2020 applied. The sample period covers 2020:W8 through
2020:W28. Fixed effects are included as indicated in the bottom of the table. Robust standard errors are
clustered at the week level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sources : FR 2004,
FR Y-9C, authors’ calculations.

Results on Positions We now present our baseline results for how dealer positions

responded to the SLR policy change. Table 2, column (1) reports the estimation results of

Equation (10). The coefficient estimate of β is highly significant and negative, indicating that,

after the SLR policy change, dealers of lower SLR banks significantly increased their gross

position in Treasuries. The estimate indicates a relative increase of 10.2 percentage points

for a 1 percentage point increase in the SLR. Note again that in this difference-in-differences
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setup, the level effect of the policy change is absorbed by the week fixed effects. Similarly,

the SLR differential effect before the policy change is absorbed by the bank fixed effects.

We next zoom in on the dynamics of the effect by estimating SLR differentials for each

week; that is, instead of interacting the SLR variable with a post-change dummy, we estimate

different β coefficients for each week. This analysis is important for two reasons. First,

it allows us to assess how fast the differential effect materializes and how persistent it is—

information that is not contained in the average differential effect estimated in Table 1, column

(1). Second, estimating week-by-week differential effects allows us to test whether both the

treated group and the control group were on parallel trends before the policy change—a

key assumption in the difference-in-differences identification setting. The results reported

in Figure 4 show that the parallel trends assumption clearly holds for the period before the

policy change. Once the policy change is announced and becomes effective (week 14), the

differential effect immediately becomes negative and highly statistically significant, with

values smaller than –0.1. The differential effect remains significant for several weeks, until

it decreases in size and becomes indistinguishable from zero at the end of 2020 (Appendix

Figure A.4).

In columns (2) and (3) of Table 1, we further substantiate our baseline difference-in-

differences estimate. First, in column (2), we exploit the maturity dimension of the FR

2004 data. Specifically, we estimate regression models similarly to equation (10) but without

aggregating dealers’ positions across maturity buckets. Thus, our unit of observation is at

the bank*maturity*week level, which allows us to control for maturity*week fixed effects and

dealer*maturity fixed effects.20 Inclusion of such multi-way fixed effects allows us to further

control for heterogeneity that may affect our estimates or precision. Column (2), however,

shows that such additional controls do not materially affect our estimate, which is now –0.09,

close to our baseline estimate in column (1). Moreover, the standard errors do not change

substantially, lending additional support that our estimate is picking up a causal relationship

between the policy change and the differential positions depending on SLR.

In column (3), we use a slightly different treatment variable. Instead, of the 2019:Q4–SLR

ratio, we compute the (hypothetical) increase in the 2019:Q4 SLR that each dealer bank

would face if Treasuries and reserves were exempt from the SLR exposure related to the

policy change. The idea behind this variable is that one may argue that dealer banks that

gain more from the policy change (in terms of easing, that is, increasing, their SLR) may

20We weight observations with the within-dealer-week share of positions in each maturity to mimic the
bank-level results in column (1).
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Figure 4: Differential SLR Effect on Dealer Positions
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Notes: The figure shows coefficient estimates {β̂t} from the following regression: log(Position)i,t =

βtPost-SLRt × SLR2019q4
i + αt + αi + ϵi,t. Post-SLR is a dummy equal to one after 2020:W14, and zero

otherwise. Positions are gross positions, in line with gross notionals entering the SLR exposure measure. The
sample period runs from 2020:W1 through 2020:W26. The SLR change was announced on April 1, 2020
(week 14), and became effective immediately. The vertical red line indicates the last week before the change.
The bars represent 90 percent confidence intervals based on robust standard errors. Sources: FR 2004, FR
Y-9C, authors’ calculations.

more strongly increase their Treasury positions, as opposed to banks with lower SLR ratios.21

The significantly positive point estimate of 0.67 in column (3) supports the view that banks

also (relatively) increased their dealers’ Treasury positions when their SLR increased more

from the policy change. Overall, this analysis confirms our key point: The SLR change had

strong effects on dealers’ Treasury positions.

Results on Liquidity Understanding the effects of the SLR on dealer positions is the first

step in understanding the effects on market liquidity. The channel involves dealers that are

constrained by their inventory holdings, thereby impairing their ability to make markets,

which has adverse effects on liquidity. As a next step, we investigate how dealers’ turnover in

21The level of the SLR and its increase under the exemptions are highly correlated in our set of relevant
BHCs, with a correlation coefficient of –0.8259. That said, we are not arguing that one or the other variable
is a better measure of the constraint, nor are we trying to horse-race the two variables.
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Treasuries responded to the SLR policy change. Table 3, column (1) shows the estimation

results of regression model (10), replacing the left-hand side variable with the logarithm of

dealers’ weekly turnover in Treasuries. The estimate shows that after the policy change,

lower SLR banks significantly increased their turnover relative to higher SLR banks. The

differential effect is about 5 percentage points per 1 percentage point increase in the SLR.

Column (2) reports analogous results when we look at the maturity-bank-level data, which

allows us to control for additional fixed effects, as discussed earlier. Compared with column

(1), we find a somewhat larger differential effect (in absolute value) of about 7.4 percentage

points.

Table 3: Effect of SLR Change on Liquidity

Log(Turnover) Margin Log(Margin)

Bank Level Bank-Mat Level Bank Level Bank Level
(1) (2) (3) (4)

Post-Change × SLR2019q4 -0.050∗∗ -0.074∗∗∗ 0.081∗∗ 0.098∗

(0.020) (0.025) (0.039) (0.050)

Week FE Yes Yes Yes
Bank FE Yes Yes Yes
Week*Maturity FE Yes
Bank*Maturity FE Yes
R2 0.977 0.944 0.667 0.833
R2 within 0.073 0.041 0.013 0.011
N 171 1,026 171 147

Notes: The table reports the differential effects of the SLR policy on primary dealers’ turnover and margin,
depending on their SLR. In column (1), the data are at the bank-week level, and the dependent variable
is the logarithm of total turnover in Treasury securities of dealer i in week t. In columns (2) and (3), the
data are at the bank-maturity-week level. In column (2), the dependent variable is the logarithm of turnover
in Treasury securities in maturity bucket m of dealer i in week t. In column (3), the dependent variable
is the total weekly profits of dealers’ trading desks (retrieved from VV-1 data) relative to the preceding
week’s position (margin) and expressed as a ratio of its standard deviation. In column (4), similar results
are obtained with the dependent variable being the logarithm of the intermediation margin. Post-SLR is
an indicator that equals one as of week 14 of 2020 and zero otherwise. SLR is the 2019:Q4 SLR ratio as a
percentage. The sample period covers 2020:W8 through 2020:W28. Fixed effects are included as indicated in
the bottom of the table. Robust standard errors are clustered at the week level and reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1. Sources: FR 2004, FR Y-9C, FR VV-1, authors’ calculations.

So far, we have shown that lifting dealer constraints led to larger positions and higher

turnover for more constrained dealers. Given that a binding constraint implies a higher

(marginal) shadow cost of maintaining positions and intermediating Treasuries, we also expect

that, once the constraints are lifted, the affected dealers’ intermediation margins would decline

because the marginal cost declines. In column (3), we therefore look at the response of weekly
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total trading profits of primary dealers’ trading desks relative to the preceding week’s gross

position. This variable is a natural margin measure because it captures the income from

trading relative to the position held. We again use the same regression model (10) but swap

out the dependent variable against our margin measure. The significant positive coefficient

estimate confirms our hypothesis: After the policy change, lower SLR dealers decreased

their profit margins relative to higher SLR banks. Similar results hold when we look at the

logarithm of margin (column 4).22 The effects are sizable, with a differential effect of about 8

to 10 percentage points per 1 percentage point increase in the SLR. Overall, the evidence on

the responses of positions, turnover, and margins is consistent with the SLR change easing

dealer constraints and improving Treasury market liquidity.

3.2 Result on VaR Limits

Identification For our VaR-limit shock identification, we combine two insights from

Gabaix and Koijen (2020). First, we identify dealer-level idiosyncratic risk VaR-limit changes,

that is, changes in limits that are exogenous to the overall evolution of the Treasury market.

Second, the granularity of the dealer-centric market—a few large primary dealers account

for a large share of Treasury market intermediation—allows idiosyncratic limit changes to

affect aggregate quantities. Figure 5 shows the distribution of nonzero limit changes at the

bank-day level that we exploit in our analysis.

Our granular approach to isolating risk-limit shocks is based on two steps. First, we

recover dealer-day-level idiosyncratic limit changes as the residuals from a saturated regression

of dealer-day-level limits, controlling for time trends and dealer-specific effects. Specifically,

in our baseline specification, we model the log limits changes at the dealer-day (d,τ) level

using a saturated fixed-effects model:

∆ log Limitd,τ =
20∑

h=−20
h̸=0

γh log Limitd,τ−h +
20∑

h=−20
h̸=0

ωhUsaged,τ−h + αd + ατ + ed,τ . (11)

To help us understand the variation in changes in (log) limits, Table 4 shows the R2 of

the different sets of fixed effects included in our baseline model, as well as the explanatory

power of the full model shown in column (7). Columns (1) and (3) show that time fixed

effects alone can explain only about 11.5 percent of the variation. Bank fixed effects have no

explanatory power (column 2). On the other hand, column (4) shows that adding lagged

limits (20 lags) to the specification explains about 24 percent of the variation (net of fixed

22Due to some negative profits, the sample size is smaller when we look at the log margin as the response
variable, which is not defined for negative profits.
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Figure 5: Distribution of VaR-Limit Changes

0

10

20

30

40
Pe

rc
en

t

-1 -.5 0 .5 1
Limit Changes (log differences)

Notes: This figure shows the distribution of the log difference of VaR limits at the bank-day level. Only
nonzero changes are included, and they are trimmed at top and bottom 2.5 percent. Sources: FR VV-1,
authors’ calculations.

Table 4: Variation in Log Limit Changes

∆ Log Limit

(1) (2) (3) (4) (5) (6) (7)

Time FE Yes No Yes Yes Yes Yes Yes
Bank FE No Yes Yes Yes Yes Yes Yes
Lagged Limits No No No Yes No Yes Yes
Lagged Usage No No No No Yes Yes Yes
Leads Limits+Usage No No No No No No Yes
R2 0.115 0.000 0.115 0.328 0.117 0.329 0.466
R2 within 0.000 0.000 0.000 0.241 0.003 0.242 0.397
N 11,547 11,547 11,547 11,547 11,547 11,547 11,547

Notes: The dependent variable is the daily change in log limits. Lagged Limits and Usage include 20 lags of
either variable. Leads refers to 20 leads. The table shows that, net of fixed effects, past limit changes and
usage explain about a quarter of the variation in limit changes (within R2 shown in column 6). The sample
is held constant across specifications. Sources: FR VV-1, authors’ calculations.

effects). The most saturated model, in column (7), also adds lagged usage and 20 leads of

usage and limits and explains about 46 percent of the variation in limit changes.

In robustness tests, we allow for a common factor structure in the residuals of Equation
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(11) that may not be captured by our extensive set of fixed effects and controls:

ed,τ = λ′
dfτ + ϵd,τ , (12)

where fτ is a vector of common factors, and λd are the associated loadings of dealer d. The

residual ϵd,τ represents the truly idiosyncratic components. We estimate the factor structure

using principal component analysis of the residuals obtained from a least squares regression

of Equation (11). In our baseline robustness test, we remove two common factors, but the

results are robust to removing more common factors.

These idiosyncratic limit shocks may result from a variety of factors that cause desks to

change their existing limits, impose additional limits, or remove existing limits. Such factors

may include changes to management or trading personnel, changes to trading strategy, or

changes to bank strategy that cause a reallocation of risk across divisions. In our data, we

find that many of the largest shocks are driven by the effect of foreign holidays on banks

with large Treasury desks in foreign countries. When these desks are closed due to a foreign

holiday, it constitutes a significant reduction in intermediation capacity in the Treasury

market because other desks are not dynamic enough to increase their limits in response.

Despite the importance of foreign holidays, we will show that our results do not depend on

them.

The residual of Equation (12) is our baseline measure of idiosyncratic (dealer-level) limit

innovations. To obtain our final maturity-level aggregate limit shock, we aggregate the

dealer-level limit innovations as exposure-weighted means:

Limit Shockm,t = −
∑
b

wm
b,t−1

∑
τ∈t

êd,τ , (13)

where the inner sum aggregates from a daily to weekly frequency, and the weight wm
b,t−1 =

abs(δb,m,t−1)/
∑

b abs(δb,m,t−1) is, for each maturity m, the share of the net position held by

primary dealer b in the total net position of all primary dealers. Thus, maturity-level shocks

are constructed as an exposure-weighted mean of bank-level shocks reflecting the importance

of a dealer’s exposure in a given maturity bucket. The idea here is that limit shocks to

primary dealers that have larger positions relative to other banks in a given maturity should

matter more to that maturity.23 Appendix Figure A.6 depicts our baseline limit shocks at

the maturity-quarter level. For robust inference, all shocks are winsorized at the 2.5th and

23Appendix Figure A.5 shows the concentration of weights (Herfindhal index) by maturity bucket. Appendix
Table B.2 shows that within bank maturity, the weights are highly stable over time. That said, note how our
identification hinges on the random shocks, while exposure shares are allowed to be endogenous (Borusyak,
Hull and Jaravel, 2021).
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97.5th percentiles. Finally, we standardize the limit shocks in each estimation sample to have

mean zero and unit variance.

We use these granularly identified limit shocks to assess the Treasury market response.

Specifically, we regress three key dependent variables—net positions, turnover, and bid–ask

spread—on the limit shock using our merged data set at the week-maturity level. Formally,

we use the following linear regression model:

∆ym,t = β1Limit Shockm,t + γ′Xm,t + αm + αt + um,t, (14)

where ym,t is the outcome variable, m indexes the maturity bucket, and t indexes weeks. In

our baseline analysis, ym,t is either (1) the log of the aggregate net positions in maturity

bucket m, (2) the log aggregate turnover in maturity bucket m, or (3) the log bid–ask spread

associated with maturity bucket m.24 The specification also includes week fixed effects (αt)

and maturity bucket fixed effects (αm) to account for common time effects and structural

differences in liquidity across different maturity buckets. The lagged values of the dependent

variables are included in the vector of controls. For statistical inference, we compute standard

errors clustered at the week level.25

Our baseline estimation sample covers weekly data from 2016:W1 through 2023:W52.

However, given potential confounders during the COVID-19 period—including changes in

bank capital regulation that we discussed earlier—we show robustness to excluding the

2020:Q1–2021:Q1 period. As we will explain later, in our baseline analysis, we focus on the

maturity buckets of bonds and notes as reported in the FR 2004 data (that is, we exclude

bills from our analysis). Table 5 reports summary statistics of key variables in our baseline

maturity-week sample.

Positions Table 6 presents our baseline results regarding how VaR-limit shocks affect

dealers’ net positions. The estimated coefficients show that, in response to a tightening limit

shock, primary dealers decrease their net position. The parameter estimate of –0.021 in

column (1) suggests that, in response to a one-standard-deviation tightening limit shock,

primary dealers reduce their net position by about 2.1 percent. Considering that a one-

standard-deviation limit shock corresponds to a 0.52 percent (surprise) limit reduction (see

Table 5), this effect is sizable. Column (2) shows that the effect is quantitatively similar

24Net positions are aggregated as the sum of absolute values of net positions across all dealers, thus
measuring the total amount of dealer net position. Aggregate turnover is simply the sum of value of all
transactions reported by the dealers in a given maturity. Bid–ask spreads are aggregated as weighted means
across all Treasuries within the same maturity bucket.

25We do not also cluster by maturity bucket due to the small number of buckets, although the standard
errors would be similar if we did so.
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Table 5: Summary Statistics of Baseline Maturity-Week-Level Data

mean sd p25 p50 p75 count

Turnover ($B) 351.39 171.40 218.15 336.19 454.52 2080
Net Position ($B) 22.53 15.75 11.80 16.88 28.08 2080
Gross Position ($B) 65.79 37.42 36.05 45.91 93.74 2080
Bid-Ask Spread (% Mid Point) 0.05 0.03 0.03 0.04 0.08 2073
Margin (Income over Net Position, %) 1.23 1.31 0.41 0.71 1.45 2073
Margin (Income over Gross Position, %) 0.38 0.36 0.12 0.24 0.50 2073
Limit Shock (%) -0.14 0.52 -0.04 -0.01 -0.01 2080
Raw Limit Change (%) -0.07 0.51 -0.04 0.00 0.03 2080
Yield-to-Maturity (%) 2.02 1.27 1.07 1.81 2.78 2080
Adj. MBS Duration 4.18 1.28 3.07 4.51 5.20 1935
EURIBOR Change (bps) 1.96 5.98 -0.42 0.00 0.66 2070

Notes: Positions are aggregate net positions computed as the sum of net positions across all dealers by
maturity and week. Income = Spread*Turnover. MBS duration in years. EURIBOR Changes represent
two-week changes. Sources: FR 2004, FR VV-1, CRSP, Bloomberg, authors’ calculations.

when we exclude the COVID-19 period from the sample. Column (3) shows that, when

using raw limit changes that are endogenous to market conditions, we find an attenuated and

insignificant effect of –0.008. Thus, using limit shocks that are exogenous to broader market

conditions is important for identification.

Appendix Table B.3 shows that our results are robust to differently constructed limit

shocks. First, column (1) reports results when we control for the primary dealer’s past

positions in Treasuries as reported in the FR 2004 data, in addition to the past limit

utilization that we include in our baseline specification. Second, in column (2), we report

results when we construct the limit shocks incorporating a factor analysis of the desk-day-level

limit innovations to ensure that no remaining factor structure is driving our results. Third,

because part of our identification comes from foreign holidays, we also remove foreign holidays

from the estimation sample of the idiosyncratic desk innovations (column 3) to show that

our identification does not hinge on foreign holidays. Fourth, in an alternative approach, we

remove primary dealers with foreign desks altogether from the sample (column 4). While

these different ways to construct limit shocks lead to the same conclusions, as Appendix

Table B.4 shows, our effects are driven mainly by the period before 2020, when our limit

shocks exhibit higher variation.

In our baseline analysis, we exclude Treasury bills from the sample. In Table 7, column

(1), we report results when we include bills in our analysis, but we allow for a differential limit

shock effect. The estimates show that limit shocks affect only coupon bonds (non-bills), not

bills, with the effect on bills about 10 times smaller in magnitude. This result is intuitive given
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Table 6: Limit Shocks and Primary Dealers’ Net Positions

Log(Position)

(1) (2) (3)

Limit Shock -0.021∗∗∗ -0.021∗∗

(0.007) (0.008)

Raw Limit Change -0.008
(0.007)

Lagged LHS Yes Yes Yes
Maturity FE Yes Yes Yes
Week FE Yes Yes Yes
Excl. COVID No Yes No
R2 0.945 0.942 0.945
R2 within 0.733 0.725 0.732
N 2,075 1,815 2,075

Notes : The table reports the effects of a one-standard-deviation tightening limit shock on primary dealers’ net
positions. The dependent variable is the logarithm of the absolute value of dealers’ net position in Treasury
securities. The data are at the maturity-bucket and week levels. The sample period covers 2016:W1 through
2023:W52. The COVID-19 period is excluded or not, as indicated in the fixed effects panel. Robust standard
errors are clustered at the week level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sources :
FR 2004, FR VV-1, authors’ calculations.

that we focus on VaR limits. Indeed, Figure A.7 shows that bills, as opposed to Treasury

securities in other maturity buckets, exhibit strikingly lower return variability. Therefore,

bills contribute substantially less to the use of VaR constraints. As a result, it is economically

rational that dealers, in response to a tighter risk limit, adjust their net positions in other

maturities that contribute more to the tighter constraint because doing so will lead to the

highest marginal reduction in the constraint utilization.

We can test this hypothesis directly by estimating heterogeneous effects of limit shocks on

net positions depending on the variability of returns. To do so, we interact our limit-shock

variable with the standard deviation of log price differences computed at the security level

based on a 30-day rolling window, which we then aggregate to the maturity-bucket level, the

unit of observation in our data on net positions. Table 7, columns (2) and (3) clearly show

that exposure adjustments are more sensitive in maturity buckets that exhibit higher return

volatility. This observation holds both when we include Treasury bills in our sample and

when we exclude them. Thus, the result that dealers cut back more on exposure in securities
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Table 7: Heterogeneous Effects Depending on Return Variability

Log(Position)

(1) (2) (3)

Non-Bills × Limit Shock -0.0154∗∗

(0.008)

Bills × Limit Shock 0.00153
(0.010)

Limit Shock -0.00987 -0.0201∗∗∗

(0.006) (0.007)

Return Variability 0.00989∗∗ 0.00875∗∗

(0.004) (0.004)

Return Variability × Limit Shock -0.0184∗∗ -0.0171∗∗

(0.008) (0.009)

Lagged LHS Yes Yes Yes
Maturity FE Yes Yes Yes
Week FE Yes Yes Yes
Excl. Bills No No Yes
R2 0.944 0.944 0.950
R2 within 0.749 0.749 0.740
N 2,696 2,696 2,281

Notes: This table extends the baseline analysis of Table 6 to include T-bills (column 1). In columns (2)
and (3), the table shows the differential effect of standardized limit shocks on dealer positions depending
on Treasury return variability. We measure return variability by the standardized coefficient of variation
of the daily log price change computed for each maturity bucket based on a 30-day trailing rolling window.
The data are at the maturity-bucket and week levels. The sample period covers 2016:W1 through 2023:W52.
Robust standard errors are clustered at the week level and reported in parentheses. *** p<0.01, ** p<0.05, *
p<0.1. Sources: FR 2004, FR VV-1, CRSP, authors’ calculations.

with higher return variability also holds within the set of coupon bonds.26 Overall, this

analysis lends additional support for the economic channel driving our identified empirical

relationships.

Liquidity We next study the effects of limit shocks on Treasury market liquidity, as tighter

limits should induce dealers to hold fewer positions, leading to lower turnover and an increase

in bid–ask spreads. Table 8 reports the baseline liquidity results that confirm these model

predictions. Column (1) shows that a one-standard-deviation limit shock leads to a decrease

in turnover of about 1.7 percent. Given the average weekly turnover of about $351 billion,

26Appendix Figure A.8 reports our baseline effects for each maturity bucket separately.
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this corresponds to a decline in turnover of about $6 billion. The effect is robust to excluding

the COVID-19 period (column 2). Tighter limits also increase bid–ask spreads. Column (3)

shows that, in response to a one-standard-deviation limit shock, bid–ask spreads increase by

about 2.4 percent. The results are robust to excluding the COVID-19 period (column 4). We

find qualitatively similar results when looking at measures of Treasury market liquidity other

than bid–ask spreads and turnover.27

Table 8: Limit Shocks and Liquidity: Turnover and Bid–Ask Spreads

Log(Turnover) Log(Bid-Ask)

(1) (2) (3) (4)

Limit Shock -0.017∗ -0.019∗∗ 0.024∗∗∗ 0.027∗∗∗

(0.009) (0.009) (0.007) (0.008)

Lagged LHS Yes Yes Yes Yes
Maturity FE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes
Excl. COVID No Yes No Yes
R2 0.866 0.872 0.943 0.938
R2 within 0.017 0.013 0.564 0.571
N 2,075 1,815 2,061 1,803

Notes: The table reports the effects of a one-standard-deviation tightening limit shock on turnover and
bid–ask spreads. In columns (1) and (2), the dependent variable is the logarithm of primary dealers’ total
turnover in Treasury securities. In columns (3) and (4), the dependent variable is the logarithm of the bid–ask
spread (relative to the midpoint) of Treasury securities. The data are at the maturity-bucket and week levels.
The sample period covers 2016:W1 through 2023:W52. The COVID-19 period is excluded or not, as indicated
in the fixed effects panel. Robust standard errors are clustered at the week level and reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1. Sources: FR 2004, FR VV-1, CRSP, authors’ calculations.

Yields We have shown that limit shocks affect primary dealers’ net positions and impair

intermediation in the secondary market, as bid–ask spreads increase and turnover decreases.

What about the effects on yields? Our framework in Section 1 abstracts away from endogenous

price movements by fixing the price and focusing on partial equilibrium results. However, as

the general equilibrium model in Barbiero et al. (2024) shows, limit shocks should amplify

price movements in the direction predicted by net demand. The intuition here is that when

dealers are more constrained, they must receive greater compensation for intermediating

the market, and this comes in the form of a higher return. Since dealers must take a larger

27For example, Table B.5 shows that liquidity declines after limit shocks when we measure liquidity with
the logarithm of the absolute value of the yield error.
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position when net demand is higher, an increase in the cost of this position would cause a

larger price increase or a larger yield decrease (in the case of bonds) than otherwise would

occur. In our regression analysis, this would manifest as a significant negative coefficient on

the interaction term in a regression of yield on our limit shock variable and a proxy of net

demand.

In our analysis, we proxy for net Treasury demand in two different ways. First, we use

MBS duration. As Hanson (2014) explains, a decline in MBS duration indicates an increase

in refinancing expectations. In turn, MBS refinancing prompts bond investors to put their

received funds into Treasuries, driving up net demand for Treasuries and reducing Treasury

yields. Table 5 shows that the average adjusted MBS duration (of fixed rate mortgages)

in our sample period is about 4.8 years. In our regressions, we use the lagged value of the

negative log change in the MBS duration as a proxy for Treasury net demand shifts. An

increase in this variable means that MBS duration declined during the last week and Treasury

demand increased.

Second, we use euro-area monetary policy rate changes. If the foreign policy as proxied

by EURIBOR falls, investing in Treasuries becomes more attractive, all else being equal.

Therefore, we expect that a decline in foreign interest rates leads to an upward demand shift

for Treasuries, especially by international investors, which would manifest as a higher price

and lower yield of US Treasuries. We compute the EURIBOR changes as two-week changes

because capital may need time to adjust. In our regressions, we use the negative change

such that an increase in this variable means that the EURIBOR fell and Treasury demand

increased. We also looked at interest rate changes in other major foreign economies, and the

results, which we do not report, were qualitatively similar to our other results.

Table 9 reports the results, with columns (1) through (3) focusing on the demand-shifter

proxy derived from MBS duration, and columns (4) through (6) focusing on the foreign

interest rate change. Column (1) shows that when the MBS duration decreases, Treasury

yields fall, consistent with this variable capturing an increase in Treasury demand. Because we

have standardized the demand-shifter variable and the dependent variable is in basis points,

the coefficient of –1.325 means that yields drop by about 1.3 basis points in response to a one-

standard-deviation change. Importantly, in columns (2) and especially (3), where we add time

fixed effects, we find that when the Treasury demand shift is accompanied by a tighter-limit

shock, yields do decrease more than otherwise. Relative to the average effect of the demand

shifter (column 1), the differential effect per standard-deviation tighter limit shock is about

26 percent (–0.345/–1.325). Columns (4) through (6) provide additional evidence for the

amplification of the effect of net demand shifts on yields. When the EURIBOR rate falls, US

yields decline, but more so when primary dealers experience a limit shock that tightens their
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constraints. Relative to the average effect of the demand shifter (column 4), the differential

effect per standard-deviation tighter limit shock is about 29 percent (–0.748/–2.525).

Table 9: Effect on Yields: Interaction with Treasury Demand Shifters

Dep. Var.: Yield, bps

Shifter: ∆ MBS duration Shifter: ∆ EURIBOR

(1) (2) (3) (4) (5) (6)

Treasury Demand Shifter -1.325∗∗∗ -1.324∗∗∗ -2.525∗∗∗ -2.553∗∗∗

(0.450) (0.451) (0.640) (0.641)

Limit Shock -0.0534 -0.0689 -0.0609 -0.0342 0.286 0.213
(0.093) (0.092) (0.065) (0.098) (0.184) (0.175)

Treasury Demand Shifter × Limit Shock -0.231 -0.345∗∗ -0.969∗∗ -0.748∗

(0.190) (0.165) (0.428) (0.452)

Lagged LHS Yes Yes Yes Yes Yes Yes
Maturity FE Yes Yes Yes Yes Yes Yes
Week FE No No Yes No No Yes
R2 0.994 0.994 0.999 0.995 0.995 1.000
R2 within 0.994 0.994 0.987 0.995 0.995 0.989
N 1,930 1,930 1,930 2,070 2,070 2,070

Notes: The dependent variable is the traded yield-to-maturity, as a percentage. For each maturity bucket,
the yield is computed as the outstanding-volume-weighted mean yield of all outstanding Treasuries in that
maturity bucket. In columns (1) through (3), the Treasury Demand Shifter is the lagged value of the negative
log change in the MBS duration; in columns (4) through (6), it is the negative value of the two-week change
in the EURIBOR. In each case, the demand shifter has been standardized to have unit variance and mean
zero in each regression sample, and an increase in the variable means higher demand for Treasuries. Limit
Shock is our baseline standardized VaR-limit shock. Robust standard errors are clustered at the week level
and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sources: FR VV-1, FR 2004, Bloomberg,
CRSP, Haver, authors’ calculations.

Effects on Auctions We also study the effects of limit shocks on the primary market

for Treasuries. The Treasury Department auctions off Treasuries by maturity at monthly

intervals. Among the main participants in these auctions are primary dealers, and they are

required by their primary-dealer status to bid at auctions. Naturally, we would expect that

shifts in primary dealers’ constraints will affect their bidding behavior.

During our sample period, auctions were conducted as single-price auctions. These are

“Dutch” auctions, meaning that all successful bidders pay the same price; that is, they obtain

the same yield. All prospective buyers place competitive bids, submitting to the Treasury

Department a price-quantity schedule that represents the payout (yield) they want to receive

and the amount they want to buy. The Treasury Department first accepts the bids with the

lowest yield—that is, the ones that will cost the government the least—then the next-lowest,
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scaling the ladder toward its predetermined borrowing goal. All bidders receive the highest

rate needed to clear the auction—the “high yield”—which in turn determines the cost of the

debt issuance for the Treasury Department.

Table 10: Effect of Limit Shocks on Treasury Auctions

Log(Bid-to-Cover Ratio) Log(High Yield)

Dealers Non-Dealers

(1) (2) (3) (4) (5) (6)

Limit Shock -0.048∗∗∗ -0.051∗∗∗ -0.001 -0.000 0.006 0.009∗∗

(0.014) (0.015) (0.004) (0.004) (0.005) (0.005)

Controls Yes Yes Yes Yes Yes Yes
Maturity FE Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes
Excl. COVID No Yes No Yes No Yes
R2 0.780 0.777 0.811 0.806 0.916 0.899
R2 within 0.436 0.432 0.471 0.446 0.029 0.022
N 558 496 558 496 558 496

Notes : The table reports the effect of standardized limit shocks on auction outcomes. In columns (1) through
(4), the logarithm of the bid-to-cover ratio is broken down by primary dealers and non-dealer participants. In
columns (5) and (6), the dependent variable is the logarithm of the high yield. Each security auction is one
observation. Controls include the bid-to-cover ratios and log total amount accepted at the last auction in the
same tenor, as well as 14 daily lags of yield to maturity with the coefficients allowed to vary by tenor. The
sample excludes T-bill auctions but includes all notes and bonds of all tenors. Sources: FR 2004, FR VV-1,
Treasury Securities Auctions Data, CRSP, authors’ calculations.

A crucial metric for the demand at an auction is the “bid-to-cover” ratio. It is calculated

by dividing the total dollar amount of bids submitted in the auction by the amount of

securities offered for sale. Typically, the higher the ratio, the more demand there is for

Treasuries. Summary statistics at the auction level are reported in Appendix Table B.6.

We analyze the effects of limit shocks on two auction outcomes, the bid-to-cover ratio

and the high yield.28 The data breakdown also allows us to study the bidding behavior

(bid-to-cover) of primary dealers versus other auction participants. Our regressions are similar

to the ones we described earlier, but our data dimension is now the auction level, and we

match the weekly limit shocks to the week preceding the auction date. To estimate the effect

on the high yield, we control for 14 daily lags of the maturity-specific yield and include the

bid-to-cover ratio and (log) amount in the preceding auction of the same maturity.

28Summary statistics for auction variables are given in Table B.6 in the Appendix.
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Table 10 shows that primary dealers reduce their bidding in the auctions when they face

a tightening-limit shock in the week before the auction (columns 1 and 2). The coefficient

estimates indicate a 5 percent drop in the bid-to-cover ratio in response to a one-standard-

deviation limit shock. On the other hand, in columns (3) and (4), we find a precisely estimated

zero effect on the bidding behavior of non-dealers, which is what we would expect for a limit

shock constructed from idiosyncratic dealer behavior. Columns (5) and (6) show that the

high yield, the yield/price that clears the auction, increases along with the inward shift in

the dealers’ Treasury demand. The estimates indicate a 1 percent increase in response to a

one-standard-deviation limit shock. Thus, shocks to dealers’ constraints have direct effects

on the financing cost to the US government.

3.3 Economic Implications

Our core findings show that position constraints matter for primary dealers’ intermediation

capacity in the Treasury market, as they strongly affect position, turnover, and spread,

consistent with our model predictions. This holds for two separate identification schemes and

independent periods. Specifically, in the previous section, using granularly identified shocks,

we focused on estimating aggregate limit-shock elasticities of positions, turnover, and spread

(Tables 6 and 8). The estimates are sizable, and we next want to more closely assess the

economic effects (costs) of dealer constraints. While we do not aim to provide a full welfare

analysis, our estimates nevertheless allow us to shed light on the values of key elasticities and

the shadow cost of dealer constraints.

To do so, we revisit the first-order condition of the generic dealer problem, which states

that, for profit maximization, the marginal return from charging a spread—intermediation

income—has to equal the marginal cost of holding a position. This holds irrespective of the

linearity of the supply-and-demand functions. The first-order condition can be re-written as:

t+ st′ = λδ′ ⇒ µ(1 + ϵt) = λϵδ, (15)

where µ ≡ s·t
δ

is a margin measure equal to spread income relative to position, and ϵt is

the spread elasticity of turnover. This term measures the percentage change in turnover in

response to a percentage change in the spread. On the right-hand side, the marginal cost

is the shadow cost of the constraint (λ), which is generally nonzero if the constraint binds,

multiplied by the spread elasticity of the net position, ϵδ, measuring the percentage change

in the net positions to a percentage change in the spread.

We can back out these crucial spread elasticities from the limit-shock elasticities of

turnover, position, and the spread that we estimated in Tables 6 and 8. We define these
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Table 11: Estimated Elasticities and Shadow Cost of Constraints

Shadow Cost
Bid-Ask Spread Elasticity of (% of Margin)

Turnover, ϵt Position, ϵδ
1+ϵt
ϵδ

× 100

(1) (2) (3)

VaR estimates -0.71 -0.87 33
SLR estimates -0.76 -0.93 26

Note: The table reports the spread elasticity of turnover and position as implied by our estimates from
the analysis of either VaR limits or the SLR policy change. 1+ϵt

ϵδ
= λ

µ is the shadow cost relative to the
margin. Note that the numbers in the quotients are semi-elasticities with respect to a one-standard-deviation
VaR-limit shock or a percentage point SLR increase. The corresponding elasticities can be backed out by
rescaling the estimates.

limit-shock elasticities as ex ≡ dx
dλ

λ
x
for x = t, δ, s. The spread elasticity of turnover and

position, respectively, can be derived as

ϵt ≡
dt

ds

s

t
= et/es and ϵδ ≡

dδ

ds

s

δ
= eδ/es.

In Tables 6 and 8, to facilitate the interpretation of the magnitudes, we present the estimates

using standardized limit shocks (unit variance). Note that such a rescaling of coefficients is

irrelevant to the ratio of the effects that determines the spread elasticity.

Table 11 presents our estimates of the implied spread elasticities. Specifically, from our

VaR-limit analysis, we estimate a spread elasticity of turnover of about ϵ̂V aR
t = −0.71 =

−0.017/0.024; that is, when the spread increases by 1 percent, turnover falls by 0.71 per-

cent. We find a larger spread elasticity of position (in absolute value) of ϵ̂V aR
t = −0.87 =

−0.021/0.024. We can obtain similar estimates of the spread elasticities from our difference-

in-differences analysis of the SLR change. In this case, we compute the spread elastici-

ties as the ratios of differential growth in quantities (that is, turnover and position) and

spread to the policy change. Our baseline estimates of ϵ̂SLRt = −0.76 = −0.074/0.098 and

ϵ̂SLRδ = −0.93 = −0.091/0.098 are similar in magnitude to those we obtain from our analysis

of VaR shocks, although the elasticities are now obtained from growth rates.29

The estimated elasticities are smaller than unity (in absolute value), consistent with

binding constraints. Without a (binding) position constraint (that is, λ = 0), the marginal

intermediation profit needs to be zero (see Equation (15)). This is achieved at the point where

the spread elasticity of turnover is –1. At this point, the gain from an increasing spread is

29For SLR elasticities, we use the coefficients in Table 2, column 2 and Table 3, columns 2 and 4. Thus, for
position and turnover, we use conservatively identified estimates from our maturity-level analysis.
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offset by the drop in volume. Hence, elasticity estimates of less than one (in absolute values)

suggest that the bank operates on a part of the turnover curve, where it should expand

business to decrease the marginal return, but constraints on both gross and net positions

prohibit such an expansion of trading.

What do these elasticities say about the economic cost of these constraints? Rearranging

the first-order condition further shows that

1 + ϵt
ϵδ

= λ/µ.

Thus, we can use a ratio of our identified spread elasticities to compute the marginal cost of

the constraints as a share of the intermediation margin. Table 11 shows that our elasticities

imply a sizable marginal cost from position constraints. Those costs are as high as 26 percent

(SLR estimate) and 33 percent (VaR estimate) of the intermediation margin. Notice that the

ratio of the elasticities identifies only the relative shadow cost of the constraint (relative to

the margin).

We can use the estimated spread elasticities to shed additional light on the economic

importance of primary dealers’ constraints. Specifically, we can estimate the marginal dollar

cost by evaluating the first-order condition using the elasticities and computing the margin

based on the average spread, turnover, and position in our data. For the margin measure, we

obtain µ̂ = 0.007798 = 0.0005·351.39
22.53

. Using the spread elasticities based on the VaR analysis,

we then estimate that the marginal return is about 0.0023 = 0.007798(1− 0.71), implying an

estimated shadow cost of λ̂ = 0.0026 = 0.0023/0.87, so 0.26 percent. To back out the dollar

amount, we multiply the shadow cost by a $22.53 billion average weekly position, which gives

a marginal foregone dollar profit of $58.57 million per week, or $3.05 billion per year.30

4 Conclusion

In this paper, we study the effects of primary dealers’ constraints on the Treasury securities

market. We use detailed confidential microdata on their risk limits, positions, turnover, and

profits as well as two separate identification schemes to show that constraints on exposure

have sizable effects on the market. Tighter constraints impair market liquidity: Dealers hold

smaller positions, turnover falls, and intermediation spreads increase. This is the case across

multiple settings involving different types of dealer limits. Tighter constraints also lead to

amplified yield effects from demand shifts, and they dampen dealers’ bidding behavior in

30If we use the spread elasticities obtained from the SLR analysis, we obtain a slightly lower estimate
implying a shadow cost of $45.3 million per week, or $2.36 billion annualized.
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Treasury auctions, thereby increasing the US government’s financing cost.

Our intuitive findings are consistent with a stylized model of a spread-charging intermediary

(market maker) that is subject to holding constraints. The equilibrium conditions show that

the spread and turnover are crucially affected by position constraints and depend on the

shadow cost of the constraint. This shadow cost is equal to the ratio of the spread elasticities

of turnover and position, capturing the optimal trade-off between intermediation gains and

the position-holding (shadow) cost under the constraint. From our identified estimates of

shock responses, we back out the bid–ask spread elasticities of dealer turnover and dealers’

positions to estimate a sizable shadow cost of the constraint of about 26 percent to 33 percent

of their margin.

Our results have several policy implications, as Treasury markets are at the heart of the

financial system, both in the United States and globally. From a regulatory perspective, it is

important to understand that regulatory constraints that target broad bank-level exposure

can impair bank-affiliated dealers’ intermediation capacity, which is crucial for Treasury

market liquidity. Perhaps more broadly, our results highlight how aggregate intermediation

capacity depends on a granular set of key dealers and is therefore subject to idiosyncratic

dealer shocks. An impairment of liquidity in the Treasury market in turn has implications

for both monetary policy and fiscal policy. Monetary policy transmission may be affected in

situations where yield movements are amplified due to demand shocks. Meanwhile, constraints

on primary dealers may prevent them from absorbing additional federal government debt,

which may be especially relevant in the current environment of rising federal debt issuance.
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A Additional Figures

Figure A.1: Long, Short, and Net Positions by Mat Bucket
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Source: FR 2004, authors’ calculations.
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Figure A.2: Primary Dealer Coverage in FR 2004 and FR VV-1 Data
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Notes: This figure shows the number of primary dealers in the FR 2004 data during our sample period from
2016:W1 through 2023:W52. The figure also shows the coverage of BHCs that own a primary dealer in the
FR VV-1 data. More details on the two data sets are discussed in the data section. Sources: FR 2004, FR
VV-1, authors’ calculations.
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Figure A.3: Federal Reserve Responses to COVID-19 Crisis

Notes: Key Federal Reserve programs to support the economy at the onset of the COVID-19 crisis. Source:
https://www.brookings.edu/articles/fed-response-to-covid19/.
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Figure A.4: Effect of SLR Change on Dealers’ Positions—Long Sample
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Notes: The figure shows coefficient estimates {β̂t} from the following regression: log(Position)i,t =

βtSLR Changet × SLR2019q4
i + αt + αi + ϵi,t. SLR Change is a dummy equal to one after 2020:W14 and zero

otherwise. Positions are gross positions, in line with gross notionals entering the SLR exposure measure. The
sample period runs from 2020:W1 through 2020:W52. The SLR change was announced on April 1, 2020
(week 14), and became effective immediately. The vertical red line indicates the last week before the change.
The bars represent 90 percent confidence intervals based on robust standard errors. Sources: FR 2004, FR
Y-9C, authors’ calculations.
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Figure A.5: Concentration of Weights by Maturity
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Notes: HHI (Herfindhal index) is computed as the sum of the squared weights summed for each maturity
and week. Normalized HHI is (HHI-1/N)/(1-1/N). Sources: FR 2004, authors’ calculations.

A-5



Figure A.6: Limit Shocks by Maturity Bucket
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Notes : Limit shocks are orthogonalized with respect to the fixed-effects structure used in the main regressions.
Sources: FR 2004, FR VV-1, authors’ calculations.

A-6



Figure A.7: Return Variability by Maturity Bucket
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Notes : The figure shows, for each maturity bucket, the distribution of return variability, computed as the log
price change (multiplied by 100, so it is approximate percentage returns) at the CUSIP-day level during a
45-(trading-)-day rolling window. Sources: CRSP, authors’ calculations.
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Figure A.8: Primary Dealers’ Risk Limit Changes and Treasury Position by Maturity
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Notes: This table shows the results of Equation 14 for specific maturity buckets, with the net position
outcome variable; specifically, it shows the interaction effect of the limit shock with the categorical maturity
bucket variable. Sources: FR 2004, FR VV-1, authors’ calculations.
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B Additional Tables

Table B.1: List of Primary Dealers

Primary Dealer FR2004 Reporting BHC owned SLR Volcker

ASL Capital Markets Inc. 2022w32 - 2023w52
BMO Capital Markets Corp. 2015w1 - 2021w49 ✓
BNP Paribas Securities Corp. 2015w1 - 2023w52 ✓
Bank of Montreal, Chicago Branch 2021w50 - 2023w52 ✓
Bank of Nova Scotia, New York Agency 2015w1 - 2023w52 ✓ ✓
Barclays Capital Inc. 2015w1 - 2023w52 ✓ ✓ ✓
BofA Securities, Inc. 2019w20 - 2023w52 ✓ ✓ ✓
Cantor Fitzgerald & Co. 2015w1 - 2023w52
Citigroup Global Markets Inc. 2015w1 - 2023w52 ✓ ✓ ✓
Credit Suisse Securities (USA) LLC 2015w1 - 2017w45 ✓ ✓ ✓
Credit Suisse, New York Branch 2017w46 - 2023w26 ✓ ✓ ✓
Daiwa Capital Markets America Inc. 2015w1 - 2023w52
Deutsche Bank Securities Inc. 2015w1 - 2023w52 ✓ ✓
Goldman Sachs & Co. LLC 2015w1 - 2023w52 ✓ ✓
HBSC Securities (USA) INc. 2015w1 - 2023w52 ✓ ✓ ✓
J.P. Morgan Securities LLC 2015w1 - 2023w52 ✓ ✓ ✓
Jefferies LLC 2015w1 - 2023w52
Merrill Lynch, Pierce, Fenner & Smith Inc. 2015w1 - 2019w19 ✓
Mizuho Securities USA LLC 2015w1 - 2023w52 ✓ ✓
Morgan Stanley & Co. LLC 2015w1 - 2023w52 ✓ ✓ ✓
NatWest Markets Securities Inc. 2015w1 - 2023w52
Nomura Securities International, Inc. 2015w1 - 2023w52
RBC Capital Markets, LLC 2015w1 - 2023w52 ✓ ✓
SG Americas Securities, LLC 2015w1 - 2015w48 ✓
Santander US Capital Markets LLC 2019w29 - 2023w52 ✓
Societe Generale, New York Branch 2015w49 - 2023w52 ✓
TD Securities (USA) LLC 2015w1 - 2023w52 ✓
UBS Securities LLC 2015w1 - 2023w52 ✓ ✓ ✓
Wells Fargo Securities, LLC 2016w22 - 2023w52 ✓ ✓ ✓

Notes: The table reports the current and historical primary dealers in our sample period. BHC ownership,
SLR reporting, and Volcker rule reporting are based on at least one occurrence during the sample period.
Note that all primary dealers are required to file FR 2004. SLR and Volcker rule reporting requirements are
based on publicly observable criteria. This table uses only publicly available information. Sources : FR Y-9C,
Federal Reserve Bank of New York website.
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Table B.2: Autoregressive Model of Weights Used in Shock Aggregation

Weights

(1) (2) (3)

Lagged Weight 0.876∗∗∗ 0.818∗∗∗

(0.002) (0.002)

Maturity Bucket 1 (Bills) × Lagged Weight 0.780∗∗∗

(0.005)

Maturity Bucket 2 (0-2y) × Lagged Weight 0.894∗∗∗

(0.005)

Maturity Bucket 3 (2-3y) × Lagged Weight 0.768∗∗∗

(0.005)

Maturity Bucket 4 (3-6y) × Lagged Weight 0.855∗∗∗

(0.005)

Maturity Bucket 5 (6-7y) × Lagged Weight 0.829∗∗∗

(0.005)

Maturity Bucket 6 (7-11y) × Lagged Weight 0.762∗∗∗

(0.005)

Maturity FE No Yes Yes
Week FE No Yes Yes
Bank FE No Yes Yes
R2 0.767 0.774 0.776
R2 within 0.767 0.669 0.673
N 58,794 58,794 58,794

Notes : The table reports autoregressive coefficients on the weights wm
b,t used in the aggregation of idiosyncratic

limit changes to construct the maturity-level limit shock; see (13). The most saturated estimated model of
column (3) is wm

b,t = ϕmwm
b,t−1 + αb + αt + αm + ϵmb,t. Sources: FR 2004, authors’ calculations.
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Table B.3: Baseline Results Using Alternative Shocks

Log(Position)

(1) (2) (3) (4)

Limit Shock (w/ FR 2004 controls ) -0.022∗∗∗

(0.008)

Limit Shock (w/ PCA) -0.012∗∗

(0.006)

Limit Shock (excl. Holidays) -0.010∗

(0.005)

Limit Shock (excl. dealers w/ foreign desks) -0.009∗∗

(0.004)

Lagged LHS Yes Yes Yes Yes
Maturity FE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes
R2 0.945 0.945 0.945 0.945
R2 within 0.733 0.732 0.732 0.732
N 2,075 2,075 2,075 2,075

Notes: Robustness of baseline result to differently constructed Limit Shocks. Sources: FR VV-1, FR 2004,
authors’ calculations.
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Table B.4: Baseline Results Using Alternative Sample Periods

Log(Position)

t < 2019 t ≥ 2019 t ≥ 2020 All
(1) (2) (3) (4)

Limit Shock -0.028∗∗ -0.014∗ -0.005
(0.012) (0.008) (0.005)

Year 2016 × Limit Shock -0.041
(0.068)

Year 2017 × Limit Shock -0.020∗∗

(0.009)

Year 2018 × Limit Shock -0.021∗

(0.012)

Year 2019 × Limit Shock -0.020∗

(0.012)

Year 2020 × Limit Shock -0.041∗

(0.022)

Year 2021 × Limit Shock 0.040
(0.051)

Year 2022 × Limit Shock 0.307
(0.233)

Year 2023 × Limit Shock 0.011
(0.045)

Lagged LHS Yes Yes Yes Yes
Maturity FE Yes Yes Yes Yes
Week FE Yes Yes Yes Yes
R2 0.933 0.950 0.941 0.945
R2 within 0.505 0.794 0.799 0.733
N 775 1,300 1,040 2,075

Notes : The table reports our baseline estimates for different sample periods and interacted with year dummies.
As this table shows, our baseline effects are driven by the first half of the sample, where we have considerable
variation in limit shocks; see Appendix Figure A.6. Sources: FR VV-1, FR 2004, authors’ calculations.
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Table B.5: Log Liquidity Index on LHS

Liquidity Index

(1) (2)

Limit Shock -0.089∗ -0.096
(0.051) (0.058)

Lagged LHS Yes Yes
Maturity FE Yes Yes
Week FE Yes Yes
Excl. COVID No Yes
R2 0.653 0.648
R2 within 0.314 0.333
N 2,040 1,780

Notes: The dependent variable is the logarithm of the absolute value of the yield error. The data are at the
maturity-bucket-by-week level. Sources: FR VV-1, FR 2004, Morgan Markets, authors’ calculations.
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Table B.6: Summary Statistics on Treasury Auctions

2-Year 3-Year 5-Year 7-Year 10-Year 20-Year 30-Year

Total Accepted ($ B) 44.68 44.41 48.06 41.54 32.81 20.20 20.91
Primary Dealer Accepted (%) 27.87 29.30 22.00 17.91 21.62 16.33 20.13
Bid-to-Cover 2.66 2.62 2.44 2.47 2.47 2.52 2.33
High Yield (%) 1.87 1.93 2.06 2.21 2.31 2.79 2.76
Number of Auctions 95.00 96.00 95.00 95.00 97.00 44.00 96.00

Notes: The sample excludes T-bills auctions. For the 10-, 20-, and 30-year buckets, we include the few
securities with one or two months shorter maturity in those buckets. For example, we consider a security
with a maturity of nine years and 10 months equivalent to a 10-year Treasury. Sources: Treasury Securities
Auctions Data, authors’ calculations.
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C Conceptual Framework with Convex Holding Costs

Here, we consider a bank that faces a convex (quadratic) cost of holding a position leading to

an increasing marginal cost, as opposed to the linear cost function in our baseline model that

implies a constant marginal cost. Rewrite their optimization function as

max
s,δ

π = s (D(e+ s) + S(e− s))− pδ − γ

2
δ2 (16)

s.t. δ = D(e+ s)− S(e− s), (17)

where γ > 0 parameterizes the bank’s cost of holding nonzero net positions. The first-order-

condition of the general problem is now given by

t+ st′ = γδ︸︷︷︸
MC

δ′. (18)

Again, assume linearity (in the log price) of the demand and supply functions of the form

D(p+ s) = a− b(p+ s) and S(p− s) = c+ d(p− s), with a, b, c, d > 0. Solving the first-order

condition for the optimal spread and deriving the optimal exposure and turnover gives:

s∗ =
1

ν
[(a+ c) + γ(a− c)(b− d)] (19)

δ∗ =
1

ν
[2(a− c)(b+ d)− (a+ c)(b− d)] (20)

t∗ =
1

ν
[(a+ c)(b+ d) + 2γ(b− d)(bc− ad)] , (21)

where ν = 2(b+ d) + γ(b− d)2.

To ensure that all equilibrium quantities (D∗ and S∗) are positive, we need the following

parameter restrictions:

ab+ 2ad− bc

(b− d)(ad− bc)
< γ <

ad− cd− 2bc

(b− d)(ad− bc)
.

Without loss of generality, we can again simplify to the case where c = 0, and because γ is

positive, it must be the case that b > d.

A-15



We then derive the following derivatives, which have the same sign as in Section 1:

∂δ

∂γ
= −(b− d)ζ < 0 (22)

∂t

∂γ
= −(b+ d)ζ < 0 (23)

∂s

∂γ
= ζ > 0, (24)

where ζ = ν−2a(b− d)(b+ 3d) > 0.
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