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Abstract:  
In  order  to  explain  the  substantial  recent  increases  in  obesity  rates  in  the United  States, we 
consider the effect of falling food prices in the context of a model involving endogenous body 
weight norms and an explicit, empirically grounded description of human metabolism. Unlike 
previous representative agent models of price‐induced gains in average weight, our model, by 
including metabolic  heterogeneity,  is  able  to  capture  changes  in  additional  features  of  the 
distribution, such as the dramatic growth in upper‐quartile weights that are not readily inferred 
from  the  representative  agent  setting. We  calibrate  an  analytical  choice model  to American 
women  in  the  30‐to‐60‐year‐old  age  bracket  and  compare  the  model’s  equilibrium  weight 
distributions  to data  from NHANES  surveys  spanning  (intermittently)  the period  from  1976 
through  2000.  The  model  predicts  increases  in  average  weight  and  obesity  rates  with 
considerable  accuracy  and  captures  a  considerable  portion  of  the  relative  growth  in  upper‐
quantile weights. The differential response to price declines across the distribution depends on 
the  fact  that  human  basal metabolism  (or  resting  calorie  expenditure)  is  increasing  and  yet 
concave  in  body  weight,  and  therefore  food  price  effects  on  weight  tend  to  be  larger  for 
individuals who are heavier initially. The lagged adjustment of weight norms helps to explain 
recent  observations  that  obesity  rates have  continued  to  rise  since  the mid  1990s, despite  an 
apparent leveling off of price declines. The predicted increase in body weight aspirations agrees 
with an observed trend in self‐reported desired weights, and it defies the conventional wisdom 
that thinness has been a growing obsession among American women in recent decades. 
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1 Introduction

The startling growth rates of average weight and obesity prevalence in the United States over the past 20

to 30 years have received widespread media attention for several years running. Obesity has become an

object of grave concern among public health officials and hasspawned voluminous research in the fields

of medicine, public health, and, increasingly of late, economics. Concern has focused on identifying

the causes of obesity and on enumerating the costs of obesity-related morbidity and mortality, in both

economic and human terms (Hassan et al. 2003, Himes 2000, Hamermesh and Biddle 1994, Cawley

2004, Pagan and Davila 1997).1 Not only has the weight distribution in the United States made a

considerable shift to the right—average adult female weight, for example, increased by 20 pounds,

or 13.5 percent, between 1976–80 (NHANES II) and 1999–2000 (NHANES 99)—but the upper tail

has experienced disproportionate growth: For women over the same time span, 95th-percentile weight

grew 16.7 percent, from 215 to 251 pounds, and 99th-percentile weight increased 18.2 percent, from

258 to 305 pounds, as shown in Table 1 and Figure 1.2,3 The official definition of obesity employed

by the Centers for Disease Control (CDC) and by the World Health Organization (WHO) is a body

mass index (BMI) value of 30 or greater, where BMI is the ratio ofweight, measured in kilograms, to

squared height, measured in meters. A 5’4” woman who weighs 175 pounds or more is classified as

1The level of alarm has become so pronounced as to have alreadyspawned a backlash by players in the food industry
(see www.consumerfreedom.com) seeking to forestall regulatory interventions and by scientists claiming that the health
risks of overweight and obesity have been overstated (Oliver 2005). Some have also questioned the CDC’s classification of
obesity based on body mass index (BMI), but few have disputedthe magnitude of the changes in the weight distribution.

2Changes of similar magnitude are observed in the BRFSS data between 1990 and 2002 as shown in Table 1. For men,
95th (99th) percentile weight increased from 230 (264) to 277 (338) pounds, and the average increased from 177 to 192
pounds between NHANES II and NHANES 99 as shown in Table 1.

3The empirical findings on body weight presented in this paperare based on samples of 30-to-60-year-old Americans
from two surveys administered by the Centers for Disease Control and Prevention: The Behavioral Risk Factor Surveillance
System (BRFSS) and waves II, III, and 99 of the National Health and Nutrition Examination Survey (NHANES II, III, and
99). The BRFSS is an exceptionally large random sample of theresident population 18 years and older in participating
states of the U.S. Self-reported information on actual weight, desired weight, and demographic characteristics is gathered
in cross-sections between 1990 and 2002 (1994–2002 for desired weight). We correct for potential bias of self-reported
weights (see Villanueva 2001), following the approach of Chou et al. (2004), using NHANES III data for the 30-60-year
olds. NHANES II, III, and 99 collect information from medical examinations on weight and health status of a cross-section
of the U.S. population in 1976–1980, 1988–1994, and 1999–2000. Combining the data from these two sources allows us to
track changes in the distribution of weight and BMI by demographic characteristics between 1976–80 and 2002.
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obese, and the obesity threshold for a 5’9” man is 203 pounds.4

A number of papers in economics have sought to explain the increase in obesity among American

adults over varying time spans of recent history. The explanations have focused on standard economic

influences, such as falling food prices and preparation timecosts as well as reductions in physical la-

bor on the job (Chou et al. 2004; Cutler et al. 2003, henceforth CGS; Philipson and Posner 1999;

Lakdawalla and Philipson 2002). The theoretical models offered study representative agents and speak

primarily to secular trends in average weight. Although themodel of CGS, which emphasizes self-

control problems, can predict growth in upper-quantile weights relative to the mean, the prediction is

sensitive to the empirical variation in self-control over food intake—variation that is neither well under-

stood nor readily observed. The prior works abstract from genetic heterogeneity, known to be a major

factor in weight variation (Cawley 1999, Chou et al. 2004) and either ignore or hold fixed the social

influences on weight determination. In this paper, we argue that social and biological determinants of

weight gain—interacted with falling food prices—contribute substantially to our understanding of the

various changes in the weight distribution over the past 30 years.

In the choice model, utility depends on food and nonfood consumption, and on how individual

weight compares with a social weight standard or norm—construed as the weight to which individuals

aspire. Individuals differ in their respective genetic endowments of (resting) metabolic capacity, but

they are otherwise identical. The social weight standard isendogenous, however, and depends on the

aggregate behavior of the heterogeneous population. Through analytical results and calibrated simula-

tions, we illustrate how food price declines affect the entire weight distribution, and we describe explicit

adjustment dynamics across long-run equilibria. The metabolic model and simulations are calibrated to

American women ages 30 to 60. This demographic restriction enhances the calibration’s precision, be-

cause the physiological and social processes we consider are gender and age-group specific. Consistent

4BMI values between 18.5 and 24.9 are considered “healthy,” BMI less than 18.5 is “underweight,” and BMI between
25 and 29.9 is “overweight” but not obese. BMI thresholds of 35 and 40 are used to classify increasingly severe degrees of
obesity. The thresholds are based on correlations with morbidity and mortality risk (Kuczmarski and Flegal 2000). Several
websites offer simple BMI calculators. See, for example, http://www.cdc.gov/nccdphp/dnpa/bmi/.
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with the data for this demographic group, observed in the NHANES II, NHANES III, and NHANES

99 studies, we predict large increases in mean weight, and even larger gains in upper-quantile weights,

as the food price falls. For simulated price declines that are pinned to independently estimated trends

in the full price per calorie of food, including both the money price and time costs, the predictions

match the quantitative changes in average weight and the obesity rate for this group with considerable

accuracy. Depending on how rapidly the weight aspiration adjusts to changing behavior, the dynamic

analysis shows that equilibrium adjustments may occur witha substantial lag, helping to explain the

observations, over the past 10 years, that food prices have been roughly flat and yet average weight and

obesity rates have continued to rise.

Among a number of genetically influenced physiological factors known to affect weight and BMI,

the basal metabolic rate (BMR)—the calories expended per day in the maintenance of involuntary bod-

ily functions with the body at rest—is arguably the most important, and it is relatively easy (albeit

expensive) to measure (Schofield et al. 1985, Cunningham 1991). Using a well-known data set con-

taining direct observations of basal metabolic rates, we estimate a parametric model of metabolism

in relation to body weight, a model that includes an idiosyncratic component. While previous eco-

nomic models of obesity have assumed that metabolism is linear in weight, we find—consistent with

the most recent research on metabolism (Horgan and Stubbs 2003, Cunningham 1991)—that models

in which BMR is strictly concave in weight fit the data better. Byembedding the metabolic model into

the economic choice model, we can describe complete weight distributions at each food price value.

More important than its ability to capture cross-sectionalweight variation (and metabolic variation ap-

pears capable of explaining a substantial portion of this variation) are the surprising consequences the

metabolism model predicts for the evolution of the distribution over time as prices fall. The marginal

effect of calorie consumption increases, on average, as average weight grows, even with no change in

the distribution of genetic endowments. This result does not arise when metabolism is assumed to be

linear in weight, and it contributes significantly to growthin upper-tail weights relative to the mean.

The analysis shows that the specifics of the metabolism modelmatter considerably for prediction and
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policy analysis.

We also illustrate the distributional implications of alternative explanatory models of obesity growth,

including those of CGS and of a rational addiction model adapted from Cawley (1999). We introduce

heterogeneity in the respective explanatory factors described in these models—self-control over food

intake and addictive propensity—and describe the resulting weight distributions at different price lev-

els. (In the case of CGS, we vary the time cost of food and its money price separately, in keeping with

their framework.) We find that, when food prices fall, variation in these behavioral traits can lead to

greater weight gains in the upper tail of the distribution than at the mean. However, these predictions

rely on as-yet-unverifiable assumptions about the distributions of self-control and addictive propensities

in the population. We therefore view these alternative frameworks as complementary to our own and

argue that a better understanding of the severity and prevalence of self-control and addiction problems

concerning food is needed in order to assess their contributions properly.

Social comparison in the model implies that individuals aspire to weigh less (by some fraction)

than the average weight in the population at a given time. This endogenous weight aspiration increases

as food prices fall, because price declines cause average weight to increase. Although it is difficult to

observe weight norms directly, this prediction agrees withthe observation that the self-reported “desired

weights” of Americans increased significantly between 1994and 2002, complicating the conventional

wisdom that media images emphasizing thinness perfectly dictate weight aspirations. The evidence on

desired weight comes from the CDC’s Behavioral Risk Factor Surveillance System (BRFSS), which

contains data on self-reported desired weights and actual weights for the same individuals.5 While the

data are not longitudinal, observations from different survey years suggest the overall trends. In 1994,

the average weight for an American woman was 147 pounds, while the averagedesiredweight was 132

5Self-reported weight data are known to be biased, and corrections are suggested in Chou et al. (2004), among others.
However, self-reported desired weights must be taken at face value, since they cannot be checked against their “true” or
revealed values. Accordingly, in comparing actual weight with desired weight (or actual BMI with desired BMI), we use
self-reported values of weight, desired weight, and height. These are reported in Figures 2 and 3. Alternatively, we can
correct both values according to the same algorithm, and these figures are available on request. Either way, desired weight
increases with actual weight over time.
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pounds. By 2002, the average had increased to 153 pounds, and average desired weight had increased

to 135 pounds. These data—which follow similar patterns expressed in terms of BMI—suggest a

reduction in (implicit or explicit) social pressure to maintain lower weights. At the same time, medical

innovations reduced obesity-related morbidity and mortality considerably over the period (Flegal et al.

2005). Although we do not model medical incentives explicitly, the “moving norm” model is consistent

with these developments as well.

The remainder of the paper is organized as follows. Section 2describes the theoretical model. Sec-

tion 3 analyzes the comparative static effects of price on equilibrium weights, the weight norm, and

welfare. In Section 4, we simulate equilibrium weight distributions under three different price levels

and simulate the dynamic adjustment paths across equilibria. We compare our results with benchmark

models involving weight-linear metabolism, a fixed weight norm, and forward-looking (as opposed

to myopic) behavior. In Section 5 we evaluate explanations for the evolution of the weight distrib-

ution (again under falling food prices) based on variation in self-control and addiction to food. The

concluding section discusses policy implications and predictions about the future of obesity.

2 Theoretical Framework

2.1 Agent-based model

The theoretical model takes an agent-based approach, positing genetically heterogeneous individuals

interacting within a social group. The nature of the interaction is that each individual compares her

own weight to the group’s commonly-held norm or “desired” weight, and this comparison enters her

optimization problem as described below. The existence of weight standards may seem an obvious

social fact, but there is no scientific consensus on how thesestandards are formed. Desired weight is

defined as a fraction, less than one, of average weight in the group, and is therefore subject to change

over time. This specification, in which people aim to be thinner than the average person in the refer-

6



ence population, combines two basic assumptions: 1) in contemporary Western society, thinness (up to

a point) is prized (Garner et al. 1980, Mazur 1986), and (2) individuals assess themselves in relation

to others rather than against an absolute scale. The latter assumption follows the social interactions

literature in economics, as well as longstanding traditions in sociology and social psychology, in stress-

ing the notion that people are concerned with being normal inrelation to their peers (see, for example,

Bernheim 1994, Brock and Durlauf 2001, Becker and Murphy 2000, Bandura 1986, and Dwyer et

al. 1970, among many others). This specification creates room for gaps between the prevailing white

Western ideal of thinness and thede factostandards to which individuals aspire (or against which they

are judged); consequently, ours is not a model of the evolution of media ideals.

The assumption of a common (relative) weight norm is admittedly highly stylized, and we recognize

that individual weight aspirations are likely to exhibit idiosyncratic variation. In the BRFSS data for

30-to-60-year-old women, the coefficient of variation of desired weight is 13.9 percent. However, the

coefficient of variation of actual weight is significantly greater, at 23.1 percent.6 Figure 2 illustrates this

discrepancy by overlaying the distributions of actual and desired BMI. In addition, race is a significant

explanatory factor in desired weight for this sample. (Figure 3 plots mean desired weights against

mean actual weights for various demographic groups.) Thesefacts suggest the presence of a social

component as well as an individual component in the formation of weight aspirations. Our model

emphasizes the social component by assuming a uniform weight norm for all American women between

30 and 60 years of age. This assumption prevents us from usingad hocvariation in norms within this

demographic group as an explanatory tool, and therefore results in a conservative test of the influence

of social weight norms.

Equilibrium for the system is defined as a weight distribution and a weight norm that are mutually

consistent. Each individual maximizes a myopic utility function over short-term food and nonfood

consumption, taking the reference weight and prices into account.7 Food and nonfood consumption are

6For men, the corresponding figures are 13.7 percent and 18.6 percent, respectively.
7We will refer to the reference weight alternatively as the norm.
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both goods, but deviation from the reference weight is a bad.A general expression of the one-period

utility model is as follows:

Uit [Ft ,Ct |Wt−1] = Gi [Fit ,Cit ]−J(Wit [Fit ,Wi,t−1,εi]−Mt−1)
2. (1)

Ft andCt represent food and nonfood consumption, respectively, forperiodt. Wt−1, representing weight

at the end of periodt −1, is a product of past actions. Individual heterogeneity iscaptured byεi, which

is a stationary shock to basal metabolism, as described below. Gi is the norm-independent component

of utility: It is strictly increasing and strictly concave in C and strictly concave but not necessarily

monotonic inF . The term beginning withJ gives the social-interaction component, which represents

the cost of deviating from the reference weight,M. The subscript onM indicates that agents observe

the value ofM at the end of periodt −1 and take this as fixed in the optimization; in particular, they do

not forecast the value ofM that will emerge as a consequence of aggregate behavior in period t. The

coefficientJ gives the strength of the social interactions, which is heldconstant across individuals. The

presence of a norm has the intuitive effect of lowering the variance of weight in the population, even

though not all population members conform to the norm exactly.

The individual correctly anticipates her own end-of-period weight as a function of food intake and

so takes into account the effect of current food consumptionon the cost of deviating from the reference

weight. This cost is symmetric—it is just as undesirable to be underweight relative to the norm as

to be overweight—and is meant to capture several known typesof sanctions. The stigmatizing of

overweight (and underweight) individuals is well-documented (Myers and Rosen 1999) and may entail,

for example, teasing, ostracism, and discrimination in hiring. Peer pressure and contagion regarding

eating behavior have also been observed, particularly among adolescent girls (Crandall 1988). Ross

(1994) has emphasized depression as a consequence of overweight. She identifies three causes of

depression among the overweight, two of which relate directly to the presence of socially derived

weight norms. She finds that some overweight individuals become depressed as a direct result of
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negative self-perception and that these individuals tend to belong to social groups with a low incidence

of overweight. Graham and Felton (2005) reinforce these findings in two ways: They find that, in

general, obesity contributes to depression among Americans (and they reject the reverse causality), but

they also find that obesity does not raise depression risk significantly among African-American women,

a group with one of highest obesity rates in the United States.

In addition to mental health costs, extreme overweight and underweight entail significant physical

health consequences. Several studies have shown, for example, that the risks of diabetes, heart disease,

osteoarthritis, and other health conditions accelerate with increases in body mass index (for example,

Must et al. 1999). In addition, mortality exhibits a U-shaped relationship to BMI among men in the

United States, indicating that underweight imposes similar mortality risks as overweight (Troiano et

al. 1996). Evidence from developing countries, where underweight is much more prevalent than in

the United States, indicates substantially elevated disease incidence among low-weight (BMI below

20) individuals (Ezzati et al. 2002). A model with deviationcosts that depend on a mutable norm

will capture these health costs only when the value of the norm lies within the medically recommended

range. In the parameterizations we consider, the emergent norms do, in fact, fall within this range, but in

general the model does not constrain them to do so. The healthcosts of obesity in particular are partly

reflected in the increased per-capita health spending amongthe obese relative to the normal-weight

population (Thorpe et al. 2004).

In addition to psychological and physical costs, there are direct economic costs associated with

overweight and obesity. For example, among younger white females (age 16–44) in the United States,

an increase in weight of two standard deviations has been shown to reduce the average wage by 9

percent (Cawley 2004).8 Marriage-market penalties for overweight and obesity among women, which

may involve both economic and psychic costs, have been documented by Averett and Korenman (1996).

Successive optimization of the one-period problem impliesconvergence to a stable weight for any

8The results in Cawley (2004) and in Averett and Korenman (1996), based on recent U.S. samples, show weight-related
earnings penalties only for overweight and obese individuals. Since the incidence of underweight in the U.S. is limited,
these findings do not rule out the possibility of equivalent economic costs among underweight subjects.
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given value ofM. This weight does not, in general, coincide with the stable weight that optimizes a

dynamic programming problem in which one-period utility isgiven byU [.]. The myopic specification

may be taken to imply some lack of self-control, although we do not explicitly model a time inconsis-

tency problem, as do CGS. The model does not imply that individuals ignore the future altogether, since

they take into account the near-term effect of calorie consumption on weight and factor in the social

cost (or benefit) of the weight change. This assumes that individuals correctly perceive their net energy

intake.9 We examine the robustness of our predictions to forward-looking specifications and compare

the power of our model to that of other models that emphasize intertemporal concerns. As discussed in

Section 5, we find that the myopic specification does not drivethe central qualitative results, but has an

advantage in explaining the quantitative response to pricechanges and, in some cases, alters the welfare

analysis.

For purposes of simulation and calibration, we specify the maximization problem as follows:

Max{Ft ,Ct}Uit [Ft ,Ct |Wi,t−1,α,δ,β,J,γ,ρ,εi,Mt−1] = (2)

αFit −δF2
it +βlog[Cit +1]−J(Wi,t−1− (7/3500)BMR(γ,ρ,εi,Wi,t−1)+ .9Fit −Mt−1)

2,

s.t. ptFt +Ct ≤Y.

Within a single period, calibrated to one week, the marginalutility of food, F , declines and eventually

becomes negative. The expression inside the parentheses following J just amounts to the difference

between end-of-period weight,Wt , and the norm,M, as of timet −1, as in equation (1).10

Aside from the calories burned in digestion, we assume for simplicity that calorie expenditure is

limited to the basal metabolic rate (BMR), or the calories needed only to sustain basic bodily functions,

such as lung and heart activity, with the body at rest. The advantage of this assumption is that BMR has

9There is evidence that people systematically underestimate their caloric intake (Wansink 2004), but we ignore this
problem in the current paper.

10This social interaction term is similar to those in Glaeser and Scheinkman (2002), Brock and Durlauf (2001), and Burke
and Prasad (2005), among others.

10



a strong exogenous (that is, genetic) component that has been measured in numerous studies (discussed

below). Of course, physical activity induces calorie expenditure over and above BMR in the short

run, and exercise may alter BMR in the long run via its effect onthe quantity of fat-free body mass

(Cunningham 1991). However, Black et al. (1996) find, using extensive data from affluent societies,

that BMR is strongly correlated with total energy expenditure (TEE), the former accounting for 60

percent to 65 percent of the latter, on average. They also findthat physical activity level (measured as

the ratio of TEE to BMR) is orthogonal to BMR. Variation in BMR is therefore a good predictor of

variation in total calorie expenditure, with the advantageof isolating the persistent genetic component

of heterogeneity and the disadvantage of underestimating the variance of TEE.

A large literature, spanning the fields of public health and clinical nutrition, has concerned itself

with estimating predictive equations for BMR in order to helpdetermine caloric needs based on readily

measured variables such as weight, height, age, and sex. Although consensus on a single best model

has not been reached, taken together the studies indicate broad agreement on a number of issues: (1)

body weight is a significant (positive) factor in BMR, and knowledge of the weight-BMR relationship is

crucial for estimating energy needs (Cruickshank 1999); and(2) there is significant idiosyncratic vari-

ation in BMR around the predicted values. While Cunningham (1991), Weigle et al. (1988), Pullicino

et al. (1996), and others have argued that lean body mass is a better predictor of BMR than weight (and

that use of this measure eliminates needs for adjustments based on age, sex, and height), the significant

relationship between weight and lean body mass implies a concave relationship between weight and

BMR (Cunningham 1991) that can be used when lean body mass cannot be readily measured.

While some studies have found that the body responds to short-term weight gain or loss with com-

pensatory changes in metabolism that seek to “defend” the initial equilibrium weight (Wilson 1999,

Labayen et al. 2004), the duration of these effects is unknown. While we do not dispute the possibility

of metabolic path dependence and other complexities at the individual level, two relatively recent stud-

ies (Martin et al. 2004, Arciero et al. 1993) have found significant predictive power for a model of BMR

first advanced by Harris and Benedict (1919), indicating robustness of the weight-metabolism relation-
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ship (over a given weight range) to secular changes, such as increased average calorie consumption,

and group-level differences in the populations under study.11

One model often employed for predictive purposes is the weight-linear model of Schofield et al.

(1985). Both CGS and Lakdawalla and Philipson (2002) adopt linear specifications, and CGS employ

specific coefficients from the Schofield study. However, our own analysis of the Schofield data, as

well as a number of other prominent studies, questions the accuracy of the linear model. For example,

Horgan and Stubbs (2003) have shown that the Schofield equations substantially overestimate BMR for

the obese, a problem due in part to the dearth of obese subjects in the Schofield data. The Horgan and

Stubbs findings, as well as the reduced form of the Cunningham model (1991) and other models based

on lean body mass, imply declining marginal effects of body weight on BMR. The effect arises because

excess weight tends to come disproportionately in the form of fat, which burns far fewer calories per

pound than does lean mass. In addition, there is evidence of heteroskedasticity in the error term. Studies

that have found the disturbances to be positively correlated with weight include Leibel et al. (1995) and

Rand (1982).

Our own analysis of the Schofield data, using maximum likelihood estimation, finds that (1) a

weight-log-linear model of (expected) BMR fits the data better than a weight-linear model and (2) the

error term is heteroskedastic, with error variances increasing in weight. To illustrate the importance of

the metabolic specification, we generate simulated equilibrium weight distributions under both of our

estimated models (log-linear and linear, respectively). Both models involve the same, heteroskedastic,

error structure. Of the two models, only the log-linear specification generates strongly asymmetric

equilibrium weight distributions with long upper tails, instrong agreement with the distributional fea-

tures of the BRFSS and NHANES data. The concavity of the log-linear model also contributes to large

weight growth in the upper tail over time, a pattern that doesnot emerge strongly under the linear

model. (Results are discussed in more detail in Sections 4 and5.)

11Evidence on racial and ethnic influences on BMR is mixed, depending on definitions of ethnicity and other method-
ological factors (Martin et al. 2004, Hayter and Henry 1994,Soares et al. 1998, Cruickshank 1999).
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The linear heteroskedastic specification is as follows:

BMR(kcalperday) = γ+ρW+ εi log(W). (3)

The shock,εi, is idiosyncratic and permanent; it is normally and identically distributed with mean zero

and standard deviationσε. In expectation, then, the relationship between BMR and weight is linear

in this model, but for a given nonzero value ofεi , metabolism deviates from the linear relationship in

proportion to log weight. For the log-linear specification,expected BMR is log-linear in weight, and

the error structure is the same as above. That is, we simply replace weight with the natural log of

weight in the second right-hand-side term in (3). The metabolic equation in (3) implies the following

(one-week) relationship between food intake and weight:

Wt = Wt−1− (7/3500)(γ+ρWt−1 + εi log(Wt−1))+ .9Ft . (4)

The term.9Ft represents the thermic effect of digestion, that is, the fact that digestion consumes, on

average, 10 percent of calories consumed. Weight is measured in pounds, while metabolism is mea-

sured in (kilo)calories per day. Accordingly, the latter must be converted into pounds of body weight

lost over one week. The conversion factor of 7/3500 is the ratio of the number of days in a week to

the number of calories (3500) per pound of body weight. Food is measured directly in pounds of body

weight added per week, which can easily be converted back to calories by multiplying by 3500.

For simplicity, we do not model height variation. There are anumber of reasons why we do not

expect height variation, either cross-sectionally or overtime, to contribute much explanatory power to

the weight distribution. Among U.S. women, average height has increased by less than 2 percent over

the past four decades (see for example, Komlos and Baur 2003);observed weight increases over that

period have far exceeded the weight gains that would have held BMI constant. As for cross-sectional

differences, the Cunningham (1991) study indicates that height does not add much explanatory power
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to the model of BMR based on lean body mass. Also, Schofield et al. (1985) argued that height

was secondary to weight in predicting basal metabolism. Using the Schofield data for women ages

30 and older, a linear regression of BMR on height and weight has an R-squared value of.339, an

improvement of just.006 over a linear model that includes weight alone. A linear regression of BMR

against body mass index (BMI), a measure that incorporates height, yields an R-squared of.235 for the

same demographic group.

Height could affect weight outcomes for non-metabolism-related reasons, however. For example,

we might expect weight aspirations to be height-specific, asin government tables indicating healthy

BMI values rather than healthy weights. However, we express the common norm as a weight value

rather than as a body mass index (BMI) value. While the BRFSS data do indicate variation in desired

weights with height (as well as with actual weight), such variation does not render desired values of

BMI constant across individuals. In fact, the desired BMI values implied by the BRFSS data decrease

systematically in height, suggesting that women do not adequately adjust for height differences in

setting weight aspirations. Therefore, the common weight norm assumption, while stylized, is not

necessarily less realistic than one involving a common normfor BMI. Anecdotal evidence suggests

that weight values are more salient than the less-readily-observed BMI values.

3 Equilibrium and Comparative Statics

3.1 Equilibrium definition

Individuals in the population are identical in all the parameters of the utility function,α, β, ρ, γ, J,

M; have identical incomes; and face the same prices. The only explicit source of heterogeneity is the

idiosyncratic metabolic shock,εi . The full equilibrium conditions under the linear metabolism model
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can be expressed as follows:12

α−2δFS
i −1.8J(WS

i −MS) = λp, (5)

FS
i = (1.11)(7/3500)(γ+ρWS

i + εi log(WS
i )), (6)

MS = ζ(
1
N ∑

i
WS

i ), (7)

β
CS

i +1
= λ, (8)

pFS
i +CS

i = Yi. (9)

The conditions apply to an interior equilibrium, in which stable food intake,FS
i , stable weight,WS

i , and

stable non-food consumption,CS
i , are all strictly positive.MS is the equilibrium weight norm, which,

according to equation (7), is some fraction,ζ, of the average stable weight that arises under this norm.

Equation (5) gives the first-order condition on food consumption, whereλ is the Lagrange multiplier.

Equation (6) guarantees that per-period food intake maintains weight at the levelWS
i . Equations (8)

and (9) are, respectively, the first-order condition on non-food consumption and the budget constraint.

The equilibrium norm depends on the relative price of food, the distribution of individual shocks, and

the magnitude ofJ, because these determine the stable individual weights andconsumption levels for

any fixedM. The equilibrium norm (and therefore the weight distribution) also depends onζ, which

we will set at.88 in various simulations. Equilibrium depends on income levels and the remaining

parameters as well, but we hold these fixed throughout the analysis.

Assuming the shocks are normally distributed, the expectedvalue of the equilibrium norm is defined

implicitly as a function of prices by the following equation, in whichφ(.) represents the standard normal

12Equilibrium conditions for the log-linear metabolism model are equivalent but analytically less transparent, so we use
the linear specification here for ease of exposition.
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density function:

MS(p) = ζ
Z ∞

−∞
WS

i (MS(p), p,εi)φ(εi/σε)dε. (10)

It should be noted that because the absolute shocks are heteroskedastic in weight, the expected average

weight in equilibrium does not correspond to the stable weight for the individual who drawsεi = 0.

Under our functional form and parameters, an interior equilibrium exists and is unique for each

realization of the metabolic shocks. The existence and uniqueness of a stable equilibrium norm follows

from two (necessary and sufficient) properties of the model:(1) each individual has a unique stable

weight for every possible value ofM; and (2) the rate of change of the stable weights withM is positive

and less than one. The existence and uniqueness of a stable weight for a givenM andεi depend in turn

on three necessary and sufficient conditions: (1a) a unique solution to the one-period problem exists

for each starting weight; (1b) optimal caloric intake decreases (increases) as one’s initial weight gets

farther above (below) the target weight or norm; and (1c) thetotal number of calories burned per day

is strictly increasing in weight for each individual, at a rate less than one. The stable weight solves the

one-period problem when the initial weight happens to be thestable value, but it is not in general the

individual’s optimal stable weight.13 From any initial state of the system, both convergence to thestable

weight for any value ofM and convergence to the equilibriumM for given parameters are guaranteed.

We provide verification of these assertions in the mathematical appendix.

3.2 Comparative statics

3.2.1 Price effects and the social multiplier

First, we consider the effect of a change in the full price perfood calorie on equilibrium outcomes. We

have in mind a price decrease caused by an outward shift in thefood supply curve, reflecting a decline

in food production and preparation costs (as in Philipson and Posner 1999 and CGS). Price has both

13The optimal stable weight would maximize one-period utility, subject to the constraint that weight be unchanged during
the period.
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direct and indirect effects on body weight. The direct effect is the change in stable weight, holding the

norm fixed. However, given that each individual adjusts her weight in response to the price change, the

norm must be updated. The norm change in turn sets off additional changes in weight and a further

adjustment of the norm, and so on, until a new equilibrium is reached.14 The latter is an example of

a “social multiplier” effect, as in Becker and Murphy (2000),Glaeser and Scheinkman (2002), Brock

and Durlauf (2001), and Burke and Prasad (2005). The total effect is expressed as the decomposition

of these two effects as follows:
dWS

i

dp
=

∂WS
i

∂p
+

∂WS
i

∂M
dMS

dp
, (11)

where the expressiondMS

dP refers to the change in the equilibrium norm caused by the price change. The

first term is negative: It is optimal to eat more, and therefore weigh more, the cheaper is food,ceteris

paribus. As weights rise, so does any positive function of the average, and weight always moves

directly with the target weightM (that is, ∂WS
i

∂M is strictly positive). Therefore, the social multiplier

effect reinforces the price effect, guaranteeing that the equilibrium weights and the equilibrium norm

are decreasing in price, that is,dWS
i

dp < 0 anddMS

dP < 0.

We can decompose the price effect on the equilibrium norm as follows:

dMS

dp
=

ζ
N ∑

i
(
∂WS

i

∂p
+

∂WS
i

∂M
dMS

dp
) =

ζ
N ∑i

∂WS
i

∂p

1− ζ
N ∑i

∂WS
i

∂M

. (12)

The numerator in the last expression on the right representsthe average partial price effect on individual

weight, multiplied by the factorζ. The denominator, which is strictly less than one under our assump-

tions, acts to amplify the partial price effects in equilibrium, leading to a greater change in average

weight than would occur if the norm were fixed. The social multiplier can be expressed as the factor by

which the average partial-price effect gets multiplied to yield the average equilibrium-price effect. This

14Convergence to a unique equilibrium for any given price requires that the social influence on weight not be too strong—
specifically, the partial derivative of individual weight with respect to the weight norm must be less than one. See the
mathematical appendix for further discussion.
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factor amounts to the quantity 1/(1−m), wherem= ζ
N ∑i

∂WS
i

∂M represents the average partial effect of a

norm change on stable weight, multiplied byζ. We assume that this latter partial effect is strictly posi-

tive and yet not too large, that is, strictly less than one. This assumption guarantees that the multiplier

is finite and yet strictly greater than one (Burke 2006).15

We have assumed that the initial price decline is exogenous to the model. However, the social

multiplier effect implies an outward shift in the (norm-constant) food demand curve. To restore market

equilibrium following such a shift, the price per calorie would have to move back up, but we do not

derive this price movement in the current framework. Relative to a framework with a fixed weight

norm, an increase in food supply in the endogenous-norm model results in a smaller price decline and a

greater weight gain in equilibrium. The social multiplier effect thus acts to increase the price elasticity

of calorie demand. If weight norms shift with a lag, rather than simultaneously with changes in average

weight, the price elasticity of calories should be greater in the long run than in the short run.

3.2.2 Welfare effects of food price changes

Consumer welfare in our model depends only on weight relativeto the flexible social norm, regardless

of how this norm compares with a healthy weight standard. Thus, the welfare effects of price changes

are potentially quite different than welfare effects for a consumer who compares her weight to a fixed

health standard. We assess this difference within our framework by decomposing the welfare effects

of a price decline into two components: the portion of the welfare effect induced by the price decline

only, holding the weight norm fixed, and the portion of the welfare effect induced by the change in the

equilibrium norm. The decomposition is as follows:

dVS

dp
=

[(

UW +UF
dFS

dWS

)

∂WS

∂p
+UC

∂CS

∂p

]

+

[(

UW +UF
dFS

dWS − pUC
dFS

dWS

)(

∂WS

∂M
dM
dp

)

+2J
(

WS−M
) dM

dp

]

,

(13)

15Becker and Murphy (2000) define the social multiplier as the term m= ζ
N ∑i

∂WS
i

∂M , but the thrust of the results is the
same in either case.
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whereVS refers to the agent’s utility in equilibrium anddFS

dWS represents the increase in food consump-

tion required to maintain a higher stable weight value.16 UW refers to the marginal utility of an increase

in the stable weight, which is the same as the marginal utility of an increase in final weight within a

given period. The terms inside the first set of square brackets represent the welfare effects of the price

change, holding the norm fixed. The terms inside the second set of square brackets capture the addi-

tional impact on welfare prompted by the change in the equilibrium norm. Assume that in the initial

equilibrium the consumer weighs more than the norm, in whichcase the marginal utility of weight

gain,UW, is negative and the marginal utility of food,UF , is positive. Holding the norm fixed, a food

price decline may or may not make the (myopic) consumer better off. Welfare will improve only if the

benefits of added consumption (of both food and nonfood goods) outweigh the costs of weight gain

relative to the fixed norm.

The social multiplier effect set off by the price drop induces additional weight gain and food con-

sumption, but a decrease in nonfood consumption (to satisfythe budget constraint holding income

constant—this need not imply lower nonfood consumption on net when price effects are included).

Also, in the aggregate it leads to an increase in the value of the weight norm. Again, the welfare effect

is ambiguous. The benefits are that the consumer eats more and, ignoring the price effects on weight,

her own weight moves closer to the norm. The latter result holds (for an initially overweight individual)

because the increase in stable weight caused by the norm change is less than the increase in the norm.

The cost is that she gives up some nonfood consumption.

Given the ambiguity in both components of the welfare change, the net welfare effects of a price

change are ambiguous.17 The indeterminacy applies to initially overweight as well as to initially un-

derweight individuals. (Simulated welfare effects are discussed in Section 4.) All else being equal, the

net welfare effect of a food price decline for a given individual depends on whether weight norms are

16In a linear metabolism model this number would be a constant that depends on the individual’s shock; with log-linear
metabolism this value still depends on the idiosyncratic shock, but it also decreases in stable weight.

17Welfare effects in a model with forward-looking consumers and a fixed norm, as in Philipson and Posner (1999), are
unambiguously positive. CGS raise the possibility of welfare losses for individuals with imperfect self-control, butthey
estimate that the costs of weight gain have likely been less on average than the benefits of time savings in food preparation.
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fixed or flexible. In the simulations, for example, we find thatmany consumers would receive greater

welfare gains from a price decline (or smaller losses) in a model with flexible, as opposed to fixed,

weight norms, despite the fact that they would weigh more in the flexible-norm case.

4 Main Simulation Results

We use computational experiments to assess the model’s ability to explain both the general shape of

the empirical weight distribution and the growth in its upper tail since the mid 1970s. The calibration

targets the weight distributions for American women in the 30–60-year age bracket, observed between

1976–80 and 2000 (see Figure 1 and Table 1). This specificity assists the precision of the calibration,

but the patterns for this group are representative of the overall U.S. trends during the same period.

We describe the equilibrium weight distributions for a series of three prices, a series meant to approx-

imate (roughly and discretely) the (full) food price declines observed in the United States between

1976 and 2002. We also describe the dynamic evolution of the distribution, at points both in and out

of equilibrium, in response to a more gradually declining price path. We compare results under our

model of endogenous norms and non-linear metabolism with results under alternative models based

on competing frameworks. For some features of the distribution—for example, pronounced rightward

skewness—our model offers clearly superior explanatory power. In addition, our model offers a closer

match for the quantitative changes in the mean, median, 95th-, and 99th-percentile weights over the

time period. Another desirable feature of our model is that it places more constraints on the calibration

relative to alternative frameworks, because in the latter,the parametric form of the heterogeneity is

unknown. The results of the experiments are summarized, using descriptions of the key distributional

features, in Table 1.

20



4.1 Calibration

In each experiment, we draw 50,000 values from the shock distribution; these values are held fixed

across the experiments to prevent noise from clouding the effect of changes to the model. We calibrate

the model to women ages 30 to 60, setting an initial list of parameters to roughly match average weight

for this group observed in the 1976–80 NHANES data. All parameters are identical across individuals,

except for the idiosyncratic metabolic shock. To calculateobesity rates, we measure the percentage of

women who weigh more than 174.5 pounds. For a woman of averageheight, approximately 64 inches

in the United States for the relevant age group, this weight implies a body mass index of 30, which is

the official obesity threshold established by the Centers forDisease Control. The body weight norm is

defined as 88 percent of the realized average weight in equilibrium, a figure based on the relationship

between desired weights and actual weights in the BRFSS data for women, as shown in Figure 3.

The metabolism models are estimated directly from the original Schofield data (see Schofield et

al. 1985 for details on these data).18 For the weight-linear metabolism model, using the maximum

likelihood method, we estimate a weight coefficient ofρ̂ = 3.19 (t-value of 15.5) based on the data’s

subsample of 411 women aged 30 to 60. Using the same method anddata, we estimate a BMR model

that is log-linear in weight (in pounds) with a coefficient onthe natural logarithm of weight of̂ρ = 447.6

(t-value of 15.1). Our estimates for the linear model are comparable with those reported in Schofield

et al. (1985). Using the information on the 199 American women in the sample, we estimate that

the constant term for the average U.S. woman in that age groupis γ̂ = 928.9 for the log-linear model.

As discussed above, to our knowledge, no previous estimatesof parametric non-linear BMR models

based on the Schofield data exist (for a non-parametric estimate, see Horgan and Stubbs 2003), and

the previous economic literature has employed non-stochastic linear models of metabolism. Sample

likelihood comparisons suggest that the log-linear model fits the data better than the weight-linear

model, consistent with recent research suggesting a concave relationship between weight and BMR

18We thank Graham Horgan of Biomathematics and Statistics Scotland (BIOSS) for providing us with the data.
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(Horgan and Stubbs 2003, Cunningham 1991). Given that the Schofield data contain relatively few

obese individuals (the obesity rate in the sample of 411 women used here is 13.6 percent), our BMR

model may understate the degree to which metabolism slows among overweight and obese women.

Recall thatεi represents the idiosyncratic metabolic parameter for individual i, the main source of

heterogeneity in our model. The parameter is fixed longitudinally for a given individual, but the actual

deviation from the expected metabolic relationship at any point in time is given byεiwit , wherewit

is the individual’s prevailing weight. Assumingεi is normally distributed with mean zero, we obtain

estimates, denoted̂σε, for its standard deviation from the maximum likelihood estimations described

above. For the weight-linear metabolism model, we estimatea value forσ̂ε of 24.18 (t-value of 35.1),

and for the weight-log-linear model, we getσ̂ε = 24.1 (t-value of 35.0).

Under the calibration, the marginal utility of the first unitof food in a week exceeds the marginal

utility of the first unit of non-food consumption by 24 percent. (The coefficients on the utility func-

tion in equation (2) areα = 6.2, δ = 0.9, andβ = 5.) The parameterJ, representing the strength of

social interactions, is set at 0.0018. This value, together with prices and the other utilityparameters,

determines the response of individual weight to an exogenous change in the weight norm. On average

across individuals and prices, the magnitude of this effectis about 0.2, meaning that individual weight

increases by one-fifth of a pound for every one-pound increase in the norm.

The model’s price represents the full price, including bothfood inputs and time costs, of 3500

calories (the caloric equivalent of one pound of body weight). We experiment with this price at $50,

$40, and $32 to roughly match the decline in the real full price of calories over the past three decades.

At the initial full price ($50), the cost of the calories needed (1556) to cover basal metabolism and

digestion for a 140-pound woman amounts to $22.41 per day. At the lowest full price, this cost comes

to $14.81. Income is set at $600 per week or $31,200 per year, implying a gross hourly wage of $15.19

Our values for income and the full price of food imply that in the initial equilibrium (at the highest full

19This is consistent with hourly average U.S. wages in 2000, using 2000 dollars. In 1982 dollars, the average hourly
wage in the U.S. in 2000 was about $8, roughly the same as in 1980.
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price of calories) the average person is spending about 26 percent of her income on food expenses.20

CGS report that the time costs of food (including meal preparation and clean-up, but not shopping

or transportation) fell by 42 percent between 1975 and 1995,due to greater availability of restaurants

(in particular, fast food and take-out) and technological advances in food processing, storage, and

preparation. Since time cost declines appear to have leveled off considerably following 1995 (Aguiar

and Hurst 2006), the overall time cost decline between 1975 and 2000 should not be much different

from 42 percent. With time costs valued at the assumed hourlyrate of income, the assumed 36-percent

overall decline in the full food price implies a real declinein the purchase price per calorie of 23 percent

from its initial value.

Note that the 23-percent decline estimate lies between the relative decline in the overall food CPI

and the relative price declines of several important food commodities. (As shown in Figure 4, the

prices of ground beef, chicken, eggs, and lettuce have fallen 50 percent relative to the overall CPI

since 1980.) As seen in Figure 5, between 1978 and 2002, the overall food-at-home price index fell

by 15 percent relative to the CPI, and the food-away-from-home index fell by 6 percent. The declines

for individual items should qualify the (smaller) estimated declines for the overall food CPI, since the

latter is likely to be a less reliable measure of the price percalorie of food. In fact, the food CPI is

likely to have underestimated the decline in the price per calorie over the period of interest: Changes

were made in the list of included items to reflect changing consumer expenditure patterns (see the BLS

Handbook of Methods, http://www.bls.gov/opub/hom/pdf/homch17.pdf), and these expenditures must

have embedded the increases in calorie consumption observed over the period. USDA consumption

data show that per capita calorie consumption (adjusted forlosses) has increased by about 22 percent

since 1975 (see Putnam et al. 2002). However, our chicken andbeef prices refer, respectively, to

the price per pound of whole fresh chicken and the price per pound of ground chuck (and not to the

composite “beef and veal” and composite “chicken” categoryprices) and so should be relatively reliable

20Abstracting from time and preparation costs, Huang (1993) estimates that the average food budget share between 1953
and 1990 in the U.S. was about 18 percent.
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indicators of per-calorie prices.21

To illustrate further, consider McDonald’s Big Mac sandwich, which contained 590 calories consis-

tently over the period under consideration (and still does). Our assumed highest and lowest full price

levels imply, respectively, high and low full prices for theBig Mac of $8.40 and $5.30. Based on infor-

mation from McDonald’s andThe Economistmagazine, we calculate an average list price of a Big Mac

in the United States of about $2 for the year 2000. The difference between $5.30, our lowest estimated

full price, and $2 amounts to $3.30 (in year 2000 $), which is the value of approximately 13 minutes of

the individual’s time. Thus, our lowest price estimate seems roughly appropriate to capture the current

full price of fast-food calories. Adjusting Big Mac list prices for inflation, we calculate that the real

price of a Big Mac in 1980 was $2.24 (again in 2000 $), implying that the real list price of the Big Mac

declined by approximately 12 percent between 1980 and 2000 and that its total time cost in 1980 was

25 minutes. These estimates imply that the purchase price per calorie for the Big Mac fell substantially

less than the average purchase price per calorie of food in general, but that the Big Mac’s time costs

fell by a greater percentage than did overall time costs. These findings seem consistent with evidence

that both the supply of and demand for fast food increased relative to other foods over the time period

(Chou et al. 2004).

4.2 Linear vs. log-linear metabolism

Previous economic analyses of obesity involving models of metabolism have adopted equations that

express (exogenous) calorie expenditure as a linear function of weight: In Lakdawalla and Philipson

(2002), calories are perfectly proportional to weight, andin CGS the linear model (taken from Schofield

et al. 1985) also contains a positive constant term. As discussed above, recent studies have shown

that the marginal increase in basal metabolism with body weight declines with body weight, both

21It is possible that the average fat content per pound of freshwhole chicken or per pound of beef ground chuck changed
over the period of observation, leading to changes in the calories per pound for either item. However, ground chuck generally
conforms to ade factostandard of 80 percent lean content, and the BLS measures separate prices for other (leaner or fattier)
grades of ground beef and also for other specific cuts of both chicken and beef.
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longitudinally and cross-sectionally (Cunningham 1991, Pullicino et al. 1996, Horgan and Stubbs

2003). Confirming these findings, we obtain a superior fit of theSchofield data, using a metabolism

model that is linear in the log of weight, rather than linear in weight itself. The concave specification

of metabolism turns out to hold significantly different implications for obesity growth as prices fall

than does the linear model, and it captures a greater portionof the observed increase in upper-quantile

weights relative to the mean between 1976 and 2000.

The log-linear model’s predictions at the $50 price match the 1976–1980 NHANES II data quite

well, although parameters were selected only to match average weight at this price. (See Table 1 and

Figure 6 for details.) At the same price, the linear model also provides a good match for the observed

mean weight for NHANES II, but its predicted values for 95th-and 99th-percentile weights fall farther

short of the actual values than under the log-linear model, because the linear (heteroskedastic) model

produces a much less asymmetric distribution. (See Table 1 and Figure 7 for details.) The differences

between the predictions of the respective models become even greater at lower prices. For the full

price drop, from $50 to $32, the linear model implies a parallel shift of the weight distribution: Mean

weight, 95th-percentile weight, and 99th-percentile weight all increase by about 18 pounds. The log-

linear model predicts respective increases of 20.2, 27, and31 pounds. Between NHANES II and

NHANES 99, these values increase, respectively, by 20, 36, and 47 pounds.

Considering these movements in percentage terms, we see thatthe data exhibit greater percentage

weight gains in the upper percentiles than at the mean: The ratio of the respective percentage changes

in 95th-percentile weight and mean weight is 1.22 in the data, 0.96 in the log-linear model, and 0.79 in

the linear model. (Percent changes are computed with respect to the average of initial and final weight;

the figures do not change much if percent changes are computedfrom initial weights.) Although the

simulated log-linear model does not generate disproportionate weight gains, its predicted gains are

greater in absolute terms in the upper tail, and they are muchgreater than in the linear model.

The logic behind these results depends on two effects: the price elasticity of calorie consumption,

and the calorie elasticity of weight (that is, the percent change in stable weight for a permanent mar-
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ginal percent change in calorie consumption). The latter elasticity increases in body weight under the

log-linear model and decreases in body weight under the linear model. Thus, for a given percentage

increase in calories, the log-linear model of metabolism predicts greater percentage gains in weight

for initially heavier individuals compared with lighter ones, and vice-versa for the linear model (all

effects are evaluated along the metabolism regression lines). However, the price elasticity of calories

is not, in general, constant in weight. In the log-linear model, the price elasticity of calories decreases

with weight: This occurs because we assume that individualscorrectly forecast the marginal effect of

calories on weight for the current week and adjust consumption accordingly. We also assume that the

marginal utility of food is constant in weight, that is, calories are not addictive. (Compare Section 2.1.)

As a result of these assumptions, initially heavier people consume fewer additional calories in response

to a price decline. Still, despite their lower caloric response they gain more weight than others, and

larger percentage gains are possible, depending on how slowly the price elasticity of calories declines

with weight. For the linear model, one would have to assume that calories were addictive, and to a

sufficient degree, in order to get larger price-induced weight gains for heavier people, even in absolute

terms.

Our analysis suggests that a better understanding of metabolic relationships, both cross-sectionally

and longitudinally, is crucial for the formation of appropriate dietary recommendations. Although

genetics cannot have changed much over the past 30 years, ouranalysis shows that the nature of

metabolism itself, for a fixed gene pool, implies that a rightward shift in the weight distribution (caused

by economic and social forces) results in greater average marginal effects of calories on weight, a type

of “positive feedback” effect that does not occur under the linear specification.

4.3 Exogenous vs. endogenous weight norms

In contrast with our endogenous or evolving norm specification, other models that include a weight

norm (Philipson and Posner 1999, Levy 2002) have treated thenorm as exogenous. While the exact
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basis for the norm is not specified in these models, such fixed norms may be meant to reflect official

health recommendations or perhaps genetically hard-wiredpreferences.22 Even permitting norms to

vary in the long run, the fixed-norm case captures the short run if norms adjust with some lag. The

fixed-norm case simply holdsM constant at some arbitrary level. Individual optimizationconditions

do not change, but the norm-consistency condition is no longer relevant. Any given value ofM results

in a unique distribution of stable weights at each price, butthe fixed value ofM bears no necessary

relationship to the emergent average weight in the population.

Adopting the log-linear model of metabolism, equation (3),and employing the same set of metabolic

shocks across the cases as in the experiments above, we compare the effect of price declines between

the fixed and endogenous-norm models. In the fixed-norm model, we set the norm equal to 130.6

pounds, a figure that corresponds to the equilibrium norm in the endogenous-norm model at the price

of $50. Therefore, when the food price is $50, the distributions are identical across the two models.

When the price falls to $40 and the norm is held fixed, the weightchanges reflect only the partial effects

of price, represented by the first term on the right-hand sideof equation (11). In response to the price

drop, the mean, median, standard deviation, 95th-percentile weight, 99th-percentile weight, and the

obesity rate all increase. As expected, the increases are consistently smaller than they are under the

endogenous-norm model, and the predictions get farther apart as price falls further.

By comparing the price effects under the fixed-norm model withprice effects under endogenous

norms, we get an estimate of the social multiplier. Recall from above that our social multiplier repre-

sents the ratio of the change in the equilibrium weight norm (in the endogenous model) to the average

(multiplied by 0.88) of the partial (norm-constant) effects of price on weight. See equation (12) for

details. We can estimate this value using the ratio of the price-change-induced change in the endoge-

nous norm to the average (multiplied by.88) partial effect of the price change on weight observed in

the fixed-norm model. For the price change from $50 to $40, theestimated social multiplier is 1.24.

22However, health recommendations also vary with scientific knowledge and are currently a matter of significant debate,
based on recent findings relating overweight, but not obesity, with reduced mortality risk.
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This value implies that the price-induced increase in average weight in the endogenous-norm model

will be 24 percent greater than it would be in the fixed-norm case. Measured over the $40-to-$32 price

interval, the value of the multiplier is 1.26.

We also track the welfare effects of the price changes in the contexts of the fixed and moving-norm

models. With an endogenous norm, we find that the initial price change, from $50 to $40, leaves most

individuals, 71 percent of the population, marginally better off. The greatest welfare gains accrue to

those closest to the initial weight standard. Gains declinewith initial differences between weight and

the norm, eventually becoming negative. Welfare gains (losses) are not symmetric in the metabolic

shock, however, given the concavity of the metabolic function, and very low metabolism individuals

suffer the greatest losses. When price falls from $40 to $32, the changes are very similar, and 70 percent

of the population are made better off.

If norms are held fixed, however, the initial price change improves welfare for only about 40 per-

cent of the population—specifically, those in the upper halfof the metabolic distribution (those with a

relatively fast metabolism). Welfare gains (declines) areslightly smaller (greater) for the second price

decline, and only 32 percent of the population are made better off. Therefore, a substantial portion

of the population fare better in a society with flexible normsthan in one with rigid standards. The

model suggests that a certain amount of “fat acceptance” mayimprove welfare for many individuals.

However, we have not taken into account the potential impacts on health (or on medical technology)

as the norm moves out of the range of medically advised weight, nor potential externalities imposed

on non-obese individuals, as, for example, occur when the increased cost of treating obesity-related

disorders is not borne only by the obese (Bhattacharya and Sood 2005).

4.4 Forward-looking vs. myopic decision-making

Although our model assumes myopic consumers, our central qualitative results do not depend strongly

on this assumption. To illustrate this point, we consider conventionally rational, forward-looking con-
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sumers with no self-control problem or addiction problem with respect to food (we will deal with these

alternative models in Section 5).

Using the same per-period utility function as in our myopic model, we simulate a two-period ver-

sion with perfect foresight, a zero discount rate, and a fixednorm. This model closely resembles the

one in Lakdawalla and Philipson (2002), which attributes the long-run rise of obesity to falling food

prices and the increasingly sedentary nature of work. Theseauthors adopt a linear, non-stochastic

metabolism, but we add a heteroskedastic metabolic shock inorder to generate cross-sectional vari-

ation (the specification of metabolism is as in (3), with coefficients as in Section 4.1). As shown in

Table 1, the forward-looking model predicts lower average weights at each price than those predicted

by our myopic model, because individuals take the full future costs of current food consumption into

account. While the fixed norm also contributes to lower weights in this alternative model, weights are

lower in the forward-looking model even in comparison with weights in a myopic model with the same

fixed norm. Not surprisingly, the long-term price decline (from $50 to $32) causes smaller weight gains

in the forward-looking model (with a fixed norm) than in our myopic model with endogenous norms,

and so underestimates the actual weight gains over the period of interest. Even if we were to add this

type of forward-looking behavior to our framework, we wouldfind it harder to explain the observed

weight gains, for given price changes, in a model with fixed norms than in one with changing norms.

4.5 Dynamic weight adjustment

So far we have analyzed long-run equilibria under a set of three discrete prices and compared the pre-

dicted outcomes to the NHANES data from three survey periods. However, we cannot be sure that any

single NHANES snapshot (even one encompassing up to four years’ worth of data) represents a long-

run equilibrium weight distribution. Weight adjustments across equilibria must occur in “real time,”

because individuals cannot alter body weight instantaneously. Furthermore, even without observing

such prices directly, we can be fairly confident that full food prices did not fall in a small number of

29



large discrete steps over the period of interest, but ratherfell more smoothly. In contrast, we expect that

body weight aspirations may adjust with a lag, since it takestime for individuals to observe and inter-

nalize increases in the average population weight. (Further below, we discuss other mechanisms that

may signal a change in weight norms.) Depending on the relative speeds of price changes and weight

adjustments, and depending also on the speed of adjustment of the social weight norm, the empirical

weight distribution may spend much of its time out of long-run equilibrium. Our framework allows us

to describe out-of-equilibrium dynamics and to predict thetiming of weight changes in relation to the

timing of changes in fundamentals.

We simulate the weight adjustment process for a decline in the average full price of 3500 calories,

from $50 to $32, between 1976 and 1993. We assume that, as of 1976, the population of U.S. women in

the 30-to-60-year age bracket was in the long-run (endogenous norm) equilibrium corresponding to the

$50 food price. Adopting the log-linear metabolism model, we generate 50,000 individuals (metabolic

shocks) and solve for this initial equilibrium distribution and its corresponding norm. Beginning from

this equilibrium, we impose a series of discretely-timed price and norm changes, tracing the real-time

adjustment of the weight distribution by solving the one-week optimization problems repeatedly over

the interval. We update the norm annually in the first experiment, and every five years in a second

experiment. We reduce the food price at the beginning of the year by 3 percent per year until 1993.

After 1993, price is kept constant at $32, and we describe thesubsequent time path of convergence to

the final long-run equilibrium at the $32 price.23

We hold price constant beginning in 1993, based on several facts: (1) the overall food CPI did not

fall beyond 1993, but rather showed a net gain of about one percentage point (relative to the overall CPI)

by 2004; (2) the relative price of chicken was roughly flat since 1993; (3) the price of beef continued

23The price time-path in this simulation does not agree exactly with the price time-path implied by our prior equilibrium
simulations. The discrepancy can be partly resolved by noting that the previous simulations assume that a given empirical
snapshot represents the equilibrium weight distribution for the contemporaneous price. However, the model’s adjustment
process actually implies that, if prices change continually, the system is never in equilibrium. The current illustration, in
which the price falls over a compressed time period and then remains constant for several years, serves as a qualitative
demonstration of the adjustment dynamics.
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to fall until 1998, then rose again, and ended up close to its 1993 level by 2003; (4) while weekly time

costs (for food preparation and clean-up) fell 11 minutes per year on average between 1985 and 1994,

the same measure fell only 1.9 minutes per year between 1994 and 2003. These facts, taken together,

suggest that the full price per calorie has been roughly constant since 1993.

The panels in Figure 8 illustrate the time paths of average weight, 95th-percentile weight, and the

social weight norm under these experiments. We see that, even though prices and weight norms change

infrequently and discretely, weight increases occur gradually. Two factors contribute to this effect: (1)

under myopia, calorie consumption takes multiple periods to reach its new stable value following a

price or norm change, and (2) for any discrete change in calorie consumption, weight may take several

periods to reach a new stable level. After the food price levels off, average weight continues to increase,

by more than 3 pounds, resulting in an increase of 20 pounds over the entire interval. Under annual

norm updating, average weight gets within one pound of its predicted final long-run equilibrium level

of 168.6 pounds (see Table 1) by 2001. Under five-year norm updating, average weight does not reach

this threshold until 2004, more than 10 years after the pricelevels off. Endogenous norm changes

exaggerate the effect of a price decline on weight. However,when norms adjust with a lag, this extra

effect may not occur until several years after the price change. That is, the long-run price elasticities of

food consumption and body weight will be greater in the long run than in the short run. If the simulated

price time-series is accurate, our dynamics help to explainthe continuing increase in average weights

over the past decade in the face of relatively flat food prices.24 Although a model of rational food

addiction can yield this same elasticity result (Cawley 1999), the probable length of the long run in the

addiction context is unknown.

In our dynamic simulations, we assume that the weight norm changes infrequently (either annually

24More specifically, the delayed social multiplier effect canhelp explain simultaneous observations of a non-monotonic
food price path (looking solely at the food CPI) with a monotonic (increasing) weight path. Out of equilibrium, a norm
shift causes an outward shift of the food demand curve. In a general equilibrium model, this shift would push price back up,
moderating the initial (supply-induced) price declines. The norm increase raises weight, the norm-induced price increase
lowers weight, and the net effect could be positive. Over this adjustment process, we would witness an initial price decline,
followed by a subsequent price increase, together with a monotonic increase in average weight.
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or quinquennially), discretely, and simultaneously for all individuals, but we have not specified a social

mechanism that might justify these assumptions. Our calculations from the 1994 through 2002 BRFSS

data (repeated cross-sections) suggest that average desired weight has increased in most years since

1994. The increases are fairly gradual—about one-half pound per year—consistent with a gradual

adjustment of weight norms (at least at the population level). One social signal of weight norms that

may be salient among women is dress size. Interestingly, thedimensions corresponding to a given

women’s size have increased over time, such that, accordingto one estimate, a size-12 dress from the

1950s would be labelled a size 6 today (Simmons 2002). According to these same data, nearly all of this

change occurred after 1970 (Simmons 2002). While some part ofthis change may reflect increases in

women’s height and overall skeletal dimensions, there is evidence that “vanity sizing”—sizing to flatter

increasingly heavy customers—has been on the rise in recentyears (Bold 1997, Helser 2004, Gebhart

2005). The use of such sizing strategies suggests that womencare about the nominal size of garments,

and that they may aspire to a fixed nominal size (a “perfect” size eight is one focal value), regardless

of whether they are aware of re-sizing practices (Gebhart 2005). Clothing sizes provide signals of

what is considered small, medium, and large relative to the target market, and under such conditions,

nominal size norms act much like the moving weight norms of our model. Since size relabelling also

entails costs, however, we would expect it to occur infrequently, rather than continuously. Furthermore,

competition across retailers lends an impetus for such changes to occur in a coordinated fashion (at

least within a given market segment): A consumer is apt to prefer a brand in which she wears a size

eight to a brand in which she wears a size ten, all else being equal.

5 Simulation of alternative models

We showed in Section 4.2 that, in the context of our behavioral model, the linear metabolic specification

generates distributions that are less skewed relative to the log-linear model and predicts that there will

be virtually no difference between increases in average weight and increases in 95th-percentile weight
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in response to price declines. Section 4.4 showed that forward-looking behavior does not change this

result: The forward-looking model with linear metabolism does not look qualitatively much different

from the myopic model with linear metabolism (under either fixed or variable norms). Therefore,

myopia is not central to our qualitative predictions.

In order to capture the stylized facts of interest, a forward-looking model must contain some addi-

tional features. Aside from non-linear metabolism and endogenous norms, the two features suggested

in the obesity literature are lack of self-control and susceptibility to food addiction. In this section, we

compare our model to two prominent alternative theories based on, respectively, variation in the de-

gree of self-control over food intake (CGS) and variation in the propensity for (rational) food addiction

(Cawley 1999). While food addiction and lack of self-control over food may sound like similar phe-

nomena, they are modelled differently within economics, and they may result in different predictions.

The following analysis simulates these alternatives and compares them to our model with endogenous

norms and non-linear metabolism. We conclude that the alternative explanations most likely comple-

ment our own model, rather than contradicting or pre-empting it.

5.1 The self-control hypothesis

CGS argue that variation in self-control can explain the disproportionate weight growth in the upper tail

of the distribution over the past 20 years. In their model, consumers engage in hyperbolic discounting

to varying degrees. Their hyperbolic consumers are more sensitive to a decline in the time cost of food

than they are to a decline in the money cost. Further, the authors argue that the decline in food’s time

cost has been much greater than the decline in its money price. An individual with relatively poor self-

control would likely have weighed more at the initial prices, ceteris paribus, and would have gained

more weight than others in response to declining time costs.

However, the authors do not prove these claims, and we find that such proof requires additional

model restrictions. For example, in order to ensure that low-self-control individuals gain more weight
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than others in response to a reduction in food’s time cost, the instantaneous utility of food consumption

(that is, the pure pleasure of eating at a given instant in continuous time) must have a strictly positive

third derivative. Assuming (as both they and we do) diminishing marginal utility of food, this condition

means that the marginal utility of food declines less steeply (in absolute terms) with each additional

unit of instantaneous consumption. This condition is necessary (but not sufficient) for non-satiation

in food consumption, a condition that is implicit in their analysis. While non-satiation is a standard

economic assumption, it is questionable in the context of instantaneous (or near-term discrete-time)

food consumption. Even granting the condition, the effect of self-control on the response to changes in

the full food price—and any time-cost change implies a change in the full price—is ambiguous: High-

self-control types may gain more weight than low-self-control types when the full food price falls. Our

own model assumes a zero third derivative, but our results ondisproportionate growth in the upper tail

do not depend on this assumption.

Despite these ambiguities, we recognize that the self-control hypothesis has considerable intuitive

appeal. We do not doubt that imperfect self-control routinely influences food consumption choices—

recall that in our model all consumers are myopic. Indeed, evolutionary biologists argue that humans

are hard-wired to take advantage of available food in the present, given that for much of evolutionary

history we faced scarce and unpredictable food supplies. Toget a sense of the model’s potential em-

pirical reach, we estimate the effects of variation in self-control on weight levels and price effects for

a parametric model based on the assumptions of CGS. In the CGS model, the degree of self-control

is captured by the parameter,γ, which determines the discrepancy between near-term and long-term

discount rates. Maximum self-control corresponds toγ = 1, and minimum self-control corresponds

to γ = 0. In the former case, the consumer behaves according to the standard rational choice model,

with purely exponential discounting, and in the latter casethe consumer is perfectly myopic. While

self-control may have a genetic foundation (Gale et al. 2004, Spiegelman and Flier 2001), we know of

no attempt to describe its empirical distribution. We proceed with the naive assumption that the self-

control parameter described above,γ, is uniformly distributed on the closed interval[0,1]. We use the
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first-order condition in CGS’s equation (4) to describe the weight distribution induced by variation inγ,

at varying time-cost values. The calibration respects the explicit and implicit assumptions in CGS, in-

cluding those pertaining to the derivatives of instantaneous food utility, and isolates the key differences

between the CGS model and our own. For metabolism, we adopt thelinear, non-stochastic model for

women cited in CGS, which they attribute to Schofield et al. (1985).

We set the parameterλ, which affects the importance of hyperbolic discounting, to 1000, the value

suggested in the text as a reasonable lower bound. We experiment with three different values for

the food time cost, denotedτ, following their hypothesis that declines in time cost werethe primary

factor in the rise of obesity. The CGS model does not specify values forτ, but the parameter loosely

corresponds to the average time needed to prepare a meal or snack. Accordingly, we consider values

(in minutes) of 20, 10, and 5. For the decline from 20 to 10 minutes, the average weight gain is small,

about 2.5 pounds, from an initial average of 148. However, weight gains are larger in the upper tail:

The 95th-percentile weight increases by 9 pounds, and the distribution has a large positive skew. The

time-cost decline from 10 minutes to 5 produces much more dramatic weight gains, counter to intuition.

Average weight increases from 150.5 to 223.5 pounds, while 95th-percentile weight climbs from 157.5

to 494.6 pounds. At any price level, the simulated distributions are much more skew than the empirical

distributions observed in the NHANES surveys, but this outcome depends on the assumed distribution

of the self-control parameter. The fact that the sensitivity to time-cost changes moves inversely with

time costs does not, however, depend on the calibration parameters. In contrast, our model predicts that

price sensitivity varies directly with the price level. Therefore, the CGS model predicts accelerating

growth in obesity as food time costs continue to fall, whereas our framework predicts that obesity will

continue to grow, but at a slower pace.
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5.2 Rational food addiction

Cawley (1999) argues that calorie consumption exhibits properties consistent with a rational addiction

model. He also cites evidence that the propensity toward addiction to specific substances may vary

across individuals, based on genetics. To determine the potential contribution of addiction to changes

in the shape of the weight distribution over time, we simulate weight distributions for a population of

individuals with varying propensities for food addiction.The model we adopt builds on the standard,

two-period, forward-looking model with zero discounting,discussed above in Section 4.4. Following

Becker and Murphy (1988) and Cawley (1999), we model food addiction by letting the linear coefficient

on the utility of current food consumption, denotedα in our prior descriptions, be an increasing function

of beginning-of-period body weight, where the function varies across individuals. That is, we replaceα

with the functionαi(Wi,t−1) = α+βiWi,t−1 =. Forβi > 0, this model captures the reinforcement aspect

of addiction: The greater the stock of past food consumption(a stock embodied, literally, in weight),

the greater the marginal utility of food. Forβi ≤ 0, the marginal utility of food is non-increasing in

weight, and food is not addictive. Our model assumesβi = 0 for all individuals. We vary the propensity

to food addiction by lettingβi follow a normal distribution with mean zero and standard deviation of

1
425, such that half the population is prone to food addiction to varying degrees. We let metabolism vary

linearly with weight according to our fit of the Schofield data, but we suppress idiosyncratic metabolic

variation in order to isolate the effects of the propensity to addiction.

In the simulation results shown in Table 1, we see that the distribution does exhibit positive skew-

ness. Individuals with a greater propensity to addiction weigh more than others at a given price,ceteris

paribus, and they gain more weight than others in response to a price decline. In order to avoid corner

solutions (specifically, zero food consumption), the standard deviation ofβi must be restricted, and as a

result, the predicted variance of weight is very low relative to the true value. All of these results depend

on the assumed distribution of the addiction parameter, a distribution that has not been empirically

estimated. The rational addiction model also predicts thatthe price elasticity of demand for addictive
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goods will be greater in the long run than in the short run. However, this prediction depends on whether

calories are addictive for the representative individual,and the empirical evidence on this question is

not conclusive.

6 Conclusion

This paper presents a new framework for relating the recent increases in obesity rates to falling food

prices. We focus on explaining changes in the shape of the weight distribution and, in particular, the

disproportionate growth in the distribution’s upper tail.We explain a substantial portion of this growth,

using a model that interacts the effects of economic change,in the form of falling food prices, with

social and physiological processes. In the social process,the body-weight standard becomes more

relaxed as average weight increases in response to a food price decline; the relaxed standard then

leads to further weight increases. At the same time, metabolism is concave in body weight, such that as

weight increases, a given increase in calorie consumption leads to greater weight gain. The aspiration to

weigh less than the average individual in the population, together with the concave metabolic function,

predicts a right-skewed weight distribution as well as greater price-induced weight gains for initially

heavier individuals. The simulations show that the model does a very good job of capturing both the

shape and the movement of the distribution over time.

We find evidence of shifting norms in the BRFSS data on “desired weights,” as well as in the

documented increases in the average dimensions of given nominal sizes of women’s clothing. If such

shifts occur with a lag, the dynamic analysis shows that the adjustment to a new long-run equilibrium,

following a price decline, may take years. We find support forthis lagged effect in the recent evidence

that average weight and obesity rates are continuing to increase despite the fact that food price declines

(including preparation costs) appear to have levelled off since the mid 1990s.

It has not been our primary goal in this paper to explain cross-sectional variation in weight levels,

and we have deliberately ignored many important sources of weight variation. However, our findings
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suggest that metabolic variation alone induces substantial weight variation across individuals and that

the weight distributions derived from an empirically grounded metabolism model strongly mirror the

persistent qualitative features of the observed weight distributions. The growth of obesity has been too

dramatic and has occurred too rapidly to be explained by changes in the gene pool. Yet our findings

suggest that biological processes have played a role in thisgrowth: Given the concave relationship

between body weight and metabolism, the rightward shift of the weight distribution means that the

realized marginal effects of calorie consumption on weightare now greater on average than in the past,

even with no genetic change.

The concave metabolism model has further implications. An individual who predicts her future

basal metabolic rate at a higher weight, based on the curve’sslope at her current weight, will systemati-

cally overestimate it, and therefore will underestimate the long-term weight gain associated with a per-

manent (non-marginal) increase in calorie consumption. Scientific estimates of the metabolism-weight

relationship from samples lacking overweight individualshave done exactly this—and have found a

linear relationship that overestimates BMR at out-of-sample weights. Lacking complete knowledge of

the weight-metabolism curve, even forward-looking individuals may experience regret over past eat-

ing decisions, as myopic individuals do. Even if people learn the model eventually (through revealed

weight gains, for example), it may be more difficult to reverse such gains than originally anticipated.

Under these constraints on rationality, even forward-looking individuals may be made worse off by a

food price decline. These findings suggest a need for better public education, as well as better medical

counselling, concerning the relationship between body weight, body composition, and calorie-burning.

Both a rational addiction framework and a framework involving variation in self-control can gen-

erate qualitative predictions of disproportionate growthin the upper tail of the weight distribution in

response to price declines. However, these alternative explanations appear less robust than ours, be-

cause they rely more heavily on assumptions about utility functions. In addition, it is difficult to assess

the quantitative contributions of self-control and addiction to variation in weight gain, because the dis-

tributions of self-control and propensity to addiction arenot well understood. We look forward to more
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research into the relative contribution of physiological,social, and economic forces to changes in the

weight distribution over time.

Our model of endogenous norms predicts that population weights and obesity rates should continue

to grow if food prices continue to fall, but that marginal price effects on calorie consumption should

be smaller, the lower the initial price level. In this framework, the limits on weight and obesity growth

depend on the slope of the weight-metabolism curve at high weight levels. If the curve continues to

follow our fitted model, and provided calories are not addictive, the increases in average weight and

the obesity rate should eventually level off, even if norms are flexible and prices continue to fall. If

instead the metabolism curve becomes flat above a given (humanly feasible) weight threshold, calorie

consumption above the maximal BMR value would cause unbounded increases in weight. Existing

research on metabolism suggests the possibility of such thresholds (Cunningham 1991, Horgan and

Stubbs 2003), but results are inconclusive, and further research on metabolism among obese subjects is

clearly warranted.

Thinking beyond the model, are there forces or policy interventions that might be expected to lead

to a slowing or reversal of current trends? In the case of smoking, increases in taxes and a shift in the

social judgment of smoking led to significant declines in consumption. Food taxes, even if justified

by bounded rationality or cost externalities, are likely tobe politically infeasible, given that food,

unlike tobacco, is a necessity. As for social acceptance, the trend has been toward fat acceptance and

accommodation of obesity, rather than censure, consistentwith our norms hypothesis. Hospitals have

added larger beds and other specialized equipment for obesepatients and the visibility of plus-size

models has increased (Henderson 1997). Norms restricting the proper times and places for eating have

also broken down. Recent scientific research even suggests that the medical definition of “healthy”

BMI may need to be adjusted upward to accurately reflect the relative mortality risks within different

ranges of BMI, risks that appear to have shifted, in part, as a result of advances in the treatment of

obesity-related disorders (Flegal et al. 2005).25

25These findings have not been universally accepted. For example, a symposium at the Harvard School of Public Health,
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The latter evidence suggests that there has been technological adaptation, in addition to social adap-

tation, to the shift in the weight distribution. That is, theincrease in average weight has emerged as

a possibly permanent and relatively benign development. Asfor a reversal of the growth of extreme

obesity, a condition that still entails high morbidity and mortality risks, a medical breakthrough is more

likely to be the catalyst than is behavior modification. The social and economic factors promoting obe-

sity growth are likely to persist (and appear to be emerging in countries outside the United States as

these countries follow a similar development path), and increasingly stern public health warnings are

unlikely to have a significant impact. Furthermore, individuals in the upper tail of the BMI distribution

are likely to be at a genetic disadvantage and therefore lesslikely than others to achieve weight loss

through behavioral change. In addition, we expect the social stigma associated with extreme obesity,

at least, to remain sufficiently high for the foreseeable future to sustain a considerable demand for

weight-loss technologies in addition to treatments for obesity-related disorders.

in 2005, argued that the results suffered from biases due to reverse causality (for example, illness-causing weight loss) and
residual confounding (for example, the correlation of smoking status, an omitted variable, with both lower body weightand
higher mortality risk). However, the Flegal team has found its original results to be largely robust to these criticisms. See
http://www.cdc.gov/nchs/products/pubs/pubd/hestats/excess deaths/excess deaths.htm.
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Mathematical Appendix

In this appendix we provide brief verification of the assertions of the existence and convergence state-

ments of individual stable weight laid out in Section 3.

The optimal one-period choice of food and non-food consumption, beginning from any initial

weight value, must satisfy equations(5), (8), and(9), as well as second-order conditions. The three

equations can be combined and rewritten as the following optimality condition on end-of-period weight,

Wt , for any initial weightWt−1.

UF(F(W∗
t |Wt−1))

dF
dW

− pUC(C(W∗
t |Wt−1))

dF
dW

= 2J(W∗
t −M). (14)

The left-hand side of equation (14) represents the marginaleffect on one-period utility of end-of-period

weight, deriving from the changes in food and non-food intakes consistent with a marginal change in

the final weight. The right-hand side represents the marginal effect of end-of-period weight on the cost

of deviating from the norm. The partial derivativeUF is evaluated at the food level consistent with the

beginning and ending weights, where this food level is denotedF(Wt |Wt−1). The partial derivativeUC

is evaluated similarly. The expressionκ := dF
dW > 0 represents the increase in food consumption needed

to achieve a marginal weight gain, holding basal metabolismfixed. This is an identical constant for

all individuals, representing the conversion rate of calories into body weight, netting out the calories

consumed in digestion. Values for the left-hand side of (14)depend on both the initial weight and the

final weight, but values for the right-hand side depend only on the final weight.

Existence of a stable weight

A stable weight must satisfy the equation above as well as thecondition thatW∗
t = Wt−1. To check

for existence of such a weight, impose the condition thatWt = Wt−1 and determine whether (14) has a

solution. Consider the values[UF(F(W|W)) −pUC(C(W|W))]κ. The expression gives the net marginal
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benefit of weight gain beginning from any weight,W, where eachW is potentially an initial weight

value at some point in time. If, starting from some initial weight, the net marginal benefit of weight

gain happens to be equal to the marginal cost of weight gain, it is optimal to maintain the initial weight.

Since any stable weight must satisfy this property, the locus of these net marginal benefits will be termed

the “sustainability locus,” and it will determine stable weight for anyM. Values on the locus are initially

positive, given the high marginal utility of food at the foodintake consistent with just maintaining a

very low weight, and the low marginal utility of non-food consumption. The function decreases in

weight, eventually becoming negative. This decline occursbecause metabolism increases in weight,

and therefore the food required to maintain weight is increasing; as required food intake increases, the

marginal utility of food decreases, and the marginal utility of non-food consumption increases. The

right-hand side is initially negative (assumingM is greater than some minimal viable adult weight), but

becomes positive as weight gets aboveM. Thus, there is a unique weight,WS(M), characterized by

[UF(F(WS|WS))− pUC(C(WS|WS))]κ = 2J(WS−M). (15)

Convergence to a stable weight

To show convergence to this stable weight, consider one-period optimization from any initial weight,

W0, as illustrated in Figure 9. Consider the marginal net benefitof end-of-period weight as seen in the

diagram. Values on this curve are again initially positive,and become negative as final weight,W1,

increases. This marginal benefit curve, however, has a steeper negative slope than the sustainability

locus. This is because, as weight increases fromW0 to someW1, the marginal net benefit of further

weight gain evaluatesUF at F(W1|W0), whereas the locus evaluatesUF at F(W1|W1). Since the former

food quantity is greater than the latter, the net marginal benefit of food (and of weight gain) is less

than the value on the sustainability locus atW1. The difference in these food levels arises because

metabolism, measured in pounds of weight burned per week, grows less than proportionally to weight
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itself. For the sameM the marginal deviation cost behaves exactly as above. Thus,for any given

initial weight there is a unique intersection point that determinesW∗
1 (W0). Second-order conditions are

satisfied at this value, given the strict concavity of the optimization problem inF andC. If W0 lies

below the stable weight defined by (15), the analysis in the previous paragraph implies that, beginning

atW0, a final weight ofW0 cannot be optimal. At this point, the marginal benefit of weight gain exceeds

the marginal cost, so it is optimal to gain weight. However, the optimal weight gain is less than the

difference betweenW0 and the stable weight. This also follows from the fact that the marginal benefit

of within-period weight gain declines more rapidly than thevalues on the sustainability locus. The

diagram depicts the relationship between these two curves,indicating thatW∗
1 < WS.

Referring to Figure 9, beginning from weightW0, let the optimal ending weight beW1, where the

latter satisfies[UF(F(W1|W0)) −pUC(C(W1|W0))]κ = 2J(W1−M). To iterate, let the individual begin

at W1 and again solve the one-period problem. Now the individual evaluates the marginal benefit of

weight gain relative to this new initial weight. For the firstincrement this is just the value on the

sustainability locus atW1. Thus, we have a new within-period net marginal benefit curveintersecting

the sustainability locus at this point, where the new curve lies to the right of that for the previous (lower)

initial weight. Therefore, when the individual wakes up at weightW1, the marginal benefit of weight

gain once again exceeds the marginal cost, and additional weight gain is optimal within the new period.

However, sinceW1 is greater thanW0, the marginal benefit of weight gain beginning fromW1 is less

than that beginning fromW0, and the marginal cost is higher, implying a smaller optimalweight gain

from W1 to W2, as shown in the diagram. Again, the individual winds up below the stable weight. The

same logic applies at the next iteration, during which the individual again gains weight, but less than

in the previous period. Weight gain occurs as long asW < WS, yet converges to zero and ceases when

W reaches the stable value. Had the initial weight been greater than the stable weight value, it can be

shown similarly that the individual would optimally have lost weight period by period until converging

to the stable weight.

48



Existence of and convergence to a stable weight norm

The graphical analysis in Figure 10 illustrates the relationship between the value ofM and the value of

stable weight. We can identify the stable weight for a given value ofM by plotting, againstW, each of

the functions[UF(F(W|W)) −pUC(C(W|W))]κ and 2J(W−M), and finding the value ofW, denoted

WS∗(M), for which they intersect. The diagram illustrates the respective stable weight values for weight

norm values labelledM andM′. The greater the value ofM, the smaller the value of 2J(W−M) for

each value ofW, and the greater the stable weight. By inspection, we find thatthe rate of increase in

stable weight with an increase inM is less than unity, because the sustainability locus has a negative

slope. This less-than-proportionate increase in stable weight with an increase inM implies that the

model satisfies the “moderate social influence” condition (Glaeser and Scheinkman 2002), a condition

that guarantees the existence of an equilibrium weight norm. The value ofdWS/dM approaches 1

from below asJ approaches infinity, so the existence condition is satisfiedfor all finite values ofJ.

Simulations using FORTRAN90 code confirm uniform convergence to equilibrium.
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Table 1: Summary of Weight Distributions

Distribution Mean (SD) Min Max Median 95th a 99thb Skewn.c Obesed Norme

Empirical Distribution
Women (age 30-60)

NHANESII, 1976-1980 148.4 (34.0) 80 360 141.0 215 258 1.356 18.9
NHANESIII, 1988-1994 157.4 (39.5) 77 470 149.6 231 290 1.207 28.0
NHANES99, 1999-2000 168.4 (45.6) 84 420 159.7 251 305 1.178 35.7
BRFSS, 1990 148.4 (31.6) 73 434 142.9 205 256 1.429 14.0
BRFSS, 2002 161.0 (38.6) 56 603 153.2 236 288 1.425 24.7

Men (age 30-60)
NHANESII, 1976-1980 177.3 (29.8) 100 350 174.3 230 264 0.615 13.7
NHANESIII, 1988-1994 185.4 (37.7) 90 532 180.2 251 317 1.476 21.6
NHANES99, 1999-2000 191.9 (43.4) 94 425 184.4 277 338 1.183 27.3
BRFSS, 1990 182.6 (31.7) 69 433 179.1 241 283 1.017 15.3
BRFSS, 2002 194.5 (39.7) 49 629 189.4 267 325 1.289 26.3

Simulated Distribution (Women age 30-60)
Moving Norm (Linear, P=$50) 148.0 (30.0) 51 273 146.9 199 223 0.240 18.6 130.2
Moving Norm (Linear, P=$40) 157.2 (30.4) 59 284 157.2 210 234 0.226 28.7 138.3
Moving Norm (Linear, P=$32) 166.0 (30.6) 64 292 164.9 218 241 0.217 37.6 146.1

Moving Norm (Log, P=$50) 148.4 (32.1) 67 332 144.6 207 241 0.772 18.9 130.6
Moving Norm (Log, P=$40) 159.8 (34.4) 72 354 155.6 222 258 0.756 29.4 140.6
Moving Norm (Log, P=$32) 168.6 (36.2) 76 370 164.4 234 272 0.743 38.6 148.4

Fixed Norm (Log, P=$50) 148.4 (32.1) 67 332 144.6 207 241 0.772 18.9 130.6
Fixed Norm (Log, P=$40) 157.6 (34.0) 71 349 153.7 219 255 0.758 27.2 130.6
Fixed Norm (Log, P=$32) 164.6 (35.3) 74 362 160.3 229 266 0.748 34.3 130.6

Forward-Looking (Linear, P=$50) 145.0 (25.1) 61 248 144.2 144 188 0.203 12.4 130.6
Forward-Looking (Linear, P=$32) 157.4 (25.4) 71 261 156.7 200 219 0.185 24.4 130.6

Forward-Looking (Log-Linear, P=$50) 144.5 (25.8) 72 274 142.2 191 215 0.557 12.4 130.6
Forward-Looking (Log-Linear, P=$32) 157.5 (27.5) 79 294 155.1 206 232 0.528 24.4 130.6

Rational Addiction (Linearf , P=$50) 145.9 (18.8) 98 276 143.6 180 201 0.820 7.5 130.6
Rational Addiction (Linearf , P=$32) 158.8 (20.8) 106 304 156.2 196 220 0.839 20.2 130.6

Note: a95th Percentile.b99th Percentile.cSkewness:=
∑i [(Xi−µ)3]
(N−1)σ3 for univariate dataX1,X2, ...,XN whereµ andσ denote

mean and standard deviation.dPercentage with BMI of 30 or above (more than 174.5 pounds forwomen of average height

in the simulations).ePopulation Weight Norm, see text for details.f Linear homoskedastic metabolism.

50



0
.0

05
.0

1
.0

15
.0

2
D

en
si

ty

0 50 100 150 200 250 300 350 400 450 500
Weight (in pounds)

Mean (SD) = 148.4 (34.0); Min = 80; Max = 360; 50% = 141; 95% = 215; 99% = 258; Skewn. = 1.356

Women 30−60 in 1976−80

0
.0

05
.0

1
.0

15
.0

2
D

en
si

ty

0 50 100 150 200 250 300 350 400 450 500
Weight (in pounds)

Mean (SD) = 157.4 (39.5); Min = 77; Max = 470; 50% = 150; 95% = 231; 99% = 290; Skewn. = 1.207

Women 30−60 in 1988−1994

0
.0

05
.0

1
.0

15
.0

2
D

en
si

ty

0 50 100 150 200 250 300 350 400 450 500
Weight (in pounds)

Mean (SD) = 168.4 (45.6); Min = 84; Max = 420; 50% = 160; 95% = 251; 99% = 305; Skewn. = 1.178

Women 30−60 in 1999−2000

Figure 1: Female Weight Distribution 1976-1980, 1988-1994, and 1999-2000, with Kernel density
estimate plot (Source: NHANES II, III, and 99)
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Relative Price of Selected Food Items in the US, 1980-2004 
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Figure 6: Moving Norm, Log-Linear Metabolism
(with Kernel density estimate plot)
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Obesity Dynamics: Norm Updated Every Year since 1977
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Figure 8: Obesity Dynamics: Annual vs. Five-Year Norm Updating, Log-Linear Metabolism (Gradual
Price Decline 1977-1993)
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