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1 Introduction

Within a single week of June 2011, the price of a Gillette Venus Embrace razor with cartridge varied from

$4.99 to $14.79 per unit across stores in the San Francisco Metropolitan Area—with a standard deviation

of log prices of 0.32 (0.14 for regular prices, that is, sales excluded). Economists have long thought that

price dispersion exists in equilibrium because, as Stigler (1961, p. 214) put it, “there is never absolute
homogeneity in the commodity if we include the terms of sale within the concept of the commodity,” and

because shopping experience generally differs across stores. However, just a year earlier, in June 2010,

weekly prices for the same razor in the same area varied only between $8.99 and $12.59, with a standard

deviation of log prices of 0.12 (0.08 for regular prices). It is very unlikely that a difference in shopping

experience across the same stores changed so much in a year. Examples like this are pervasive. What

determines the level and time variation of price dispersion and what does it mean for aggregate analyses?

From a macroeconomic perspective, price rigidity is often perceived to be an important source of

price dispersion, with significant implications for the dynamic properties of aggregate variables, welfare

calculations, and the design of optimal policy. For instance, in standard New Keynesian models, the

key cost of business cycles stems from the price dispersion resulting from firms’ inability to adjust prices

instantaneously. However, different macroeconomic models make conflicting predictions about the level

of price dispersion, as well as about its dynamic properties and sensitivity to inflation. These contrasting

predictions can help us to discriminate across alternative models. To the best of my knowledge, these

predictions have not been tested before.

In this paper, I examine the link between price dispersion and inflation, and the role of sales in this

relationship. The comovement of inflation and price dispersion sheds light on the degree of price rigidity

and the type of frictions that prevail in the data. In particular, a higher degree of price rigidity implies

a stronger response of price dispersion to inflation. The nature of frictions is important too: models

with time-dependent frictions produce stronger responses of price dispersion to inflation than those with

state-dependent frictions. Crucially, in models with time-dependent price adjustment (for example, Calvo

1983), monetary shocks affect real variables, while in state-dependent models with fixed menu costs

(Golosov and Lucas 2007), the classical dichotomy holds—nominal variables do not affect real variables.

I show that the Calvo model with sales can match the comovement of price dispersion and inflation found

in the data, while purely state-dependent models cannot.

To start, I document the degree of cross-store price dispersion and its comovement with disaggregated

inflation, using monthly data on prices and total sales in grocery and drug stores in 50 U.S. Metropolitan

Statistical Areas (MSAs). Price dispersion is measured as the standard deviation of log prices of a good at

the Universal Product Code (UPC) level over stores in a given MSA, aggregated to a market–category of

goods level, with annual sales as weights. My major findings are the following: First, price dispersion is

pervasive and cannot be fully explained by sales. The average standard deviation of log prices across stores

over the period of 2001–2011 is 9.5 log points for all prices and 6.6 log points if sales are excluded. Second,

I document the negative correlation between price dispersion and inflation at the location-category level,

which is driven entirely by the presence of sales: the correlation between inflation and the dispersion of

regular prices is positive. Third, local labor market characteristics, such as the unemployment rate or total

employment, have only small effects on price dispersion, and do not change its relationship with inflation.
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Fourth, I find strong propagation in the response of price dispersion to inflation.

Next, I investigate whether standard macroeconomic models can account for these facts. I consider

several popular models: (1) a workhorse New Keynesian model with time-dependent frictions in price

adjustment as in Calvo (1983); and (2) a model with state-dependent pricing based on the fixed menu

cost (FMC) assumption as in Golosov and Lucas (2007). These two models can be cast as a special case

of a more general framework referred to as the smoothly state-dependent pricing (SSDP) developed in

Costain and Nakov (2011a,b), which I test against the data as well. This allows me to nest the models

and to isolate the effects of specific frictions in price adjustment. Finally, I examine the Calvo model with

sales, based on Guimaraes and Sheedy (2011), to emphasize the role of sales in matching properties of

price dispersion in the data.

I find that models without sales fail to match empirical findings even for regular prices. The Calvo

model without sales overstates the comovement of price dispersion and inflation by a factor of 15, while

the FMC model understates it by a factor of 5. Intuitively, in time-dependent pricing models, most firms

cannot adjust their prices in response to an inflationary shock, while those few that can adjust do so by a

lot, thereby yielding a strong response of price dispersion and a small response of inflation. In contrast,

in state-dependent pricing models, an inflationary shock moves firms outside the (S, s) bounds and forces

them to reset their prices, thereby inducing a strong impact on inflation and a weak impact on price

dispersion. In fact, if menu costs are small, price dispersion may even decrease. Although the SSDP model

is naturally closer to the data—as it combines time- and state-dependent frictions—the parameterization

required to match the comovement of price dispersion and inflation is inconsistent with other evidence

on the distribution of the sizes of price changes.1 In this model, pricing should be more state-dependent

than is suggested by the data on the size of price changes. Thus, none of these models is consistent with

the stylized facts of regular price dispersion documented in this paper.

I show that the best match of empirical findings, for both posted and regular prices, comes from a Calvo

model with sales, calibrated to match the observed frequency of sales. Intuitively, sales in this model serve

as a channel of additional price flexibility that does not interfere with the frequency of regular price

changes. In order to match the comovement of price dispersion and inflation, the Calvo model without

sales requires a much higher per-period probability of price adjustment than the one suggested by the

frequency of regular price changes. In the SSDP model, pricing has to be more state-dependent, meaning

it has less aggregate rigidity. The finding that the Calvo model with sales matches the properties of

regular prices better than a similar model without sales implies that sales have an important interaction

with regular prices that is lost when sales are omitted. This implication is at odds with the conclusions

drawn by Guimaraes and Sheedy (2011) and Kehoe and Midrigan (2014), who argue that sales have little

impact on macroeconomic dynamics and that Calvo models without sales capture the salient features of

the data sufficiently. In contrast, this paper’s results suggest that in order to capture the comovement of

regular price dispersion and inflation, it is necessary to incorporate sales into macro models. Because in

macroeconomic models the level and dynamics of price dispersion have direct implications for welfare,

the cost of business cycles, and the optimal inflation rate, relying on models that are at odds with the

empirical properties of price dispersion can lead to nontrivial mismeasurement of optimal policy actions.

This paper contributes to several strands of literature. First, it presents new empirical facts on the

1For more details on the role of small price changes, see Midrigan (2011).
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relationship between price dispersion and inflation. Second, it quantifies the comovement between the

two in several prominent general equilibrium models. Third, it highlights the role of price dispersion

in welfare calculations. Finally, it provides new evidence on the link between observed micro-pricing

characteristics and structural parameters in the models.

This paper’s empirical contribution is related to earlier attempts to track the comovement of price

dispersion and inflation in the data, such as Van Hoomissen (1988) and Lach and Tsiddon (1992). Similar

to this line of work, I look at cross-store price dispersion and sectoral inflation for fast-moving consumer

goods across supermarkets. Unlike them, I find a negative correlation between the two. The difference

can be explained by several factors: First, I look at grocery stores across the United States in the 2000s,

while they focus on supermarkets in Israel in the 1970–1980s. Second, their data contain high-inflation

episodes, while inflation is low to moderate in my sample. I conjecture that in my sample sales are more

prevalent, driving the difference in results. Finally, the dataset used in this paper is much richer and more

representative in terms of product and location coverage.2

Most of the empirical literature on price dispersion studies its micro-level determinants—the value of a

good (Pratt, Wise, and Zeckhauser 1979), purchase frequency (Sorensen 2000), number of sellers (Baye,

Morgan, and Scholten 2004)—or compare price dispersion in online markets to that in brick-and-mortar

stores (Brynjolfsson and Smith 2000, Gorodnichenko, Sheremirov, and Talavera 2014). Some papers use

testable predictions from industrial organization models to distinguish between them.3 Instead, in this

paper, I focus on the comovement of price dispersion with aggregate variables. Similar to this study, a

number of papers focus on the relationship of inflation and relative price variability (RPV), measured as

the cross-sector standard deviation of inflation rates (Grier and Perry 1996, Debelle and Lamont 1997,

Silver and Ioannidis 2001, Konieczny and Skrzypacz 2005, Choi 2010). However, this concept is different

from price dispersion, as RPV measures the variability of prices across categories, while price dispersion

measures it within categories.4

This paper also contributes to the literature on the theoretical relationship between inflation and

price dispersion. Sheshinski and Weiss (1977) show that with the nominal cost of price adjustment, the

correlation of inflation and price dispersion should be positive. Benabou (1988, 1992) combines frictions

in price adjustment with search frictions, and reaches a similar conclusion. These models are cast in

partial equilibrium and make mostly qualitative statements. In contrast, I consider general-equilibrium

2Van Hoomissen’s dataset contains monthly observations for 13 uniquely defined goods in 1971–1984, while Lach and Tsid-
don’s data contain 26 food products in 1978–1984. In comparison, the dataset used in this paper covers 31 product categories
with dozens of goods sold across 50 MSAs in the United States.

3For example, Lach (2002) finds evidence of temporal price dispersion, which arises in models with randomized strategies,
such as Varian (1980) or Burdett and Judd (1983). Spatial price dispersion is instead a feature coming from heterogeneity across
agents, as in Reinganum (1979) or MacMinn (1980).

4Most of the papers conclude that consistent with theory, there is a positive relationship between inflation and RPV; however,
some papers question this result showing a negative, nonlinear, or unstable relationship between the two. Debelle and Lamont
(1997) find a positive correlation between inflation and RPV in a sample of U.S. cities from the mid-1950s to the mid-1980s.
The use of between-city variation helps to focus on nation-wide shocks. Konieczny and Skrzypacz (2005) support the result
for Poland in the early 1990s, when inflation was high. The effect of expected inflation is found to be stronger than the effect
of unexpected inflation. A few other papers, however, express their disagreement: (1) In a bivariate GARCH-M model, Grier
and Perry (1996) show that inflation affects RPV only when inflation uncertainty is not controlled for. (2) Silver and Ioannidis
(2001) estimate seemingly unrelated regressions for a sample of nine European countries in the 1980s, and find a negative
correlation between unexpected inflation and RPV. (3) Choi (2010) looks at the data for the United States and Japan after
1970, and documents regime changes in the relationship of inflation and RPV, which is positive in high-inflation environments
and nonlinear (U-shaped around a positive threshold) during the Great Moderation.
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models and measure the degree of the comovement quantitatively. I also identify models that can give

rise to a negative correlation of inflation and price dispersion, contrary to their result.

Next, this paper provides new evidence on the type and size of frictions in price setting. In particular, to

match the stylized facts on price dispersion in the models with time-dependent frictions, prices need to be

more flexible than found in the literature (Nakamura and Steinsson 2008). For models that combine time-

and state-dependent frictions (Costain and Nakov 2011a,b), my results imply that price-setting should be

closer to state-dependent than it is in the models calibrated to match the distribution of the sizes of price

changes. Finally, the paper’s results suggest that sales might affect regular prices. A model with sales is

shown to match the properties of regular prices that models without sales cannot.

Finally, my results suggest that papers that compute welfare in the Calvo setup (for instance, Coibion,

Gorodnichenko, and Wieland 2012) should be more careful about choosing the right measure of price

dispersion, as the degree of price dispersion and its comovement with inflation observed in the data are

inconsistent with the Calvo model. Using the correct measure not only creates a level effect on welfare

and the cost of business cycles, but also changes the shape of their relationship with trend inflation. This

can result in a nontrivial effect on the estimates of optimal trend inflation.

The paper proceeds as follows. Section 2 describes the data and documents that the degree of price

dispersion is large, even if sale prices are excluded. It further shows that the level of price dispersion does

not change much across the types of stores or products, and that it cannot be fully explained by store

fixed effects or chain-specific policies. Section 3 shows that in the data, price dispersion and inflation are

negatively correlated, contradicting the models that emphasize price rigidity. The difference between the

data and the models is attributed to the prevalence of sales: excluding sales reverts the correlation to

positive. Section 4 lays out theoretical models of price rigidity that give rise to the relationship between

inflation and price dispersion. Section 5 describes calibration and then presents the results from the simu-

lations of the models laid out in Section 4. First, it analyzes the results’ implication for our understanding

of price setting. It demonstrates that neither models with purely time-dependent price setting nor the

ones with purely state-dependent price setting can explain the comovement in the data. A model that

combines the two frictions is closer to the data; however, for a given parameterization, it can match either

the comovement or the distribution of the sizes of price changes, but not both. Then, Section 5 shows that

including sales in the model not only improves its properties of posted prices, but also allows matching the

comovement for regular prices. Hence, the interaction between sales and regular prices allows for more

price flexibility without making counterfactual assumptions about the frequency of regular price changes.

I provide a brief discussion and conclude in Section 6.
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2 Price Dispersion in the Data

Price dispersion is a salient feature of macroeconomic models with price or information rigidity. Yet, until

recently, surprisingly little effort to quantify its amount in the data has been made.5 To track aggregate-

price movements, government agencies and monetary authorities rely predominantly on the inflation

rate.6 Academic researchers look at the extensive and intensive margins of price adjustment (the fre-

quency and size of price changes) or synchronization more than at price heterogeneity across retailers.

Although recent research has shown that during recessions consumption reallocation often occurs along
the price distribution (Coibion, Gorodnichenko, and Hong 2015), little is known about how the price

distribution looks and whether it changes over time. This can be partially explained by the lack of data to

consistently measure cross-sectional price distribution. Luckily, scanner data, which have become widely

available recently, help to shed new light on this issue.

Microeconomic factors such as the elasticity of demand, retailers’ market power, product characteris-

tics, or store-specific costs are known to affect the degree of price dispersion (Gorodnichenko, Sheremirov,

and Talavera 2014). This section, however, hints that such factors may have a limited effect on its aggre-

gate properties. In particular, I find that the degree of price dispersion across drugstores is similar to that

across grocery stores, despite the fact that drugstores charge a “convenience premium,” indicating greater

market power. The level of price dispersion is also roughly similar across food, beverage, and personal

care items, all of which differ in demand elasticity and in the degree of storability, or across the categories

of goods that differ in the perceived degree to which they can be stockpiled.

Although store-specific factors and chain-specific business strategies are found to play some role, alone

they cannot explain the price dispersion observed in the data. In particular, price dispersion is only slightly

larger across chains than across stores within the same chain. This finding may suggest that some chains

cater to the segment of richer customers and therefore provide better amenities. Even after removing a

store-specific component—which captures price differentials across chains and store-specific costs such

as the costs stemming from the size and location—price dispersion decreases by less than 25 percent.

This section proceeds by describing the data, and then explains how price dispersion is measured. Next, it

documents the degree of price dispersion observed in the data, as well as its cross-sectional and time-series

properties.

2.1 Data Description

To calculate price dispersion, I use scanner data provided by IRI, a market research company.7 This dataset,

first described in Bronnenberg, Kruger, and Mela (2008), is well known to economists, and was previously

used to address numerous questions on inflation dynamics (Chevalier and Kashyap 2011, Glandon 2011,

5Clark and Vincent (2014) and Kaplan and Menzio (2014) are notable exceptions, as far as scanner data from brick-and-mortar
stores are concerned. There is more research on price dispersion in online markets (Brynjolfsson and Smith 2000, Chevalier and
Goolsbee 2003, Baye, Morgan, and Scholten 2004), but except for Baye et al. (2009) and Gorodnichenko, Sheremirov, and
Talavera (2014), which use data on clicks, few studies have data on a quantity margin. Cross-border price dispersion was
recently studied by Boivin, Clark, and Vincent (2012) and Gorodnichenko and Talavera (2014).

6However, CPI inflation does not fully capture the effect of consumers switching to cheaper stores or actively searching for
best prices (Chevalier and Kashyap 2011) during recession (Coibion, Gorodnichenko, and Hong 2015).

7I would like to thank IRI for making the data available. All estimates and analysis in this paper, based on data provided by
IRI, are by the author and not by IRI.
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Nakamura, Nakamura, and Nakamura 2011, Gagnon, López-Salido, and Vincent 2013, Coibion, Gorod-

nichenko, and Hong 2015). With rich product and store coverage, 11 years of weekly price observations

allow me to measure price dispersion accurately. The data contain units and total sales of consumer

goods at the Universal Product Code (UPC) level across grocery and drug stores in the United States. The

price therefore can be computed as a unit value index (total sales divided by units), widely used in the

literature.8 The information whether a good was on sale in a given week is provided; however, no cost

information is available.

The dataset covers 50 markets in the United States. In most cases, a market corresponds to a geo-

graphic location that is similar to an MSA. In some cases, it comprises stores located in two MSAs of the

same state, of an entire state, or of a region that includes MSAs in at least two states.9 Fifteen of 17 MSAs

with population of more than 3 million, based on the 2010 U.S. Census, are covered (no data provided for

Miami, FL, or Riverside, CA). Although most of the markets are large or medium, a few are fairly small:

28 single-MSA markets have population of more than 1 million, eight are in the range of 0.5–1 million,

and four have fewer than 500 thousand people. Household panel data—not used in this paper—from Eau

Claire, WI, and Pittsfield, MA, the two smallest markets, are also provided.

The data cover a large number of stores selling identical goods: overall, the information from 2,093

stores was collected (Kruger and Pagni 2008). About a quarter of them are drugstores, and the rest are

grocery stores. The largest number of stores per market is 152 (New York, NY). Each market except Eau

Claire, WI, supplied information from at least 10 stores, and 39 markets provided information from 20 or

more stores. In accordance with contractual agreements, the data provider masks retailer names; a store

key is then mapped to an anonymous retailer key classified as a grocery or drug store, providing informa-

tion that can be used to compute price dispersion within and between chains, as well as between the types

of stores.10 The dataset also provides stores’ annualized sales across all categories and nonprescription

drugs, which can be used as a measure of store size.

The data cover products at the UPC level in 31 consumer categories from grocery and drug stores: 14

of them cover food, three beverages, and 14 personal-care items (such as shampoo or toothbrush), house-

hold supplies (cleaners, detergent), photo supplies, or cigarettes.11 Each UPC is mapped to a particular

brand, vendor, and parent company, with a detailed description of each item, including attributes such as

size/volume, content, form, or style (attributes vary by category). All private-label UPCs are masked.

The dataset reports transactions at a weekly frequency. Some datasets studied in the past (the BLS

Research data among others) report observations at a monthly frequency, making it harder to distinguish

between cross-store price dispersion at a point in time and the monthly variation of prices within stores. In

addition, using data at a weekly frequency allows me to assess the effect of aggregation on the estimates

8Eichenbaum et al. (2014) criticize this approach, because artificial price changes stemming from measurement error (rather
than store actions) break price spells, leading to downward bias in the estimates of spell duration. However, small price changes
(whether genuine or not) do not have a material effect on the measurement of price dispersion.

9Of 50 markets, about 40 correspond to the MSA level, one (Raleigh/Durham, NC) combines two MSAs in the same Combined
Statistical Area (CSA), five markets combine two MSAs in different CSAs of the same state (for example, Buffalo/Rochester, NY),
two (Mississippi and South Carolina) are at the state level, and two represent geographic areas in more than one state (New
England and West Texas/New Mexico). A complete list of geographic markets can be found in Appendix A.

10Due to the complexity of mergers and acquisitions (M&A) in the retail sector, sometimes one store belongs to more than
one chain during the same year. Since a store pricing strategy might change as a result of M&A (as reflected in clearance sales,
opening discounts, loyalty programs), I drop stores that change ownership from the computation of cross-chain price dispersion.

11A complete list of the categories can be found in Appendix A.
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of price dispersion and its properties.

2.2 Measurement

Although there exist different measures of price dispersion, the coefficient of variation (CV), defined

as a ratio of the standard deviation to the mean, and the standard deviation of log prices are the two

used most widely in the literature (Baye, Morgan, and Scholten 2010).12 While the standard deviation,

computed in levels, is not invariant to linear transformation, the standard deviation of logs and the CV are,

describing a distribution’s second moment in relative, rather than absolute, terms. As the two measures

are asymptotically equivalent, in the main text I focus on the former.13 This benchmark measure of price

dispersion has a number of useful properties. First, it is a component of the welfare function in standard

macro models (Woodford 2003). Second, unlike percentile-based measures such as the interquartile range

or gap, it incorporates prices from all stores, instead of looking at the price difference between two stores

with a specific ranking.

To describe how price dispersion is measured, let TSismt and TQ ismt be total sales and quantities,

respectively, for good i, store s, market m, and week t. Then, the unit value price index is computed as

Pismt = TSismt/TQ ismt , and the weekly measure of price dispersion (σweek
imt ) as the standard deviation of

log Pismt over stores. Next, this measure is aggregated to a monthly frequency by averaging over weeks,

which is done for two main reasons: (1) to remove high-frequency variation resulting from transitory

factors and missing values; and (2) to obtain a dispersion series at the same frequency as aggregate

variables such as inflation, unemployment, or labor force participation. Once I have a monthly measure

of dispersion for a given product (σmonth
imt ), I aggregate it over products. I use a product’s annual (τ)

share of total sales within a given market as weights: σmt =
∑

iωimtσ
month
imt , where ωimt =

∑

s TSismτ/
∑

i,s TSismτ.14,15

As a robustness check, I also consider alternative ways to compute and aggregate price dispersion.

First, I use the quantity-weighted standard deviation of log prices. This approach is inferior to the bench-

mark for two reasons: (1) In theory, macro models document the relationship between the raw standard

deviation of prices and inflation. (2) Empirically, this approach makes the resulting measure sensitive to

a large player’s behavior.16 However, the results obtained for the alternative measures are close to the

benchmark.17

Second, to tackle a missing-values problem, the data are aggregated to a monthly frequency before
price dispersion is computed. (First, I compute Pismt =

∑

TSismt/
∑

TQ ismt , where sums are over weeks

within the same month. Then, I take the standard deviation of log Pismt .) This approach is less viable

because, ideally, we need to observe prices across stores at exactly the same point in time. If two stores

12The range (max-min spread) and interquartile range (75th–25th percentile spread) are also widely used. In the industrial-
organization and search literatures, alternative measures have been developed, including the value of information (the difference
between the mean and the minimum price) and the gap (the difference between the two lowest prices). For an overview, see
Baye, Morgan, and Scholten (2010).

13The standard deviation of log prices allows removing seller fixed effects and therefore is chosen as a preferred measure.
14In the regression analysis, I aggregate the data to the market-category level.
15Alternatively, as a robustness check, I use weights common across the markets, ωi t =

∑

s,m TSismτ/
∑

i,s,m TSismτ.
16For example, large fluctuations in dispersion may be entirely due to a big retailer such as Walmart (not in the data) having

massive sales.
17The results based on the quantity-weighted measure of dispersion were circulated in the previous draft of this paper.
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always have identical prices, but we observe one store at the beginning of the month and the other at the

end, such aggregation will produce spurious dispersion. However, if we observe one store on the last day

of week 1 and the other on the first day of week 2, it increases the number of observations.

Third, since the dataset contains a sample, rather than a universe, of stores at the market-UPC level, I

experiment with the minimum number of stores required to estimate price dispersion. Requiring broader

store coverage improves estimation precision at the cost of eliminating UPCs, and even entire markets.

For the baseline estimates, I use the entire dataset (that is, any UPC with at least two stores in the market).

Additionally, I produce dispersion estimates for observations with at least 10 or 20 stores in a given week.

The level of price dispersion slightly rises with the number of stores, since markets with more stores are

usually spread out and tend to have larger price dispersion (among other things, searching for best prices

in a large metro area is more costly than in a small town). However, this difference is small, and does not

materially affect the main results.

Posted and Regular Prices Temporary price reductions, or “sales,” last for a short period of time, and are

often thought to have a limited effect on aggregate-price properties (Kehoe and Midrigan 2014). Price-

stickiness studies point out that regular prices (excluding sales) are much stickier than posted ones.18

Since the dataset used in this paper contains about 20 percent of products on sale during a given week,

and the average size of sales is 25 percent (Coibion, Gorodnichenko, and Hong 2015), without perfect

synchronization of sales, one should expect price dispersion to be significantly larger for posted prices

than for regular prices.

The identification of sales requires controlling for their duration, which can vary from one week to

a few months, and choosing a specific algorithm. To illustrate the problem, consider the price spell {$5,

$5, $2, n.a., $2, $5}, with “n.a.” indicating missing values. It is easy to guess that, in this example, the

regular price is $5 and the sale price is $2.19 There are three ways, however, to assign values for the

sale indicator: (i) the most restrictive procedure requires observing consecutive observations, implying

the sales indicator series {0, 0, n.a., n.a., n.a., 0}; (ii) the intermediate case requires dropping missing

values, which thereby do not break the spell, {0, 0, 1, n.a., 1, 0}; and (iii) the least restrictive way replaces

missing values with the imputed value of $2, {0, 0, 1, 1, 1, 0}.
The IRI dataset supplies a temporary price reduction flag, which is based on the firm’s proprietary

algorithm. The flag indicates a temporary price reduction of 5 percent or more. Previous studies that used

this flag (Coibion, Gorodnichenko, and Hong 2015) report that the properties of regular prices identified

with its help are similar to those when other popular sales filters were used.20 Based on that, I use the

IRI sales flag to identify regular prices.

18Nakamura and Steinsson (2008), using the BLS Research data, show that regular prices change on average every 8–11
months, while posted prices remain unchanged for about 3–5 months.

19Here, I implicitly assume that sales can last for at least three weeks (therefore, $2 is not another regular price), and that the
price stayed at $5 for a considerable period before and after this spell (to abstract from truncation).

20Since price dispersion estimates are not based on the identification of price spells, they are less sensitive to the choice of
sales filter than, for example, estimates of the frequency of regular price changes.
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Table 1. Average Standard Deviation of Log Price in Market and Week, log points
Overall Store Type Category Stockpiling

Across Across Net of store Gro- Bever-
stores chains fixed effects cery Drug Food ages Other High Low

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Posted Price 9.5 12.7 7.3 8.8 9.8 9.7 9.8 9.1 9.1 9.4

2001–2007 9.7 12.4 7.4 9.2 9.5 10.0 10.2 9.2 9.1 9.9
2008–2011 9.1 13.1 7.1 8.1 10.3 9.2 9.1 8.9 9.1 8.6

Regular Price 6.6 9.5 3.2 6.0 6.0 6.4 6.6 6.9 6.9 6.2
2001–2007 6.7 9.1 3.1 6.1 5.9 6.4 6.8 7.0 6.9 6.4
2008–2011 6.5 10.3 3.5 5.6 6.3 6.3 6.3 6.8 6.9 5.9

Source: Author’s calculations based on the IRI data.
Notes: The table reports the average standard deviation of the log price of exactly the same products across stores (column 1) and across chains
(column 2) in a given market and week. Column (3) reports the standard deviation of the log price net of seller fixed effects. Columns (4)–(5),
(6)–(8), and (9)–(10) reproduce the results in column (1) by store type, product category, and the degree to which products can be stockpiled,
respectively.

2.3 Price Dispersion

The average dispersion of prices is reported in column (1) of Table 1. I compute the measure separately for

posted and for regular prices, as well as for the sample before and after the onset of the Great Recession.

The average price dispersion during the entire sample period is 9.5 log points in a week.21 Approximately

one-third of this measure is due to temporary price reductions; the average price dispersion for regular

prices is 6.6 log points. This suggests that the price dispersion observed in the data is mostly due to

permanent differences in prices across stores, and not due to transitory changes (sales).

I also document a decrease in the dispersion over time, of both posted and regular prices. The dis-

persion of posted prices goes down from 9.7 log points in 2001–2007 to 9.1 log points in 2008–2011;

during the same period, a decrease in the dispersion of regular prices is smaller: from 6.7 to 6.5 log

points. A decrease in price dispersion found in the data is consistent with two facts. First, significant

M&A activity in the sector, which has been taking place since 2007, is likely responsible for the reduction

in cross-store price dispersion, as the price is often determined at the chain, rather than store, level. Sec-

ond, as many consumers saw their budget constraint tighten during the financial crisis, search intensity

and store-switching contributed to the intensification of competition, leading to price convergence.22

Observed price dispersion is partly due to store- and chain-specific effects. For example, some chains

choose to cater to a premium segment of customers, charging prices that are higher than their competitors’.

Such amenities can be viewed as essential aspects of a product, and thereby explain the price differen-

tials (Stigler 1961). On the other hand, even within the same chain, there is significant heterogeneity

across stores related to their location and size. Price dispersion also depends on store type and product

characteristics. To estimate the extent to which these factors—and not price rigidity—determine price

dispersion, I compute price dispersion across chains, as well as net of store fixed effects. Then, I compare

price dispersion across store types and across product types.

First, I define the “chain price” as the average log price across stores that belong to chain c, using

individual stores’ annual (τ) sales as weights: log picmt =
∑

s∈Sc
ωsmt log pismt , with ωsmt =

∑

i TSismτ/
∑

i,s∈Sc
TSismτ (Sc being the set of stores that belong to chain c). Then, I proceed with aggregation as in

21This number can be interpreted as follows: if you look at the distribution of prices (of exactly the same product) over stores
in a given market, a randomly picked store has a price averaging 9.5 percent higher or lower than the mean across the stores
(for the same product and area).

22Appendix B plots the time-series of the average price dispersion and studies its heterogeneity across markets.
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the baseline case. Column (2) of Table 1 shows that price dispersion across chains is only slightly higher

than across stores: 12.7 and 9.5 log points for posted and regular prices, respectively. Interestingly, while

cross-store price dispersion fell during the Great Recession, cross-chain price dispersion rose; as more

consumers become price-sensitive, competition among stores intensifies. This fact may contribute to a

widening divide between low- and high-price chains.

Next, I remove the store-specific component of the price by regressing the log price on product and

store dummies, log pismt = αi+γs+εismt ; and then compute the dispersion of εismt . Hence, this procedure

removes the store-specific level effect—to the extent that one store consistently charges more for the same

product than other stores do. This effect might be due to, among other things, a chain brand premium,

the store location, size, or amenities. The store fixed effects partially explain price dispersion in the data:

column (3) of Table 1 shows that these effects account for less than 25 percent of the dispersion of posted

prices and less than 50 percent of that of regular prices. Similar to the benchmark measure, the net

dispersion of posted prices decreases over time; and unlike the benchmark measure, the net dispersion of

regular prices increases.

I proceed by comparing grocery stores and drugstores. Drugstores are known to charge higher prices

for food items, arguably reflecting their convenient location, among other factors, and indicating more

market power than grocery stores have. Hence, if market power is a significant determinant of price

dispersion, we should observe a larger price dispersion in drugstores. Columns (4) and (5) of Table 1

show the breakdown of price dispersion by store type. The differences are rather small for posted prices,

and negligible for regular prices. For example, the dispersion of regular prices is 6.0 log points, both in

drug and grocery stores. If the two types are combined, it goes up to 6.6 log points. Hence, at least at

the aggregate level, micro factors—to the extent that they differ between grocery stores and drugstores—

account for only 10 percent of price dispersion.

Next, I look at product categories, which likely differ in demand elasticity. For example, some products

are more perishable or bulkier than others, which makes their storage costly. To examine the importance

of this channel, I compare the price dispersion of food, beverages, and other items (mostly personal care),

and find no material differences in price dispersion. Columns (6)–(8) of Table 1 confirm that the aggregate

level of price dispersion is similar across broad categories. The dispersion of posted prices is 9.1–9.8 log

points, and that of regular prices is 6.4–6.9 log points. There is more dispersion in the posted prices of

food and beverages, while the regular prices of personal care products are more dispersed than those of

food and beverages, suggesting that sales are less important for nonfood categories.

Finally, I split all 31 categories into three groups, based on their suitability for stockpiling (high,

medium, and low), using the classification provided by Bronnenberg, Kruger, and Mela (2008).23 Since

the classification is largely ad hoc, I only compare low and high suitability categories. The results in

columns (9)–(10) of Table 1 suggest that the degree of suitability for stockpiling has a very limited effect

on price dispersion. Incidentally, sales explain 34 percent of price dispersion of goods with low suitability

for stockpiling and 24 percent of those with high suitability.

23Products with high suitability for stockpiling, according to this classification, are small-sized and not perishable (for example,
household cleaners, shampoo, toothpaste). Products that are extremely perishable (such as yogurt) or bulky (toilet tissues) are
assigned low suitability. Categories such as beer or carbonated beverages are somewhere in between.
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3 Empirical Analysis of Price Dispersion–Inflation Comovement

Many prominent macro models rely on price rigidity, a feature that helps to match the average frequency,

size, and synchronization of price changes in the data. Yet, different models of price stickiness are often

observationally equivalent: they can simultaneously match various pricing properties, even though they

imply different responses of output to shocks. Models with fixed-length price spells (Taylor 1980), a con-

stant probability of price adjustment (Calvo 1983), fixed menu cost (Sheshinski and Weiss 1977, Akerlof

and Yellen 1985, Mankiw 1985, Golosov and Lucas 2007), or stochastic menu cost (Dotsey, King, and

Wolman 1999) match specific moments of the distribution of price changes, but none of them provides

structural micro foundations of the source of price stickiness. Despite this limitation, sticky-price models

serve as a useful aggregation tool, and are at the heart of DSGE models used by central banks for policy

analysis and forecasting.

Although price-stickiness models give rise to a positive relationship between price dispersion and in-

flation, they vary in the degree of the comovement between these variables; thus, one can employ such

comovement to distinguish between them and, in turn, generate the responses of output to shock consis-

tent with the data.24 Next, I cover theoretical aspects of the relationship of price dispersion and inflation;

then, I estimate this relationship using a model-inspired and data-driven specification.

3.1 Theoretical Foundations of Econometric Specification

This section motivates my empirical analysis by summarizing the testable predictions of workhorse macroe-

conomic models. I concentrate on three results relevant for my work: (1) In a wide class of models, price

dispersion enters the per-period utility function, affecting the cost of business cycles and the tradeoff be-

tween inflation and output stability (Woodford 2003). (2) In many models, price dispersion comoves with

inflation, and sometimes (for instance, in the Calvo model), there exists a closed-form relationship be-

tween the two, which permits structural estimation.25 (3) The steady-state level of inflation can influence

the dispersion of prices, and in some cases (again, in the Calvo model), one can derive a simple formula

that links price dispersion and inflation in the steady state.26

The relationship between price dispersion and the per-period utility function can be readily quantified.

For example, in a basic New Keynesian setup (Woodford 2003, p. 396), the second-order approximation

of the per-period utility function can be written as

Ut = −
Ȳ uc

2

¦

�

γ+ω
� �

x t − x∗
�2
+ θ (1+ωθ)σ2

t

©

+ t.i.p.+ h.o.t., (1)

24A positive relationship between price dispersion and inflation also arises in models with search frictions (Benabou 1988,
1992). However, in search models, the nature of this relationship is static (the two are only related within the same period),
while in the sticky-price models and in the data, the relationship is dynamic.

25The idea that inflation drives price dispersion when pricing is state-dependent goes back to Sheshinski and Weiss (1977).
In the presence of costly price adjustment, the optimal pricing is the (S, s) strategy. An increase in the inflation rate leads to
an increase in the size of price changes, increasing price dispersion. The model, however, abstracts from the consumer side, as
without search frictions one can hardly justify nonzero demand at any price above the minimum. It assumes that the inflation
rate is exogenous and deterministic, contrary to stochastic aggregate models. In a subsequent paper, Sheshinski and Weiss (1983)
consider stochastic inflation and prove the certainty equivalence result.

26The equilibrium relationship is often emphasized in the search literature (Benabou 1988, 1992, 1993, Diamond 1993, Tom-
masi 1994). Note that without price-adjustment frictions in these models, all firms would always charge the monopoly price,
thereby eliminating price dispersion in the absence of idiosyncratic shocks, known as the Diamond (1971) paradox.
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where Ut is the per-period utility function, Ȳ is steady-state output, uc is the marginal utility of con-

sumption, γ is the inverse intertemporal elasticity of substitution, ω is the elasticity of marginal cost with

respect to output, x t − x∗ is the deviation of the output gap from its efficient level, θ is the elasticity of

substitution across goods, σ2
t ≡ Vari log pt (i) is the variance of prices across firms, t.i.p. stands for terms

independent of policy, and h.o.t. stands for higher-order terms. Importantly, this approximation applies

quite generally across various models of price setting.

Price dispersion has a negative effect on welfare because, in the model, it represents the distortion

to optimal allocation, which arises from price rigidity. If prices are dispersed, consumers with a love

for variety buy too much (too little) when the price is below (above) the average. The misallocation is

amplified by the elasticity of substitution between goods (θ) and the elasticity of marginal cost with respect

to output (ω). The former represents the degree of love for variety and the extent to which consumers

respond to price changes. For example, when θ is high, consumers easily reallocate their expenditure

toward goods whose prices have not been adjusted to inflationary shocks, amplifying the misallocation

effect. The latter (ω) represents real rigidities, which amplify misallocation through marginal costs.27,28

If price setting is time-dependent as in Calvo (1983), price dispersion in Equation (1) is a function of

current and past inflation, with its persistence and comovement solely determined by the degree of price

rigidity (Woodford 2003, p. 399):

σ2
t = ασ

2
t−1 +

α

1−α
π2

t + h.o.t., (2)

where α is the fraction of prices that remain unchanged, and πt is inflation. Later, I test this relationship

in the data.29 It is easy to see why price stickiness implies more persistence of price dispersion. Parameter

α in Equation (2) controls the share of prices that will not change in the next period. In the limiting case

when α goes to one, the whole distribution stays the same, and so does price dispersion. As prices become

more flexible, the relationship between current and lagged price distribution becomes weaker—perfectly

flexible prices are not dispersed at all.

The comovement of price dispersion and inflation is also due to price stickiness. Consider two cases:

(1) α is high (prices are relatively sticky), and (2) α is low (prices are relatively flexible). In case (1),

if the economy is hit by a large nominal shock, few firms will be able to adjust their prices. Those few

firms, however, will adjust proportionally to the size of the shock. Since most prices remain unchanged, the

response of price dispersion is stronger than the response of inflation—due to the size of changes made by

adjusters—implying a large slope. In case (2), when prices are relatively flexible, many firms will adjust in

response to the shock, with the response of inflation stronger than the response of price dispersion (small

slope). Remarkably, the direction of the shock is irrelevant; deflationary and inflationary shocks affect

price dispersion in the same way. This intuition applies generally to models with time-dependent pricing:

volatile inflation is associated with more price dispersion. In contrast, models with state-dependent pricing

can produce a positive or negative relationship of price dispersion and inflation, and the outcome depends

27See Ball and Romer (1990) for the analysis of real rigidities and their connection to nominal rigidities.
28Nakamura and Steinsson (2013) point out that the dispersion of prices across stores implies that the goods produced with

the same marginal costs are purchased at different prices, thereby violating the equality of marginal revenues and marginal costs,
and leading to efficiency loss.

29Equation (2) is derived for the case of zero trend inflation. With positive trend inflation, the right-hand side should also
contain the level of inflation.
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on the specifics of the model, as well as on the history and magnitude of shocks hitting the economy.30

In the case of positive trend inflation, price dispersion is related to inflation in the steady state, too.

With no price indexation, in the steady state of the Calvo model the relationship is the following:

σ̄2 =
α

(1−α)2
π̄2 + h.o.t., (3)

where x̄ is a steady-state value of variable x , x ∈ {σ,π}. The link between price stickiness and price

dispersion is again intuitive: In the Calvo model, firms are symmetric monopolistic competitors, whose

optimal markup depends only on demand elasticity, which in turn is captured by the elasticity of substitu-

tion between goods. If prices are flexible and marginal costs are the same across firms, they will charge the

same price, implying no price dispersion in equilibrium. If prices are sticky, however, some firms will not

be able to adjust the price, leading to equilibrium price dispersion. Similar to the case of price-dispersion

dynamics, this result applies to models with time-dependent pricing, but the relationship is ambiguous in

models with state-dependent pricing.

3.2 Empirical Strategy and Results

Estimating the comovement of inflation and price dispersion at the aggregate level runs into several prob-

lems. First, in 2001–2011, there was not enough variation in aggregate inflation, as it was predominantly

low and stable. Second, with 132 monthly observations at hand, it is virtually impossible to account ap-

propriately for the correlation structure of residuals, to control for lags, or to split the sample around the

beginning of the Great Recession.

Instead, I resort to using disaggregated data at the market-category level, and then I validate the

results by looking at the aggregate data (Appendix C). Using inflation and price dispersion in 50 markets

and 31 product categories (1550 panels overall) allows me to easily overcome the problems described

above. One justification for this strategy is theoretical: multisector models with sticky prices (Carvalho

2006) give rise to a relationship between sectoral inflation and price dispersion that is similar to the one

between the aggregate variables. Another justification is empirical: the comovement coefficients derived

from the regressions based on aggregate data—although estimated imprecisely and with a limited number

of controls—are qualitatively similar.

To measure inflation at the market and product category level, I construct disaggregated inflation rates,

using the same data (and method) as before.31 Specifically, I compute the log difference of the average

monthly price for a given good and store,∆pismt = log Pism,t−log Pism,t−1, and then aggregate it over stores

and products to the market-category level: πmct =
∑

s,iωismt∆pismt , with ωismt = TSismτ/
∑

s,i TSismτ

being the share of annual (τ) sales of product i, store s, in total sales in market m, category c.32 This

approach corresponds to the enhanced Törnqvist index, with weights based on all months in a year, and

not just two adjacent months.33 For ease of interpretation, I use annualized rates.

30Later, I show that a reasonably calibrated DSGE model with state-dependent pricing gives rise to a positive comovement of
inflation and price dispersion, with a much smaller slope than in a similar model with time-dependent pricing.

31Appendix D provides more detail on disaggregated inflation rates.
32These weights treat the same good in different stores as different products. In Appendix E, I consider multiplicative weights

instead, and show that this choice does not drive the results.
33In sticky-price models, the relationship between inflation and price dispersion arises from individual firms’ decisions to adjust

their prices, and not from their view of inflation as a change in the aggregate price level. Hence, to preserve comparability with
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Structural Specification The Calvo model extended to the case of positive trend inflation observed in

the data gives rise to the following structural specification:

σ2
mc,t = ασ

2
mc,t−1 + β1π

2
mc,t − β2πmc,t + γmc +τt + εmc,t , (4)

where σmc,t is price dispersion across stores in market m, category c, and month t (see Section 2.2 for

details), πmc,t is the corresponding disaggregated inflation rate (see Appendix D), γmc and τt are market-

category and time fixed effects, respectively, and εmc,t is the error term.34 Standard errors are computed as

in Driscoll and Kraay (1998), to account for serial correlation of up to 12 months and correlation across

groups.35 Both variables are seasonally adjusted using the X12-ARIMA routine, developed by the U.S.

Census and applied to government-issued data.36 To alleviate extra smoothness that arises from seasonal

adjustment (which may affect the estimation of α), as a measure of lag dispersion, I use the value in the

same month of the previous year.37

To check whether the theory is consistent with the data, I verify three conditions: (1) the slope of the

squared inflation rate is positive (β1 > 0); (2) the slope of the inflation level is negative (−β2 < 0); and

(3) price dispersion increases with inflation around the steady state:

2β1π̄− β2 > 0. (5)

These three conditions, however, hold simultaneously neither for posted nor for regular prices. For posted

prices (Table 2, Panel A, columns 1–3), the comovement of price dispersion and inflation is negative

around the steady state, thereby violating condition (3). For regular prices (Table 2, Panel B, columns 1–

3), condition (3) holds, but the other two conditions are violated: the slope of the inflation level is positive,

and the slope of the squared term is negative. (This result holds with and without market-category and

time fixed effects.) The degree of price-dispersion persistence, measured by α in Equation (4), also refutes

the structural specification. In the specification with fixed effects, the benchmark estimate of α is 0.54,

implying that the corresponding monthly frequency of price changes (1−α) is 0.46. However, in the data,

the monthly frequency of price changes is about 0.24.38 The inability of the structural form to match the

data, together with the estimation difficulties associated with the form itself (lagged dependent variable

and right-hand side polynomial, which aggravate multicollinearity and assign more weight to outliers)

call for a more flexible, data-driven specification.

theoretical models, it is essential to aggregate price dispersion and inflation in a similar way.
34The problem of the lagged dependent variable can be solved by iterating backward. Table F1 in Appendix F shows that this

approach leads to similar results.
35Driscoll and Kraay (1998) standard errors are known to be conservative. Allowing for 12 months of serial correlation is very

generous, given that there are only 11 years of observations in the data.
36Comparing regression outcomes from the X12-ARIMA seasonally adjusted data, unadjusted series, and those smoothed

through a parsimonious MA(12) filter suggests that seasonal adjustment is not particularly relevant for qualitative results.
37The MA(12) filter implies the following transformation: ∆ x̃ t = x t − x t−12, where x t is an original variable, and x̃ t is the

MA(12) smoothed one. Therefore, a change in x̃ can be interpreted as a change relative to the same month in the previous year,
implying that ∆ x̃ t−12 should be used as a lag value. The X12-ARIMA and MA(12) regressions give similar results, justifying my
choice of the lag measure for the main specification. Importantly, this does not have any qualitative effect on the results, and
could only be crucial if the main point of interest were estimating α.

38Since as a lag measure, I use the value of price dispersion in the same month of the previous year, I can also compare
1−α to the annual frequency of price changes. The monthly frequency (0.24) implies that the annual frequency is 0.96, which
corresponds to α= 0.04 (far from 0.54 obtained in the regression). When instead, I use price dispersion in the previous month,
the estimated α is very close to 1, which is again far from the monthly frequency (0.24).
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Reduced-Form Specification Since the Calvo-driven specification fails to match the data, I propose a

simple, flexible specification that allows for a straightforward measure of the comovement. The specifi-

cation is based on a linear relationship between price dispersion and inflation, which is supported by the

data, and allows for cross-sectional and time fixed effects, as well as for other covariates of dispersion.

This specification looks as follows:

σmct = βπmct + γmc +τt +δδδ
′XXX mct + εmct , (6)

with σmct , πmct , γmc, τt , and εmct defined as in Equation (4), and XXX mct being a set of control variables

that includes local labor market characteristics or lags of π and σ. This specification has a number of

advantages: First, the structural specification’s estimates suggest that price dispersion is driven mainly by

the level, and not by the squared term, of inflation:
�

�β2

�

� �
�

�2β1π̄
�

� in Equation (4). Second, removing

nonlinear terms reduces the sensitivity of results to outliers. Third, using the standard deviation, instead

of the variance, improves the interpretability of the estimates—since the standard deviation of log prices

can be treated as roughly the average deviation from the mean price (in percentage terms)—and makes

the results directly comparable to previous studies that employed similar specifications. Finally, since the

persistence term arises specifically in the Calvo model, the linear specification is more neutral, in the sense

that it does not a priori favor any particular model.39

The estimates based on the reduced-form specification confirm the earlier result: the comovement of

price dispersion and inflation is negative for posted prices and positive for regular prices (see columns 4–7

of Table 2 for results with no fixed effects, cross-sectional fixed effects only, cross-sectional and time fixed

effects, and 12 lags of changes in inflation and price dispersion, respectively).40 The baseline specifica-

tion, used later to distinguish between models, includes market-category and time fixed effects (column

6). Cross-sectional fixed effects are used to focus on the comovement of inflation and price dispersion

within a given market-category, while time fixed effects control for possible time trends.41 The bench-

mark estimates suggest that the comovement is not only statistically significant, but also sizeable. A 1

percentage point increase in the annualized inflation rate is associated with a 0.022 log point decrease
in monthly price dispersion. Once sales are excluded, a 1 percentage point increase in the annualized

inflation rate corresponds to a 0.026 log point increase in price dispersion.42 Hence, when the price level

increases by 2 percent in a particular month, the dispersion of posted prices decreases by approximately

0.5 log points (from 9.5 to 9.0 log points, if one starts from the mean level) , and the dispersion of regular

prices increases by 0.6 log points (from 6.6 to 7.2 log points).43 Appendix G shows that the relationship

39Including the lagged dependent variable also imposes a first-order estimation problem (estimating near unit root persistence
is difficult; see Phillips 1988) on a second-order question (models’ predictions on the persistence of price dispersion are less
conclusive than on the relationship between price dispersion and inflation). However, in one specification, I control for lags of
both inflation and price dispersion.

40For the individual role of market and category fixed effects, see Table F2 in Appendix F.
41There is a lot of cross-sectional heterogeneity in price dispersion, and macro models usually produce a relationship between

the aggregate variables; although in multisector models (Carvalho 2006), the relationship between sectoral variables sometimes
matches the one between aggregate variables. Since the disaggregated data are mostly used to extract statistical power, it is
important to control for as much heterogeneity in dispersion as possible. For completeness, Table F3 in Appendix F estimates
the comovement of price dispersion and inflation between markets and categories.

42Table F4 in Appendix F studies the effects of positive and negative inflation rates separately.
43The effect of a 1 percentage point increase in the price level on price dispersion is 12 β, since annualized inflation rates are

used. Although a 1 percentage point increase in the monthly price level implies a formidable 12 percent annualized inflation,
there is a great deal of high-frequency volatility in monthly inflation. For example, in the sample used in this paper, the price
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between price dispersion and inflation is dynamic, a fact that is consistent with price-stickiness models,

but contrary to many search models.

Unlike the price-stickiness literature in general, previous attempts to document the relationship be-

tween price dispersion and inflation do not distinguish between regular and sale prices; in fact, many

of these papers had been written before sales received a prominent place in the macro literature. The

inflation–price dispersion relationship was often studied in the context of the cost of inflation, which

tends to draw more attention when and where inflation is high: in the United States (Debelle and Lamont

1997), Israel (Van Hoomissen 1988, Lach and Tsiddon 1992), and Europe (Silver and Ioannidis 2001) in

the 1970–1980s, or in Poland in the early 1990s (Konieczny and Skrzypacz 2005). High inflation may,

among other things, disincentivize stores from temporary price reductions or result in a higher frequency

of regular price changes (Gagnon 2009), which may partly explain why most of the previous studies doc-

ument a positive relationship between inflation and price dispersion. However, a few exceptions, which

find either a negative comovement (Reinsdorf 1994) or a lack thereof (Eden 2001, Baharad and Eden

2004), call for a search for factors that can explain the shifts in the relationship between the first and

second moments of cross-sectional price distribution.44 Using data that are more extensive than those

used in the previous literature, this paper identifies sales as a factor that reverts the relationship between

inflation and price dispersion in a low inflation environment.

The state of local labor markets may affect search intensity and the resulting price dispersion if con-

sumers switch between stores over the business cycle, as emphasized by Coibion, Gorodnichenko, and

Hong (2015). Since the unemployed arguably incur smaller search costs, as they have more time—which

is also less productive—to look for best prices, distress to local labor market conditions may lead to an

increase in search intensity. To account for this effect, I control (separately) for two measures of the state

of local labor markets: the local unemployment rate and total employment. The former accounts for the

flow between employment and unemployment, while the latter also includes the flow out of the labor

force, which is particularly important during the Great Recession, and migration. The data on local labor

market characteristics come from the Bureau of Labor Statistics (BLS).45 Controlling for the state of local

labor markets does not quantitatively change the estimates of the comovement of price dispersion and

inflation. Column (8) of Table 2 shows the estimates for the case when the local unemployment rate is

controlled for, while column (9) controls for log employment. I include the two measures separately, as

there is a sufficient degree of correlation between them. The slope of the local unemployment rate is

insignificant for posted prices, and significant but quantitatively small for regular prices. The slope of log

employment is positive for posted prices; as employment increases, people search for better prices less,

leading to a larger price dispersion.

level of a market-category changes by more than 1.25 percentage points (or, 15 percent, annualized) more than 20 percent of
the time. This might be partly due to measurement error, a known issue of disaggregated price indexes.

44Choi (2010), using U.S. and Japanese data from the 1970s to mid-2000s, finds a positive relationship between inflation and
price dispersion in a high-inflation environment, and a nonlinear one (U-shaped around a positive threshold) during the Great
Moderation. Grier and Perry (1996) also show that a positive relationship, identified in the previous literature, often comes from
episodes of volatile inflation.

45The data on local unemployment rates are from the Local Area Unemployment Statistics (LAUS); those on total nonfarm em-
ployment are from the Current Employment Statistics (CES). Both series are seasonally adjusted. Each observation is measured
at the corresponding MSA level, when applicable. For Mississippi and South Carolina, the data are at the state level; for New
England at the corresponding U.S. Census division level (NRD810000 “New England”); for West Texas/New Mexico, I combine
New Mexico at the state level with seven MSAs in West Texas: Abilene, Amarillo, El Paso, Lubbock, Midland, Odessa, and San
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Table 3. Stability and Source of Comovement
Panel A: Great Recession Panel B: Chain and Store Effects

2001– 2001– 2008– Across Across Net Seller
2011b 2007 2011 Storesb Chains Effect

(1) (2) (3) (4) (5) (6)
Posted Price −0.022*** −0.029*** −0.006* −0.022*** −0.027*** −0.012**

(0.006) (0.006) (0.004) (0.006) (0.006) (0.006)
Regular Price 0.026*** 0.020*** 0.022*** 0.026*** 0.024*** 0.059***

(0.004) (0.003) (0.006) (0.004) (0.008) (0.004)
Source: Author’s calculations based on the IRI data.
Notes: Panel A reproduces the baseline estimates of the comovement (column 1) obtained from the sample period before (column 2) and after
(column 3) the beginning of the Great Recession. Panel B does the same for different measures of price dispersion: column (5) uses the cross-
chain measure, and column (6) removes the seller fixed effects (see Section 2.3 for more detail). The estimation sample in Panel B covers 2001–
2011. The data are seasonally adjusted using the X12-ARIMA procedure from the U.S. Census. Driscoll and Kraay (1998) standard errors with
serial correlation of up to 12 lags are in parentheses.
*,**,*** denote the 10, 5, and 1 percent significance level, respectively; b denotes baseline estimates.

Next, I split the sample around the beginning of the Great Recession to verify whether the overall

change in economic conditions (and, in particular, a drop in inflation) affects the degree of the comove-

ment of price dispersion and inflation. The data reveal very different effects of the recession on posted

and regular prices (Panel A of Table 3). In the case of regular prices, there is no material change in the

comovement coefficient around 2008. At the same time, I find a significant drop (in absolute value) in

the comovement coefficient of posted prices: from –0.029 in 2001–2007 to –0.006 in 2008–2011. One

potential explanation is that consumers increase their intensity of search for sales. If so, sellers will find

it more difficult to sustain regular and sale prices simultaneously, moving the two comovement measures

closer to each other. However, a more trivial explanation may be that a longer time-series is needed to

estimate the comovement of posted prices with higher precision. Since posted prices are much more

volatile than regular prices, it is more difficult to distinguish between the idiosyncratic volatility of sales

and purely seasonal volatility.46

Finally, I consider alternative measures of price dispersion. Theory provides little guidance as to

whether price dispersion should be measured across stores or across chains, or how to deal with store-

specific effects. However, distinguishing between price dispersion across stores and across chains is not

particularly important, since the comovement coefficients differ only slightly (compare columns 1 and 2

in Panel B of Table 3). Removing seller-specific effects from prices, as described in Section 2.3, has a quan-

titatively bigger effect on the coefficients: the comovement of posted prices becomes less negative and the

comovement of regular prices turns more positive (Table 3, Panel B, column 3)—both remain statistically

different from zero. This discrepancy, however, does not have a qualitative effect on the ability of tested

models to match the data.

To summarize, the empirical part of this paper reveals robust comovement of price dispersion and

inflation, negative in posted prices and positive in regular prices. These results hold across a range of

econometric specifications, sample periods, aggregation procedures, and dispersion measures. The nature

of the relationship between inflation and price dispersion is dynamic—that is, inflation innovations tend

to have a persistent effect on price dispersion. Aggregate variables other than inflation do not seem

to have a strong association with price dispersion. The remainder of the paper studies whether these

Angelo.
46Other potential explanations such as a larger measurement error or the effect of M&A activities are less likely to be at play,

since they should affect posted and regular prices in a similar way.
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facts are consistent with workhorse macro models that policymakers widely rely on and whether the new

comovement estimates produced in this paper can help to distinguish between them.

4 Models with Testable Predictions

Despite the vast evidence of incomplete nominal adjustment, there is no agreement on the mechanism

generating price rigidity in the macro literature. The leading explanations are based on one of the two

competing assumptions: (1) price setting is time-dependent—that is, firms change their prices determin-

istically every nth period (Taylor 1980) or stochastically with a given probability p every period (Calvo

1983); or (2) price setting is state-dependent—due to costly price adjustment, firms react to changes

in economic conditions only when the benefit of doing so exceeds the cost. The latter class of models

originally evolved from the notion of a fixed menu cost (Sheshinski and Weiss 1977, 1983); however,

recent modifications that allow for stochastic menu costs or multiproduct firms with a fixed cost of chang-

ing the entire price line have also gained recognition in the literature.47 Although time-dependent and

state-dependent models, in general, can match the frequency of price changes in the data, they make very

different predictions about the response of output to nominal shocks: due to a strong selection effect, out-

put response in state-dependent models is smaller and shorter than in time-dependent models. Hence,

looking at other testable predictions should help to distinguish between the two, and shed new light on

the effectiveness of monetary policy and nominal shocks.

In this section, I compute the model-generated comovement of inflation and price dispersion, defined

as in the previous section, and then compare the simulated data with the actual data. To make sure

that the price-setting process is the only difference between the compared models, I build the analysis

around the smoothly state-dependent pricing (SSDP) model of Costain and Nakov (2011a,b). The SSDP

model allows for both time-dependent and state-dependent frictions; it also contains the Calvo (1983)

and fixed menu cost (FMC) models as special cases, and can be trivially extended to the stochastic menu

cost (SMC) model of Dotsey, King, and Wolman (1999). Specifically, I address the following questions:

(1) Is the comovement of price dispersion and inflation in the data described better by a time- or a state-

dependent process? (2) Can a hybrid model that allows for both frictions—and that is calibrated to

match the frequency and the distribution of the sizes of price change—also match the comovement of

price dispersion and inflation in the data? (3) How should the relative importance of the two frictions be

altered to match the comovement, and what does this imply for the model’s ability to match other pricing

moments? The answer to the first two questions is no: standard models of price setting, without sales,

cannot reproduce the comovement of price dispersion and inflation in the data. As the baseline SSDP

model is quantitatively similar to the Calvo (1983) model, in order to match the comovement, pricing

should be more state-dependent, implying a counterfactually low mass of small price changes. I then

show that introducing sales into the Calvo model can be an effective way to increase price flexibility—

thereby matching the comovement—while preserving a relatively large share of small price changes.

I proceed as follows: I first lay out the basics of the SSDP model and describe how it encompasses

a rudimentary time- and state-dependent case. Then, I compare the ability of different versions of this

47Anderson et al. (2013) put forward the idea of “sticky plans”: firms set a contingency plan of prices, rather than a single
price.
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model to match the comovement of price dispersion and inflation in the data. Finally, I compare mod-

els without sales with a model with sales. In particular, I run a horse race of the models with a fixed

price-adjustment probability (Calvo 1983), fixed menu cost (Golosov and Lucas 2007, henceforth, GL),

both frictions (Costain and Nakov 2011a,b, henceforth, CN), and sales (Guimaraes and Sheedy 2011,

henceforth, GS). This section describes the models, and the next section presents the results.

4.1 Smoothly State-Dependent Pricing as Generic Framework

First, I describe the SSDP model and its main elements; for a detailed description, solution methods, and

implications for other moments of price setting, see the original work of Costain and Nakov (2011a,b).

SSDP is a hybrid model that allows for a mix of time- and state-dependent frictions and that matches

the frequency and the distribution of the sizes of price change in the data—two standard success criteria

of a pricing model—and features a variety of driving shocks, including idiosyncratic productivity, total

factor productivity, and monetary shocks. The monetary shocks stem either from a monetary-policy rule

à la Taylor or from balanced money growth à la Friedman (which is also a building block of Golosov and

Lucas 2007). The key implication of the model is that in order to match the distribution of the sizes of

price change in the data, the degree of state dependence should be low; therefore, unlike in Golosov and

Lucas (2007), nominal shocks have a nontrivial effect on output.48

A key assumption of the SSDP model holds that the probability of price adjustment rises with the gains

of doing so. However, there is no actual cost to pay, and the probability of price adjustment is determined

by an exogenous time-dependent friction. Such a mechanism can be rationalized by a stochastic menu

cost (SMC), as in Dotsey, King, and Wolman (1999), or bounded rationality, as in Akerlof and Yellen

(1985). In the SMC case, the parametric function of the probability of price adjustment comes from the

distribution of menu costs; while in the bounded rationality case, it represents the error of evaluating the

state, since errors are more likely to occur when they are not costly. In the limit, the model nests the Calvo

(1983) model and the FMC setup of Golosov and Lucas (2007), and can be further extended to the Dotsey,

King, and Wolman (1999) case.49 Specifically, the probability of price adjustment (λ) is a function of the

loss from inaction (L):

λ(L) =
λ̄

λ̄+
�

1− λ̄
�

�

α
L

�ξ
. (7)

This functional form has two advantages. First, it matches the frequency and distribution of the sizes of

price change in the data much closer than the Calvo and FMC models do. Second, it nests the two as a

limiting case: (1) λ (L)→ λ̄ when ξ→ 0, that is, it converges to Calvo (1983), and (2) λ (L) = 1 {L > α}
when ξ → ∞, as in the FMC model. Hence, λ̄ captures time-dependent frictions, α captures state-

dependent frictions (menu cost), and ξ controls the relative importance of the two. Conditional on the

overall state, the loss from inaction is L(Pi,t) =maxP V (P)− V (Pi,t).
The baseline model features monopolistically competitive firms with price-adjustment frictions and

48Another way to achieve monetary non-neutrality in models with state-dependent pricing is to introduce multiproduct firms
with a menu cost of changing all prices simultaneously, as in Midrigan (2011) and Alvarez and Lippi (2014). In the SSDP and
multiproduct-firm models, generating a large mass of small price changes observed in the data is key for this result.

49Costain and Nakov (2011a) point out that the SSDP model produces responses to shocks that are numerically close to those
in the Dotsey, King, and Wolman (1999) and Woodford (2009) models.
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persistent idiosyncratic productivity. There are two variations of monetary policy: the Taylor rule and

constant money growth. The Taylor rule is used as a baseline, while the Friedman rule allows the com-

parison to Golosov and Lucas (2007). There are three types of driving shocks in the economy: monetary

shocks modeled as innovations to the Taylor or Friedman rule, aggregate productivity shocks (TFP), and

idiosyncratic productivity shocks.50 Price dispersion arises from heterogeneity in costs, the frictions in

price adjustment, and consumers’ love of variety.

Households A representative household maximizes the discounted value of its per-period utility stream,

Ut =
∑∞
τ=t β

τ−tuτ, with

ut =
C1−γ

t

1− γ
− χNt + ν log

Mt

Pt
, (8)

where γ is the inverse intertemporal elasticity of substitution, χ controls the elasticity of labor supply,

and ν is the real-money-balances parameter. The household consumes a variety of goods aggregated by

the Dixit-Stiglitz function, Ct = (
∫ 1

0 C (ε−1)/ε
i,t di)ε/(ε−1), with the elasticity of substitution ε. The budget

constraint is given by

∫ 1

0

Pi,t Ci,t di +Mt +
Bt

1+ rt
=Wt Nt +Mt−1 + Tt + Bt−1. (9)

The nominal bonds (Bt) are in zero supply. Seigniorage and firms’ profits are returned to the household.

Firms Firms are monopolistic competitors whose per-period profit function is given by

Πi,t = Pi,t Yi,t −Wt Yi,t . (10)

The firms’ production function is linear in labor, Yi,t = Ai,t Ni,t . Idiosyncratic productivity follows an AR(1)

process in logs:

log Ai,t = ρA log Ai,t−1 + ε
A
i,t . (11)

The demand function is given by Yi,t = Ct(Pi,t/Pt)−ε, where Pt = (
∫ 1

0 P1−ε
i,t di)1/(1−ε) is the Dixit-Stiglitz

price index.

Monetary Policy Following Costain and Nakov’s (2011a) approach, I consider two alternative assump-

tions about the conduct of monetary policy: (1) the Taylor rule of the form

Řt = ϕRŘt−1 +
�

1−ϕR

� �

ϕππ̌t +ϕC Čt

�

− zt , (12)

where X̌ = log X − log X̄ is the log deviation from the steady state; and (2) the balanced money-supply

growth perturbed by an AR(1) shock:

Mt

Mt−1
= µexp zt , (13)

50Idiosyncratic productivity shocks do not have an effect on aggregate fluctuations, due to the law of large numbers.
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zt = ϕM zt−1 + ε
M
t . (14)

The second approach (hereafter referred to as Money Growth) is only used for comparison purposes (with

Golosov and Lucas 2007).

Equilibrium Dynamics The household first-order condition produces a standard Euler equation,

Et

�

Pt+1Cγt+1

Pt C
γ
t

�

= β
�

1+ rt

�

, (15)

and two intratemporal conditions,

χCγt =
Wt

Pt
, (16)

rt

1+ rt
ν−1 Mt

Pt
=

Wt

Pt
. (17)

The Bellman equation can be written as

V (P, A,Ω) = Π (P, A,Ω) +E







1

1+ rt











V
�

P, A′,Ω′
�

+λ
�

L
�

P, A′,Ω′
��

L
�

P, A′,Ω′
�

W
�

Ω′
�

︸ ︷︷ ︸

adjustment gain
















, (18)

where Ω ≡ (zt , rt−1,Ψt−1) is the aggregate state, with Ψt−1 being the lagged distribution of firms over

prices and productivity levels. Finally, the labor-market-clearing condition implies that Nt =∆w
t Ct , where

∆w
t =

∫ 1

0

A−1
i,t

�

Pi,t

Pt

�−ε

di (19)

is the Dixit-Stiglitz, productivity-weighted measure of price dispersion.

4.2 An Alternative Model with Sales

The empirical analysis shows that sales have a strong effect on data properties. Models without sales

considered in the previous section cannot match even the direction of the relationship between price

dispersion and inflation for posted prices. To match the data with sales, one arguably needs a model

with sales. As sales interact with regular prices, a model with sales has the potential to also improve the

matching properties of regular prices, relative to a similar model without sales.

Based on the analysis in the previous section, the SSDP model would be a good candidate into which

to introduce sales. However, as the model is relatively complex, adding sales would make it intractable. In

light of this complexity, I consider a time-dependent model with sales. I do so for the following reasons:

First, a calibrated version of the SSDP model suggests that pricing is time-dependent more than state-

dependent. Second, the Calvo model with sales moves the comovement in the simulated data closer to

that in the actual data; the FMC model does the opposite. (As the previous section suggests, in order

to match the data on price dispersion and inflation, the Calvo model needs more price flexibility, while
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the FMC model needs less. As sales add flexibility to pricing, I argue that they should be introduced into

the Calvo model.) Finally, this guess is verified below by the finding that the Calvo model with sales can

match the comovement in regular and posted prices reasonably well.

To model sales, I follow Guimaraes and Sheedy (2011).51 In this model, consumers have a preference

for a variety of goods, and a variety of brands are nested within each product. There are two types of

consumers: “loyals,” who consume only one particular brand within each product, and “bargain hunters,”

who view brands within a product as close substitutes. This setup leads to an equilibrium in mixed

strategies: firms alter the price between high—to extract surplus from loyals—and low (sales)—to attract

bargain hunters. This approach builds on the existing industrial organization literature, which has long

emphasized that heterogeneity across consumers can be an important source of price dispersion.52

The key feature of this model is that sales are strategic substitutes. Firms have more incentive to hold

sales when other firms charge a regular price. When a firm does not have a chance to change its regular

price, it can still set a temporary, sale price. Essentially, sales relax the degree of price rigidity, which helps

to match the data, since the Calvo model without sales produces too much volatility in price dispersion.

Specifically, let G be a set of goods of measure one, and B be a set of brands for each good. For a

given household, there is a set of goods Λ ⊂ G for which the household is loyal to a particular brand

within this good. Denote the brand to which the household is loyal to asB(i), i ∈ Λ. For all other goods

(G\Λ), the household is a bargain hunter—that is, it obtains utility from consuming a variety of brands

within each good. The Dixit-Stiglitz consumption aggregator can be written as

C =

 

∫

Λ

C
ε−1
ε

i,B(i)di +

∫

G\Λ

�∫

B
C
η−1
η

i,b d b

�

η

ε

di

!
ε
ε−1

, (20)

where ε is the elasticity of substitution between goods, and η is the elasticity of substitution between

brands of the same good, with η> ε.

These preferences are further embedded into the Erceg, Henderson, and Levin (2000) environment

with time-dependent nominal rigidities. The driving force of economic dynamics is a monetary shock,

which is modeled as an innovation to the Friedman rule. In particular, the growth rate of money supply

is given by

logµt = ρM logµt−1 + ε
µ
t , (21)

with εµt
iid∼ N(0, (1−ρM )σM ), where µt is the growth rate of money supply, εµt is a monetary shock, ρM is

the persistence of money supply growth, and σM is its volatility.

51Here, I describe only the main building blocks of the model. For full details, see the original paper.
52One could also consider alternative models of sales such as Kehoe and Midrigan (2014). In the Calvo version of their model,

they introduce the probability of being able to reset the price temporarily, along with the standard Calvo probability to reset the
price permanently. Hence, in this model, sales are introduced exogenously, while Guimaraes and Sheedy (2011) endogenize
sales.
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5 Price Dispersion and Inflation in the Models

5.1 Calibration and Simulation

To calibrate the models, I closely follow the existing literature. Namely, for the SSDP model, I take the

parameter values from Costain and Nakov (2011a,b), while for the GS model, from Guimaraes and Sheedy

(2011). However, I deviate from the original papers on two occasions, due to discrepancies between

calibration targets. First, supermarket prices exhibit high trend inflation. Therefore, I pick the value of

trend inflation that matches the annual inflation rate for food items provided by the BLS—which is close

to that in the IRI data.53 Second, the GS model calibrates the frequency of sales using the BLS data, while

Coibion, Gorodnichenko, and Hong (2015) report that the frequency of sales in the IRI data is much

higher. Following Guimaraes and Sheedy (2011), I recalibrate the elasticity of substitution across brands

and across goods to match the target in my data. Table 4 summarizes the parameter values.

Panel A of Table 4 is dedicated to the SSDP model. Utility function parameters in Equation (8)—

β, γ, ε, χ, ν—are taken from Golosov and Lucas (2007). Parameters of the price-adjustment function—α,

λ̄, and ξ in Equation (7)—are chosen by Costain and Nakov (2011a,b) to minimize the distance between

the model and the data for the frequency and distribution of price changes. The two limiting cases (Calvo

and FMC) require specific values of the parameters λ̄ and α, respectively. The parameters that govern the

monetary policy rule—ϕR, ϕπ, ϕC in Equation (12)—and shocks’ persistence—ϕM in Equation (14) and

the autoregressive coefficient for εA
i,t in Equation (11), ϕA—are taken from Costain and Nakov (2011a).

Finally, I set trend inflation (π̄) to match the annualized inflation rate in the BLS data.

Panel B of Table 4 summarizes the GS model calibration. To avoid confusion and for ease of reference,

I stick with the original notation, at the cost of using different notation for the same parameters in the

two models. As mentioned above, I set the elasticity of substitution between brands to a lower value

than in GS (16.45 vs. 19.8), while the elasticity of substitution across goods is increased (3.15 vs. 3.01).

Note that the former parameter has no counterpart in the data and is not directly observable. Both this

paper and GS calibrate these parameters to match the frequency of sales. However, the target frequency

in their paper (7.4 percent) based on Nakamura and Steinsson (2008) is much smaller than the frequency

of sales observed in the data used in this paper (depending on the measure, from 19.5 percent to 23.7

percent—see Coibion, Gorodnichenko, and Hong 2015 for details). The baseline parameters chosen here

allow the model to match the comovement of price dispersion in regular and posted prices, only negligibly

overstating the frequency of sales (24.8 percent). I then compare the results for my baseline calibration

with the case of the GS parameterization.

I generate a history of shocks for 2,200 periods, burning the first 200 observations, and compute price

dispersion and inflation in the model. I consider three cases for different sources of variation: monetary

shocks only, TFP shocks only, and both types of shocks together.

I compare the Calvo, FMC, SSDP, and GS models by estimating the comovement of price dispersion

and inflation for the simulated data based on the reduced-form relationship. As discussed earlier, the

reduced-form specification is suggested by the data and is less fragile since it does not include higher-

order terms. In addition, the structural relationship is valid only for the Calvo model; the analog is not

53Taking the trend inflation rate from the IRI data does not alter the qualitative conclusions. I use the BLS data estimates for
more consistency with the original papers.
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Table 4. SSDP Model Calibration
Panel A: Generic SSDP without sales Panel B: Calvo with sales

Notation Value Notation Value
(1) (2) (3) (4)

Preferences & Technology
Discount factor β 1.04−

1
12 Discount factor β 1.03−

1
12

Intertemporal ES γ 2 Intertemporal ES θc 0.333
ES across goods ε 7 ES across goods ε 3.15
Disutility of labor χ 6 ES across brands η 16.45
Money demand ν 1 Frisch LS elasticity θh 0.7

L Elasticity of Y α 0.667
ES across labor ς 20

Pricing
Smoothness ξ 0.23 Price stickiness φp 0.889
Menu cost α 0.037 Wage stickiness φW 0.889
Calvo λ̄ 0.110
Menu cost in the limit α 0.065 Fraction of loyals λ 0.735
Calvo in the limit λ̄ 0.1 Size of sales sector σ 0.255

Shocks
Monetary persistence ϕM 0 Monetary persistence ρM 0.536
TFP Persistence ϕA 0.95 Monetary volatility σM 0.02

Policy
Annualized trend inflation π̄ 4.4%
Interest rate smoothing ϕR 0.9
Response to inflation ϕπ 4
Response to output gap ϕC 0.5

known for the FMC or SSDP model. As a counterpart of Equation (6), I estimate the following regression:

σt = βπt + γ+ εt , (22)

where σt is the standard deviation of log prices simulated in the model and πt is the simulated inflation.

I run the MA(12) filter on both series to make sure that my results are not driven by the effect of filtering

on the persistence of these series or their comovement. I perform robustness checks by considering the

same regressions without the filter, and obtain similar results.

5.2 Matching the Comovement

Table 5 compares the comovement of price dispersion and inflation in the data and in the models, for

regular and posted prices. The Calvo model with sales outperforms any other model for both regular and

posted prices. The degree of the comovement, β, is −0.033 (−0.022 in the data) for posted prices and

0.033 (0.026 in the data) for regular prices. Without sales, the Calvo model’s β is more than 15 times

greater (for the baseline calibration) than in the data for regular prices, and the negative comovement

for posted prices cannot be achieved at all (alternative calibrations are discussed later in this section).54

In the baseline FMC specification (no sales), β is very small: 5 times smaller than in the data. Sales give

firms an opportunity to change their posted prices when their regular prices are rigid, thereby reducing

price rigidity in the otherwise Calvo setup. However, unlike increasing the price flexibility parameter in

the Calvo model, introducing sales does not lead to a counterfactual frequency of regular price changes.

Sales also help to differentiate between the comovement in regular and posted prices, which are different

54Appendix H confirms the Calvo model’s inability to match the data using the structural specification discussed in Section 3.2.
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Table 5. Price Dispersion–Inflation Comovement
Regular Posted
Prices Prices

(1) (2)

Data 0.026 −0.022
Models

Calvo with Sales 0.033 −0.033
Smoothly State-Dependent Pricing 0.157
Fixed Menu Costs 0.005
Standard Calvo (no sales) 0.505

Source: Author’s calculations based on the IRI and model-simulated data.
Notes: The table reports slope coefficients of the regression of price dispersion on infla-
tion in the actual data (see Table 2) and those simulated by four models. The columns
distinguish between posted and regular prices.

in the data.

The fact that without sales these basic models cannot match the data is quite intuitive. In the Calvo

model, a large nominal shock does not affect the number of firms that adjust their prices. If the frequency

of price adjustment is small, very few firms change their prices, thereby having only a small effect on

the aggregate price level. At the same time, firms that are able to reset their prices adjust them signifi-

cantly, thereby increasing price dispersion. Hence, nominal shocks have a small effect on inflation and a

quantitatively large effect on price dispersion. In terms of the estimated comovement, small changes in

inflation are associated with large changes in price dispersion, implying a relatively large coefficient. To

match the data, more firms have to adjust their prices, amplifying the response of inflation and damping

the response of price dispersion. Instead, in the FMC model the comovement is low: Firms set their prices

by the (S, s) rule. A nominal shock forces “marginal” firms to adjust, thereby having a strong effect on

inflation but only a limited effect on the dispersion of relative prices. Consequently, the change in price

dispersion is small relative to the change in inflation. If the menu cost is very small, most firms will adjust

their prices to the same value, which may even lower price dispersion.

The SSDP model produces the comovement that lies between those in the Calvo and FMC models, and

is about six times greater than in the data. Note that, as will be shown later, both versions of the model

(the money growth and Taylor rule) produce similar estimates. The fact that the estimates lie between

the Calvo model and the FMC model is quite intuitive: In the Calvo model, in the wake of an inflationary

shock, every firm has an equal chance to reset the price. Hence, it is equally likely that a firm that lags

behind the price level is able to adjust as that a firm with the highest price makes its good even dearer.

In the FMC model, however, there is a strong selection effect: only firms that are far from the optimal

price will adjust, partly offsetting the effect of inflation on price dispersion. As the SSDP model nests the

Calvo and FMC models as special cases, its behavior depends strongly on the estimated parameters. Since

Costain and Nakov’s (2011a) estimates imply that the price-setting is closer to Calvo, it is no surprise

that the relationship between inflation and price dispersion is also so. However, the data suggest that the

estimated SSDP model is too close to Calvo, and that it overestimates the role of time-dependent frictions.

Although in the data, price dispersion responds much more strongly to inflation than in the Golosov and

Lucas (2007) model—clearly implying monetary non-neutrality—the degree of non-neutrality produced

by the SSDP model may be overstated.

A strong aspect of the SSDP model is that by varying the smoothness parameter, ξ, one can achieve
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Figure 1. Smoothness Parameter in the SSDP Model

A. Comovement of Price Dispersion and Inflation
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Source: Author’s calculations based on simulated data. Blue filled histogram from Costain and Nakov (2011a, p. 647, fig. 1).
Notes: Panel A depicts the estimated slope coefficients for the regression of price dispersion on inflation for the data simulated in
the Smoothly State-Dependent Pricing (SSDP) model for monetary, TFP, and both shocks. Panel B demonstrates the distribution
of the sizes of price changes (1) in the data, (2) in the model with the baseline value of the smoothness parameter ξ= 0.23, and
(3) in the model with the value of ξ that matches the comovement of price dispersion and inflation in Panel A, ξ= 0.95.
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any intermediate case between strictly Calvo pricing and FMC pricing. As the former overestimates the

degree of the comovement and the latter underestimates it, there exists a value of ξ that allows matching

it. Since the smoothness parameter is calibrated to match the distribution of the sizes of price changes in

the data, matching price dispersion leads to mismatch in the distribution. This result is shown in Figure 1.

Panel A shows the comovement of price dispersion and inflation for the three data-generating processes

and different values of ξ. To match the comovement, ξ should be set to approximately 0.95, far above

its baseline value of 0.23. Hence, this implies that price-setting should be more state-dependent than

suggested by the distribution of the sizes of price changes. Panel B confirms this intuition: for the new

value of ξ, the histogram of price changes looks close to a bimodal distribution—with almost no price

changes around zero, in contrast to the data (Midrigan 2011).

Sensitivity to Choice of Parameters Table 6 examines the results’ sensitivity to alternative calibrations

of key parameters. Panel A presents the results for the Calvo model without sales. First, it shows that β

is not affected much by the shocks that generate the comovement. For example, β obtained from both

monetary and TFP shock is 0.505, close to that obtained from TFP shocks only (0.547) or monetary shocks

only (0.388)—and both are far from the data (0.026). This is not surprising because in the Calvo model,

the effect of shocks on the comovement appears only in the higher-order terms of quadratic approximation.

Second, changing the persistence of shocks or the central bank’s response to inflation does not make a

qualitative difference, although a lower persistence of TFP shocks, ϕA, somewhat changes the comovement

quantitatively; lowering ϕA from 0.95 in the baseline to 0.4 reduces β to 0.292. Third, even without trend

inflation, the Calvo model overestimates the comovement by a factor of eight. To match the data, prices

should be extremely flexible: the monthly frequency of price adjustment should be 0.5 (compare to 0.1

in the data). However, such a frequency is at odds with the observed duration of price spells. The result

for the higher λ̄ is similar to the one for the higher ξ.

Panels B and C of Table 6 do a similar exercise for the FMC and SSDP models, respectively. Those

two models show even more robustness to the choice of calibration targets than the Calvo model does.

Changing the persistence of shocks, the size of menu costs, or removing trend inflation does not make the

estimates close to the data. Unlike in the Calvo model, varying the size of menu costs in the FMC model

does not allow matching the data. Consistent with the theoretical reasoning discussed earlier, when the

menu cost is very small, the FMC model’s β may even become negative. Interestingly, in the SSDP model,

when monetary policy adheres to constant money growth, the comovement is virtually the same as in the

Taylor rule case.

Finally, Panel D of Table 6 considers alternative parameterizations of the GS model (Calvo with sales).

The volatility of shocks, degree of price stickiness, fraction of loyal customers, and elasticity of substitu-

tion across goods or across brands each has a strong effect on the comovement, while wage stickiness,

the persistence of shocks, and the sales sector’s share does not. The share of the sales sector, instead,

has a much stronger effect on the frequency of sales. Note that under the GS original calibration, the

comovement moves further away from the data, due to the mismatch of the frequency of sales. However,

the GS calibration with highly volatile monetary shocks gets reasonably close to the data.

To summarize, although the comovement of price dispersion and inflation clearly depends on the

choice of parameter values, models without sales are unable to match the comovement observed in the
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Table 6. Sensitivity to Parameters Choice
Regular Prices Posted Prices

Monetary TFP Both Shocks Monetary
(1) (2) (3) (4)

Panel A: Standard Calvo (no sales)
Baseline 0.388 0.547 0.505
Response to Inflation ϕπ = 10 (4) 0.380 0.545 0.462
Persistence of TFP Shock ϕA = 0.4 (0.95) 0.388 0.292 0.388
Persistence of M Shock ϕM = 0.8 (0) 0.420 0.547 0.427
Trend Inflation π̄= 0 (4.4%) 0.181 0.229 0.209
Probability of Price Change λ̄= 0.5 (0.1) 0.041 0.038 0.041

Panel B: Fixed Menu Costs
Baseline 0.007 0.004 0.005
Persistence of TFP Shock ϕA = 0.4 (0.95) 0.007 0.001 0.007
Persistence of M Shock ϕM = 0.8 (0) 0.007 0.004 0.007
Trend Inflation π̄= 0 (4.4%) 0.011 0.009 0.010
Menu Cost α= 0.005 (0.065) −0.000 −0.001 −0.002
Menu Cost α= 0.15 (0.065) 0.007 0.004 0.006

Panel C: Smoothly State-Dependent Pricing
Baseline (Taylor Rule Setup) 0.153 0.162 0.157
Money Growth Setup 0.157 0.150 0.154
Response to Inflation ϕπ = 10 (4) 0.151 0.156 0.153
Persistence of TFP Shock ϕA = 0.4 (0.95) 0.153 0.135 0.152
Persistence of M Shock ϕM = 0.8 (0) 0.156 0.162 0.156
Trend Inflation π̄= 0 (4.4%) 0.112 0.116 0.114

Panel D: Calvo with Sales
Baseline −0.033 0.033
GS, 2 sectors −0.135 −0.000
GS, 1 sector −0.095 −0.003
GS, Volatility of M Shock σM = 0.2 (0.02) 0.047 −0.022
Volatility of M Shock σM = 0.2 (0.02) 0.182 0.056
Persistence of M Shock ρM = 0 (0.536) 0.033 −0.035
Price Stickiness φp = 0.65 (0.889) 0.001 −0.008
Wage Stickiness φW = 0.65 (0.889) 0.029 −0.037
ES across Brands η= 19.8 (16.45) 0.002 −0.138
ES across Goods ε= 3.01 (3.15) 0.012 −0.127
Fraction of Loyal Customers λ= 0.95 (0.735) 0.014 −0.110
Share of Sales Sector σ = 1 (0.255) 0.027 −0.019

Source: Author’s calculations based on simulated data.
Notes: The table reports estimates presented in Table 5 for alternative parameter values. Panel A focuses on the Calvo
model without sales, Panel B on the FMC model, Panel C on the SSDP model, and Panel D on the GS model. The variation
in Columns (1)–(3) comes from monetary, TFP, and both shocks, respectively. Column (4) presents the results for posted
prices.

data without making counterfactual assumptions about the frequency or size of price changes. Introducing

sales makes the comovement very close to the one in the data. Qualitatively, the result is not sensitive

to a particular calibration approach, and the baseline calibration using the parameters that are widely

accepted in the literature and that match basic pricing moments can match the comovement in the data

quantitatively.
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6 Concluding Remarks

This paper measures price dispersion in scanner data from grocery and drug stores, and then studies

whether workhorse macro models can match its key properties such as the comovement with inflation.

It finds a nontrivial degree of price dispersion, which cannot be fully explained by heterogeneity in the

terms of sale or shopping experience, hinting that other factors, such as price stickiness, play a role. It then

focuses on workhorse models, which include various frictions in price adjustment but do not include sales,

and shows that although qualitatively they support regular-price data, they are still quite far quantitatively.

I show that extending a workhorse model to include sales brings it quantitatively close to the data, due

to the interaction between sale and regular prices—a novel result by itself. I conclude that models with

sales have much greater potential to explain aggregate data patterns than previously thought.

This paper’s results have a number of implications. First, welfare measurement should be anchored

to the price dispersion observed in the data. As the datasets on disaggregated prices become widely

available—and computational costs of processing those data fall—there is no reason why researchers

could not or should not use price dispersion measured directly from the data. Second, models that intend

to match micro pricing data should not treat sales purely as noise, since not only do the properties of

sale prices differ from those of regular prices but also sales can interact with regular prices. A model

with sales is more successful in matching the properties of regular prices than a similar model without

sales. Moreover, the frequency of sales in the data is a key calibration target that allows matching the

properties of regular prices. Finally, macroeconomic models of price stickiness should aim at matching

price dispersion in the data, in addition to the usually targeted frequency, size, and distribution of price

changes, since these measures are interrelated and all of them have implications for the overall degree of

stickiness and non-neutrality of monetary shocks.

As this paper presents one of the first attempts to study price dispersion in the context of price rigidity

and sales, I hope that future research will address some of its limitations. Theoretical models analyzed

here generate the comovement of price dispersion and inflation due to monetary and productivity shocks,

both aggregate and idiosyncratic. As other types of shocks have proved dominant in the data, extending

the models to allow for them could bring theory and data closer together. This is especially true for

financial shocks, which were at play during the onset of the Great Recession (Chodorow-Reich 2014), or

for energy-price shocks, given their historic effect on inflation. We also need more data on price dispersion

from sectors other than fast-moving consumer goods (FMCG), for which scanner data are widely available

and used. Although FMCG, no doubt, is a large sector that covers 10–15 percent of output, it has special

properties that may differ from the properties of other sectors (for example, in the prevalence of sales).

Specifically, we know much less about the dispersion of durables, wholesale, or intermediate-good prices.

Finally, I hope that macro theorists will spend more time linking price dispersion to welfare. Currently, in

many workhorse models, price dispersion has a negative effect on welfare due to the misallocation effect,

as sticky prices interfere with consumption smoothing across varieties. However, price dispersion may

also have a positive effect on welfare, as it provides an opportunity for consumers with low search costs—

and typically low consumption and high marginal utility—to reallocate their consumption toward cheaper

goods, which should raise aggregate welfare.55 For example, it allows the unemployed to use their time

55For example, Head and Kumar (2005) study inflation, price dispersion, and welfare in a search model.
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more productively by searching for best deals. It would also be interesting to see how sales can interact

with search frictions. Sales are likely to be more prevalent when search costs are low. Although the effect

of this interaction is an interesting exercise, the key inconsistency that search models should overcome is

their inability to generate dynamic responses, an inconsistency that cannot be remedied mechanically by

the introduction of sales.
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Appendix

A Price Dispersion by Markets and Product Categories

Table A1. Price Dispersion by Market and Product Category, log points
Panel A: Markets Panel B: Product Categories

Posted Regular Posted Regular
Price Price Price Price
(1) (2) (1) (2)

Atlanta, GA 7.3 4.6 Beer 5.6 4.8
Birmingham/Montgomery, AL 9.2 6.2 Blades 8.1 6.4
Boston, MA 10.5 8.4 Carbonated Beverages 13.6 8.2
Buffalo/Rochester, NY 7.6 5.5 Cigarettes 7.8 7.5
Charlotte, NC 8.4 5.4 Coffee 9.9 6.8
Chicago, IL 11.3 8.3 Cold Cereal 13.2 7.5
Cleveland, OH 5.6 3.0 Deodorants 12.1 9.1
Dallas, TX 10.5 7.8 Diapers 6.4 4.6
Des Moines, IA 7.8 6.2 Facial Tissues 11.8 8.0
Detroit, MI 10.1 6.6 Frozen Dinner 11.6 7.4
Eau Claire, WI 9.3 6.7 Frozen Pizza 11.7 7.3
Grand Rapids, MI 8.8 5.4 Hotdogs 13.6 7.4
Green Bay, WI 8.5 5.3 Household Cleaners 9.0 6.7
Harrisburg/Scranton, PA 9.7 7.5 Laundry Detergent 10.4 6.7
Hartford, CT 10.7 7.2 Margarine/Butter 11.0 8.0
Houston, TX 9.4 7.3 Mayo 11.5 7.7
Indianapolis, IN 9.9 6.5 Milk 8.5 6.6
Kansas City, MO 9.9 7.9 Mustard/Ketchup 9.9 7.5
Knoxville, TN 7.7 4.9 Paper Towels 8.1 5.4
Los Angeles, CA 11.9 9.0 Peanut Butter 8.8 6.4
Milwaukee, WI 8.6 5.9 Photo Supplies 14.1 10.8
Minneapolis/St. Paul, MN 7.1 4.1 Razors 9.7 7.5
Mississippi 9.3 6.5 Salty Snacks 10.8 6.1
New England 9.3 7.8 Shampoo 10.8 8.2
New Orleans, LA 9.1 6.2 Soup 12.4 8.5
New York, NY 12.7 9.5 Spaghetti Sauce 10.8 7.4
Oklahoma City, OK 5.7 3.1 Sugar Substitutes 7.6 6.1
Omaha, NE 9.3 6.9 Toilet Tissues 10.9 7.5
Peoria/Springfield, IL 11.5 8.3 Toothbrush 12.7 9.7
Philadelphia, PA 13.3 9.6 Toothpaste 11.7 8.0
Phoenix, AZ 10.6 6.9 Yogurt 9.3 6.2
Pittsfield, MA 10.1 6.1
Portland, OR 10.3 7.5
Providence, RI 7.5 3.9
Raleigh/Durham, NC 8.8 6.0
Richmond/Norfolk, VA 9.3 6.5
Roanoke, VA 8.7 6.1
Sacramento, CA 10.7 6.8
Salt Lake City, UT 8.1 5.0
San Diego, CA 11.7 8.1
San Francisco, CA 11.4 7.8
Seattle/Tacoma, WA 11.0 7.9
South Carolina 9.8 7.1
Spokane, WA 9.5 6.4
St. Louis, MO 8.9 5.7
Syracuse, NY 9.7 7.7
Toledo, OH 9.3 6.1
Tulsa, OK 7.4 4.7
Washington, DC 11.1 8.2
West Texas/New Mexico 11.0 8.0

Source: Author’s calculations based on the IRI data.
Notes: This table shows estimates of price dispersion from Table 1 by market and product category.
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B Spatial Heterogeneity and Dynamic Properties of Price Dispersion

Conventional wisdom, engraved into a textbook treatment of the cost of inflation, holds that a higher inflation
is also a more volatile one; thus, in models with a positive relationship between inflation and price dispersion,
a higher dispersion should be a more volatile one, too. I find that in the data it is the opposite: as the level of
price dispersion falls, its cross-sectional heterogeneity rises. To illustrate this point, I take price dispersion at
the market level (the time average of the benchmark dispersion measure), σ̄m =

∑

t σmt/T , and then compute
the heterogeneity of σ̄m across markets (dispersion of dispersion). Table B1 reports the standard deviation
of σ̄m over m, the range (the difference between the markets with the highest and lowest dispersion), the
90–10 percentile spread, and the interquartile range (75–25 spread). Price dispersion in the market with the
highest σ̄m is 8.9 log points higher than in the market with the lowest σ̄m (7.8 log points higher for regular
prices). This spread increased from 7.8 to 10.8 log points after the beginning of the Great Recession (from 6.9
to 9.3 log points for regular prices). The other measures mostly support this finding, but the changes are less
pronounced.

The high degree of the cross-sectional heterogeneity of price dispersion is not surprising since prices are
more dispersed in larger markets; the increase in heterogeneity over time, however, is—since the level of price
dispersion falls during the same period. To show how the level and variability of price dispersion evolve over
time, I plot (Panels A and C of Figure B1) market-level dispersion in month t, σ̄t =

∑

mσmt/M , against its
variability across markets, Σt = {

∑

m(σmt − σ̄t)2/(M − 1)}1/2. Until 2007, the level and variability had been
rising; then, its level decreased by approximately 1 log point, while heterogeneity increased. The two have
been moving in the opposite directions since then. This pattern is similar in posted and regular prices.

The negative relationship between the level of price dispersion and its time volatility also holds for indi-
vidual markets: markets with a higher average price dispersion have a lower dispersion volatility over time.
This can be seen from a plot (Panels B and D of Figure B1) of σ̄m against Σm = {

∑

m(logσmt − logσm)
2/

(T − 1)}1/2, the standard deviation of logσmt over t.1 To enhance readability, only large markets are labeled.
Besides the main point of this plot, a few other things are noticeable. First, markets with the highest disper-
sion are, predictably, big markets (New York, Philadelphia, Los Angeles). Second, markets with the lowest
dispersion are not necessarily the smallest markets (Minneapolis/St. Paul and Atlanta are not small). Again,
posted and regular prices look similar.

The analysis in this section should be treated as purely descriptive. There are many factors other than
inflation that may affect the level and variability of price dispersion (for example, the pattern of M&A). Smaller
markets are represented by fewer stores in the data; thus, the measurement error may be larger. Hence, within-
market variation—examined in the next section—should be a more reliable source of identification than the
cross-sectional variation. Even so, just by looking at the cross-sectional and aggregate properties of price
dispersion, one can already find significant discrepancies between the data and models.

Table B1. Heterogeneity of Average Price Dispersion across Markets, log points
Panel A: Posted Price Panel B: Regular Price

Standard 90th–10th 75th–25th Standard 90th–10th 75th–25th
Deviation Range Percentile Percentile Deviation Range Percentile Percentile

(1) (2) (3) (4) (1) (2) (3) (4)
Whole Sample 1.8 8.9 4.3 2.2 1.7 7.8 4.0 2.2

2001–2007 1.7 7.8 4.4 2.2 1.5 6.9 3.9 2.0
2008–2011 2.0 10.8 4.3 2.2 1.8 9.3 4.1 2.4

Source: Author’s calculations based on the IRI data.
Notes: The table reports measures of cross-market variability of price dispersion. Market-level price dispersion is measured by the average weekly stan-
dard deviation of log prices. Panel A is for posted (observed) prices and Panel B is for regular prices (that is, excluding temporary price reductions).
Column (1) reports the standard deviation of price dispersion across markets, column (2) the difference between the highest and the lowest dispersion
market, column (3) the difference between the 90th and 10th percentile of the distribution across markets, and column (4) the interquartile range.

1Markets with a higher average price dispersion may have a higher time volatility mechanically, due to the linearity of a standard
deviation. To express volatility in real terms, I compute the standard deviation of log dispersion. In the previous cases, the time
variation for aggregate measures was small; thus, there was no need for the log transformation.
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C Comovement of Price Dispersion and Inflation at the Aggregate Level

In the main text, I estimate the relationship between inflation and price dispersion at the disaggregated level of
markets and categories. This is done for two statistical reasons, among others: First, it allows me to expand the
cross-sectional dimension and increase the number of observations. This is important because the data cover
only 11 years of observations, while there is a need to control for aggregate trends (by including time fixed
effects) and to allow for a complex correlation structure of residuals. Second, it allows me exploit the cross-
market and cross-category variation in inflation rates, since we do not observe much of that at the aggregate
level in the 2000s.

Although multisector aggregate models often produce a relationship between sectoral inflation and price
dispersion that is similar to that relationship at the aggregate level, it is important to understand whether the
comovement found in the data is driven by the changes in relative prices or by the changes in the overall price
level. To show that the main results do not come entirely from the variation in relative prices, I estimate the
baseline specification at the aggregate level. In particular, I first aggregate inflation and price dispersion to
the market level, σmt and πmt . Then, I compute the averages over markets using (i) equal weights and (ii)
weights based on total sales in a market and year. Predictably, it is difficult to tease out significant estimates
from time-series regressions with 131 observations; however, the pattern is by and large consistent with the
results obtained from the disaggregated data. Table C1 reports the comovement coefficient for raw averages
(Panel A) and for weighted averages (Panel B). The standard errors are robust Newey-West. The columns
report the results for price dispersion across stores, across chains, and net of seller fixed effects, respectively.1

For posted prices, the comovement coefficient is –0.075 for the raw averages and –0.022 for the weighted
averages. Although the standard error of the latter estimate is large, the magnitude roughly coincides with
the benchmark estimate.2 For regular prices, the comovement coefficient is only significant in the weighted-
average regression and is equal to 0.057 (0.026 in the disaggregated data). The estimates are more precise
for net dispersion, similar to the benchmark estimates.

If the aggregate results were interpreted per se, the relationship between inflation and price dispersion
would be difficult to pin down, since the data do not allow for precise estimation of the aggregate comove-
ment due to relatively short time-series. However, in combination with the baseline results obtained on the
disaggregated level, the estimates presented here suggest that the relationship between price dispersion and
inflation within a market-category is closely related to aggregate fluctuations, which is consistent with the
models.

Table C1. Comovement of Price Dispersion and Inflation at the Aggregate Level

Panel A: Raw Averages Panel B: Weighted Averages
Across Across Net Seller Across Across Net Seller
Stores Chains Effect Stores Chains Effect

(1) (2) (3) (1) (2) (3)

Posted Price −0.075*** −0.009 −0.030** −0.022 −0.018 0.005
(0.028) (0.046) (0.015) (0.019) (0.067) (0.017)

Regular Price −0.014 0.103** 0.063*** 0.057*** 0.139* 0.096***

(0.015) (0.050) (0.014) (0.018) (0.074) (0.018)
Source: Author’s calculations based on the IRI data.
Notes: Panel A aggregates price dispersion and inflation by computing raw averages over markets. Panel B uses weights based on the annual total sales
in a given market. Columns (1)–(3) use cross-store, cross-chain, and net-of-seller-specific-effect measures of price dispersion, respectively. Estimation
sample covers 2001–2011. Number of observations N = 131. The data are seasonally adjusted using the X12-ARIMA procedure from the U.S. Census.
Newey-West standard errors with serial correlation of up to three lags are in parentheses.
*,**,*** denote 10, 5, and 1 percent significance level, respectively

1See Section 2.3 for more details.
2However, if instead robust standard errors are used, it becomes significant at the 5 percent level. Ideally, to rely on Newey-West

estimates, one would want to have a longer time-series.
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D Disaggregated Inflation Rates

Let TSismτ and TQ ismτ be total sales and quantities, respectively, for good i, store s, market m, and week τ.
The unit price of the good in month t is then computed as

Pismt =

∑

τ∈M t TSismτ
∑

τ∈M t TQ ismτ
, (D1)

withM t being a set of weeks in month t. This measure represents the average effective price that consumers
paid for a good in a given store within a month. I then compute a store-level price change for a given good as

πismt = log Pismt − log Pism,t−1. (D2)

Next, I aggregate these price changes into the inflation rate at the market-category level:

πmct =
∑

i∈Gmct

∑

s∈S mct

ωismtπismt , (D3)

where ωismt are annual weights (that is, fixed within each year) for good i and store s, Gmct is a set of goods,
and S mct is a set of stores in a given market m and goods category c. I compute both direct and multiplicative
weights. Direct weights, ωdir.

ismt , are based on total annual sales of a good in a store:

ωdir.
ismt =

∑

τ∈Y t TSismτ
∑

τ∈Y t

∑

i∈Gmct

∑

s∈S mct TSismτ
, (D4)

with Y t being a set of months in the same year as month t. Alternatively, multiplicative weights, ωmult.
ismt , are

based on the product of goods and stores weights:

ωmult.
ismt =

∑

τ∈Y t

∑

s∈S mct TSismτ
∑

τ∈Y t

∑

i∈Gmct

∑

s∈S mct TSismτ
︸ ︷︷ ︸

product weights

·
∑

τ∈Y t

∑

i∈Gmct TSismτ
∑

τ∈Y t

∑

i∈Gmct

∑

s∈S mct TSismτ
︸ ︷︷ ︸

store weights

. (D5)

Inflation rates obtained using these weights are treated as a benchmark; however, there is little difference in the
main results when direct weights are used instead. As the paper’s main part discusses, using weights common
across the markets does not affect the results either. Average trend inflation obtained using this method tends
to be within 1 percentage point of trend inflation for food and beverages in the BLS data.
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E Sensitivity Analysis of the Empirical Results

I show that the relationship between price dispersion and inflation is not sensitive to various assumptions in
the main text. Namely, I check robustness to the following: (i) seasonal adjustment, (ii) cross-sectional and
time aggregation, and (iii) the number of stores used to compute dispersion.

Since the data exhibit seasonal patterns, the baseline estimates are based on the seasonally adjusted data.
The adjustment is done using the U.S. Census X12-ARIMA algorithm. This algorithm accounts for seasonal
patterns that are responsible for high-frequency fluctuations (within a year), calendar effects such as trading
days and moving holidays, and extreme values (outliers), and it applies one-sided filters at each end of a
series. To make sure that this procedure does not lead to extra smoothness in the adjusted series, I compare
the estimates based on the X12-ARIMA filter (baseline), on the 12-month moving average filter, and those based
on the untransformed data.1 The MA(12) filter is in the spirit of X12-ARIMA, but it is more parsimonious and
transparent. In particular, it implies the following transformation:

xma
t =

∑11
i=0 x t−i

12
, (E1)

where x t = {σmct ,πmct}, and xma
t are floating annual averages. This filter implies that∆xma

t = (x t−x t−12)/12;
hence, first differences represent a change relative to the same month of the previous year, thereby removing
a seasonal component. As Panel A of Table E1 shows, the choice of the seasonal-adjustment filter is irrelevant
for the theoretical implications presented in the paper. Using the MA(12) filter leads to an increase in the
coefficients’ absolute value relative to the baseline, while using no filter leads to a smaller (than in the baseline)
coefficient for regular prices, but not for posted prices.

To compute the measures of inflation and price dispersion at the market-category level, I aggregate price
dispersion over UPCs and inflation over UPCs and stores. For the baseline case I use market-specific weights
based on annual total sales. Specifically, let (i, s) index UPC-stores in category c, and x ismt be a disaggregated
measure for market m and month t. Then, direct annual market-specific weights (ωismt) are defined as follows:

ω
direct,market
ismt =

TSismτ
∑

is in c TSismτ
,

where TSismτ are total sales of product i in store s, market m, and year τ. Alternatively, I compute multiplicative
weights as a product of UPC- and store-based weights: ωmult.,market

ismt =ωUPC
imt ·ω

store
smt , with

ωUPC
imt =

∑

s TSismτ
∑

i in c

∑

s TSismτ
,

ωstore
smt =

∑

i TSismτ
∑

s

∑

i in c TSismτ
.

I also aggregate the variables using common weights (the same weights across markets):

ω
direct,common
ist =

∑

m TSismτ
∑

is in c

∑

m TSismτ
.

The results are not sensitive to the choice of cross-sectional aggregation weights (Panels B1 and B2 of Table E1).
Moreover, even if I aggregate the variables based on equal weights, the results are qualitatively—and also
quantitatively, for regular prices—similar to the baseline case.

In the baseline specification, price dispersion and inflation are aggregated to a monthly frequency in two

1As I include monthly dummies in the baseline specification, the results based on the untransformed data account for seasonal
patterns trivially.

vi



Ta
bl

e
E1

.
Se

n
si

ti
vi

ty
A

n
al

ys
is

of
Em

pi
ri

ca
lR

es
u

lt
s

Pa
ne

lA
:

Se
as

on
al

A
dj

us
tm

en
t

Pa
ne

lB
1:

A
gg

re
ga

ti
on

—
U

PC
Pa

ne
lB

2:
—

U
PC

-S
to

re
N

o
X

12
b

M
A

Eq
ua

l
M

ar
ke

tb
C

om
m

on
D

ir
ec

tb
M

ul
t.

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

Po
st

ed
Pr

ic
e

−
0.

02
2**

*
−

0.
02

2**
*
−

0.
03

3**
*

−
0.

03
1**

*
−

0.
02

2**
*
−

0.
02

1**
*

−
0.

02
2**

*
−

0.
02

1**
*

(0
.0

01
)

(0
.0

06
)

(0
.0

09
)

(0
.0

08
)

(0
.0

06
)

(0
.0

06
)

(0
.0

06
)

(0
.0

06
)

R
eg

ul
ar

Pr
ic

e
0.

00
9**

*
0.

02
6**

*
0.

03
6**

*
0.

02
5**

*
0.

02
6**

*
0.

02
6**

*
0.

02
6**

*
0.

02
5**

*

(0
.0

02
)

(0
.0

04
)

(0
.0

05
)

(0
.0

05
)

(0
.0

04
)

(0
.0

04
)

(0
.0

04
)

(0
.0

04
)

Pa
ne

lC
:

Ti
m

e
A

gg
re

ga
ti

on
Pa

ne
lD

:
N

um
be

r
of

St
or

es
C

om
b.

b
W

ee
k

M
on

th
A

ll,
X

12
b

A
ll,

M
A

10
+

,M
A

20
+

,M
A

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(4
)

Po
st

ed
Pr

ic
e

−
0.

02
2**

*
−

0.
02

4**
*
−

0.
02

0**
*

−
0.

02
2**

*
−

0.
03

3**
*
−

0.
03

1**
*
−

0.
03

2**
*

(0
.0

06
)

(0
.0

07
)

(0
.0

06
)

(0
.0

06
)

(0
.0

09
)

(0
.0

09
)

(0
.0

11
)

R
eg

ul
ar

Pr
ic

e
0.

02
6**

*
0.

02
7**

*
0.

02
4**

*
0.

02
6**

*
0.

03
6**

*
0.

03
2**

*
0.

03
5**

*

(0
.0

04
)

(0
.0

06
)

(0
.0

04
)

(0
.0

04
)

(0
.0

05
)

(0
.0

05
)

(0
.0

06
)

So
ur

ce
:

A
ut

ho
r’s

ca
lc

ul
at

io
ns

ba
se

d
on

th
e

IR
I

da
ta

.
N

ot
es

:
Pa

ne
lA

re
po

rt
s

th
e

re
su

lt
s

fo
r

di
ff

er
en

t
m

et
ho

ds
of

se
as

on
al

ad
ju

st
m

en
t:

C
ol

um
n

(1
)

us
es

th
e

un
tr

an
sf

or
m

ed
da

ta
,c

ol
um

n
(2

)
th

e
X

12
-A

R
IM

A
ad

ju
st

m
en

t,
an

d
co

lu
m

n
(3

)
th

e
M

A
(1

2)
fil

te
r.

Pa
ne

lB
1

co
m

pa
re

s
di

ff
er

en
t

U
PC

w
ei

gh
ts

:
eq

ua
lw

ei
gh

ts
in

co
lu

m
n

(1
),

m
ar

ke
t-

sp
ec

ifi
c

w
ei

gh
ts

in
co

lu
m

n
(2

),
an

d
co

m
m

on
w

ei
gh

ts
in

co
lu

m
n

(3
).

Pa
ne

lB
2

co
m

-
pa

re
s

di
re

ct
U

PC
-s

to
re

w
ei

gh
ts

(c
ol

um
n

1)
an

d
m

ul
ti

pl
ic

at
iv

e
w

ei
gh

ts
(a

pr
od

uc
to

fU
PC

an
d

st
or

e
w

ei
gh

ts
;c

ol
um

n
2)

.
Pa

ne
lC

ex
pl

or
es

di
ff

er
en

ta
pp

ro
ac

he
s

to
ti

m
e

ag
gr

eg
at

io
n:

in
co

lu
m

n
(1

)
in

fla
ti

on
is

co
m

pu
te

d
ba

se
d

on
m

on
th

ly
pr

ic
es

,w
hi

le
th

e
m

ea
su

re
of

pr
ic

e
di

sp
er

si
on

is
ba

se
d

on
w

ee
kl

y
pr

ic
es

an
d

on
su

bs
eq

ue
nt

av
er

ag
in

g
ov

er
w

ee
ks

w
it

hi
n

a
gi

ve
n

m
on

th
.

C
ol

um
n

(2
)

us
es

th
e

sa
m

e
m

ea
su

re
of

di
sp

er
si

on
bu

ti
ns

te
ad

re
lie

s
on

th
e

su
m

of
th

e
w

ee
kl

y
in

fla
ti

on
ra

te
s

(c
om

pu
te

d
as

th
e

lo
g

di
ff

er
en

ce
)

to
ob

ta
in

m
on

th
ly

in
fla

ti
on

.
C

ol
-

um
n

(3
)

us
es

th
e

sa
m

e
m

ea
su

re
of

in
fla

ti
on

as
in

co
lu

m
n

(1
)

bu
t

in
st

ea
d

co
m

pu
te

s
di

sp
er

si
on

ba
se

d
on

th
e

av
er

ag
e

pr
ic

e
pa

id
fo

r
a

go
od

w
it

hi
n

a
m

on
th

.
Pa

ne
lD

re
co

m
pu

te
s

pr
ic

e
di

sp
er

si
on

us
in

g
ob

se
rv

at
io

ns
w

it
h

at
le

as
t

10
st

or
es

(c
ol

um
n

3)
or

at
le

as
t

20
st

or
es

(c
ol

um
n

4)
—

th
e

da
ta

ar
e

sm
oo

th
ed

us
in

g
th

e
M

A
(1

2)
fil

te
r

to
de

al
w

it
h

m
is

si
ng

va
lu

es
(s

ee
th

e
te

xt
).

C
ol

um
n

(2
)

pr
ov

id
es

es
ti

m
at

es
fo

r
al

ls
to

re
s

us
in

g
th

e
M

A
(1

2)
fil

te
r,

an
d

co
lu

m
n

(1
)

us
es

th
e

X
12

-A
R

IM
A

fil
te

r.
Es

ti
m

at
io

n
sa

m
pl

e
co

ve
rs

20
01

–2
01

1.
Th

e
da

ta
ar

e
se

as
on

al
ly

ad
ju

st
ed

us
in

g
th

e
X

12
-A

R
IM

A
pr

oc
ed

ur
e

fr
om

th
e

U
.S

.C
en

su
s,

un
le

ss
sp

ec
ifi

ed
ot

he
rw

is
e.

D
ri

sc
ol

la
nd

K
ra

ay
(1

99
8)

st
an

da
rd

er
ro

rs
w

it
h

se
ri

al
co

rr
el

at
io

n
of

up
to

12
la

gs
ar

e
in

pa
re

nt
he

se
s.

* ,
**

,**
*

de
no

te
10

,5
,a

nd
1

pe
rc

en
t

si
gn

ifi
ca

nc
e

le
ve

l,
re

sp
ec

ti
ve

ly
b

de
no

te
s

ba
se

lin
e

es
ti

m
at

es

vii



different ways. First, from the economic point of view, one can compute each measure at a weekly frequency
and then take the average (for dispersion) or sum (for inflation) over weeks. Second, due to missing observa-
tions in the weekly data, it is possible to get statistically more accurate results if the raw data are aggregated
to a monthly frequency before inflation and dispersion are computed. I apply the former method to aggregate
dispersion because it is essential to compare prices across stores within narrow time intervals—otherwise dis-
persion might be due to the timing of purchase—and I apply the latter method to compute inflation because
it provides a more accurate measure of monthly changes in the disaggregated price level. The choice of time
aggregation has no meaningful effect on the results: Panel C of Table E1 reproduces the benchmark estimates
in column (1) and then reports the estimates from the main specification for both variables aggregated using
the first method (column 2) or the second method (column 3). There is a negligible difference in the coeffi-
cients: less than 0.002 log points. This result suggests that it is unlikely that missing values play an important
role.

Some markets in the data are represented by a small number of stores, which may lead to a large sampling
error in the estimates of price dispersion. Moreover, large markets are characterized by a large number of
stores, and also tend to have high price dispersion.2 I show that the estimates based on the observations with
a large number of stores are similar to the baseline. I compute the amount of price dispersion for goods with
at least 10 or 20 stores in a given market and week. This procedure has two effects: (1) some markets are
excluded entirely; and (2) for some other markets, it introduces time-series gaps. Because of the latter reason, I
cannot use the X12-ARIMA seasonal-adjustment procedure, which does not allow for time-series gaps. Instead,
I resort to the MA(12) filter. The first two columns of Panel D of Table E1 reproduce the baseline results for the
X12-ARIMA and MA(12) seasonally adjusted data. Columns (3) and (4) report the results for observations with
at least 10 and at least 20 stores, respectively, both obtained from the MA(12)-filtered data. These estimates
are very close to those in column (2).

2For example, the data contain 152 delivery stores in New York, NY, and only nine in Eau Claire, WI. Predictably, the dispersion of
prices is higher in New York: 12.7 vs. 9.3 log points.
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F Additional Empirical Results

Alternative Structural Specification

If Equation (4) is an accurate representation of the data-generating process, one can iterate backward to obtain
the following specification:

σ2
mc,t = β1π

2
mc,t − β2πmc,t +Φ1 (L)πmc,t−1 +Φ2 (L)π

2
mc,t−1 + γmc +τt + εmc,t , (F1)

where Φi (L) is a lag polynomial of an arbitrarily high order, i = {1,2}. This is to say that the lag of price
dispersion can be approximated by sufficiently many lags of the level and the squared term of inflation. I show
the estimates of this specification in column (2) of Table F1 and contrast them with the baseline estimates
in column (1). For posted prices, the coefficient on squared inflation is negative and larger in magnitude,
suggesting that a true data-generating process is different from Equation (4). For regular prices, the coeffi-
cients retain their sign but increase in absolute value, moving further from the predictions of the structural
specification.

Table F1. Structural Specification with Inflation Lags as Proxy for Lag Dispersion
Panel A: Posted Prices Panel B: Regular Prices
Baseline Lags Baseline Lags

(1) (2) (1) (2)
Inflation −0.004*** 0.008 0.005*** 0.025***

(0.001) (0.005) (0.001) (0.003)
Inflation Squared 0.008* −0.027*** −0.010** −0.045***

(0.004) (0.009) (0.005) (0.006)
Lag Price Dispersion 0.542*** 0.499***

(0.044) (0.044)
R2, within 0.30 0.03 0.26 0.02
N 185, 760 184,212 185, 280 183, 736

Source: Author’s calculations based on the IRI data.
Notes: This table compares the baseline structural specification from the Calvo model (column 1, or column 3 of Table 2)
and the alternative specification that uses inflation lags as a proxy for lag price dispersion (column 2). *,**,*** denote
10, 5, and 1 percent significance level, respectively.

Fixed Effects

I examine how market, category, and time fixed effects each affect the comovement of price dispersion and
inflation, and how much of the variation in price dispersion they can explain (Table F2). The baseline specifica-
tion controls for market-category and time fixed effects, and its results are reproduced in column (8). Column
(1) reports the results when neither cross-sectional nor time fixed effects are included. In columns (2)–(4), I
drop time fixed effects but keep cross-sectional ones: market only, category only, and market-category, respec-
tively. Columns (5)–(7) add time fixed effects to the specifications in (2)–(4). Panel A reports the comovement
coefficient β from the reduced-form specification, while Panel B shows the amount of variation in price dis-
persion explained by the econometric model (measured with R2). For posted prices, market fixed effects are
the most important; they explain 37 percent of the variation in price dispersion and are responsible for most
of the coefficient change relative to the case with no fixed effects. For regular prices, category fixed effects
are more important, explaining 34 percent of the variation. However, the effect of category fixed effects on
the comovement coefficient is only slightly greater than that of market fixed effects. Time fixed effects do not
affect the comovement coefficient much and explain only a tiny share of the variation in dispersion.

ix



Table F2. Fixed Effects and the Comovement Estimates

Fixed No Market (M) Category (C) M-C Time (T) M, T C, T M-C, Tb

Effects: (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Comovement Coefficient
Posted Price −0.057*** −0.031*** −0.053*** −0.026*** −0.057*** −0.028*** −0.053*** −0.022***

(0.010) (0.010) (0.011) (0.010) (0.011) (0.008) (0.011) (0.008)
Regular Price 0.050*** 0.047*** 0.042*** 0.029*** 0.050*** 0.047*** 0.042*** 0.026***

(0.009) (0.006) (0.008) (0.004) (0.009) (0.007) (0.008) (0.004)
Panel B: Explained Variation, R2

Posted Price 0.01 0.37 0.28 0.77 0.01 0.38 0.29 0.78
Regular Price 0.01 0.21 0.34 0.70 0.01 0.22 0.35 0.70

Source: Author’s calculations based on the IRI data.
Notes: Estimation sample covers 2001–2011. Number of observations N = 202,788 for posted prices and N = 202, 264 for regular prices.
The data are seasonally adjusted using the X12-ARIMA procedure developed by and available from the U.S. Census.
Driscoll and Kraay (1998) standard errors are in parentheses. Serial correlation of up to 12 lags is allowed.
*,**,*** denote 10, 5, and 1 percent significance level, respectively; b denotes baseline estimates

Time-Average Inflation and Price Dispersion

The main specification is based on the comovement of inflation and price dispersion within markets and prod-
uct categories. I also examine whether a similar relationship arises between markets and categories. Since
“between” regressions are based on averaging over 11 years of data, one can roughly think of this exercise as
measuring a steady-state relationship between the variables. Remarkably, in sticky-price models, the steady-
state relationship between inflation and price dispersion is often similar to that in the actual variables. For
example, in the Calvo model, it can be approximated by a simple linear relationship:

σ̄2 '
α

(1−α)2
π̄2,

where σ̄ and π̄ are steady-state price dispersion and inflation, respectively, and (1−α) is the frequency of
price adjustment. The structural specification in turn can be rewritten as

σ̄2 =
β1

1−α
π̄2 −

β2

1−α
π̄+ ε, or

σ̄2 = γ1π̄
2 − γ2π̄+ ε,

with γ1,γ2 > 0. The estimates shown in Table F3 establish two results: (1) a positive relationship between
inflation and price dispersion for regular prices and a negative relationship for posted prices also holds between
markets and categories; and (2) the Calvo model explains the steady-state behavior of price dispersion and
inflation poorly.

Table F3. Comovement of Time-Average Inflation and Price Dispersion

Panel A: Posted Prices Panel B: Regular Prices
Price Dispersion Level Squared Squared Level Squared Squared

(1) (2) (3) (1) (2) (3)

Inflation −0.332*** −0.026** 0.179*** 0.080***

(0.055) (0.013) (0.033) (0.009)
Inflation Squared −0.437*** −0.378*** 0.005 −0.299***

(0.053) (0.061) (0.024) (0.041)
R2 0.02 0.04 0.04 0.02 0.00 0.05
N 1, 548 1,548 1,548 1,544 1,544 1, 544

Source: Author’s calculations based on the IRI data.
Notes: The table reports coefficients from regressing the time average of price dispersion on the time average of inflation. *,**,*** denote 10, 5, and 1
percent significance level, respectively.
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Positive and Negative Inflation

In the Calvo model, the volatility of inflation, not the direction of price changes per se, is the source of price
dispersion. I test empirically whether increases and decreases in the price level have the same effect on price
dispersion. I split the sample into the two subsamples of positive and negative inflation. If the data-generating
process is Calvo, the coefficients obtained from the two subsamples should have the same size and opposite
sign. The results in columns (2) and (3) of Table F4 suggest that this is not the case. For posted prices, the
coefficients are negative and similar to each other in size. For regular prices, the effects of positive and negative
inflation on inflation are closer to those in the Calvo model.

Table F4. Comparing the Comovement for Positive and Negative Inflation

Inflationb Positive Inf- Negative Inf- Absolute
Level, π lation, π> 0 lation, π< 0 Value, |π|

(1) (2) (3) (4)

Posted Price −0.022*** −0.019*** −0.023* −0.010**

(0.008) (0.007) (0.012) (0.004)
[202,788] [119,490] [83,295] [202,788]

Regular Price 0.026*** 0.029*** −0.016 0.029***

(0.004) (0.004) (0.012) (0.004)
[202,264] [191,191] [11,073] [202,264]

Source: Author’s calculations based on the IRI data.
Notes: Each column presents coefficients from regressions of price dispersion on inflation for different samples or vari-

ables. Column (1) uses the level of inflation as in the baseline specification. Columns (2) and (3) look at subsamples
with positive and negative inflation, respectively. For the latter case, the level of inflation (negative values) is used.
Column (4) uses the absolute value of inflation.

Driscoll and Kraay (1998) standard errors are in parentheses. Serial correlation of up to 12 lags is allowed.
Estimation sample covers 2001–2011. Number of observations is in brackets.
The data are seasonally adjusted using the X12-ARIMA procedure from the U.S. Census.
*,**,*** denote 10, 5, and 1 percent significance level, respectively; b denotes baseline estimates
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G Dynamic Relationship between Inflation and Price Dispersion

I examine whether the relationship between inflation and price dispersion is static or dynamic, potentially
another criterion to distinguish between various macro models. In particular, in models with time-dependent
price adjustment (such as Calvo 1983), price dispersion is persistent; therefore, a shock to inflation has a
long-lasting effect on price dispersion. In state-dependent models (Dotsey, King, and Wolman 1999, Golosov
and Lucas 2007), this effect decays fast, since a large inflation shock in the future may completely offset the
effect of a smaller shock in the past. In search models (Benabou 1988, 1992, Head et al. 2012), the effect
is completely static: one variable affects the other only within the same period. In uncertain and sequential
trade (UST) models (Eden 1994, Williamson 1996), monetary shocks do not lead to any relationship between
inflation and price dispersion, which is inconsistent with the within-period comovement found in the data.
Demand shocks affect price dispersion only contemporaneously, a result that also holds in search models.

To document whether the relationship between the two variables is static or dynamic (without making any
structural inference), I estimate the effect on price dispersion over time of a change in inflation that cannot
be predicted based on the history of the two variables. I rely on the direct projections approach (Jordà 2005,
Stock and Watson 2007), a method that has a number of advantages over using vector autoregression (VAR).
First, it is parsimonious and requires only estimating a series of single linear equations. Second, it can be
applied to longitudinal data with a large number of panels.1 Finally, it simplifies the estimation of standard
errors when the error term is correlated across time and product categories (for instance, one can use the
Driscoll and Kraay 1998 approach). Essentially, the method is equivalent to obtaining the impulse-response
function from a reduced-form bivariate VAR.

I estimate the following specification:

σmc,t+h = βhπmc,t + γmc +τt +Ψ
σ
11 (L)σmc,t−1 +Ψ

π
11 (L)πmc,t−1 + εmc,t+h, (G1)

where Ψ x
11 (L) =

∑11
i=0ψ

x
i L i (1− L) is the lag polynomial of order 11 applied to the first-difference of variable

x , x = {σ,π} . This specification requires estimating a separate linear regression at each horizon h. Coefficient
βh can be interpreted as a response of price dispersion in a given market and category to an unpredicted (by
the lags of π and σ) change in inflation h periods after.2 Note that β0 corresponds to the slope reported in
column (7) of Table 2.

The impulse responses obtained from Equation (G1) and plotted in Figure G1 suggest a strong dynamic
relationship between inflation and price dispersion. This finding supports the models of time-dependent price
adjustment; it is only partly consistent with state-dependent models and is inconsistent with search and UST
models. For posted prices, a change in inflation is associated with a negative response of price dispersion
for about a year: the magnitude falls (in absolute value) from –0.043 on impact to –0.031 at the six-month
horizon. For regular prices, the effect is significant (and positive) for six months. This discrepancy in the
longevity of inflation shocks’ effect is partly due to wider confidence bands; for regular prices the magnitude
falls from 0.052 on impact to 0.032 at the six-month horizon, which is still a quantitatively large estimate.

1For an example and application of a panel VAR routine, see Love and Zicchino (2006).
2Previous studies often distinguish between the effect of perfectly anticipated inflation and that of inflation innovations (Lach and

Tsiddon 1992, Reinsdorf 1994). In light of this literature, βh can be loosely viewed as an effect of inflation innovations on price
dispersion. However, as the identification of inflation shocks requires a structural model—and potentially, there is some information
beyond the lags of inflation and price dispersion that can be used to forecast inflation—I adhere to a softer view that βh is a dynamic
analog of the intraperiod comovement of the two variables.
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Figure G1. Response of Price Dispersion to Unforecasted Change in Inflation
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Source: Author’s calculations based on the IRI data.
Notes: Solid lines show the response of the average weekly price dispersion, in log points, in a given market and product category to a
corresponding one-log-point increase in the annualized monthly disaggregated inflation rate that cannot be forecasted with sufficiently
long series of inflation and price dispersion. Estimation is based on the direct projections approach described in Equation (G1). The
shaded area between dashed lines covers two Driscoll and Kraay (1998) standard errors (from each side) around the estimated
response.
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H Calvo Model and the Data: Structural Specification

Since the Calvo model gives rise to a structural relationship between price dispersion and inflation, I show
that this structural relationship is also inconsistent with the data. I estimate the analog of Equation (4) for the
simulated data:

σ2
t = ασ

2
t−12 + β1π

2
t − β2πt + γ+ εmc,t , (H1)

where σ2
t is the variance of log prices simulated in the model, and πt is simulated inflation. To account for

filtering, I use σ2
t−12 as the lag of price dispersion.

The model and the data disagree along several dimensions (Table H1). First, in the model, price dispersion
is too persistent. This implies that, in order to match the data, the Calvo model needs a higher degree of
price flexibility. Second, the comovement is mostly driven by the linear term, supporting the reduced-form
specification used in the main text. Finally, the model predicts a positive comovement; in the data, it is positive
only for regular prices. And even for regular prices, the degree of the comovement in the Calvo model is much
stronger than in the data.

Table H1. Calvo Model vs. Data: Structural Specification
Model Data

Monetary TFP Both Shocks Posted Prices Regular Prices
(1) (2) (3) (4) (5)

Lag Price Dispersion 0.908 0.905 0.906 0.542 0.499
Inflation Squared 8.3·10−5 −6.0·10−5 −1.5·10−5 0.008 −0.010
Inflation 0.066 0.070 0.068 −0.004 0.005

Source: Author’s calculations based on the IRI and model-simulated data.
Notes: The table compares the estimates of the specification suggested by the Calvo model for the simulated and actual data. The dependent vari-
able is the variance of log prices, σ2. Columns (1)–(3) use the data simulated for the monetary shock, the TFP shock, and both of them, respectively.
Columns (4) and (5) reproduce column (3) of Table 2.
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