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Abstract

We characterize the U.S. interbank liquidity risk network based on a supervisory dataset,

using a scenario-based quantile network connectedness approach. In terms of methodology, we

consider a quantile vector autoregressive model with unobserved heterogeneity and propose a

Bayesian nuclear norm estimation method. A common factor structure is employed to deal with

unobserved heterogeneity that may exhibit endogeneity within the network. Then we develop a

scenario-based quantile network connectedness framework by accommodating various economic

scenarios, through a scenario-based moving average expression of the model where forecast error

variance decomposition under a future pre-specified scenario is derived. The methodology is

used to study the quantile-dependent liquidity risk network among large U.S. bank holding

companies. The estimated quantile liquidity risk network connectedness measures could be

useful for bank supervision and financial stability monitoring by providing leading indicators of

the system-wide liquidity risk connectedness not only at the median but also at the tails or even

under a pre-specified scenario. The measures also help identify systemically important banks

and vulnerable banks in the liquidity risk transmission of the U.S. banking system.
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1 Introduction

Understanding the connectedness of financial networks is central to the study of shocks trans-

mission and systemic risk, providing useful information for both risk management and financial

stability monitoring. There have been many studies applying a vector-autoregressive (VAR)

model together with the variance decomposition approach to investigate the network connect-

edness for financial institutions or sovereigns (e.g., Diebold and Yilmaz (2014); Alter and Beyer

(2014); Diebold and Yilmaz (2015); Demirer et al. (2018); Hale and Lopez (2019); Miao et al.

(2020); and Ando et al. (2022b)). However, most of the existing studies focus on financial assets

or credit spread connectedness (e.g., stock and bond returns or return volatilities) rather than

the liquidity risk network. Analyzing the interbank liquidity risk network allows us to better

understand how banks liquidity risks are connected to each other and to identify systemically

important banks or vulnerable banks, that could be useful for bank supervision and financial

stability monitoring.

In addition, most studies examine network connectedness at the conditional mean instead

of quantiles by assuming VAR coefficients are constant regardless of quantiles. The underlying

assumption for the conditional mean analysis is that “large shocks propagate in the same way as

smaller shocks” in forecast error variance decomposition. If the topology of a financial network

changes with the size of the shock that affects the system, the results from a conventional

mean model may lead to biased results (e.g., Ando et al. (2022b)). There is some work that

analyzes quantile-dependent network connectedness, but they focus on the fixed-quantile case

where the quantile point is fixed and the same in both dimensions, cross-sectional (e.g., cross

individual institutions or banks), and over time (e.g., throughout the forecast horizon) (Ando

et al. (2022b)).

Studying scenario-based quantile network connectedness where the quantile point (or the size

of the shock) in a pre-specified future economic scenario could vary both cross-sectionally and

throughout the forecast horizon, brings more flexibility to the implementation of the network

analysis. Moreover, the existing literature concentrates on the variance decomposition based on

idiosyncratic shocks rather than common shocks which could also be an important shock source

for network connectedness. Furthermore, the previous studies (e.g., Cecchetti and Li (2008);

Ando et al. (2022b)) study quantile network analysis under a fixed-quantile by using a model

for the chosen quantile point. Different from these papers, we consider a scenario-based quantile

network which needs the information from the entire conditional distribution rather than a model

for a chosen quantile point. We propose a new method to extract the necessary information
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from the entire conditional distribution for our network analysis. To our knowledge, there is no

available method on measuring scenario-based quantile network connectedness and taking into

account common shocks. There is also no existing empirical analysis on the quantile-dependent

U.S. interbank liquidity risk network based on the variance decomposition. The challenge is

mainly due to the non-straightforward task of preparing such a bank-level liquidity database,

as well as access to a method that estimates the scenario-based quantile network connectedness

by taking into account the endogeneity within the network.

Our paper attempts to fill this gap by first developing a methodology to compute scenario-

based quantile network connectedness not only based on idiosyncratic shocks but also common

shocks, using a quantile vector autoregressive (QVAR) model. Our model can be viewed as

an extension of quantile vector autoregressive model without common shocks (Koenker and

Xiao (2006), Schüler (2014)). For a traditional framework for quantile regression, we refer to

Koenker and Bassett (1978). Then the proposed method is applied to empirically analyze the

U.S. interbank liquidity risk network among large U.S. bank holding companies based on a

supervisory dataset.

Specifically, for the methodology, we consider a QVAR model with unobserved heterogeneity

(captured by a common factor structure) and propose a new Bayesian nuclear norm estimation

approach. In terms of model estimation, we propose a new Bayesian Markov chain Monte Carlo

(MCMC) approach to implement the nuclear norm estimation for QVAR with a common factor

structure. We show that all these models can be estimated based on Gibbs sampling without re-

lying on the Metropolis-Hastings approach. This implies that our Bayesian estimation approach

enjoys the benefit of Gibbs sampling, including 100% acceptance rate of MCMC sampling and no

need to prepare a proposal density. Similar to the existing frequentist nuclear norm estimation,

our method does not require determining the number of common factors. Without specifying

the number of common factors, Bayesian credible intervals for slope coefficients can be obtained.

Moreover, Monte Carlo simulations show that the proposed Bayesian approach performs well in

finite samples, especially compared to the frequentist nuclear norm estimation.

Then we develop a novel scenario-based quantile network connectedness framework by ac-

commodating various economic scenarios, through a scenario-based moving average expression

of QVAR which is established in Theorem 1. This general expression sheds light on the flexibility

and importance of our QVAR framework because we are able to derive forecast error variance

under a pre-specified future economic scenario as shown in Theorem 1. We then generalize

the forecast error variance decomposition approach developed in Diebold and Yilmaz (2014)

by dealing with the uncertainty associated with parameter estimation and model selection. A
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special case of the scenario-based quantile network connectedness is the fixed-quantile network

connectedness. Various network connectedness measures are considered: system-wide connect-

edness, pairwise directional connectedness, and total directional connectedness (connectedness

between one bank and other banks). We further propose three different ways to analyze the

network connectedness based on different sources of the shocks considered in the variance de-

composition: (1) idiosyncratic shocks, (2) common shocks, and (3) combined shocks (combining

idiosyncratic shocks and common shocks).

To support our novel Bayesian estimation procedure, we investigate the asymptotic behaviour

of the posterior distribution for our QVAR model. There are many studies that investigate the

posterior consistency for high-dimensional linear regression models for the analysis of cross sec-

tional data (Ghoshal (1999); Bontemps (2010); Armagan et al. (2013); Sparks et al. (2015)).

Recently, Ghosh et al. (2019) studies the posterior consistency for the high-dimensional “mean”

vector autoregressive (VAR) model with Gaussian idiosyncratic errors when the dimension of

individual units grows with the length of time series. However, little is known regarding the

asymptotic properties of the posterior distribution for our QVAR model. There are several

crucial differences between the high-dimensional “mean” VAR models and our QVAR models.

More specifically, in contrast to the high-dimensional “mean” VAR model, the following addi-

tional features of our Bayesian QVAR needs to be taken care of when we establish the posterior

consistency: the presence of the unobservable common factor structure, non-smoothness of the

quantile loss function, nonlinearity of the quantile loss function in terms of parameters, and the

Gaussian assumption is not imposed on the idiosyncratic error. These features make the theo-

retical analysis of our QVAR model challenging, but we were able to solve it and have provided

theoretical analysis in the paper.

Regarding the empirical analysis, we use banks’ liquidity coverage ratios (LCR) constructed

from the supervisory FR 2052a Complex Institution Liquidity Monitoring Report data (more

details are provided in Section 2). We evaluate the interbank liquidity risk network by imple-

menting both the baseline fixed-quantile connectedness approach and the scenario-based quan-

tile connectedness approach. In addition, we investigate the connectedness measures based on

different types of shocks (idiosyncratic shocks, common shocks, or combined shocks).6 In the

6In our interbank liquidity application, one example for idiosyncratic shock could be a customer loan from
bank A. In order to meet that cash outlay, bank A could use cash, sell high-quality liquid assets (HQLA), or raise
deposits; all of these options lower bank A’s LCR. In managing LCR, bank A will likely try to offset the effect
through several options: make transactions in the interbank market (reserves), make securities transactions, or
compete for deposits. Both the actions to meet the initial liquidity shock (the loan) and the offsetting actions
can affect other banks’ LCR. One example of a common shock could be the COVID-19 shock, as it could impact
one bank’s LCR in the first place and then spill over to affect other banks through the interbank linkages.

4



fixed-quantile analysis, we study the network connectedness for various quantile points including

both tails and median, mainly focusing on the pre- and during- COVID-19 periods. We find the

liquidity risk network varies across quantiles and has changed substantially during COVID-19

pandemic relative to the pre-pandemic period; and it also changes according to the different

source of the shocks used in the variance decomposition. In the scenario-based quantile anal-

ysis, we consider the Repo crisis during September 2019 and pre-specify the future economic

scenario in the model based on the actual market movement during the Repo crisis. Our results

indicate interesting connectedness patterns across different types of banks. We also look into the

dynamic evolution of the quantile liquidity risk network by using a rolling window estimation.

From the perspective of bank supervision and financial stability monitoring, our approach of

analyzing the U.S. interbank liquidity risk network provides empirical connectedness measures

that would be useful for monitoring the banking system. In particular, our network measures

help describe the strength of system-wide connectedness, and how one bank’s liquidity risk

affects another bank. The measures also show which banks are systemically important and

which banks are vulnerable. Our network analysis is scenario-based and quantile-dependent,

allowing us to investigate how the network changes across quantiles, especially between the

median and the tails, and how the network behaves during a pre-specified scenario. In addition,

the supervisory FR 2052a data used in our empirical analysis has not been extensively used

in published liquidity papers. For instance, Ihrig et al. (2019) analyze how banks manage the

composition of High-Quality Liquid Assets (HQLA) by looking at trends in the components

and component volatility.7 To the best of our knowledge, this paper is the first empirical

study using this data to investigate the U.S. interbank liquidity risk network, providing network

connectedness measures that could be useful for monitoring the banking system.

In the literature of nuclear norm estimation in statistics and econometrics, there have been

many papers using it to estimate low rank matrices; see Koltchinskii et al. (2011), Negahban and

Wainwright (2011), Negahban et al. (2012), Rohde and Tsybakov (2011), Chernozhukov et al.

(2018), Fan et al. (2019), Moon and Weidner (2019), Miao et al. (2020), among others. All the

preceding studies are implementing the nuclear norm technique under the frequentist estimation

framework. Ding et al. (2011) develop a MCMC procedure to implement the Bayesian nuclear

norm estimation for linear panel models. However, research on nonlinear models under the

Bayesian estimation framework is limited. One of the main reasons might be the high non-

linearity of the objective function in terms of parameters, which makes it challenging to develop

7This data has also been used in some studies on understanding Collateral Re-use in the U.S. financial system
and its drivers. See Infante et al. (2018, 2020) and Infante and Saravay (2020).
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a Bayesian MCMC procedure.

In summary, our contributions are as follows. First, we propose a Bayesian nuclear norm es-

timation procedure for a QVAR model with a common factor structure and provide asymptotic

analysis of the estimators. The proposed approach does not require determining the number of

common factors and has comparable advantage with the existing frequentist estimation method.

Second, we develop scenario-based quantile network connectedness measures, where the under-

lying future economic scenario could be pre-specified. The proposed connectedness measures

can vary depending on different sources of shocks: idiosyncratic shocks, common shocks, or

combined shocks (combining idiosyncratic and common shocks). Then, we apply the proposed

method to study the U.S. interbank liquidity risk network using a supervisory dataset. The

estimated quantile connectedness measures of the liquidity risk network could be useful for bank

supervision and financial stability monitoring by providing leading indicators of the system-wide

liquidity risk connectedness not only at the median but also at the tails or even under a specified

scenario. The measures can also identify systemically important banks and vulnerable banks in

the liquidity risk transmission.

The paper is organized as follows. Section 2 describes the data used in our empirical anal-

ysis. Section 3 introduces the model, estimation method, and scenario-based quantile network

connectedness measures. Asymptotic analysis of the proposed estimator is provided in Section 4.

In Section 5, the proposed method is applied to study the U.S. interbank liquidity risk network

using a supervisory data set. Section 6 concludes.

2 Data

Bank supervision and liquidity monitoring play critical roles in maintaining the safety and

soundness of the U.S. banking and financial system. For liquidity regulation, one key liquidity

requirement, and the focus of this paper, is the LCR. LCR is defined as the ratio of HQLA over

estimated 30-day net cash outflows, defined in Part 249 of the Code of Federal Regulations.

LCR represents banks’ ability to use highly liquid assets to meet the demand for cash over the

short term. As per the applicable liquidity regulations, the largest U.S. domestic bank holding

companies and intermediate holding companies of foreign banking organizations are expected

to maintain an LCR above 100 percent daily. The implementation of the rule changed bank

operations. Ihrig et al. (2019) show how bank holding companies significantly changed their

balance sheets to comply with the rule. Rezende et al. (2021) show that the rule affected bank

participation in monetary policy operations.

Liquidity data for the empirical exercise come from the FR 2052a data, collected from Com-
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plex Institution Liquidity Monitoring Reports. The twelve domestic and foreign global system-

ically important banks (GSIBs) are required to report this information for each business day.

Table 1 lists the twelve GSIBs and some summary financial data from the publicly available FR

Y-9C data. The twelve banks are very different in terms of size and operations. The FR 2052a

data contain detailed information on assets and liabilities that allow for the calculation of LCR

on a daily basis.8 For example, the data contain details for proper classification for outflow and

inflow categories and are segmented by maturity date. These data are confidential and are not

published. Sample data begin in January 2017 to avoid when banks first began to comply with

the form where outliers suggest reporting errors. Because the daily LCR for the four foreign

GSIBs are available since 4/24/2017 which is later compared to the eight U.S. GSIBs, we base

our empirical analysis on the balanced panel from 4/24/2017 to 12/11/2020, for all the twelve

banks. The pre-pandemic period is defined as 4/24/2017 - 12/31/2019, and the pandemic period

is defined as 1/1/2020 - 12/11/2020.

3 Bayesian quantile connectedness of financial networks

In this section, we propose a new Bayesian framework for estimating QVAR model at a given

quantile τ ∈ (0, 1), to study the U.S. interbank liquidity risk network across quantiles using a

non-publicly available supervisory liquidity dataset. We then develop a novel approach for the

h-step-ahead forecast error variance decomposition and the associated scenario-based quantile

connectedness measures. Specifically, we first consider a model for the entire conditional dis-

tribution rather than a model for a chosen quantile point. Then we obtain a moving-average

representation for the model, based on that we compute the interconnectedness measures.

3.1 Quantile VAR with unobserved heterogeneity

For bank i at date t, suppose that the LCR, yit, is observed for t = 1, . . . , T , i = 1, ..., N . To

capture the dynamics of the financial system, we consider the following quantile function for

QVAR model with unobserved heterogeneity:

Qyit(τ |Ft−1) ≡
p∑

h=1

N∑
j=1

bijh,τyj,t−h + zit,τ +G−1
eit (τ), (1)

where Ft−1 denotes the information set available at time t− 1, p is the lag of QVAR model, zit

is unobserved heterogeneity, eit is the error term and G−1
eit (τ) is the τ -th quantile point of eit

8More details about the form and reporting requirements can be found here
https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?os5ofIRJDa8v/jn8ki6pKsdTYKX//BgQCZq
E1VQAsoOjk00cVxyqN7JP7xdjdUN9.
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with Geit(·) being the cumulative distribution function of eit. We assume that eit is identically

distributed over t while its distribution may vary over i. The quantile function (1) can be derived

from the following data generating process:

yit,uit =

p∑
h=1

N∑
j=1

bijh,uityj,t−h + zit,uit + eit,uit , (2)

provided that the right hand side is an increasing function of uit, where uit follows the uniform

distribution U [0, 1] and determines the quantile point of realization. This underlying model can

be expressed in a vector form y1t,u1t
...

yNt,uNt

 =

 b′11,u1t
...

b′N1,uNt


 y1,t−1

...
yN,t−1

+ · · ·+

 b′1p,u1t
...

b′Np,uNt


 y1,t−p

...
yN,t−p


+

 z1t,u1t
...

zNt,uNt

+

 e1t,u1t
...

eNt,uNt

 ,
where bih,uit = (bi1h,uit , ..., biNh,uit)

′ is an N × 1 vector representing the h-th lag coefficients.

Unlike the traditional VAR, the QVAR coefficients vary over the quantiles. Also, the unobserved

heterogeneity components are present. In the next section, we develop a new Bayesian procedure

for estimating the QVAR coefficients by capturing the unobserved heterogeneity.

3.2 Bayesian nuclear norm estimation

In this section, we develop a new estimation procedure by introducing a Bayesian nuclear norm

approach. Let τ be a specific quantile point. It is natural to consider the following objective

function for estimating the parameters in (1):

Πτ (Bτ , Zτ ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (yit − x′itbi,τ − zit,τ ), (3)

where ρτ (u) = u(τ − 1(u < 0)) is the quantile loss function with 1(·) being the indicator

function that takes value one if the expression in the brackets are satisfied, and zero otherwise,

yit is realized observation, xit ≡ (1,y′t−1, ...,y
′
t−p)

′, yt = (y1t, y2t, · · · , yNt)′ is an N × 1 vector

with each element yit representing the LCR for bank i at date t, bi,τ ≡ (bi0,τ , b
′
i1,τ , ..., b

′
ip,τ )′ with

bi0,τ = G−1
ei (τ), and bih,τ = (bi1h,τ , ..., biNh,τ )′ being an N × 1 vector representing the hth lag

QVAR coefficients. Notice that the τ -th quantile of the idiosyncratic error G−1
ei (τ) is absorbed

by the term x′itbi,τ .

The direct minimization (3) causes numerical issues. This is because the number of pa-

rameters in the model is larger than the number of data points. Some regularizations are
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necessary. Following the common factor literature (Bai and Ng (2019)), we use the nuclear

norm penalization. All unknown parameters in the model (1) are jointly estimated by, for some

0 < r < min{T,N},

argminBτ ,Zτ :rank(Zτ )≤r [Πτ (Bτ , Zτ ) + γ‖Zτ‖∗] , (4)

where Zτ is a T ×N matrix with (t, i)-th element being zit,τ , γ is the regularization parameter

and ‖ · ‖∗ is the nuclear norm. Note that by assuming Zτ = (zit,τ ) is a lower rank matrix with

rank r, then

‖Zτ‖∗ = min
Fτ ,Λτ :Zτ=FτΛτ

1

2
(‖Fτ‖2F + ‖Λτ‖2F ), (5)

where ‖ · ‖F is Frobenius norm, Fτ = (f1,τ , ...,fT,τ )′ and Λτ = (λ1,τ , ...,λN,τ ) are T × r and

r × N dimensional matrices (e.g., Hastie et al. (2015) and Bai and Ng (2019)). The structure

Zτ = FτΛτ can be linked to the factor analysis literature. Thus, the term zit,τ = f ′t,τλi,τ =∑r
k=1 f

′
tk,τλik,τ is the common factor structure capturing unobserved heterogeneity, where f t,τ =

(ft1,τ , ..., ftr,τ )′ denotes the common factors at date t and λi,τ = (λi1,τ , ..., λir,τ )′ denotes the

factor loadings vector. We can rewrite (1) as

Qyit(τ |Ft−1) ≡
p∑

h=1

N∑
j=1

bijh,τyj,t−h +
r∑

k=1

ftk,τλik,τ +G−1
eit (τ), (6)

where the unobserved heterogeneity zit is expressed as a common factor structure. Note that

the number of free parameters in terms of heterogeneity zit in (1) is N × T , while that in (6)

is (N + T )r. Therefore, the number of parameters are reduced significantly. The minimization

problem (4) is equivalent to

argminBτ ,Fτ ,Λτ
[
Πτ (Bτ , Fτ ,Λτ ) + κτ‖Fτ‖2F + κτ‖Λτ‖2F

]
, (7)

where Πτ (Bτ , Fτ ,Λτ ) ≡ 1
NT

∑N
i=1

∑T
t=1 ρτ (yit − x′itbi,τ − f

′
t,τλi,τ ) and κ is a regularization

parameter. A large value of regularization parameter κτ forces less flexibility of Fτ and Λτ in

the sense that their norms ‖Fτ‖2F and ‖Λτ‖2F get closer to zero. On the other hand, a small value

of κτ allows Fτ and Λτ place more emphasis on the quantile loss part Πτ (Bτ , Fτ ,Λτ ). In other

words, the regularization term on Fτ and Λτ becomes nearly negligible when the regularization

parameter κτ is extremely close to zero. Because we further put a prior on κτ , our Bayesian

estimation procedure takes a balance between the quantile loss and the regularization terms on

Fτ and Λτ through MCMC Gibbs sampling.

We use Πτ (Bτ , Fτ ,Λτ ) in (7) as our objective function for Bayesian analysis. In the Bayesian

framework, the pseudo-likelihood function is

L(Y |Bτ , Fτ ,Λτ ) ∝ exp (−Πτ (Bτ , Fτ ,Λτ )) .
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For the data-augmentation approach, we need to specify the prior distribution of the parame-

ters. For ease of computation, we assume that the priors of the factors, factor loadings, coef-

ficients and parameter κ are mutually independent, i.e., prior distribution π(Bτ , Fτ ,Λτ , κτ ) =

π(Bτ )π(Fτ )π(Λτ )π(κτ ). As in (7), we can view that the prior distributions for F and Λ are corre-

sponding to π(Fτ ) ∝ exp(−κτ‖Fτ‖2F ) and π(Λτ ) ∝ exp(−κτ‖Λτ‖2F ). It can be seen that these are

the kernel of multivariate normal distribution. We use a diffuse prior on Bτ such that π(Bτ ) ∝

constant and place the class of gamma prior on κτ of the form π(κτ ) = δa

Γ(a)(κτ )a−1 exp(−δκτ )

with a > 0 and δ > 0. Then, the posterior density will be

π(Bτ , Fτ ,Λτ , κτ |Y ) ∝ L(Y |Bτ , Fτ ,Λτ )π(Bτ )π(Λτ )π(Fτ )π(κτ ).

This expression does not provide analytical posterior density forms, but we can estimate the

posterior density through the MCMC approach. Appendix A provides more details on the prior

and posterior analysis of parameters. MCMC computation is implemented solely based on Gibbs

sampling without relying on Metropolis-Hesting sampling, thanks to the data augmentation

procedure (Ando and Bai (2020), Polson and Scott (2013)). Thus, the generated samples are

always accepted unlike Metropolis-Hesting sampling. Using a set of generated posterior samples

for the parameters in (6), {B(a)
τ , F

(a)
τ ,Λ

(a)
τ } for a = 1, ...,H, we can calculate various quantities.

Here H is the number of generated posterior samples. For example, plugging the a-th posterior

sample {B(a)
τ , F

(a)
τ ,Λ

(a)
τ } into model (1), the τ -th quantile function for i-th unit becomes

Qyit(τ |Ft−1)(a) ≡
p∑

h=1

N∑
j=1

b
(a)
ijh,τyj,t−h +

r∑
k=1

f
(a)
tk,τλ

(a)
ik,τ +G−1

eit (τ)(a), (8)

for a = 1, ...,H. Appendix D conducts Monte Carlo simulations. It is shown that the proposed

method captures the underlying structure well.

Remark 1 Our Bayesian approach does not require determining the number of common factors

r. Without specifying the number of common factors, Bayesian credible intervals for any func-

tions of QVAR parameters can be obtained automatically. Thus the parameter uncertainty, as

well as the model selection uncertainty associated with selecting the number of common factors,

are addressed automatically. Under the frequentist framework, there are several studies that

employ the nuclear norm penalty to estimate the panel quantile regression with interactive fixed

effects (Belloni et al. (2023); Moon and Weidner (2019); Feng (2023)). However, the previous

studies mainly focus on the asymptotic property of their estimators under the nuclear norm

penalty, and the question about theoretical study on the model selection still remains. Also, the

frequentist approach selects one final model which corresponds to a best size of the nuclear norm
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penalty, implying that the model selection uncertainty is ignored. In contrast, as an advantage

of our Bayesian method, a set of posterior draws of κτ produces a set of nuclear norm penalties

with different sizes and thus reflects different model specifications implicitly.

Remark 2 It is well known that the common factors and the loadings are not uniquely identified

without imposing identification restrictions (see for example, Bai and Ng (2013)). Although the

prior structures π(Fτ ) ∝ exp(−κτ‖Fτ‖2F ) and π(Λτ ) ∝ exp(−κτ‖Λτ‖2F ) do not contain the

identification restrictions on Fτ and Λτ , we can impose conditions on the posterior samples to

achieve a full identification. For example, we adopt the following identification conditions:

1

T
F ′τFτ = Ir,

1

N
Λ′τΛτ = Dτ , (9)

where Dτ is a diagonal matrix whose diagonal elements are distinct. Recall that we have a set

of posterior samples of the factor structure {F (a)
τ ,Λ

(a)
τ } for a = 1, ...,H. Define R

(a)
τ to be the

matrix consisting of the eigenvectors of the matrix ( 1
T F

(a)′
τ F

(a)
τ )1/2( 1

NΛ
(a)′
τ Λ

(a)
τ )( 1

T F
(a)′
τ F

(a)
τ )1/2.

Then, the following rotation f̃
(a)
t,τ = R

(a)′
τ ( 1

T F
(a)′
τ F

(a)
τ )−1/2f

(a)
t,τ and λ̃

(a)
i,τ = R

(a)′
τ ( 1

T F
(a)′
τ F

(a)
τ )1/2λ

(a)
i,τ

satisfy the identification conditions (9). These restrictions are also used by Ando and Bai (2015);

Ando et al. (2022a); Song (2013) for example. Finally, we note that rotational indeterminacy

does not affect the estimation of the other coefficients Bτ .

3.3 Scenario-based quantile connectedness

This section introduces the scenario-based quantile connectedness measure where the underly-

ing future economic scenario could be arbitrarily specified. We define network connectedness

measures based on different types of shocks: (1) idiosyncratic shocks, (2) common shocks, and

(3) combined shocks (combining idiosyncratic and common shocks), by taking advantage of the

common factor structure in the model.

Specifically, after estimating the model in (6), we compute our quantile connectedness mea-

sures by generalizing the forecast error variance decomposition approach developed in Diebold

and Yilmaz (2014) from the conditional mean to quantiles. Traditionally, a concept of impulse

response function used in the literature is defined as the difference between two different sce-

narios of yt+h,ut+h that are identical up to time t − 1. One scenario assumes that between t

and t+ h the system is hit only by a certain size of shock at time t. The other scenario, taken

as the benchmark, assumes that the system is not hit by any shock between t and t + h. This

traditional framework is designed to provide an answer to the question: “What is the effect of

a certain size of shock on a system at time t on the state of the system at time t+ h, given that
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no other shocks occurs to the system during this time period?” As mentioned in Koop et al.

(1996), this concept is more usefully applied to linear VAR models than to nonlinear models.

To address this disadvantage of traditional impulse response functions for nonlinear models,

Koop et al. (1996) introduced a concept of the generalized impulse response function. This

concept treats the future by using the expectation operator conditioned on only the history

and/or shock. That is, the future shocks are averaged out. Thus, the response constructed

is an average of what might happen given the present and the past. The natural baseline for

the impulse response function is then defined as the conditional expectations, given only the

history. This leaves the question of how to perturb the present to produce information on the

dynamics of the system. Therefore, in this paper, we propose scenario-based connectedness

measures where the shock at time t can be arbitrarily specified, as well as the future economic

scenario throughout the forecast horizon.

In the following, we first introduce the scenario-based moving average expression of the

QVAR model and then derive forecast error variance based on it. Let τ = (τ1, ..., τN )′ be a

focused quantile vector for a set of N individuals. We denote ut = (u1t, ..., uNt)
′ as an N -

dimensional vector of uniform U(0, 1) variables that determine the realization of τ at time t.

Recall that our model is y1t,u1t
...

yNt,uNt

 =

 b′11,u1t
...

b′N1,uNt


 y1,t−1,u1,t−1

...
yN,t−1,uN,t−1

+ · · ·+

 b′1p,u1t
...

b′Np,u1N


 y1,t−p,u1,t−p

...
yN,t−p,uN,t−p


+

 f ′t,u1tλ1,u1t
...

f ′t,uNtλN,uNt

+

 e1t,u1t
...

eNt,uNt

 ,
or in a compact form,

yt,ut =

p∑
k=1

Bk,utyt−k,ut−k + zt,ut + et,ut , (10)

where Bk,ut = (b1k,u1t , ..., bNk,uNt)
′, zt,ut is an N -dimensional vector with i-th element being

f ′t,uitλi,uit , and et,ut is an N -dimensional vector of idiosyncratic error terms with i-th element

being eit,uit . By assuming that the right hand side of (10) is an increasing function of uit ∈ (0, 1),

then the quantile function in (6) is implied by (10).

Remark 3 As we can see in (10), the factor loadings and common factors depend on (i, t)

through uit. Once uit is fixed to be τ , the factor loadings become λi,τ and will only depend on

i. The same argument is true for the common factors as once uit is fixed to be τ , the common
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factor become f t,τ and will only depend on t.

Unlike the precedent established by Cecchetti and Li (2008) and Ando et al. (2022b) in the

context of multivariate forecasting with dynamic quantile regressions, where the quantile index

τ is fixed across sectional (i.e., across individuals) and throughout the forecast horizon, our

approach described below allows for the quantile index to vary through the forecast horizon

as well as across individuals. To develop network statistics based on quantile forecasting error

variance decomposition, the following theorem is useful. Before we develop the theorem, we

introduce some notation. Let τ t = (τ1,t, ..., τN,t)
′ be an N -dimensional vector that specifies

quantile points at time t with element τi,t presenting the specific quantile point for unit i.

Define the following matrices:

Ψt(τ t) ≡


B1,τ t B2,τ t · · · Bp−1,τ t Bp,τ t
I O · · · O O
O I · · · O O
...

...
. . .

...
...

O O · · · I O

 ,

Γt,k(τ t, τ t−1, ..., τ t−k) ≡ ΨtΨt−1 · · ·Ψt−k =

 Γ11,tk · · · Γ1p,tk
...

. . .
...

Γp1,tk · · · Γpp,tk

 , k = 1, ...

and Γt,k = I for k = 0. Here Γab,tk denotes the (a, b)-th block element of Γt,k, and I is an

N ×N identity matrix. Note that, for notational simplicity, the dependency of quantile points

τ t, τ t−1,..., is dropped in the matrix representation of Γt,k. Finally, we define

Φt,k ≡ Φt,k(τ t, τ t−1, ..., τ t−k) ≡ Γ11,tk(τ t, τ t−1, ..., τ t−k), (11)

which is the (1, 1)-th block element of Γt,k(τ t, τ t−1, ..., τ t−k). Then we have the following theo-

rem.

Theorem 1 Quantile VAR model (10) has the following moving average expression:

yt,ut =
∞∑
k=0

Φt,k(ut,ut−1, ...,ut−k)zt−k,ut−k +
∞∑
k=0

Φt,k(ut,ut−1, ...,ut−k)et−k,ut−k , (12)

where Φt,k(ut,ut−1, ...,ut−k) is given in (11).

Remark 4 We note that the expression (12) is quite general. It encompasses both stationary

and non-stationary cases. There are several studies that investigated the stationarity of the

high-dimensional “mean” VAR models, which implicitly assumes that VAR coefficients do not

vary over quantiles (Basu and Michailidis (2015); Kock and Callot (2015); Miao et al. (2020)).
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For non-stationarity VAR case, we refer to Phillips (1998). When the VAR coefficients do not

vary across quantiles, the second term on the right hand side in (12) is stationary when the

minimum and the maximum eigenvalues of covariance matrix of et,ut are bounded away from

zero and infinity, and et,ut is serially uncorrelated (Miao et al. (2020)). In contrast, the VAR

coefficients vary across quantiles in the moving average expression (12). Assumption E given

in Section 4 below is a sufficient condition for the stationarity of the second term in (12). For

the first term on the right hand side in (12), Assumption (E1) together with Assumption A and

Assumption B given in Section 4 becomes a sufficient condition for the stationarity. Relaxing

these to more general conditions is not the focus of this study.

Remark 5 Assume that the QVAR is stationary. If we assume that the quantile point is

identical across individual units as well as throughout the entire time period, i.e., τ t = τ =

(τ, ..., τ)′ for all t, the expression (12) reduces to the Wold representation in Ando et al. (2022b):

yt,τ =
∑∞

k=0 Φk,τet−k,τ +
∑∞

k=0 Φk,τΛτf t−k,τ , where the N ×N coefficient matrices Φj,τ satisfy

the recursion Φj,τ = B1,τΦj−1,τ +B2,τΦj−2,τ + · · ·+Bp,τΦj−p,τ , with Φ0,τ = I and Φj,τ = 0 for

j < 0. Here Bk,τ = (b1k,τ , ..., bNk,τ )′ and Λ = (λ1,τ , ...,λN,τ )′. If we further assume that there

are no unobserved heterogeneity components, and all regression coefficients do not vary across

quantiles, we then obtain the traditional Wold representation of the VAR model.

From (12), we can see that the response yt,ut is driven by two components. One component

is the idiosyncratic error, and the other is from the unobserved heterogeneity. Such a model

specification allows us to analyze network connectedness not only based on the idiosyncratic

component but also based on the unobserved heterogeneity. Similar to many studies in the liter-

ature of network connectedness analysis, we can investigate network connectedness based on the

idiosyncratic component conditioning on the unobserved heterogeneity, to focus on the idiosyn-

cratic contagion connectedness, which is the so-called idiosyncratic-component-based variance

decomposition approach. See Diebold and Yilmaz (2014), Hale and Lopez (2019), Miao et al.

(2020), and Ando et al. (2022b). Moreover, we can study the network connectedness based on

the unobserved heterogeneity conditioning on the idiosyncratic component and even the overall

connectedness based on both of them. Furthermore, we propose scenario-based quantile con-

nectedness using a Bayesian approach, in order to accommodate various forecasting paths by

allowing the quantile point varying through the forecast path and also across individual units.

Let h be a forecast horizon and τ t, ..., τ t+h be a vector of quantile points that specify a

future scenario. From Theorem 1, it follows that the forecasting errors of predicting yt+h,τ t+h
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conditional on the information Ft−1 is given by

εt+h,τ t+h =

h∑
k=0

Φt+h,k(τ t+h, ..., τ t+h−k)zt+h−k,τ t+h−k +

h∑
k=0

Φt+h,k(τ t+h, ..., τ t+h−k)et+h−k,τ t+h−k ,

where τ t, τ t+1,...,τ t+h is a path of the scenario. Following Diebold and Yilmaz (2014), we

use the “generalization identification” approach to handle the identification challenge in the

VAR model. The “generalization identification” framework allows us to produce forecast error

variance decomposition invariant to order, while the traditional Cholesky decomposition depends

on the ordering of the variables which is not easily determined. Before we introduce our new

approach for measuring scenario-based quantile connectedness, the following property is useful.

Assume that the QVAR is stationary, and that zτ t and eτ t are uncorrelated over t. Under

no serial correlation for both zτ t and eτ t , the total forecast error variance matrix is:

FEV(εt+h,τ t+h |τ t, τ t+1, ..., τ t+h) =

h∑
k=0

Φt+h,kΩzΦ
′
t+h,k +

h∑
k=0

Φt+h,kΩeΦ
′
t+h,k, (13)

where Φt+h,k is defined in (11), Ωz is the variance matrix of zt,ut , and Ωe is the variance matrix

of et,ut . Note that FEV reflects the surprise of the path of future scenario τ t, τ t+1,...,τ t+h

through Φt+h,k.

Remark 6 While the total forecast error variance matrix (13) is derived under no serial cor-

relation in both zt,ut and et,ut , we note that the outcome variable yt,ut follows a QVAR model

which exhibits serial correlation.

In the following, we define our scenario-based quantile connectedness measures in three ways

based on different types of shocks: (1) based on the idiosyncratic shocks component, (2) based on

the unobserved heterogeneity (the common shocks component) and (3) based on the combined

shocks (combining idiosyncratic shocks and common shocks).

3.3.1 Quantile connectedness based on idiosyncratic shocks

Many studies in the literature (Cecchetti and Li (2008), Ando et al. (2022b), and others) in-

vestigate quantile connectedness based on idiosyncratic shocks by employing the quantile based

forecast error variance. However, in these studies, the quantile index is fixed throughout the

forecast horizon. Our framework is distinct from these existing methods by the nature of our

forecast error variance in (13), which allows the quantile index to change across the forecast

horizon as well as across individual units.

We define our scenario-based quantile connectedness measures by starting with granular

pairwise directional connectedness. Let C̃ei←j,h,τ denote the proportion of bank i’s h-step-ahead
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generalized forecast error variance due to idiosyncratic shocks from bank j, conditional on the

future scenario τ = (τ t, ..., τ t+h) (alternatively, τ t → τ t+1 → · · · → τ t+h), defined as

C̃ei←j,h,τ =

∑h−1
k=0 ω̂

−1
jj,e

(
l′iΦ̂kΩ̂elj

)2∑h−1
k=0

(
l′iΦ̂kΩ̂eΦ̂′kli

) , i = 1, 2, · · · , N ; j = 1, 2, · · · , N, (14)

where Ω̂e is the estimated covariance matrix of the error vector eτ t+h−k , ω̂jj,e is the jth diagonal

element of Ω̂e, and li is an N×1 selection vector with its ith entry being one and zero otherwise.

In our application of liquidity risk network, C̃ei←j,h,τ represents how much of bank i’s future

liquidity uncertainty (at horizon h) is due to idiosyncratic liquidity shocks arising with bank j

conditioning on the specific future scenario τ . Note that the diagonal element C̃ei←i,h,τ measures

the self-link, how much of bank i’s future liquidity uncertainty (at horizon h) is due to its own

idiosyncratic liquidity shocks based on the scenario τ .

Under the “generalization identification” framework, the variance shares do not necessarily

sum up to one, in other words, generally
∑N

j=1 C̃
e
i←j,h,τ 6= 1. Thus we row-normalize the matrix

(C̃ei←j,h,τ ), denoted as (Cei←j,h,τ ) with Cei←j,h,τ =
C̃e
i←j,h,τ∑N

j=1 C̃
e
i←j,h,τ

. From now on, we base our

analysis on the row-normalized pairwise connectedness.

Next, we compute total directional connectedness including “To”, “From,” and “Net” mea-

sures. Specifically, the “To” measure represents the total directional connectedness from bank i

to others defined as

Ce•←i,h,τ =
N∑

j=1,j 6=i
Cej←i,h,τ . (15)

Similarly, the “From” measure represents the total directional connectedness from others to

bank i, defined as

Cei←•,h,τ =

N∑
j=1,j 6=i

Cei←j,h,τ . (16)

By definition, the “From” measure is always equal to or smaller than one, while the “To”

measure could be larger than one. Based on “To” and “From,” we define “Net” as (To - From),

by subtracting “From” from “To,” representing the net connectedness between bank i and others.

In our interbank liquidity network, “To” represents the system impact of a bank’s liquidity

shock on other banks’ liquidity, i.e., a bank’s systemic importance. On the other hand, “From”

represents a bank’s vulnerability, specifically how would a bank’s liquidity be affected by other

banks’ liquidity shocks.
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Finally, we compute total connectedness, also known as system-wide connectedness, defined

as

Ceh,τ =
1

N

N∑
i,j=1,i 6=j

Cei←j,h,τ . (17)

These measures include both disaggregate and aggregate level information on the topology

of the network, that could be useful for both risk management and bank supervision. Risk

managers might be more interested in the disaggregated pairwise directional connectedness,

while regulators might be more concerned with the aggregate level total connectedness as well

as the total directional connectedness where “To” measures each bank’s systemic importance

and “From” measures each bank’s vulnerability.

3.3.2 Quantile connectedness based on common shocks

We define quantile connectedness based on common shocks (through the unobserved heterogene-

ity), in a similar way as the quantile connectedness based on the idiosyncratic component in

the previous section. Let C̃zi←j,h,τ denotes the proportion of bank i’s h-step-ahead generalized

forecast error variance due to shocks to the unobserved heterogeneity of bank j, conditional on

the future scenario τ = (τ t, ..., τ t+h) (alternatively, τ t → τ t+1 → · · · → τ t+h), defined as

C̃zi←j,h,τ =

∑h−1
k=0 ω̂

−1
jj,z

(
l′iΦ̂kΩ̂zlj

)2∑h−1
k=0

(
l′iΦ̂kΩ̂zΦ̂′kli

) , i = 1, 2, · · · , N ; j = 1, 2, · · · , N, (18)

where Ω̂z is the estimated covariance matrix of the common shock component (i.e., the unob-

served heterogeneity component) vector zτ t+h−k , ω̂jj,z is the jth diagonal element of Ω̂z. In

our application of liquidity risk network, and C̃zi←j,h,τ represents how much of bank i’s future

liquidity uncertainty (at horizon h) is due to liquidity shocks to the unobserved heterogeneity of

bank j conditioning on the specific future scenario τ . Note that the diagonal element C̃zi←i,h,τ

measures the self-link, how much of bank i’s future liquidity uncertainty (at horizon h) is due

to liquidity shocks to its own unobserved heterogeneity based on the scenario τ .

Then we row-normalize the matrix (C̃zi←j,h,τ ), denoted as (Czi←j,h,τ ) with Czi←j,h,τ =
C̃z
i←j,h,τ∑N

j=1 C̃
z
i←j,h,τ

.

Next, we compute total directional connectedness including “To”, “From,” and “Net” measures.

Specifically, “To” measure represents the total directional connectedness from bank i to others

defined as

Cz•←i,h,τ =

N∑
j=1,j 6=i

Czj←i,h,τ . (19)

17



Similarly, “From” measure represents the total directional connectedness from others to bank

i, defined as

Czi←•,h,τ =
N∑

j=1,j 6=i
Czi←j,h,τ . (20)

Finally, we compute total connectedness, also known as system-wide connectedness, defined

as

Czh,τ =
1

N

N∑
i,j=1,i 6=j

Czi←j,h,τ . (21)

3.3.3 Quantile connectedness based on combined shocks

In this section, we define overall quantile connectedness based on combined shocks which is

combining idiosyncratic shocks and common shocks, in a similar way as the separate quantile

connectedness measures. Let C̃i←j,h,τ denote the proportion of bank i’s h-step-ahead generalized

forecast error variance due to shocks to either the idiosyncratic component or the unobserved

heterogeneity of bank j, conditional on the future scenario τ = (τ t, ..., τ t+h) (alternatively,

τ t → τ t+1 → · · · → τ t+h), defined as

C̃i←j,h,τ =

∑h−1
k=0 ω̂

−1
jj

(
l′iΦ̂kΩ̂lj

)2∑h−1
k=0

(
l′iΦ̂kΩ̂Φ̂′kli

) , i = 1, 2, · · · , N ; j = 1, 2, · · · , N, (22)

where Ω̂ equals Ω̂e + Ω̂z, ω̂jj is the jth diagonal element of Ω̂. In our application of liquidity

risk network, the above C̃i←j,h,τ represents how much of bank i’s future liquidity uncertainty

(at horizon h) is due to liquidity shocks to either the idiosyncratic component or the unob-

served heterogeneity of bank j conditioning on the specific future scenario τ . Note that the

diagonal element C̃i←i,h,τ measures the self-link, how much of bank i’s future liquidity uncer-

tainty (at horizon h) is due to liquidity shocks to its own idiosyncratic component or unobserved

heterogeneity based on the scenario τ .

Then we row-normalize the matrix (C̃i←j,h,τ ), denoted as (Ci←j,h,τ ) with Ci←j,h,τ =
C̃i←j,h,τ∑N
j=1 C̃i←j,h,τ

.

Next, we compute total directional connectedness including “To”, “From,” and “Net” measures.

Specifically, “To” measure represents the total directional connectedness from bank i to others

defined as

C•←i,h,τ =
N∑

j=1,j 6=i
Cj←i,h,τ . (23)
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Similarly, “From” measure represents the total directional connectedness from others to bank

i, defined as

Ci←•,h,τ =
N∑

j=1,j 6=i
Ci←j,h,τ . (24)

Finally, we compute total connectedness, also known as system-wide connectedness, defined

as

Ch,τ =
1

N

N∑
i,j=1,i 6=j

Ci←j,h,τ . (25)

3.4 Computational implementation

This section summarizes how to obtain the measures numerically. As discussed above, we

can estimate the model (1) at a given conditional quantile. In our empirical analysis, we set

τ = {0.01, 0.02, ..., 0.99}, and the model (1) is estimated at each quantile point. Let H be the

number of posterior samples. This produces

{B(a)
τ , F (a)

τ ,Λ(a)
τ , z

(a)
it,τ , G

−1
ei (τ)(a)|τ = 0.01, ..., 0.99, a = 1, ...,H}

with z
(a)
it,τ = f

(a)′
t,τ λ

(a)
i,τ . Here a denotes a-th generated posterior sample.

Let h be a forecast horizon and τ t = (τ1,t, ..., τN,t)
′,..., τ t+h = (τ1,t+h, ..., τN,t+h)′ be the vector

of quantile points specifying the future scenario. With these generated posterior samples, we can

calculate various quantities in regard to the connectedness measures proposed in the previous

sections. To calculate (18), we need to estimate Ωz. Because the time index k > t indicates

a future time point, we construct this quantity by taking unconditional posterior expectation

across sample periods by using bootstrap sampling from the posterior samples. Then, Ω̂z can

be constructed by

Ω̂
(a)
z =

1

99T

0.99∑
τ=0.01

T∑
t=1

(
z

(a)
t,τ − ẑt

)(
z

(a)
t,τ − ẑt

)′
, (26)

where z
(a)
t,τ = (z

(a)
1,t,τ , ..., z

(a)
N,t,τ )′ and ẑt = 1

99T

∑0.99
τ=0.01

∑T
t=1 z

(a)
t,τ is a proxy of unconditional

mean of the unobserved heterogeneity. Let Φ
(a)
t+h,k be constructed based on the a-th posterior

sample. Then we have Φ̂kΩ̂z = 1
H

∑H
a=1 Φ

(a)
t+h,kΩ̂

(a)
z and Φ̂kΩ̂zΦ̂

′
k = 1

H

∑H
a=1 Φ

(a)
t+h,kΩ̂

(a)
z Φ

(a)′

t+h,k.

Therefore, we can compute these proposed scenario-based quantile connectedness measures based

on the unobserved heterogeneity component. Similarly, we can construct Ω̂e and compute these

proposed scenario-based quantile connectedness measures based on the idiosyncratic component

as defined in (14), and also the overall quantile connectedness measure based on the idiosyncratic

component and unobserved heterogeneity together.
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Remark 7 Unlike the previous studies Cecchetti and Li (2008) and Ando et al. (2022b), our

approach does not require the quantile τ to be identical across individual units as well as through-

out the forecasting time horizon. This result is useful when we construct quantile connectedness

under various future scenarios.

4 Asymptotic theory

Let ϑτ ≡ {Bτ , Fτ ,Λτ} denote the parameter in the model (10). Our concern here is the sequence

of posterior distributions π(ϑτ |Y,X) constructed by the size of T ×N panel data as N,T →∞.

In this paper, we show that the constructed posterior density is Hellinger consistent sequence.

Hellinger distance is a useful tool to establish the posterior consistency (Barron et al. (1999),

Ghoshal et al. (1999), Walker and Hjort (2001)). For two density functions s(y) and g(y),

Hellinger distance is defined as

H(g, s) =
1

2

{∫
(g1/2(y)− s1/2(y))d(y)

}2

.

Recall our pseudo-likelihood based density function:

f(Y |X,ϑτ ) ∝ exp

[
− 1

NT

N∑
i=1

T∑
t=1

qit,τ (ϑτ )

]
,

where we used a simplified notation qit,τ (ϑτ ) such that qit,τ (ϑτ ) ≡ qτ (yit−x′tbi,τ −f ′t,τλi,τ ). We

establish Bayesian consistency under the pseudo-likelihood f(Y |X,ϑτ ), in the sense that, for

any µ > 0,

πN,T,τ ({ϑτ : H(f(Y |X,ϑτ ), f(Y |X,ϑτ,0)) > µ})→ 0 as N, T →∞, (27)

where ϑτ,0 is true value of ϑτ . Here πN,T,τ (·) is defined as

πN,T,τ (A) =

∫
A

f(Y |X,ϑτ )

f(Y |X,ϑτ,0)
π(ϑτ )dϑτ ,

where A is the subset of parameter space of ϑτ . To obtain the claim (27), we assume the

following conditions.

Assumptions

We denote the true regression coefficient as bi,0,τ . Similarly, we denote F0,τ = (f1,0,τ , ...,fT,0,τ )′

and Λ0,τ = (λ1,0,τ , ...,λN,0,τ )′ as the true factors and loadings. A set of regularity conditions for

establishing the the claim (27) are given as follows.
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Assumption A: Common factors

Let F be a compact subset of Rrτ . The common factors f t,0,τ ∈ F satisfy T−1
∑T

t=1 f t,0,τf
′
t,0,τ =

Irτ .

Assumption B: Factor loadings and regression coefficients

(B1) Let B and L be compact subsets of RNp+1 and Rrτ , respectively. The regression coefficient

bi,0,τ and the factor-loading λi,0,τ satisfy that bi,0,τ ∈ B and λi,0,τ ∈ L for each i.

(B2) The factor-loading matrix Λ0,τ = (λ1,0,τ , . . . ,λN,0,τ )′ satisfies N−1
∑N

i=1 λi,0,τλ
′
i,0,τ

p−→ ΣΛτ ,

where ΣΛτ is an rτ × rτ positive definite diagonal matrix with diagonal elements distinct

and arranged in the descending order.

Assumption C: Idiosyncratic error terms

(C1): The random variable

εit,τ = yit −
p∑

h=1

N∑
j=1

bijh,0,τyj,t−h −
r∑

k=1

ftk,0,τλik,0,τ −G−1
eit (τ)

satisfies P (εit,τ ≤ 0) = τ , and is independently distributed over i and t, conditional on

Xt, B0,τ , F0,τ and Λ0,τ .

(C2): The conditional density function of εit,τ given (Xt, B0,τ , F0,τ ,Λ0,τ ), denoted as git(εit,τ ),

is continuous. In addition, for any compact set C, there exists a positive constant g > 0

(depending on C) such that infc∈C git(c) ≥ g for all i and t.

Assumption D: Explanatory variables and design matrix

(D1): For a positive constant Cx, explanatory variables satisfy supit ‖xit‖ ≤ Cx almost surely.

(D2): Let Xi,τ = (xi1,xi2, . . . ,xiT )′. Define Ai,τ = 1
TX

′
i,τMFτXi,τ , Bi,τ = (λi,0,τλ

′
i,0,τ ) ⊗ IT ,

Ci = 1√
T

[λi,0,τ ⊗ (MFτXi,τ )]′, η = 1√
T

vec(MFτF0,τ ), and MFτ = I − Fτ (F ′τFτ )−1F ′τ . Let

Fτ be the collection of Fτ such that Fτ = {Fτ : F ′τFτ/T = Irτ }. We assume that with

probability approaching one,

inf
Fτ∈Fτ

λmin

[ 1

N

N∑
i=1

Ei,τ (Fτ )
]
> 0,

where λmin(A) denotes the smallest eigenvalue of matrix A, and Ei,τ (Fτ ) = Bi,τ −

C ′i,τA
−1
i,τCi,τ .
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(D3): Let Vτ (Bτ ) be the N × T matrix with its (i, t)th entry equal to x′itbi,τ , where Bτ =

(b1,τ , b2,τ , . . . , bN,τ )′. There exists c > 0 such that

1

NT
‖MΛ0,τVτ (Bτ )MF0,τ ‖2 ≥ c

1

N

N∑
i=1

‖bi,τ‖2,

where MΛ0,τ = I − Λ0,τ (Λ′0,τΛ0,τ )−1Λ′0,τ .

(D4): For each i, there exists c > 0 such that with probability approaching one,

lim inf
T→∞

λmin

( 1

T
X ′i,τMF0,τXi,τ

)
≥ c.

Assumption E: Stationarity

(E1) Define Uk ≡ {ut,ut−1, ...,ut−k} and N × N matrix Φt,k(Uk) ≡ Φt,k(ut,ut−1, ...,ut−k).

Then, [ ∞∑
k=0

abs [Φt,k(Ut−k)]

]
is uniformly bounded in row sums and column sums. Here, abs[A]ij = |aij | for a matrix

A with its (i, j)th element being aij .

(E2) The idiosyncratic error eit,uit in (10) is stationary time series for each i.

Assumption F: Kullback–Leibler property

Let Kv(ϑτ,0) be a Kullback–Leibler neighborhood of ϑτ,0 such that, for each given v > 0,

ϑτ satisfies ∫
log{f(Y |X,ϑτ,0)/f(Y |X,ϑτ )}f(Y |X,ϑτ,0)dY < v.

Then, the prior density π(ϑτ ) puts positive mass on all Kullback–Leibler neighborhood of

the pseudo-likelihood based density under the true value f(Y |X,ϑτ,0):

π(Kv(ϑτ,0)) > 0.

Remark 8 Assumptions A and B are consistent with our normalization conditions in (9). As-

sumption (C1) may be relaxed to allow the serial dependency, but we do not pursue this direction

in this paper. Assumptions (C2) is standard in the quantile models. Assumption D is imposed

for the identification of parameters. Assumption (D2) is imposed for the identification of ΛτF
′
τ .

This assumption was used in several previous studies, such as Ando et al. (2022a, 2023). Assump-

tion (D3) can be interpreted as an extended version of Assumption A of Bai (2009). Together

with Assumptions (D2) and (D3), Assumption (D4) provides the identification conditions in the
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interactive-effects models Ando et al. (2023). Assumption (E1) is similar to Assumption 6 of Yu

et al. (2008). It may be possible to relax Assumption (E1) and (E2) by employing an idea from

the frequentist framework (e.g., Miao et al. (2020)). However, it is not our main focus here.

Assumption F is necessary to encompass the true model in our model space.

The following theorem ensures that the constructed posterior based on the pseudo-likelihood

based density function f(Y |X,ϑτ ) is Hellinger consistent sequence.

Theorem 2 Under Assumptions A–F and N/T → 0, then (27) holds.

Remark 9 Technical proof of Theorem 2 is given in the appendix. Although our proof relies on

a technique originally considered by Schwartz (1965), we note that Theorem 2 is proved under

the diverging number of parameters in the sense that the dimension of parameters increases as

N,T → ∞. Together with the non-smoothness of the pseudo-likelihood based density function

f(Y |X,ϑτ ) in terms of ϑτ , it is not straightforward task to establish Theorem 2. To overcome the

non-smoothness, we first had to establish the following together with the restriction N/T → 0

and the empirical process theory (van der Vaart and Wellner (1996), see also Ando and Bai

(2020)):

sup
∀t,ft∈F ,∀i,λi∈L,bi∈B

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

qτ

(
yit − x′itbi,τ − f ′t,τλi,τ

)
−E
[
qτ

(
yit − x′itbi,τ − f ′t,τλi,τ

)]∣∣∣∣ = op(1),

where E(·) is the expectation of yit conditioned on X, F0,τ , Λτ,0 and Bτ,0. The restriction

N/T → 0 is also imposed by Ghosh et al. (2019) to establish the posterior consistency for the

high-dimensional “mean” vector autoregressive (VAR) model with Gaussian idiosyncratic errors.

Ghosh et al. (2019) also allowed the dimension of individual units grows with the length of time

series. Thus, our assumption N = o(T ) is not restrictive because this condition is also necessary

for the high-dimensional “mean” VAR case.

5 Empirical Analysis

In this empirical analysis section, we evaluate the interbank liquidity risk network by imple-

menting both the baseline fixed-quantile connectedness approach and the scenario-based quan-

tile connectedness approach. We assume that the data is generated from the structure in (10).

In the fixed-quantile analysis, we study the network connectedness for various quantiles, mainly

focusing on two sample periods (before and during the COVID-19 pandemic). In the scenario-

based quantile analysis, we pre-specify the scenario based on the Repo crisis during September
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2019. We also investigate the connectedness measures based on different types of shocks (id-

iosyncratic shocks, common shocks, and combined shocks). Further, we look into the dynamic

evolution of the quantile liquidity risk network by using a rolling window estimation.

5.1 Fixed-quantile connectedness

In the baseline results, we study the liquidity risk network of twelve large U.S. banks over the pe-

riod 2017 to 2020, with the list of banks provided in Table 1 and data details described in Section

2. We focus on special scenarios, where the quantile point is fixed (the same) across individual

banks and throughout the forecast horizon, by considering five different percentiles: 5th, 25th,

50th, 75th and 95th. We first estimate the model using the proposed Bayesian nuclear norm

approach. Then based on the Bayesian estimates, the quantile network connectedness measures

are computed by generalizing the forecast error variance decomposition method in Diebold and

Yilmaz (2014) from the conditional mean to quantiles. The details of methodology are described

in Section 3.3. The liquidity network connectedness measures include total connectedness, pair-

wise directional connectedness, bank-specific systemic importance, and vulnerability, which are

useful for bank supervision and financial stability monitoring.

We consider both the static and dynamic estimation of the liquidity risk network. In the

static approach, we estimate the liquidity network connectedness based on two sub-samples

(before and during the COVID-19 pandemic). The estimated network is also compared across

quantiles. In the dynamic approach, we estimate the time-varying liquidity network by rolling

window estimation. Dynamic network estimation allows us to examine the continuous real-time

evolution of the liquidity network. Due to space constraints, the dynamic network results are

provided in the appendix.

We first apply the proposed Bayesian nuclear norm approach to estimate the model (1) with

lag p = 1 determined by both AIC and BIC. Then using the QVAR estimates, we compute

quantile connectedness measures at horizon H = 12 following the methodology in Section 3.3.9

Our analysis considers three types of quantile connectedness as defined in Section 3.3: network

based on idiosyncratic shocks, network based on common shocks (through unobserved hetero-

geneity), and overall network based on combined shocks (combining idiosyncratic shocks and

common shocks). Our analysis focuses on three main quantile connectedness measures: total

connectedness, pairwise directional connectedness, and total directional connectedness including

To, From, and Net.

9Horizon H = 12 is commonly used in the literature of measuring network connectedness based on variance
decomposition. For robustness check, we have also examined a range of nearby horizon values, which produce
similar results. This finding is consistent with Diebold and Yilmaz (2014).
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5.1.1 Connectedness based on idiosyncratic shocks

Total Connectedness

Table 2 reports the total connectedness across quantiles, before and during the COVID-19

pandemic. Total connectedness measures the average strength of liquidity shocks transmission

across banks. There are two main findings from the results. Relative to the pre-COVID pe-

riod, the magnitude of total connectedness is higher during the pandemic (almost 50% larger),

consistent across quantiles, indicating that a liquidity shock to one bank would have a larger

impact on other banks during the pandemic. This might be due to the stressed market condi-

tion during pandemic, where the liquidity funding market was overall more constrained, so an

idiosyncratic liquidity shock hitting one bank generated more spillover to affect another banks

liquidity uncertainty.

Another finding is that total connectedness is higher at the tails, both the lower 5th and

upper 95th tails where the idiosyncratic shocks are relatively larger compared to these at the

median. This implies that a bank hit by a large idiosyncratic liquidity shock (or a tail shock)

could transmit a higher degree of spillover effect to another banks liquidity uncertainty, compared

to an average size shock (at the center of the distribution). Larger shocks happening at tails are

often defined in relation to shocks that propagate during rare events relative to normal times.

In our example tail shocks generate larger spillover effects or shocks propagation in the system.

Pairwise Directional Connectedness

Pairwise Directional Connectedness measures how liquidity shocks are transmitted across

banks. The (i, j) entry in each connectedness table represents how much of bank i’s future LCR

uncertainty is due to idiosyncratic shocks coming from bank j’s LCR today as the shock size

varies (across quantiles). This indicates how idiosyncratic shocks of different sizes transmit from

a bank to affect anther banks LCR uncertainty in the future.

Due to the confidentiality of the data, we aggregate the bank-level pairwise directional con-

nectedness into group-level pairwise directional connectedness, where the twelve banks are clas-

sified into three groups: Big4 banks (BAC, C, JPM, WFC), other domestic banks (BK, GS, MS,

STT), and foreign banks (BARC, CS, DB, UBS). The aggregated results are provided in Table

3. The aggregation is based on the following formula

CHGm←Gn,τ =
1

4

∑
i∈Gm,j∈Gn

CHi←j,τ , (28)

where Gm denotes the mth group, “Big4 banks”, “Other domestic banks,” or “Foreign banks”;

similar for Gn; and CHi←j,τ is the bank-level pairwise directional connectedness from bank j to
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bank i. The above CHGm←Gn,τ measures the fraction of (group m) banks’ future LCR uncertainty

that is due to shocks to (group n) banks’ LCR.

The group-level pairwise directional connectedness measures provide useful insights into the

liquidity risk network structure: how do idiosyncratic liquidity shocks of different sizes in one

bank group relate to upcoming liquidity uncertainty in another bank group? The results are

reported in Table 3, where each entry (m,n) in the table measures the strength of shocks trans-

mission from group n in the column to group m in the row. In other words, the column group

represents the shocks exporter while the row group represents shocks receiver. The heterogeneity

across groups increases during the pandemic. Before the pandemic, self-links (the diagonal ele-

ments) are dominating cross-bank links (the off-diagonal elements). In other words, near-term

(12 trading days in the future) liquidity uncertainty before the pandemic is most associated

with idiosyncratic changes that hit the same bank group in the current period. The dominance

becomes weaker at the tails than at the median, implying when the liquidity profile of the bank

system deviates from normal (or larger idiosyncratic shocks under rare events), spillover effects

across banks become larger due to their increased connections.

However, during the pandemic, cross-bank links are much more substantial than self-links,

indicating that those same idiosyncratic changes were more related to liquidity uncertainty in

other bank groups. The idiosyncratic liquidity shock transmits across the network more, in

other words, spillover effect plays a more important role in liquidity risk transmission during the

pandemic. In addition, cross-links are more substantial at the tails (associated with larger shocks

or rare events), indicating that larger idiosyncratic shocks generate more shocks propagation

across the network during the pandemic when the market was under stress.

Second, we find some clustering during the pandemic. At the tails during the pandemic,

shock exporters (column groups) are clustered at a few banks (Big4 and Other domestic banks)

where shocks to their liquidity are affecting almost all other banks in the system. In particular,

Big4 banks export shocks at the upper 95th tail: liquidity shocks at the Big4 banks are most

associated with near-term liquidity uncertainty in all the bank groups. In contrast, Other

domestic banks are the main shock exporters at the lower 5th tail. Foreign banks do not play

a significant role in exporting shocks except at the median (normal times). Compared to the

tails, the shocks exporters are slightly less clustered at the 25th and 75 percentiles.

Differences in how these bank groups export liquidity shocks are likely due to large differences

in their relative sizes and business models. At shown in Table 1, the average size of Big4 is

much larger than Other domestic banks and Foreign banks, while Other domestic banks and

Foreign banks hold much less loans as share of assets and generate much more of their earnings
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from activities outside of traditional banking (noninterest income/assets). Compared to Other

domestic banks, Foreign banks generate even more noninterest income as share of assets than

Other domestic banks (average is 5.5% versus 3.6%). In addition, Foreign banks in our sample

are subsidiaries of international GSIBs, which likely affects their propensity to receive or transmit

shocks. There is no clear clustering pattern for shocks importers.

Total Directional Connectedness

Based on the pairwise directional connectedness, we compute the total directional connect-

edness including To, From, and Net measures. Specifically, the To measure of bank i represents

the total amount of future liquidity uncertainty of other banks that is associated with liquidity

shocks at bank i. It measures a bank’s tendency to export shocks to other banks. The From

measure of bank i represents the amount of bank i’s future liquidity uncertainty that is associ-

ated with liquidity shocks from other banks: how much a bank imports shocks from other banks.

The Net measure is the difference between the To and From measures, computed as To measure

minus From measure. A positive Net measure means that the bank is a net shocks exporter

(the shocks it exports to others is more than the shocks it imports from others). Similarly, a

negative Net measure means that the bank is a net shocks importer (importing more shocks than

exporting shocks). Economically, the To and From measures represent bank-specific systemic

importance (in terms of exporting shocks to other banks) and vulnerability (in terms of import-

ing shocks from other banks), respectively, which could provide useful insights for supervisors.

Similar to the results in Table 3, we also aggregate bank-level total directional connectedness

into group-level total directional connectedness measures, provided in Table 4.

Several relationships are revealed in Table 4. First, looking at the results of the To measure,

consistent with the findings from the pairwise directional connectedness results in Table 3, at

the tails during the pandemic, domestic banks (Big4 and Other domestic banks) tend to export

more liquidity uncertainty shocks compared to Foreign banks, indicating domestic banks have

larger systemic impacts. Before the pandemic, the relationships were more consistent across the

distribution. But the leading liquidity shocks exporters are not the same across quantiles. For

example, during the pandemic, Big4 banks are the leading risk exporters at the upper 95th tail,

while Other domestic banks are the leading risk exporters at the lower 5th tail. This might

be due to the large differences in their relative sizes and business models as discussed in the

previous section of pairwise connectedness results and in Table 1.

Second, relative to the To measure, there is less heterogeneity for the From measure across

quantiles and between pre-COVID and COVID periods. Before the pandemic, Foreign banks

27



have smaller From measures compared to domestic banks, meaning Foreign banks are less vul-

nerable to liquidity shocks from other banks. During the pandemic, Foreign banks become

more vulnerable, especially at the tails, with a similar magnitude as domestic banks. Overall,

the level of bank vulnerability to other banks’ liquidity shocks is higher during the pandemic

than pre-pandemic. In other words, the spillover effect of liquidity shocks is greater during the

pandemic.

The Net measure is summarized in the bottom panel of Table 4, where green denotes negative

values meaning the bank is a net shocks importer, while red denotes positive values meaning the

bank is a net shocks exporter. The results are quite different before and during the pandemic,

as well as across bank groups. Comparing domestic and Foreign banks, on average, domestic

banks are net shocks importers before the pandemic but then become net shocks exporters

during the pandemic. The results suggest that before the pandemic, Big4 banks served as a

liquidity buffer for the banking system, absorbing shocks and helping the system. During the

pandemic, Big4 banks still absorbed shocks as their “From” measure is still high, but their “To”

measure increased more, making them net shocks exporters.

It is the opposite for Foreign banks. Though Foreign banks are net shocks exporters before

pandemic, their Net measure is low, and it is positive mainly because of their low From measure.

The reason for low From measure might be that, they are subsidiaries of international GSIBs

and relatively smaller compared to the domestic banks in our sample. When the pandemic

came, the overall interconnectedness among banks has increased, so Foreign banks receive more

liquidity uncertainty shocks as shown in their From measure that the measure has increased

substantially during the pandemic which drives their Net measure to be negative.

Comparing Big4 and Other domestic banks during pandemic, on average, Big4 banks are net

shocks exporters at the 95th percentile, while Other domestic banks are net shocks exporters at

the 5th percentile. Differences in how these two bank groups share liquidity shocks are likely

due to large differences in their relative sizes and business models as discussed in the previous

section of pairwise connectedness results and shown in Table 1.

In addition, the substantial change of the Net measure before and after the pandemic is

similar to that of the To measure. The main reason is the magnitude of the From measure is

relatively small compared to the To measure. Therefore, the majority of the Net measure comes

from the To measure, and thus they have a similar pattern.
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5.2 Dynamic estimation of the network connectedness

In this section, we provide results of the time-varying liquidity network using a rolling window

estimation with a 250-day window, related to the baseline analysis where the quantile point is

fixed across banks and throughout the forecast horizon.10 In this section, due to space, we only

present the time-varying results based on idiosyncratic shocks. The results based on common

shocks and combined shocks show similar findings.

Figure 1 presents the dynamics of total connectedness across quantiles, where both mean and

standard deviation (SD) are reported for each quantile. Overall the strength of total connect-

edness is higher at the tails than at the median, implying that when the bank system deviates

from normal, total connectedness increases. This is consistent with the finding in the static

approach. However, interestingly we find the SD of total connectedness is larger at the median

than at the tails, indicating that when the system is normal, total connectedness is more volatile

compared to that when the system is far away from normal. In addition, the time-varying total

connectedness at the median shows two cycles: one starting in early 2018 and ending in mid-

2019, whereas the second coincides with the COVID-19 pandemic from about April/May 2020

and trending up towards the end of 2020. In contrast, when the system deviates from normal,

the system is overall more interconnected and does not show significant cycles.

We also compute total directional connectedness for each bank, and then aggregate it to

group level. The time series plots of To and From measures by bank group are provided in

Figures 3-5 in the appendix. Regarding the To measure, Other domestic banks have the most

volatile To measure while Foreign banks have the least. Consistently across bank groups, the To

measure is much more volatile at the tails than at the median. In contrast, the From measure

is less volatile than the To measure. However, Other domestic banks still have the most volatile

From measure compared to the other two groups.

5.3 Scenario-based quantile connectedness

Different from the fixed-quantile network connectedness analysis, we measure scenario-based

quantile connectedness in this section by pre-specifying the future economic scenario which is

used in the forecast error variance decomposition. We specify the future economic scenario being

the Repo crisis in September 2019, and then estimate the model using the liquidity data before

the Repo crisis. Based on the model estimates, we compute network connectedness measures

following the methodology proposed in Section 3.3 by focusing on the three main measures:

10As shown in Diebold and Yilmaz (2014), they have considered a range of windows sizes and find they produce
similar results. For robustness check, we have also examined a range of nearby window sizes, which produce
similar results as well.
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total (or system-wide) connectedness, pairwise directional connectedness, and total directional

connectedness (To, From, and Net).

More specifically, we first estimate the QVAR model using the proposed Bayesian nuclear

norm estimation approach (described in Section 3) based on the data before the Repo crisis

and then compute the scenario-based quantile connectedness measures based on the Bayesian

estimates (following the methodology presented in Section 3.3). In terms of specifying the

scenario, let t be the U.S. repo market shock day that happened on September 17, 2019. Based

on the actual LCR data, we compute the percentiles of individual bank’s LCR level on that

day t, as well as the following H days (t + 1, t + 2, . . . , t + H) (H = 12 in our analysis),

relative to that bank’s own historical distribution. This gives us a scenario-specific quantile path

(i.e., according to the notation (τ t, τ t+1, . . . , τ t+12) used in Section 3.3). Finally, we estimate

network connectedness measures based on this particular scenario, using the formulas developed

in Section 3.3.

Table 5 presents the three main connectedness measures at group level, according to different

types of shocks. From left to right, the network connectedness is based on idiosyncratic shocks,

common shocks, and combined shocks (combining idiosyncratic shocks and common shocks).

From top to bottom, we first report total/system-wide connectedness, then total directional

connectedness measures (To, From, and Net), and finally pairwise directional connectedness

measures. From the results, we can see that the system-wide connectedness is similar and

consistently high across estimated networks based on different types of shocks, indicating that

these banks are overall closely interconnected with each other during the Repo crisis.

Moving to the detailed pairwise directional connectedness measure as shown in the middle

panel of Table 5, we can see there is little heterogeneity across different types of shocks, except

for Other domestic banks which tend to have lower pairwise directional connectedness from

themselves to other banks in the case of common shocks compared to the other two types of

shocks. Overall, the liquidity risk spillovers from Big4 banks to other banks tend to be larger

than the other two bank groups. In addition, we do not see the dominance of self-links (the

diagonal elements), implying that cross-bank links (the off-diagonal elements) or spillovers across

banks are at least as important as self-links in the liquidity risk transmission.

Turning to total directional connectedness measures, we find that different groups show

different patterns. As for Big4 banks, their To measure is consistently the largest across networks

based on different types of shocks, implying they are the most systemically important banks in

terms of exporting liquidity shocks to other banks for both idiosyncratic shocks and common

shocks. Both Other domestic banks and Foreign banks tend to have much lower To measures,
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meaning they are relatively much weaker in terms of transmitting liquidity shocks to other banks.

Comparing the To measure across different types of shocks, we can see that Other domestic banks

are the most volatile group as they have much lower To measures in the case of common shocks

compared to other two cases, while both Big4 and Foreign banks show similar magnitude of To

measures across the three types of shocks. The magnitude of the From measure is close across

bank groups, indicating banks’ vulnerability is similar in terms of receiving shocks from other

banks. Comparing To and From measures, we notice there is much less heterogeneity for the

From measure across bank groups. This indicates that different banks tend to be more different

in terms of their systemic importance (i.e., their ability of transmitting liquidity shocks to other

banks) while they tend to be similar in terms of their vulnerability (i.e., receiving liquidity

shocks from other banks). For the Net measure, we find that Big4 banks are consistently net

shocks exporters (positive and red) across different types of shocks, while both Other domestic

and Foreign banks tend to be net shocks importers (negative and green). Other domestic banks

tend to import shocks through common shocks, whereas Foreign banks tend to import shocks

through idiosyncratic shocks.

6 Conclusion

In this paper, we study the U.S. interbank liquidity risk network based on a supervisory dataset,

using a scenario-based quantile network connectedness approach where the network connected-

ness is computed under a pre-specified future economic scenario. Specifically, we consider a

QVAR model with unobserved heterogeneity, where a latent common factor structure is used

to deal with unobserved heterogeneity so that the latent factor structure absorbs the part of

the errors that are correlated with the regressors. We then propose a new Bayesian nuclear

norm estimation method using MCMC based on Gibbs sampling. To develop the scenario-based

quantile network connectedness framework, we derive a scenario-based moving average expres-

sion of QVAR, obtain the forecast error variance under the pre-specified economic scenario,

and then generalize the existing forecast error variance decomposition. Moreover, the connect-

edness measures are defined depending on the type of shocks considered: idiosyncratic shocks

(for idiosyncratic contagion network), common shocks (for common shocks induced contagion

network), or combined shocks (overall shocks combining idiosyncratic and common shocks).

The proposed methodology is applied to analyze the U.S. interbank liquidity risk network

focusing on the twelve large U.S. bank holding companies, using the daily supervisory FR 2052a

data. We first characterize the fixed-quantile network connectedness (a special case of the

proposed scenario-based quantile network framework), focusing on the comparison between pre-
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and during- pandemic periods. The main finding is that the liquidity risk network varies both

across quantiles and across different types of shocks considered, and has changed substantially

during the COVID-19 pandemic period relative to the pre-pandemic period. Then we study the

scenario-based liquidity risk network connectedness based on a particular scenario specified as

the Repo crisis which happened during September 2019, and the main finding is that overall, Big4

banks play a more important role in liquidity risk transmission than other banks. The estimated

quantile liquidity risk network connectedness measures could be useful for bank supervision and

financial stability monitoring by providing leading indicators of the system-wide liquidity risk

connectedness not only at the median but also at the tails or under a pre-specified scenario. The

measures also help identify systemically important banks and vulnerable banks in the liquidity

risk transmission of the U.S. banking system.

Finally, this paper generalized the forecast error variance decomposition (Diebold and Yil-

maz (2014)) by using a scenario-based quantile network connectedness approach. Billio et al.

(2012) developed a connectedness measure based on principal components analysis and Granger-

causality tests. It is interesting to extend their study to measure the quantile connectedness

by using our Bayesian QVAR framework. By using our Bayesian QVAR approach, we can also

explore quantile impulse response analysis (Lee et al. (2021)). We would like to explore these

topics in a future study.
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Table 2: Total connectedness across quantiles (idiosyncratic shocks), pre-COVID vs COVID
quantile pre-COVID COVID

0.05 0.602 0.918
0.25 0.418 0.866
0.5 0.316 0.624
0.75 0.449 0.916
0.95 0.654 0.925

Note: Pre-COVID for 04/24/2017 - 12/31/2019; COVID for 01/01/2020 - 12/11/2020.
The interconnectedness measures are estimated based on all banks across time.
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Figure 1: Time-varying total connectedness, across quantiles

Note: From top panel to bottom panel, quantile is 0.05, 0.25, 0.5, 0.75 and 0.95 respectively. The average and
standard deviation of total connectedness are computed. The average total connectedness measures for quantiles
(0.05, 0.25, 0.5, 0.75, 0.95) are (0.91, 0.86, 0.76, 0.86, 0.91) respectively. The corresponding standard deviations are

(0.02, 0.04, 0.05, 0.04, 0.02) respectively. The interconnectedness measures are estimated based on all banks
across time.
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