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Abstract:

In order to explain the substantial recent increases in obesity rates in the United States, we
consider the effect of falling food prices in the context of a model involving endogenous body
weight norms and an explicit, empirically grounded description of human metabolism. Unlike
previous representative agent models of price-induced gains in average weight, our model, by
including metabolic heterogeneity, is able to capture changes in additional features of the
distribution, such as the dramatic growth in upper-quartile weights that are not readily inferred
from the representative agent setting. We calibrate an analytical choice model to American
women in the 30-to-60-year-old age bracket and compare the model’s equilibrium weight
distributions to data from NHANES surveys spanning (intermittently) the period from 1976
through 2000. The model predicts increases in average weight and obesity rates with
considerable accuracy and captures a considerable portion of the relative growth in upper-
quantile weights. The differential response to price declines across the distribution depends on
the fact that human basal metabolism (or resting calorie expenditure) is increasing and yet
concave in body weight, and therefore food price effects on weight tend to be larger for
individuals who are heavier initially. The lagged adjustment of weight norms helps to explain
recent observations that obesity rates have continued to rise since the mid 1990s, despite an
apparent leveling off of price declines. The predicted increase in body weight aspirations agrees
with an observed trend in self-reported desired weights, and it defies the conventional wisdom
that thinness has been a growing obsession among American women in recent decades.
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1 Introduction

The startling growth rates of average weight and obesitygbeace in the United States over the past 20
to 30 years have received widespread media attention feralexears running. Obesity has become an
object of grave concern among public health officials andspasvned voluminous research in the fields
of medicine, public health, and, increasingly of late, emaits. Concern has focused on identifying
the causes of obesity and on enumerating the costs of obeated morbidity and mortality, in both
economic and human terms (Hassan et al. 2003, Himes 2000e1faash and Biddle 1994, Cawley
2004, Pagan and Davila 199%7)Not only has the weight distribution in the United States enad
considerable shift to the right—average adult female wieifir example, increased by 20 pounds,
or 13.5 percent, between 1976-80 (NHANES Il) and 1999-200MANES 99)—but the upper tail
has experienced disproportionate growth: For women owesdime time span, 95th-percentile weight
grew 16.7 percent, from 215 to 251 pounds, and 99th-peteeméight increased 18.2 percent, from
258 to 305 pounds, as shown in Table 1 and Figute€ The official definition of obesity employed
by the Centers for Disease Control (CDC) and by the World Healtta@ization (WHO) is a body
mass index (BMI) value of 30 or greater, where BMI is the ratiovefght, measured in kilograms, to

squared height, measured in meters. A 54" woman who wei@hspbunds or more is classified as

The level of alarm has become so pronounced as to have alspaggned a backlash by players in the food industry
(see www.consumerfreedom.com) seeking to forestall eegry interventions and by scientists claiming that thelthea
risks of overweight and obesity have been overstated (£2i965). Some have also questioned the CDC's classificafion o
obesity based on body mass index (BMI), but few have disptiiedhagnitude of the changes in the weight distribution.

2Changes of similar magnitude are observed in the BRFSS @atgebn 1990 and 2002 as shown in Table 1. For men,
95th (99th) percentile weight increased from 230 (264) té €338) pounds, and the average increased from 177 to 192
pounds between NHANES Il and NHANES 99 as shown in Table 1.

3The empirical findings on body weight presented in this paperbased on samples of 30-to-60-year-old Americans
from two surveys administered by the Centers for DiseasérGland Prevention: The Behavioral Risk Factor Survedi&an
System (BRFSS) and waves ll, Ill, and 99 of the National Heaiftd Nutrition Examination Survey (NHANES II, Ill, and
99). The BRFSS is an exceptionally large random sample ofebiglent population 18 years and older in participating
states of the U.S. Self-reported information on actual iMgidesired weight, and demographic characteristics tsegad
in cross-sections between 1990 and 2002 (19942002 faredesiight). We correct for potential bias of self-reported
weights (see Villanueva 2001), following the approach obClkt al. (2004), using NHANES Il data for the 30-60-year
olds. NHANES II, 1ll, and 99 collect information from medieaxaminations on weight and health status of a cross-sectio
of the U.S. population in 1976—-1980, 1988-1994, and 19986-2CGombining the data from these two sources allows us to
track changes in the distribution of weight and BMI by denagdnic characteristics between 1976-80 and 2002.



obese, and the obesity threshold for a 5'9” man is 203 pofinds.

A number of papers in economics have sought to explain threase in obesity among American
adults over varying time spans of recent history. The exilans have focused on standard economic
influences, such as falling food prices and preparation tosts as well as reductions in physical la-
bor on the job (Chou et al. 2004; Cutler et al. 2003, hencefortls @hilipson and Posner 1999;
Lakdawalla and Philipson 2002). The theoretical modelereff study representative agents and speak
primarily to secular trends in average weight. Although thedel of CGS, which emphasizes self-
control problems, can predict growth in upper-quantileghiés relative to the mean, the prediction is
sensitive to the empirical variation in self-control oveoél intake—variation that is neither well under-
stood nor readily observed. The prior works abstract fromegje heterogeneity, known to be a major
factor in weight variation (Cawley 1999, Chou et al. 2004) aitideg ignore or hold fixed the social
influences on weight determination. In this paper, we arpaegocial and biological determinants of
weight gain—interacted with falling food prices—contribisubstantially to our understanding of the
various changes in the weight distribution over the past&&0y.

In the choice model, utility depends on food and nonfood aonsion, and on how individual
weight compares with a social weight standard or norm—coadtas the weight to which individuals
aspire. Individuals differ in their respective genetic enchents of (resting) metabolic capacity, but
they are otherwise identical. The social weight standashdogenous, however, and depends on the
aggregate behavior of the heterogeneous population. §hranalytical results and calibrated simula-
tions, we illustrate how food price declines affect therentreight distribution, and we describe explicit
adjustment dynamics across long-run equilibria. The n@ditalnodel and simulations are calibrated to
American women ages 30 to 60. This demographic restrictiiaeces the calibration’s precision, be-

cause the physiological and social processes we conselgeader and age-group specific. Consistent

4BMI values between 18.5 and 24.9 are considered “healthyil IBss than 18.5 is “underweight,” and BMI between
25 and 29.9 is “overweight” but not obese. BMI thresholds®&8d 40 are used to classify increasingly severe degrees of
obesity. The thresholds are based on correlations with idigrtand mortality risk (Kuczmarski and Flegal 2000). Sealte
websites offer simple BMI calculators. See, for examplg:Htvww.cdc.gov/nccdphp/dnpa/bmil.



with the data for this demographic group, observed in the NIHS II, NHANES Ill, and NHANES
99 studies, we predict large increases in mean weight, agdlavger gains in upper-quantile weights,
as the food price falls. For simulated price declines thatpanned to independently estimated trends
in the full price per calorie of food, including both the mgnarice and time costs, the predictions
match the quantitative changes in average weight and thetplate for this group with considerable
accuracy. Depending on how rapidly the weight aspiratignsas to changing behavior, the dynamic
analysis shows that equilibrium adjustments may occur wittubstantial lag, helping to explain the
observations, over the past 10 years, that food prices reamr toughly flat and yet average weight and
obesity rates have continued to rise.

Among a number of genetically influenced physiological dastknown to affect weight and BMI,
the basal metabolic rate (BMR)—the calories expended penmdidneimaintenance of involuntary bod-
ily functions with the body at rest—is arguably the most imipot, and it is relatively easy (albeit
expensive) to measure (Schofield et al. 1985, Cunningham)1@&ing a well-known data set con-
taining direct observations of basal metabolic rates, wignate a parametric model of metabolism
in relation to body weight, a model that includes an idioggtic component. While previous eco-
nomic models of obesity have assumed that metabolism iarlimeweight, we find—consistent with
the most recent research on metabolism (Horgan and Stul@s 2ainningham 1991)—that models
in which BMR s strictly concave in weight fit the data better. &pbedding the metabolic model into
the economic choice model, we can describe complete weigtntbaitions at each food price value.
More important than its ability to capture cross-sectiomaight variation (and metabolic variation ap-
pears capable of explaining a substantial portion of thigtian) are the surprising consequences the
metabolism model predicts for the evolution of the disttid over time as prices fall. The marginal
effect of calorie consumption increases, on average, aag&eaveight grows, even with no change in
the distribution of genetic endowments. This result dogsange when metabolism is assumed to be
linear in weight, and it contributes significantly to growthupper-tail weights relative to the mean.

The analysis shows that the specifics of the metabolism nrodtkr considerably for prediction and
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policy analysis.

We alsoillustrate the distributional implications of aitative explanatory models of obesity growth,
including those of CGS and of a rational addiction model agthfiom Cawley (1999). We introduce
heterogeneity in the respective explanatory factors desgin these models—self-control over food
intake and addictive propensity—and describe the regultieight distributions at different price lev-
els. (In the case of CGS, we vary the time cost of food and itsayp@nice separately, in keeping with
their framework.) We find that, when food prices fall, vaoatin these behavioral traits can lead to
greater weight gains in the upper tail of the distributioartlat the mean. However, these predictions
rely on as-yet-unverifiable assumptions about the didiobs of self-control and addictive propensities
in the population. We therefore view these alternative éawrks as complementary to our own and
argue that a better understanding of the severity and meevalof self-control and addiction problems
concerning food is needed in order to assess their contiisiproperly.

Social comparison in the model implies that individualsisgo weigh less (by some fraction)
than the average weight in the population at a given times €hdogenous weight aspiration increases
as food prices fall, because price declines cause averagatie increase. Although it is difficult to
observe weight norms directly, this prediction agrees thiéobservation that the self-reported “desired
weights” of Americans increased significantly between 188d 2002, complicating the conventional
wisdom that media images emphasizing thinness perfeattgtei weight aspirations. The evidence on
desired weight comes from the CDC’s Behavioral Risk Factor Silamee System (BRFSS), which
contains data on self-reported desired weights and actights for the same individua’swWhile the
data are not longitudinal, observations from differenteyryears suggest the overall trends. In 1994,

the average weight for an American woman was 147 poundsewielaveragdesiredweight was 132

5Self-reported weight data are known to be biased, and danscare suggested in Chou et al. (2004), among others.
However, self-reported desired weights must be taken atVatue, since they cannot be checked against their “true” or
revealed values. Accordingly, in comparing actual weighhwlesired weight (or actual BMI with desired BMI), we use
self-reported values of weight, desired weight, and heigiiese are reported in Figures 2 and 3. Alternatively, we can
correct both values according to the same algorithm, argktfigures are available on request. Either way, desirechiveig
increases with actual weight over time.



pounds. By 2002, the average had increased to 153 poundsyaragj@ desired weight had increased
to 135 pounds. These data—which follow similar patternsresged in terms of BMl—suggest a
reduction in (implicit or explicit) social pressure to maiim lower weights. At the same time, medical
innovations reduced obesity-related morbidity and mitytabnsiderably over the period (Flegal et al.
2005). Although we do not model medical incentives explicthe “moving norm” model is consistent
with these developments as well.

The remainder of the paper is organized as follows. Sectwes2ribes the theoretical model. Sec-
tion 3 analyzes the comparative static effects of price anlibgum weights, the weight norm, and
welfare. In Section 4, we simulate equilibrium weight dimitions under three different price levels
and simulate the dynamic adjustment paths across eqailidfe compare our results with benchmark
models involving weight-linear metabolism, a fixed weigltm, and forward-looking (as opposed
to myopic) behavior. In Section 5 we evaluate explanati@ngtie evolution of the weight distrib-
ution (again under falling food prices) based on variatiorself-control and addiction to food. The

concluding section discusses policy implications and iptexhs about the future of obesity.

2 Theoretical Framework

2.1 Agent-based model

The theoretical model takes an agent-based approachingogénetically heterogeneous individuals
interacting within a social group. The nature of the intémacis that each individual compares her
own weight to the group’s commonly-held norm or “desired’igie, and this comparison enters her
optimization problem as described below. The existence @l standards may seem an obvious
social fact, but there is no scientific consensus on how teeselards are formed. Desired weight is
defined as a fraction, less than one, of average weight inrthggand is therefore subject to change

over time. This specification, in which people aim to be tlkinthan the average person in the refer-



ence population, combines two basic assumptions: 1) irecgmbrary Western society, thinness (up to
a point) is prized (Garner et al. 1980, Mazur 1986), and (&8jviduals assess themselves in relation
to others rather than against an absolute scale. The |a$emngtion follows the social interactions
literature in economics, as well as longstanding tradgtiorsociology and social psychology, in stress-
ing the notion that people are concerned with being normedlation to their peers (see, for example,
Bernheim 1994, Brock and Durlauf 2001, Becker and Murphy 2000\dBea 1986, and Dwyer et
al. 1970, among many others). This specification creatas ffoo gaps between the prevailing white
Western ideal of thinness and ttle factostandards to which individuals aspire (or against whicly the
are judged); consequently, ours is not a model of the ewnludf media ideals.

The assumption of a common (relative) weight norm is adutiigteighly stylized, and we recognize
that individual weight aspirations are likely to exhibiiadyncratic variation. In the BRFSS data for
30-to-60-year-old women, the coefficient of variation o$ided weight is 13.9 percent. However, the
coefficient of variation of actual weight is significantlyegiter, at 23.1 percefitFigure 2 illustrates this
discrepancy by overlaying the distributions of actual aesiitd BMI. In addition, race is a significant
explanatory factor in desired weight for this sample. (Fég8 plots mean desired weights against
mean actual weights for various demographic groups.) Tfede suggest the presence of a social
component as well as an individual component in the formatibweight aspirations. Our model
emphasizes the social component by assuming a uniform weagim for all American women between
30 and 60 years of age. This assumption prevents us from adihgcvariation in norms within this
demographic group as an explanatory tool, and therefordtsan a conservative test of the influence
of social weight norms.

Equilibrium for the system is defined as a weight distriboi@md a weight norm that are mutually
consistent. Each individual maximizes a myopic utility ¢tion over short-term food and nonfood

consumption, taking the reference weight and prices intoaat! Food and nonfood consumption are

8For men, the corresponding figures are 13.7 percent and &8cémt, respectively.
"We will refer to the reference weight alternatively as thenmo



both goods, but deviation from the reference weight is a #adeneral expression of the one-period

utility model is as follows:

Uit [, Gt Wk_1] = Gi[Fit, Cit] — J(Wk [Fie, Wi ¢ 1, 8] — My 1) (1)

R andGC; represent food and nonfood consumption, respectivelypdadodt. W _1, representing weight
at the end of periotl— 1, is a product of past actions. Individual heterogeneityastured byg;, which

is a stationary shock to basal metabolism, as describewb@ois the norm-independent component
of utility: It is strictly increasing and strictly concave C and strictly concave but not necessarily
monotonic inF. The term beginning witld gives the social-interaction component, which represents
the cost of deviating from the reference weighit, The subscript oM indicates that agents observe
the value oM at the end of periotl— 1 and take this as fixed in the optimization; in particulagytdo
not forecast the value dfl that will emerge as a consequence of aggregate behavioriodpge The
coefficientd gives the strength of the social interactions, which is lgelastant across individuals. The
presence of a norm has the intuitive effect of lowering theavece of weight in the population, even
though not all population members conform to the norm eyact!

The individual correctly anticipates her own end-of-pdneeight as a function of food intake and
so takes into account the effect of current food consumptiotine cost of deviating from the reference
weight. This cost is symmetric—it is just as undesirable eéoubderweight relative to the norm as
to be overweight—and is meant to capture several known tgpesnctions. The stigmatizing of
overweight (and underweight) individuals is well-docurngeh(Myers and Rosen 1999) and may entalil,
for example, teasing, ostracism, and discrimination imbir Peer pressure and contagion regarding
eating behavior have also been observed, particularly gradolescent girls (Crandall 1988). Ross
(1994) has emphasized depression as a consequence of merwShe identifies three causes of
depression among the overweight, two of which relate dyect the presence of socially derived

weight norms. She finds that some overweight individualsober depressed as a direct result of



negative self-perception and that these individuals termetong to social groups with a low incidence
of overweight. Graham and Felton (2005) reinforce theserfgslin two ways: They find that, in
general, obesity contributes to depression among Amesi@ard they reject the reverse causality), but
they also find that obesity does not raise depression riskfgigntly among African-American women,
a group with one of highest obesity rates in the United States

In addition to mental health costs, extreme overweight amtkeaveight entail significant physical
health consequences. Several studies have shown, for kxahgi the risks of diabetes, heart disease,
osteoarthritis, and other health conditions acceleratie Wwcreases in body mass index (for example,
Must et al. 1999). In addition, mortality exhibits a U-shdpelationship to BMI among men in the
United States, indicating that underweight imposes smmiartality risks as overweight (Troiano et
al. 1996). Evidence from developing countries, where umndgght is much more prevalent than in
the United States, indicates substantially elevated sés@eidence among low-weight (BMI below
20) individuals (Ezzati et al. 2002). A model with deviatioosts that depend on a mutable norm
will capture these health costs only when the value of ther@s within the medically recommended
range. In the parameterizations we consider, the emergemisrdo, in fact, fall within this range, but in
general the model does not constrain them to do so. The hexadth of obesity in particular are partly
reflected in the increased per-capita health spending aniengbese relative to the normal-weight
population (Thorpe et al. 2004).

In addition to psychological and physical costs, there arectleconomic costs associated with
overweight and obesity. For example, among younger whiteafes (age 16—44) in the United States,
an increase in weight of two standard deviations has beewrsim reduce the average wage by 9
percent (Cawley 2004) Marriage-market penalties for overweight and obesity agn@omen, which
may involve both economic and psychic costs, have been deatat by Averett and Korenman (1996).

Successive optimization of the one-period problem impdi@svergence to a stable weight for any

8The results in Cawley (2004) and in Averett and Korenman §)98ased on recent U.S. samples, show weight-related
earnings penalties only for overweight and obese indivglu&ince the incidence of underweight in the U.S. is limited
these findings do not rule out the possibility of equivaler@remic costs among underweight subjects.



given value ofM. This weight does not, in general, coincide with the stabdgght that optimizes a
dynamic programming problem in which one-period utilitygisen byU[.]. The myopic specification
may be taken to imply some lack of self-control, although wendt explicitly model a time inconsis-
tency problem, as do CGS. The model does not imply that indal&lignore the future altogether, since
they take into account the near-term effect of calorie comgion on weight and factor in the social
cost (or benefit) of the weight change. This assumes thatithdils correctly perceive their net energy
intake® We examine the robustness of our predictions to forwar#iapspecifications and compare
the power of our model to that of other models that emphasieetemporal concerns. As discussed in
Section 5, we find that the myopic specification does not dheecentral qualitative results, but has an
advantage in explaining the quantitative response to pheages and, in some cases, alters the welfare
analysis.

For purposes of simulation and calibration, we specify tlaimization problem as follows:

MaX{F’uCt}Uit [Ft,Ct ’V\/I,tflv a, 67 B? J7 Y, P, &, Mt,]_] = (2)

aFi — 8R7 -+ Blog[Ci + 1] — J(W -1 — (7/3500BMR(Y, p, &, W t1) + .9Ft — Mi_1)2,
st. pRh+G <Y.

Within a single period, calibrated to one week, the margintidity of food, F, declines and eventually
becomes negative. The expression inside the parenthdkesirig J just amounts to the difference
between end-of-period weight§, and the normiM, as of timet — 1, as in equation (13°

Aside from the calories burned in digestion, we assume fopbcity that calorie expenditure is
limited to the basal metabolic rate (BMR), or the calories eeauhly to sustain basic bodily functions,

such as lung and heart activity, with the body at rest. Thaathge of this assumption is that BMR has

9There is evidence that people systematically underegtintatir caloric intake (Wansink 2004), but we ignore this
problem in the current paper.
10This social interaction term is similar to those in Glaeset Scheinkman (2002), Brock and Durlauf (2001), and Burke
and Prasad (2005), among others.
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a strong exogenous (that is, genetic) component that hasbeasured in numerous studies (discussed
below). Of course, physical activity induces calorie exgieme over and above BMR in the short
run, and exercise may alter BMR in the long run via its effectlon quantity of fat-free body mass
(Cunningham 1991). However, Black et al. (1996) find, usin@mesive data from affluent societies,
that BMR is strongly correlated with total energy expendit(FEE), the former accounting for 60
percent to 65 percent of the latter, on average. They alsdHatdohysical activity level (measured as
the ratio of TEE to BMR) is orthogonal to BMR. Variation in BMR is tleére a good predictor of
variation in total calorie expenditure, with the advanta§esolating the persistent genetic component
of heterogeneity and the disadvantage of underestimdtmgariance of TEE.

A large literature, spanning the fields of public health ahwi@al nutrition, has concerned itself
with estimating predictive equations for BMR in order to héggermine caloric needs based on readily
measured variables such as weight, height, age, and sehouljlh consensus on a single best model
has not been reached, taken together the studies indiczd bgreement on a number of issues: (1)
body weight is a significant (positive) factor in BMR, and kneddje of the weight-BMR relationship is
crucial for estimating energy needs (Cruickshank 1999);(@nhthere is significant idiosyncratic vari-
ation in BMR around the predicted values. While Cunningham 1),.98/kigle et al. (1988), Pullicino
et al. (1996), and others have argued that lean body mas®itea predictor of BMR than weight (and
that use of this measure eliminates needs for adjustmesésilmn age, sex, and height), the significant
relationship between weight and lean body mass implies aas@nrelationship between weight and
BMR (Cunningham 1991) that can be used when lean body masstdaneadily measured.

While some studies have found that the body responds to sdrantweight gain or loss with com-
pensatory changes in metabolism that seek to “defend” titialirquilibrium weight (Wilson 1999,
Labayen et al. 2004), the duration of these effects is unkndWhile we do not dispute the possibility
of metabolic path dependence and other complexities ahthi@dual level, two relatively recent stud-
ies (Martin et al. 2004, Arciero et al. 1993) have found digant predictive power for a model of BMR

first advanced by Harris and Benedict (1919), indicating stieess of the weight-metabolism relation-
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ship (over a given weight range) to secular changes, suchcasased average calorie consumption,
and group-level differences in the populations under sttidy

One model often employed for predictive purposes is the kitdigear model of Schofield et al.
(1985). Both CGS and Lakdawalla and Philipson (2002) adopaltispecifications, and CGS employ
specific coefficients from the Schofield study. However, oun @nalysis of the Schofield data, as
well as a number of other prominent studies, questions tberacy of the linear model. For example,
Horgan and Stubbs (2003) have shown that the Schofield egsatubstantially overestimate BMR for
the obese, a problem due in part to the dearth of obese ssiimetie Schofield data. The Horgan and
Stubbs findings, as well as the reduced form of the Cunninghadeh{1991) and other models based
on lean body mass, imply declining marginal effects of boayghit on BMR. The effect arises because
excess weight tends to come disproportionately in the fdrfatpwhich burns far fewer calories per
pound than does lean mass. In addition, there is evidenag@fdskedasticity in the error term. Studies
that have found the disturbances to be positively corréhaith weight include Leibel et al. (1995) and
Rand (1982).

Our own analysis of the Schofield data, using maximum lilegth estimation, finds that (1) a
weight-log-linear model of (expected) BMR fits the data bdttan a weight-linear model and (2) the
error term is heteroskedastic, with error variances irsgsnggin weight. To illustrate the importance of
the metabolic specification, we generate simulated eqiuhibweight distributions under both of our
estimated models (log-linear and linear, respectivelythBoodels involve the same, heteroskedastic,
error structure. Of the two models, only the log-linear s$fpeation generates strongly asymmetric
equilibrium weight distributions with long upper tails, strong agreement with the distributional fea-
tures of the BRFSS and NHANES data. The concavity of the logalimodel also contributes to large
weight growth in the upper tail over time, a pattern that doesemerge strongly under the linear

model. (Results are discussed in more detail in Sections $3and

11Evidence on racial and ethnic influences on BMR is mixed, dépg on definitions of ethnicity and other method-
ological factors (Martin et al. 2004, Hayter and Henry 198dares et al. 1998, Cruickshank 1999).
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The linear heteroskedastic specification is as follows:

BMR(kcalperday = y+ pW + gilog(W). (3)

The shockg;, is idiosyncratic and permanent; it is normally and ideadticdistributed with mean zero
and standard deviatiooe. In expectation, then, the relationship between BMR and ktagylinear

in this model, but for a given nonzero valuegpf metabolism deviates from the linear relationship in
proportion to log weight. For the log-linear specificatiexpected BMR is log-linear in weight, and
the error structure is the same as above. That is, we simplgae weight with the natural log of
weight in the second right-hand-side term in (3). The mdtateguation in (3) implies the following

(one-week) relationship between food intake and weight:

W =W _1— (7/3500 (y+ pW -1 +&ilog(W-1)) + .9F. (4)

The term.9Rk represents the thermic effect of digestion, that is, the tfaat digestion consumes, on
average, 10 percent of calories consumed. Weight is mehsumounds, while metabolism is mea-
sured in (kilo)calories per day. Accordingly, the lattershbe converted into pounds of body weight
lost over one week. The conversion factor ¢gB300 is the ratio of the number of days in a week to
the number of calories (3500) per pound of body weight. Feodeasured directly in pounds of body
weight added per week, which can easily be converted backdoies by multiplying by 3500.

For simplicity, we do not model height variation. There aneumber of reasons why we do not
expect height variation, either cross-sectionally or diree, to contribute much explanatory power to
the weight distribution. Among U.S. women, average heigigtincreased by less than 2 percent over
the past four decades (see for example, Komlos and Baur 2008¢yved weight increases over that
period have far exceeded the weight gains that would hawkBidl constant. As for cross-sectional

differences, the Cunningham (1991) study indicates thafhteioes not add much explanatory power
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to the model of BMR based on lean body mass. Also, Schofield. e{1885) argued that height
was secondary to weight in predicting basal metabolism.ndJghe Schofield data for women ages
30 and older, a linear regression of BMR on height and weightdmaR-squared value 0839, an
improvement of justO06 over a linear model that includes weight alone. A linegression of BMR
against body mass index (BMI), a measure that incorporaighthgields an R-squared d235 for the
same demographic group.

Height could affect weight outcomes for non-metabolistatesl reasons, however. For example,
we might expect weight aspirations to be height-specifianagvernment tables indicating healthy
BMI values rather than healthy weights. However, we expreescommon norm as a weight value
rather than as a body mass index (BMI) value. While the BRFSS daitadéicate variation in desired
weights with height (as well as with actual weight), suchiattmn does not render desired values of
BMI constant across individuals. In fact, the desired BMI eslimplied by the BRFSS data decrease
systematically in height, suggesting that women do not aady adjust for height differences in
setting weight aspirations. Therefore, the common weightmassumption, while stylized, is not
necessarily less realistic than one involving a common ni@mBMI. Anecdotal evidence suggests

that weight values are more salient than the less-reatidgived BMI values.

3 Equilibrium and Comparative Statics

3.1 Equilibrium definition

Individuals in the population are identical in all the paeders of the utility functiong, 3, p, v, J,
M; have identical incomes; and face the same prices. The aplicé source of heterogeneity is the

idiosyncratic metabolic shock;. The full equilibrium conditions under the linear metaboli model
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can be expressed as follows:

o —20F5— 1.8J(WS—MS) = Ap, (5)
R = (1.11)(7/3500) (y+ pW°+ eilog (W), (6)
M= (5 W), ™)
P _
CiS—H =A, (8)
PR°+CP =Y. 9)

The conditions apply to an interior equilibrium, in whiclakte food intakel=S, stable weighty/S, and
stable non-food consumptioﬁis, are all strictly positive MS is the equilibrium weight norm, which,
according to equation (7), is some fracti@npf the average stable weight that arises under this norm.
Equation (5) gives the first-order condition on food constiomy whereA is the Lagrange multiplier.
Equation (6) guarantees that per-period food intake mamtaeight at the IeveWiS. Equations (8)
and (9) are, respectively, the first-order condition on fard consumption and the budget constraint.
The equilibrium norm depends on the relative price of fobé, distribution of individual shocks, and
the magnitude of, because these determine the stable individual weights@amsumption levels for
any fixedM. The equilibrium norm (and therefore the weight distriba)i also depends ofy which
we will set at.88 in various simulations. Equilibrium depends on incomele and the remaining
parameters as well, but we hold these fixed throughout thigsiea

Assuming the shocks are normally distributed, the expedakee of the equilibrium norm is defined

implicitly as a function of prices by the following equatian whichq(.) represents the standard normal

2Equilibrium conditions for the log-linear metabolism mbdee equivalent but analytically less transparent, so vee us
the linear specification here for ease of exposition.
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density function:

ME(p) =2 |~ WEMS(p), p.en)e(ei/0:)de. (10

It should be noted that because the absolute shocks ares$letdastic in weight, the expected average
weight in equilibrium does not correspond to the stable Weligr the individual who draws; = 0.

Under our functional form and parameters, an interior dopiim exists and is unique for each
realization of the metabolic shocks. The existence anduamegss of a stable equilibrium norm follows
from two (necessary and sufficient) properties of the mo¢iBl:each individual has a unique stable
weight for every possible value &f; and (2) the rate of change of the stable weights Witis positive
and less than one. The existence and uniqueness of a stapld foe a givenM andg; depend in turn
on three necessary and sufficient conditions: (1a) a unigluien to the one-period problem exists
for each starting weight; (1b) optimal caloric intake deses (increases) as one’s initial weight gets
farther above (below) the target weight or norm; and (1c)t¢it@ number of calories burned per day
is strictly increasing in weight for each individual, at aeréess than one. The stable weight solves the
one-period problem when the initial weight happens to besthble value, but it is not in general the
individual’s optimal stable weight From any initial state of the system, both convergence tstthiale
weight for any value oM and convergence to the equilibriuvhfor given parameters are guaranteed.

We provide verification of these assertions in the matherakbdippendix.

3.2 Comparative statics
3.2.1 Price effects and the social multiplier

First, we consider the effect of a change in the full pricefped calorie on equilibrium outcomes. We
have in mind a price decrease caused by an outward shift iimtliesupply curve, reflecting a decline

in food production and preparation costs (as in PhilipsahRosner 1999 and CGS). Price has both

13The optimal stable weight would maximize one-period wtiubject to the constraint that weight be unchanged during
the period.
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direct and indirect effects on body weight. The direct dffe¢he change in stable weight, holding the
norm fixed. However, given that each individual adjusts heigit in response to the price change, the
norm must be updated. The norm change in turn sets off addltchanges in weight and a further
adjustment of the norm, and so on, until a new equilibriumesched* The latter is an example of
a “social multiplier” effect, as in Becker and Murphy (200Glaeser and Scheinkman (2002), Brock
and Durlauf (2001), and Burke and Prasad (2005). The totateif expressed as the decomposition

of these two effects as follows:
dws  ows owSdmS

dp dp oM dp’ (11)

where the expressio‘fl’é\%S refers to the change in the equilibrium norm caused by tleemtange. The
first term is negative: It is optimal to eat more, and therefoeigh more, the cheaper is foambteris
paribus As weights rise, so does any positive function of the aweragmd weight always moves

S
directly with the target weighM (that is M is strictly positive). Therefore, the social multiplier

1M
effect reinforces the price effect, guaranteeing that thelrium weights and the equilibrium norm
S
are decreasing in price, that %\% <0 ando'd—'\ﬁ,S <O0.

We can decompose the price effect on the equilibrium norrolésifs:

5\/\/3
AV Lo QWS awSame, NI 2
dp N2 op oM dp) T ey o
NZI oM

The numerator in the last expression on the right repretiaats/erage partial price effect on individual
weight, multiplied by the facto€. The denominator, which is strictly less than one under saump-
tions, acts to amplify the partial price effects in equilion, leading to a greater change in average
weight than would occur if the norm were fixed. The social ipliér can be expressed as the factor by

which the average partial-price effect gets multipliedigdg/the average equilibrium-price effect. This

14Convergence to a unique equilibrium for any given price iggLthat the social influence on weight not be too strong—
specifically, the partial derivative of individual weightttv respect to the weight norm must be less than one. See the
mathematical appendix for further discussion.

17



factor amounts to the quantity (1 — m), wherem= % Si agil\}ls represents the average partial effect of a
norm change on stable weight, multiplied ©LyWe assume that this latter partial effect is strictly posi-
tive and yet not too large, that is, strictly less than ones Bssumption guarantees that the multiplier
is finite and yet strictly greater than one (Burke 2086).

We have assumed that the initial price decline is exogenouke model. However, the social
multiplier effect implies an outward shift in the (norm-&tant) food demand curve. To restore market
equilibrium following such a shift, the price per calorie i have to move back up, but we do not
derive this price movement in the current framework. Redativ a framework with a fixed weight
norm, an increase in food supply in the endogenous-norm nesldts in a smaller price decline and a
greater weight gain in equilibrium. The social multiplidfeget thus acts to increase the price elasticity
of calorie demand. If weight norms shift with a lag, ratharisimultaneously with changes in average

weight, the price elasticity of calories should be greatehe long run than in the short run.

3.2.2 Welfare effects of food price changes

Consumer welfare in our model depends only on weight reladitke flexible social norm, regardless
of how this norm compares with a healthy weight standard.sTthe welfare effects of price changes
are potentially quite different than welfare effects foramsumer who compares her weight to a fixed
health standard. We assess this difference within our fnarieby decomposing the welfare effects
of a price decline into two components: the portion of thefarel effect induced by the price decline
only, holding the weight norm fixed, and the portion of thefad effect induced by the change in the

equilibrium norm. The decomposition is as follows:

s o OM
> +23(WS-M) o
(13)

dFSY\ owsS acs dFs dFS> <0WSdM

dvs
CMJ_[(UW+UF>W+UC%}+[<UW+UF(1V\/S_pUC(1V\IS oM dp

S
15Becker and Murphy (2000) define the social multiplier as #rentm = %Zi %N—N'l but the thrust of the results is the
same in either case.
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whereV S refers to the agent’s utility in equilibrium anﬁvss represents the increase in food consump-
tion required to maintain a higher stable weight vaifiehy refers to the marginal utility of an increase
in the stable weight, which is the same as the marginalytlitan increase in final weight within a
given period. The terms inside the first set of square bradglegrresent the welfare effects of the price
change, holding the norm fixed. The terms inside the secanof sgjuare brackets capture the addi-
tional impact on welfare prompted by the change in the daguiuim norm. Assume that in the initial
equilibrium the consumer weighs more than the norm, in wigiabe the marginal utility of weight
gain,Uyy, is negative and the marginal utility of foodg, is positive. Holding the norm fixed, a food
price decline may or may not make the (myopic) consumer betteWelfare will improve only if the
benefits of added consumption (of both food and nonfood gomalsveigh the costs of weight gain
relative to the fixed norm.

The social multiplier effect set off by the price drop inds@aditional weight gain and food con-
sumption, but a decrease in nonfood consumption (to sdfsfybudget constraint holding income
constant—this need not imply lower nonfood consumption enwhen price effects are included).
Also, in the aggregate it leads to an increase in the valueeofveight norm. Again, the welfare effect
is ambiguous. The benefits are that the consumer eats moregandng the price effects on weight,
her own weight moves closer to the norm. The latter resutt$@br an initially overweight individual)
because the increase in stable weight caused by the norrgesaless than the increase in the norm.
The cost is that she gives up some nonfood consumption.

Given the ambiguity in both components of the welfare chatige net welfare effects of a price
change are ambiguod$. The indeterminacy applies to initially overweight as wedlta initially un-
derweight individuals. (Simulated welfare effects aredssed in Section 4.) All else being equal, the

net welfare effect of a food price decline for a given induadl depends on whether weight norms are

18|n a linear metabolism model this number would be a constaitdepends on the individual's shock; with log-linear
metabolism this value still depends on the idiosyncratackhbut it also decreases in stable weight.

\Welfare effects in a model with forward-looking consumensl a fixed norm, as in Philipson and Posner (1999), are
unambiguously positive. CGS raise the possibility of welflbpsses for individuals with imperfect self-control, libey
estimate that the costs of weight gain have likely been lass/erage than the benefits of time savings in food preparatio
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fixed or flexible. In the simulations, for example, we find tha&ny consumers would receive greater
welfare gains from a price decline (or smaller losses) in @ehwith flexible, as opposed to fixed,

weight norms, despite the fact that they would weigh moréénflexible-norm case.

4 Main Simulation Results

We use computational experiments to assess the modeli/dbikexplain both the general shape of
the empirical weight distribution and the growth in its upgal since the mid 1970s. The calibration
targets the weight distributions for American women in tBe@)-year age bracket, observed between
1976-80 and 2000 (see Figure 1 and Table 1). This specifis#igta the precision of the calibration,
but the patterns for this group are representative of theativd.S. trends during the same period.
We describe the equilibrium weight distributions for a eerof three prices, a series meant to approx-
imate (roughly and discretely) the (full) food price deeknobserved in the United States between
1976 and 2002. We also describe the dynamic evolution of idtalalition, at points both in and out
of equilibrium, in response to a more gradually declining@mpath. We compare results under our
model of endogenous norms and non-linear metabolism wihlteunder alternative models based
on competing frameworks. For some features of the distdbutfor example, pronounced rightward
skewness—our model offers clearly superior explanatovygpoln addition, our model offers a closer
match for the quantitative changes in the mean, median;,S&tid 99th-percentile weights over the
time period. Another desirable feature of our model is thplaces more constraints on the calibration
relative to alternative frameworks, because in the lattex, parametric form of the heterogeneity is
unknown. The results of the experiments are summarizedg ukascriptions of the key distributional

features, in Table 1.
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4.1 Calibration

In each experiment, we draw 50,000 values from the shockilalibn; these values are held fixed
across the experiments to prevent noise from clouding fieetedf changes to the model. We calibrate
the model to women ages 30 to 60, setting an initial list oapeeters to roughly match average weight
for this group observed in the 1976-80 NHANES data. All pagtars are identical across individuals,
except for the idiosyncratic metabolic shock. To calcutdiesity rates, we measure the percentage of
women who weigh more than 174.5 pounds. For a woman of avéeight, approximately 64 inches
in the United States for the relevant age group, this weigiplies a body mass index of 30, which is
the official obesity threshold established by the Center®fsease Control. The body weight norm is
defined as 88 percent of the realized average weight in bquit, a figure based on the relationship
between desired weights and actual weights in the BRFSS datafoen, as shown in Figure 3.

The metabolism models are estimated directly from the waigbchofield data (see Schofield et
al. 1985 for details on these dat&).For the weight-linear metabolism model, using the maximum
likelihood method, we estimate a weight coefficienpof 3.19 (t-value of 15.5) based on the data’s
subsample of 411 women aged 30 to 60. Using the same methathémdve estimate a BMR model
that is log-linear in weight (in pounds) with a coefficienttbe natural logarithm of weight @f = 447.6
(t-value of 15.1). Our estimates for the linear model are garable with those reported in Schofield
et al. (1985). Using the information on the 199 American wonrethe sample, we estimate that
the constant term for the average U.S. woman in that age gsoug 9289 for the log-linear model.
As discussed above, to our knowledge, no previous estinsdtearametric non-linear BMR models
based on the Schofield data exist (for a non-parametric atjnsee Horgan and Stubbs 2003), and
the previous economic literature has employed non-stéichasear models of metabolism. Sample
likelihood comparisons suggest that the log-linear modsltfie data better than the weight-linear

model, consistent with recent research suggesting a cenmedationship between weight and BMR

18\We thank Graham Horgan of Biomathematics and Statisticde8ub(BIOSS) for providing us with the data.
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(Horgan and Stubbs 2003, Cunningham 1991). Given that thefigtthdata contain relatively few
obese individuals (the obesity rate in the sample of 411 wouosed here is 13.6 percent), our BMR
model may understate the degree to which metabolism slowsguverweight and obese women.

Recall thatg; represents the idiosyncratic metabolic parameter forviddal i, the main source of
heterogeneity in our model. The parameter is fixed longitaidlf for a given individual, but the actual
deviation from the expected metabolic relationship at abiptpin time is given byg;w;;, wherewi
is the individual’s prevailing weight. Assumirgy is normally distributed with mean zero, we obtain
estimates, denoteak, for its standard deviation from the maximum likelihoodimsttions described
above. For the weight-linear metabolism model, we estimatlue forg, of 24.18 (t-value of 35.1),
and for the weight-log-linear model, we git = 24.1 (t-value of 35.0).

Under the calibration, the marginal utility of the first unitfood in a week exceeds the marginal
utility of the first unit of non-food consumption by 24 perteiiThe coefficients on the utility func-
tion in equation (2) arer = 6.2, 8 = 0.9, andp3 = 5.) The parameted, representing the strength of
social interactions, is set at@18. This value, together with prices and the other utpéyameters,
determines the response of individual weight to an exogerbange in the weight norm. On average
across individuals and prices, the magnitude of this effeabout 02, meaning that individual weight
increases by one-fifth of a pound for every one-pound inereathe norm.

The model’s price represents the full price, including bfatbd inputs and time costs, of 3500
calories (the caloric equivalent of one pound of body weighife experiment with this price at $50,
$40, and $32 to roughly match the decline in the real fullgo€ calories over the past three decades.
At the initial full price ($50), the cost of the calories need(1556) to cover basal metabolism and
digestion for a 140-pound woman amounts to #22oer day. At the lowest full price, this cost comes
to $1481. Income is set at $600 per week or $&10 per year, implying a gross hourly wage of $25.

Our values for income and the full price of food imply that e tinitial equilibrium (at the highest full

9This is consistent with hourly average U.S. wages in 200Mgu000 dollars. In 1982 dollars, the average hourly
wage in the U.S. in 2000 was about $8, roughly the same as it. 198
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price of calories) the average person is spending about 2&ieof her income on food expensgés.
CGS report that the time costs of food (including meal prepamaand clean-up, but not shopping
or transportation) fell by 42 percent between 1975 and 18808,to greater availability of restaurants
(in particular, fast food and take-out) and technologiaifaaces in food processing, storage, and
preparation. Since time cost declines appear to have kwdleonsiderably following 1995 (Aguiar
and Hurst 2006), the overall time cost decline between 19852000 should not be much different
from 42 percent. With time costs valued at the assumed hoatidyof income, the assumed 36-percent
overall decline in the full food price implies a real declinghe purchase price per calorie of 23 percent
from its initial value.

Note that the 23-percent decline estimate lies betweenelatve decline in the overall food CPI
and the relative price declines of several important fooshroodities. (As shown in Figure 4, the
prices of ground beef, chicken, eggs, and lettuce havenf&l@® percent relative to the overall CPI
since 1980.) As seen in Figure 5, between 1978 and 2002, #ralbfood-at-home price index fell
by 15 percent relative to the CPI, and the food-away-from-éamdex fell by 6 percent. The declines
for individual items should qualify the (smaller) estimd@eclines for the overall food CPI, since the
latter is likely to be a less reliable measure of the pricegadorie of food. In fact, the food CPI is
likely to have underestimated the decline in the price ptrmaover the period of interest: Changes
were made in the list of included items to reflect changingsaamer expenditure patterns (see the BLS
Handbook of Methods, http://www.bls.gov/opub/hom/pdffith17.pdf), and these expenditures must
have embedded the increases in calorie consumption oldseves the period. USDA consumption
data show that per capita calorie consumption (adjustetbgses) has increased by about 22 percent
since 1975 (see Putnam et al. 2002). However, our chickerbaatiprices refer, respectively, to
the price per pound of whole fresh chicken and the price pang®f ground chuck (and not to the

composite “beef and veal” and composite “chicken” categwiges) and so should be relatively reliable

2OAbstracting from time and preparation costs, Huang (1998)nates that the average food budget share between 1953
and 1990 in the U.S. was about 18 percent.
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indicators of per-calorie prices.

To illustrate further, consider McDonald’s Big Mac sandwialnich contained 590 calories consis-
tently over the period under consideration (and still do&)r assumed highest and lowest full price
levels imply, respectively, high and low full prices for tB&y Mac of $840 and $530. Based on infor-
mation from McDonald’s an@he Economistnagazine, we calculate an average list price of a Big Mac
in the United States of about $2 for the year 2000. The diffeeebetween $30, our lowest estimated
full price, and $2 amounts to $30 (in year 2000 $), which is the value of approximately 13urtés of
the individual’s time. Thus, our lowest price estimate seeoughly appropriate to capture the current
full price of fast-food calories. Adjusting Big Mac list pas for inflation, we calculate that the real
price of a Big Mac in 1980 was $24 (again in 2000 $), implying that the real list price of theg Blac
declined by approximately 12 percent between 1980 and 20@@hat its total time cost in 1980 was
25 minutes. These estimates imply that the purchase priceapiie for the Big Mac fell substantially
less than the average purchase price per calorie of foodnargk but that the Big Mac’s time costs
fell by a greater percentage than did overall time costsséliemdings seem consistent with evidence
that both the supply of and demand for fast food increasedivelto other foods over the time period

(Chou et al. 2004).

4.2 Linear vs. log-linear metabolism

Previous economic analyses of obesity involving models efatmolism have adopted equations that
express (exogenous) calorie expenditure as a linear mofi weight: In Lakdawalla and Philipson
(2002), calories are perfectly proportional to weight, an@GS the linear model (taken from Schofield
et al. 1985) also contains a positive constant term. As dssdi above, recent studies have shown

that the marginal increase in basal metabolism with bodygktedeclines with body weight, both

211t is possible that the average fat content per pound of fndsbie chicken or per pound of beef ground chuck changed
over the period of observation, leading to changes in tteziesl per pound for either item. However, ground chuck gaher
conforms to ale factostandard of 80 percent lean content, and the BLS measurasaseprices for other (leaner or fattier)
grades of ground beef and also for other specific cuts of Hutiken and beef.
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longitudinally and cross-sectionally (Cunningham 1991lli€too et al. 1996, Horgan and Stubbs

2003). Confirming these findings, we obtain a superior fit ofSkhofield data, using a metabolism
model that is linear in the log of weight, rather than lineamieight itself. The concave specification

of metabolism turns out to hold significantly different ingaitions for obesity growth as prices fall

than does the linear model, and it captures a greater patithe observed increase in upper-quantile
weights relative to the mean between 1976 and 2000.

The log-linear model’s predictions at the $50 price matah1876-1980 NHANES Il data quite
well, although parameters were selected only to match geanaeight at this price. (See Table 1 and
Figure 6 for details.) At the same price, the linear modes aiovides a good match for the observed
mean weight for NHANES II, but its predicted values for 95ind 99th-percentile weights fall farther
short of the actual values than under the log-linear modmdabse the linear (heteroskedastic) model
produces a much less asymmetric distribution. (See Tabiel Fagure 7 for details.) The differences
between the predictions of the respective models become grneater at lower prices. For the full
price drop, from $50 to $32, the linear model implies a patahift of the weight distribution: Mean
weight, 95th-percentile weight, and 99th-percentile el increase by about 18 pounds. The log-
linear model predicts respective increases of 20.2, 27,3ngdounds. Between NHANES Il and
NHANES 99, these values increase, respectively, by 20,r864& pounds.

Considering these movements in percentage terms, we sabdhddta exhibit greater percentage
weight gains in the upper percentiles than at the mean: Theatthe respective percentage changes
in 95th-percentile weight and mean weight is 1.22 in the ,da86 in the log-linear model, and 0.79 in
the linear model. (Percent changes are computed with repte average of initial and final weight;
the figures do not change much if percent changes are comfyatadnitial weights.) Although the
simulated log-linear model does not generate dispropmte weight gains, its predicted gains are
greater in absolute terms in the upper tail, and they are rgresdter than in the linear model.

The logic behind these results depends on two effects: ibe plasticity of calorie consumption,

and the calorie elasticity of weight (that is, the percergnge in stable weight for a permanent mar-
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ginal percent change in calorie consumption). The lattstadity increases in body weight under the
log-linear model and decreases in body weight under thaldinedel. Thus, for a given percentage
increase in calories, the log-linear model of metabolisedjmts greater percentage gains in weight
for initially heavier individuals compared with lighter es, and vice-versa for the linear model (all
effects are evaluated along the metabolism regressios)lindowever, the price elasticity of calories
is not, in general, constant in weight. In the log-linear lpthe price elasticity of calories decreases
with weight: This occurs because we assume that individt@isctly forecast the marginal effect of
calories on weight for the current week and adjust conswngccordingly. We also assume that the
marginal utility of food is constant in weight, that is, caés are not addictive. (Compare Section 2.1.)
As a result of these assumptions, initially heavier peoptesame fewer additional calories in response
to a price decline. Still, despite their lower caloric resge they gain more weight than others, and
larger percentage gains are possible, depending on hovysloevprice elasticity of calories declines
with weight. For the linear model, one would have to assuna¢ ¢hlories were addictive, and to a
sufficient degree, in order to get larger price-induced Weggins for heavier people, even in absolute
terms.

Our analysis suggests that a better understanding of nietablationships, both cross-sectionally
and longitudinally, is crucial for the formation of appragie dietary recommendations. Although
genetics cannot have changed much over the past 30 yeargnalysis shows that the nature of
metabolism itself, for a fixed gene pool, implies that a nigdntd shift in the weight distribution (caused
by economic and social forces) results in greater averagginaa effects of calories on weight, a type

of “positive feedback” effect that does not occur under thedr specification.

4.3 Exogenous vs. endogenous weight norms

In contrast with our endogenous or evolving norm specificatbther models that include a weight

norm (Philipson and Posner 1999, Levy 2002) have treateddh®m as exogenous. While the exact
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basis for the norm is not specified in these models, such firegh$rmay be meant to reflect official
health recommendations or perhaps genetically hard-wireference$? Even permitting norms to
vary in the long run, the fixed-norm case captures the sharifrmorms adjust with some lag. The
fixed-norm case simply holdgl constant at some arbitrary level. Individual optimizatmonditions
do not change, but the norm-consistency condition is nodonglevant. Any given value &l results
in a unique distribution of stable weights at each price,thatfixed value oMM bears no necessary
relationship to the emergent average weight in the popuiati

Adopting the log-linear model of metabolism, equation &)d employing the same set of metabolic
shocks across the cases as in the experiments above, weredimp@ffect of price declines between
the fixed and endogenous-norm models. In the fixed-norm medelset the norm equal to 180
pounds, a figure that corresponds to the equilibrium norrhénendogenous-norm model at the price
of $50. Therefore, when the food price is $50, the distrimgiare identical across the two models.
When the price falls to $40 and the norm is held fixed, the waibhhges reflect only the partial effects
of price, represented by the first term on the right-hand sfd=uation (11). In response to the price
drop, the mean, median, standard deviation, 95th-peteamsight, 99th-percentile weight, and the
obesity rate all increase. As expected, the increases amstently smaller than they are under the
endogenous-norm model, and the predictions get farthet apgrice falls further.

By comparing the price effects under the fixed-norm model iibe effects under endogenous
norms, we get an estimate of the social multiplier. Recalhfabove that our social multiplier repre-
sents the ratio of the change in the equilibrium weight ndmihe endogenous model) to the average
(multiplied by 088) of the partial (norm-constant) effects of price on weiglee equation (12) for
details. We can estimate this value using the ratio of theepcthange-induced change in the endoge-
nous norm to the average (multiplied 88) partial effect of the price change on weight observed in

the fixed-norm model. For the price change from $50 to $40g#tEnated social multiplier is.24.

22However, health recommendations also vary with scientifimedge and are currently a matter of significant debate,
based on recent findings relating overweight, but not opesith reduced mortality risk.
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This value implies that the price-induced increase in ay@raeight in the endogenous-norm model
will be 24 percent greater than it would be in the fixed-norsecaMeasured over the $40-to-$32 price
interval, the value of the multiplier is 1.26.

We also track the welfare effects of the price changes indinéexts of the fixed and moving-norm
models. With an endogenous norm, we find that the initialepcicange, from $50 to $40, leaves most
individuals, 71 percent of the population, marginally betff. The greatest welfare gains accrue to
those closest to the initial weight standard. Gains dedliitle initial differences between weight and
the norm, eventually becoming negative. Welfare gainss@eysare not symmetric in the metabolic
shock, however, given the concavity of the metabolic fumgtiand very low metabolism individuals
suffer the greatest losses. When price falls from $40 to $@&2;lhanges are very similar, and 70 percent
of the population are made better off.

If norms are held fixed, however, the initial price changernowps welfare for only about 40 per-
cent of the population—specifically, those in the upper bathe metabolic distribution (those with a
relatively fast metabolism). Welfare gains (declines)dightly smaller (greater) for the second price
decline, and only 32 percent of the population are made bette Therefore, a substantial portion
of the population fare better in a society with flexible northan in one with rigid standards. The
model suggests that a certain amount of “fat acceptance”impyove welfare for many individuals.
However, we have not taken into account the potential ingpanthealth (or on medical technology)
as the norm moves out of the range of medically advised weigittpotential externalities imposed
on non-obese individuals, as, for example, occur when tbee@sed cost of treating obesity-related

disorders is not borne only by the obese (Bhattacharya and 3@b).

4.4 Forward-looking vs. myopic decision-making

Although our model assumes myopic consumers, our centeditgtive results do not depend strongly

on this assumption. To illustrate this point, we considenvemtionally rational, forward-looking con-
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sumers with no self-control problem or addiction problerthwespect to food (we will deal with these
alternative models in Section 5).

Using the same per-period utility function as in our myopiedel, we simulate a two-period ver-
sion with perfect foresight, a zero discount rate, and a fix@un. This model closely resembles the
one in Lakdawalla and Philipson (2002), which attributess ltimg-run rise of obesity to falling food
prices and the increasingly sedentary nature of work. Tlaeseors adopt a linear, non-stochastic
metabolism, but we add a heteroskedastic metabolic shookdier to generate cross-sectional vari-
ation (the specification of metabolism is as in (3), with éicefnts as in Section 4.1). As shown in
Table 1, the forward-looking model predicts lower averagaghts at each price than those predicted
by our myopic model, because individuals take the full fatoosts of current food consumption into
account. While the fixed norm also contributes to lower wesightthis alternative model, weights are
lower in the forward-looking model even in comparison witkights in a myopic model with the same
fixed norm. Not surprisingly, the long-term price declin@(h $50 to $32) causes smaller weight gains
in the forward-looking model (with a fixed norm) than in our opyc model with endogenous norms,
and so underestimates the actual weight gains over thedpefioterest. Even if we were to add this
type of forward-looking behavior to our framework, we wotildd it harder to explain the observed

weight gains, for given price changes, in a model with fixedwsthan in one with changing norms.

4.5 Dynamic weight adjustment

So far we have analyzed long-run equilibria under a set etldiscrete prices and compared the pre-
dicted outcomes to the NHANES data from three survey periddsvever, we cannot be sure that any
single NHANES snapshot (even one encompassing up to fous'yearth of data) represents a long-
run equilibrium weight distribution. Weight adjustmentg@ss equilibria must occur in “real time,”
because individuals cannot alter body weight instantaslgodrurthermore, even without observing

such prices directly, we can be fairly confident that fulldgarices did not fall in a small number of
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large discrete steps over the period of interest, but réétlenore smoothly. In contrast, we expect that
body weight aspirations may adjust with a lag, since it takas for individuals to observe and inter-
nalize increases in the average population weight. (Futiew, we discuss other mechanisms that
may signal a change in weight norms.) Depending on the velapeeds of price changes and weight
adjustments, and depending also on the speed of adjustrita social weight norm, the empirical
weight distribution may spend much of its time out of longrrquilibrium. Our framework allows us
to describe out-of-equilibrium dynamics and to predicttineng of weight changes in relation to the
timing of changes in fundamentals.

We simulate the weight adjustment process for a declinedratierage full price of 3500 calories,
from $50 to $32, between 1976 and 1993. We assume that, a36fth@ population of U.S. women in
the 30-to-60-year age bracket was in the long-run (endagenorm) equilibrium corresponding to the
$50 food price. Adopting the log-linear metabolism moded, generate 50,000 individuals (metabolic
shocks) and solve for this initial equilibrium distributi@nd its corresponding norm. Beginning from
this equilibrium, we impose a series of discretely-timeidgand norm changes, tracing the real-time
adjustment of the weight distribution by solving the onesweptimization problems repeatedly over
the interval. We update the norm annually in the first expentnand every five years in a second
experiment. We reduce the food price at the beginning of & Yy 3 percent per year until 1993.
After 1993, price is kept constant at $32, and we describstbsequent time path of convergence to
the final long-run equilibrium at the $32 priée.

We hold price constant beginning in 1993, based on sevestd:fél) the overall food CPI did not
fall beyond 1993, but rather showed a net gain of about oreepéage point (relative to the overall CPI)

by 2004; (2) the relative price of chicken was roughly flacsii993; (3) the price of beef continued

23The price time-path in this simulation does not agree exaxith the price time-path implied by our prior equilibrium
simulations. The discrepancy can be partly resolved byngdtiat the previous simulations assume that a given erapiric
snapshot represents the equilibrium weight distributmrtfie contemporaneous price. However, the model’s adgritm
process actually implies that, if prices change contiyu#iie system is never in equilibrium. The current illustaf in
which the price falls over a compressed time period and tkemamns constant for several years, serves as a qualitative
demonstration of the adjustment dynamics.
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to fall until 1998, then rose again, and ended up close t@®31evel by 2003; (4) while weekly time
costs (for food preparation and clean-up) fell 11 minutesypar on average between 1985 and 1994,
the same measure fell only 1.9 minutes per year between 1892G@03. These facts, taken together,
suggest that the full price per calorie has been roughlyteonsince 1993.

The panels in Figure 8 illustrate the time paths of averagghwe95th-percentile weight, and the
social weight norm under these experiments. We see that teeagh prices and weight norms change
infrequently and discretely, weight increases occur gagluTwo factors contribute to this effect: (1)
under myopia, calorie consumption takes multiple peri@dsstich its new stable value following a
price or norm change, and (2) for any discrete change inieatonsumption, weight may take several
periods to reach a new stable level. After the food priceléevtf, average weight continues to increase,
by more than 3 pounds, resulting in an increase of 20 pounestbe entire interval. Under annual
norm updating, average weight gets within one pound of isligted final long-run equilibrium level
of 168.6 pounds (see Table 1) by 2001. Under five-year normatinmyl average weight does not reach
this threshold until 2004, more than 10 years after the geagels off. Endogenous norm changes
exaggerate the effect of a price decline on weight. Howevkeen norms adjust with a lag, this extra
effect may not occur until several years after the price gbaithat is, the long-run price elasticities of
food consumption and body weight will be greater in the lamgthan in the short run. If the simulated
price time-series is accurate, our dynamics help to explarcontinuing increase in average weights
over the past decade in the face of relatively flat food prieélthough a model of rational food
addiction can yield this same elasticity result (Cawley )98% probable length of the long run in the
addiction context is unknown.

In our dynamic simulations, we assume that the weight noramgés infrequently (either annually

2“More specifically, the delayed social multiplier effect daip explain simultaneous observations of a non-monotonic
food price path (looking solely at the food CPI) with a monoto(increasing) weight path. Out of equilibrium, a norm
shift causes an outward shift of the food demand curve. Imamg equilibrium model, this shift would push price back up
moderating the initial (supply-induced) price declinefieThorm increase raises weight, the norm-induced priceéaser
lowers weight, and the net effect could be positive. Oves drijustment process, we would witness an initial priceidecl
followed by a subsequent price increase, together with aotenit increase in average weight.
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or quinquennially), discretely, and simultaneously féiradividuals, but we have not specified a social
mechanism that might justify these assumptions. Our caiculs from the 1994 through 2002 BRFSS
data (repeated cross-sections) suggest that averagedlesight has increased in most years since
1994. The increases are fairly gradual—about one-half gquer year—consistent with a gradual
adjustment of weight norms (at least at the population Jev@he social signal of weight norms that
may be salient among women is dress size. Interestinglydithensions corresponding to a given
women’s size have increased over time, such that, accotdinge estimate, a size-12 dress from the
1950s would be labelled a size 6 today (Simmons 2002). Aaogtd these same data, nearly all of this
change occurred after 1970 (Simmons 2002). While some pénisothange may reflect increases in
women’s height and overall skeletal dimensions, thereigese that “vanity sizing"—sizing to flatter
increasingly heavy customers—has been on the rise in rgeans (Bold 1997, Helser 2004, Gebhart
2005). The use of such sizing strategies suggests that woarerabout the nominal size of garments,
and that they may aspire to a fixed nominal size (a “perfea sight is one focal value), regardless
of whether they are aware of re-sizing practices (GebhadbR0Clothing sizes provide signals of
what is considered small, medium, and large relative todhget market, and under such conditions,
nominal size norms act much like the moving weight norms afroadel. Since size relabelling also
entails costs, however, we would expect it to occur infrediyerather than continuously. Furthermore,
competition across retailers lends an impetus for suchgdsato occur in a coordinated fashion (at
least within a given market segment): A consumer is apt téepie brand in which she wears a size

eight to a brand in which she wears a size ten, all else beingleq

5 Simulation of alternative models

We showed in Section 4.2 that, in the context of our behaWmaoalel, the linear metabolic specification
generates distributions that are less skewed relativeettotitlinear model and predicts that there will

be virtually no difference between increases in averagghteind increases in 95th-percentile weight
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in response to price declines. Section 4.4 showed that fdre@king behavior does not change this
result: The forward-looking model with linear metaboliswed not look qualitatively much different

from the myopic model with linear metabolism (under eitheedi or variable norms). Therefore,

myopia is not central to our qualitative predictions.

In order to capture the stylized facts of interest, a forwlaaking model must contain some addi-
tional features. Aside from non-linear metabolism and gedous norms, the two features suggested
in the obesity literature are lack of self-control and spsitdity to food addiction. In this section, we
compare our model to two prominent alternative theoriegdas, respectively, variation in the de-
gree of self-control over food intake (CGS) and variatiorhi@ propensity for (rational) food addiction
(Cawley 1999). While food addiction and lack of self-contreénfood may sound like similar phe-
nomena, they are modelled differently within economicsl ey may result in different predictions.
The following analysis simulates these alternatives amdpaoes them to our model with endogenous
norms and non-linear metabolism. We conclude that thergtime explanations most likely comple-

ment our own model, rather than contradicting or pre-enggtin

5.1 The self-control hypothesis

CGS argue that variation in self-control can explain themigprtionate weight growth in the upper tail
of the distribution over the past 20 years. In their modehstmmers engage in hyperbolic discounting
to varying degrees. Their hyperbolic consumers are morgtsento a decline in the time cost of food
than they are to a decline in the money cost. Further, theoesitirgue that the decline in food’s time
cost has been much greater than the decline in its money. pacedividual with relatively poor self-
control would likely have weighed more at the initial pricesteris paribusand would have gained
more weight than others in response to declining time costs.

However, the authors do not prove these claims, and we firtdstien proof requires additional

model restrictions. For example, in order to ensure thatdeli~control individuals gain more weight
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than others in response to a reduction in food’s time costintstantaneous utility of food consumption
(that is, the pure pleasure of eating at a given instant inimoous time) must have a strictly positive
third derivative. Assuming (as both they and we do) dimimghmarginal utility of food, this condition
means that the marginal utility of food declines less steépl absolute terms) with each additional
unit of instantaneous consumption. This condition is nemgs(but not sufficient) for non-satiation
in food consumption, a condition that is implicit in theiradysis. While non-satiation is a standard
economic assumption, it is questionable in the context stiaimaneous (or near-term discrete-time)
food consumption. Even granting the condition, the effésiatf-control on the response to changes in
the full food price—and any time-cost change implies a cleanghe full price—is ambiguous: High-
self-control types may gain more weight than low-self-colttypes when the full food price falls. Our
own model assumes a zero third derivative, but our resultfisproportionate growth in the upper tail
do not depend on this assumption.

Despite these ambiguities, we recognize that the selfrabiypothesis has considerable intuitive
appeal. We do not doubt that imperfect self-control rouyimefluences food consumption choices—
recall that in our model all consumers are myopic. Indeedlugionary biologists argue that humans
are hard-wired to take advantage of available food in thegme given that for much of evolutionary
history we faced scarce and unpredictable food suppliegel@ sense of the model’s potential em-
pirical reach, we estimate the effects of variation in selfitrol on weight levels and price effects for
a parametric model based on the assumptions of CGS. In the C@8&l,ntive degree of self-control
is captured by the parametgr,which determines the discrepancy between near-term angdtérm
discount rates. Maximum self-control correspondy te 1, and minimum self-control corresponds
toy= 0. In the former case, the consumer behaves according tdahdasd rational choice model,
with purely exponential discounting, and in the latter cmeconsumer is perfectly myopic. While
self-control may have a genetic foundation (Gale et al. 28@degelman and Flier 2001), we know of
no attempt to describe its empirical distribution. We pextavith the naive assumption that the self-

control parameter described aboygis uniformly distributed on the closed interj@l 1]. We use the
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first-order condition in CGS’s equation (4) to describe thegivedistribution induced by variation iy
at varying time-cost values. The calibration respects fpi@t and implicit assumptions in CGS, in-
cluding those pertaining to the derivatives of instantaisgood utility, and isolates the key differences
between the CGS model and our own. For metabolism, we adofinda, non-stochastic model for
women cited in CGS, which they attribute to Schofield et al8&)9

We set the parametar which affects the importance of hyperbolic discountirngl 00, the value
suggested in the text as a reasonable lower bound. We exgurinith three different values for
the food time cost, denoteq following their hypothesis that declines in time cost wtre primary
factor in the rise of obesity. The CGS model does not speciliyegfort, but the parameter loosely
corresponds to the average time needed to prepare a mealak. shccordingly, we consider values
(in minutes) of 20, 10, and 5. For the decline from 20 to 10 n@eapthe average weight gain is small,
about 25 pounds, from an initial average of 148. However, weighhgaire larger in the upper tail:
The 95th-percentile weight increases by 9 pounds, and #tgldition has a large positive skew. The
time-cost decline from 10 minutes to 5 produces much monmadtia weight gains, counter to intuition.
Average weight increases from 1500 2235 pounds, while 95th-percentile weight climbs from 57
to 4946 pounds. At any price level, the simulated distributioresrauch more skew than the empirical
distributions observed in the NHANES surveys, but this oote depends on the assumed distribution
of the self-control parameter. The fact that the sensjtitottime-cost changes moves inversely with
time costs does not, however, depend on the calibratiompeas. In contrast, our model predicts that
price sensitivity varies directly with the price level. Thaéore, the CGS model predicts accelerating
growth in obesity as food time costs continue to fall, wherear framework predicts that obesity will

continue to grow, but at a slower pace.
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5.2 Rational food addiction

Cawley (1999) argues that calorie consumption exhibits gntegs consistent with a rational addiction
model. He also cites evidence that the propensity towardcto to specific substances may vary
across individuals, based on genetics. To determine thenpak contribution of addiction to changes
in the shape of the weight distribution over time, we simailaeight distributions for a population of
individuals with varying propensities for food addictiohhe model we adopt builds on the standard,
two-period, forward-looking model with zero discountirtfiscussed above in Section 4.4. Following
Becker and Murphy (1988) and Cawley (1999), we model food diddiby letting the linear coefficient
on the utility of current food consumption, denoteth our prior descriptions, be an increasing function
of beginning-of-period body weight, where the functionigaracross individuals. That is, we replace
with the functiona (W t—1) = a + BiW (—1 =. Forf; > 0, this model captures the reinforcement aspect
of addiction: The greater the stock of past food consumpg@ostock embodied, literally, in weight),
the greater the marginal utility of food. F@ < 0, the marginal utility of food is non-increasing in
weight, and food is not addictive. Our model assuies O for all individuals. We vary the propensity
to food addiction by letting3; follow a normal distribution with mean zero and standardiatesn of
4%5, such that half the population is prone to food addictionaxying degrees. We let metabolism vary
linearly with weight according to our fit of the Schofield datat we suppress idiosyncratic metabolic
variation in order to isolate the effects of the propenstaddiction.

In the simulation results shown in Table 1, we see that theiloigsion does exhibit positive skew-
ness. Individuals with a greater propensity to addictiorgivenore than others at a given priceteris
paribus and they gain more weight than others in response to a peickné. In order to avoid corner
solutions (specifically, zero food consumption), the séaddleviation of3; must be restricted, and as a
result, the predicted variance of weight is very low relativ the true value. All of these results depend
on the assumed distribution of the addiction parameterstuiloition that has not been empirically

estimated. The rational addiction model also predictsttiaprice elasticity of demand for addictive
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goods will be greater in the long run than in the short run. Elav, this prediction depends on whether
calories are addictive for the representative individaall the empirical evidence on this question is

not conclusive.

6 Conclusion

This paper presents a new framework for relating the recemeases in obesity rates to falling food
prices. We focus on explaining changes in the shape of thghtvdistribution and, in particular, the
disproportionate growth in the distribution’s upper t&élle explain a substantial portion of this growth,
using a model that interacts the effects of economic changie form of falling food prices, with
social and physiological processes. In the social prodesshbody-weight standard becomes more
relaxed as average weight increases in response to a fooel gecline; the relaxed standard then
leads to further weight increases. At the same time, mataha$ concave in body weight, such that as
weight increases, a given increase in calorie consumpeatsl to greater weight gain. The aspiration to
weigh less than the average individual in the populatiogetioer with the concave metabolic function,
predicts a right-skewed weight distribution as well as tgeprice-induced weight gains for initially
heavier individuals. The simulations show that the modeisda very good job of capturing both the
shape and the movement of the distribution over time.

We find evidence of shifting norms in the BRFSS data on “desiredjis,” as well as in the
documented increases in the average dimensions of givemabsizes of women'’s clothing. If such
shifts occur with a lag, the dynamic analysis shows that thgsément to a new long-run equilibrium,
following a price decline, may take years. We find supportHiis lagged effect in the recent evidence
that average weight and obesity rates are continuing teaser despite the fact that food price declines
(including preparation costs) appear to have levelledinffesthe mid 1990s.

It has not been our primary goal in this paper to explain eeggional variation in weight levels,

and we have deliberately ignored many important sourceseadiw variation. However, our findings
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suggest that metabolic variation alone induces substamight variation across individuals and that
the weight distributions derived from an empirically grded metabolism model strongly mirror the
persistent qualitative features of the observed weiglitibligions. The growth of obesity has been too
dramatic and has occurred too rapidly to be explained bygdsim the gene pool. Yet our findings
suggest that biological processes have played a role irgthisth: Given the concave relationship
between body weight and metabolism, the rightward shifthef weight distribution means that the
realized marginal effects of calorie consumption on wegagbtnow greater on average than in the past,
even with no genetic change.

The concave metabolism model has further implications. mdividual who predicts her future
basal metabolic rate at a higher weight, based on the cuslge at her current weight, will systemati-
cally overestimate it, and therefore will underestimateltng-term weight gain associated with a per-
manent (non-marginal) increase in calorie consumptiorerfiific estimates of the metabolism-weight
relationship from samples lacking overweight individulaés/e done exactly this—and have found a
linear relationship that overestimates BMR at out-of-samwptights. Lacking complete knowledge of
the weight-metabolism curve, even forward-looking indixels may experience regret over past eat-
ing decisions, as myopic individuals do. Even if peoplenglie model eventually (through revealed
weight gains, for example), it may be more difficult to reessich gains than originally anticipated.
Under these constraints on rationality, even forward-ioghkndividuals may be made worse off by a
food price decline. These findings suggest a need for baitdicpeducation, as well as better medical
counselling, concerning the relationship between bodgktebody composition, and calorie-burning.

Both a rational addiction framework and a framework invodvirariation in self-control can gen-
erate qualitative predictions of disproportionate growthhe upper tail of the weight distribution in
response to price declines. However, these alternativiaeaions appear less robust than ours, be-
cause they rely more heavily on assumptions about utilitgfions. In addition, it is difficult to assess
the quantitative contributions of self-control and addictto variation in weight gain, because the dis-

tributions of self-control and propensity to addiction aot well understood. We look forward to more
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research into the relative contribution of physiologicacial, and economic forces to changes in the
weight distribution over time.

Our model of endogenous norms predicts that populationw®&@nd obesity rates should continue
to grow if food prices continue to fall, but that marginalqaieffects on calorie consumption should
be smaller, the lower the initial price level. In this frana, the limits on weight and obesity growth
depend on the slope of the weight-metabolism curve at higghwéevels. If the curve continues to
follow our fitted model, and provided calories are not addstthe increases in average weight and
the obesity rate should eventually level off, even if normes féexible and prices continue to fall. If
instead the metabolism curve becomes flat above a given (iyrigasible) weight threshold, calorie
consumption above the maximal BMR value would cause unbalimd@eases in weight. Existing
research on metabolism suggests the possibility of sudshioids (Cunningham 1991, Horgan and
Stubbs 2003), but results are inconclusive, and furthearesi on metabolism among obese subjects is
clearly warranted.

Thinking beyond the model, are there forces or policy irgations that might be expected to lead
to a slowing or reversal of current trends? In the case of amgokncreases in taxes and a shift in the
social judgment of smoking led to significant declines instanption. Food taxes, even if justified
by bounded rationality or cost externalities, are likelybt® politically infeasible, given that food,
unlike tobacco, is a necessity. As for social acceptaneetrénd has been toward fat acceptance and
accommodation of obesity, rather than censure, consigtiémour norms hypothesis. Hospitals have
added larger beds and other specialized equipment for gissmts and the visibility of plus-size
models has increased (Henderson 1997). Norms restri¢tengroper times and places for eating have
also broken down. Recent scientific research even suggedtthéh medical definition of “healthy”
BMI may need to be adjusted upward to accurately reflect tlaivelmortality risks within different
ranges of BMI, risks that appear to have shifted, in part, assaltr of advances in the treatment of

obesity-related disorders (Flegal et al. 2085).

25These findings have not been universally accepted. For dgampymposium at the Harvard School of Public Health,
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The latter evidence suggests that there has been techeallagaptation, in addition to social adap-
tation, to the shift in the weight distribution. That is, timerease in average weight has emerged as
a possibly permanent and relatively benign developmentfoAa reversal of the growth of extreme
obesity, a condition that still entails high morbidity andntality risks, a medical breakthrough is more
likely to be the catalyst than is behavior modification. Theial and economic factors promoting obe-
sity growth are likely to persist (and appear to be emergmngountries outside the United States as
these countries follow a similar development path), andeiasingly stern public health warnings are
unlikely to have a significant impact. Furthermore, induadk in the upper tail of the BMI distribution
are likely to be at a genetic disadvantage and therefordile=dg than others to achieve weight loss
through behavioral change. In addition, we expect the Estigina associated with extreme obesity,
at least, to remain sufficiently high for the foreseeableifitto sustain a considerable demand for

weight-loss technologies in addition to treatments forsitiyerelated disorders.

in 2005, argued that the results suffered from biases dusvyge causality (for example, illness-causing weiglt)lasd
residual confounding (for example, the correlation of singlstatus, an omitted variable, with both lower body we eyind
higher mortality risk). However, the Flegal team has fousdriginal results to be largely robust to these criticisifse
http://www.cdc.gov/nchs/products/pubs/pubd/hestatsss deaths/excess deaths.htm.

40



References

Aguiar, M. and E. Hurst (2006), “Measuring trends in leisweeidence from five decades of time use
surveys,” Federal Reserve Bank of Boston Working Paper 2006-02

Arciero, P.J., M.l. Goran, A.M. Gardner, P.A. Ades, R.S. Tiyznd E.T. Poehlman (1993), “A practi-
cal equation to predict resting metabolic rate in older fies&Journal of the American Geriatric
Society 41, 389—-395.

Averett, S., and S. Korenman (1996), “The economic realitthe beauty myth,"Journal of Human
Resources31, 304-330.

Bandura, A. (1986)Social Foundations of Thought and Action: A Social Cognifineory Engle-
wood Cliffs, NJ: Prentice-Hall.

Battaglini, M., R. Bnabou, and J. Tirole. (2005), “Self-cohiropeer groups,’Journal of Economic
Theory123:105-134.

Becker, G.S., and K.M. Murphy (2000pocial Economics: Market Behavior in a Social Environment
Harvard University Press, Cambridge, MA.

Bernheim, B.D. (1994) “A theory of conformityJournal of Political Economy02(5): 841-877.

Bhattacharya, J., and N. Sood (2005), “Health Insurancefan@®besity Externality,” NBER Working
Paper No. 11529.

Black, A.E., W.A. Coward, T.J. Cole, and A.M. Prentice (1996jutnan energy expenditure in af-
fluent societies: Analysis of 574 doubly-labelled water sugaments,’European Journal of
Clinical Nutrition 50: 72-92.

Bold, K. (1997), “If the vanity fits,"Los Angeles Timedanuary 23, 1997. Times Mirror Company.

Brock, W., and S. Durlauf (2001), “Discrete choice with sbarderactions,”Review of Economic
Studies68 (2), 235—-260.

Burke, M.A. (forthcoming 2006), “Social Multipliers,” in LBlume and S. Durlauf, edsThe New Pal-
grave Dictionary of Economi¢second edition. New York, NY and Hampshire, UK: Palgrave-
Macmillan Ltd.

Burke, M.A., and K. Prasad (2005), “Contracts with social mplirs,” Federal Reserve Bank of
Boston Working Paper No. 05-17, http://www.bos.frb.orgfemmic/wp/wp2005/wp0517.htm

Cawley, J. (1999), “Rational Addiction, the Consumption of Geaks, and Body Weight,” Ph.D. dis-
sertation, University of Chicago.

Cawley, J. (2004), “The impact of obesity on wageksurnal of Human Resource39, 451-474.

41



Chou, S.Y., Grossman, M., and H. Saffer (2004), “An economaiysis of adult obesity: results from
the Behavioral Risk Factor Surveillance Systedolirnal of Health Economi¢c23, 565-587.

Crandall, C. (1988), “The social contagion of binge eatiripiirnal of Personality and Social Psy-
chology 55, 589-599.

Cruickshank, K. (1999), “Global energy requirements, eatity)i representative samples and basal
metabolism: what can we really tell the world?” (letter t@ tbditor), British Journal of Nu-
trition, 81, 81-82.

Cunningham, J.J. (1991), “Body composition as a determinaenergy expenditure: A synthetic
review and a proposed general prediction equatid@merican Journal of Clinical Nutritiorb4:
963-969.

Cutler, D. M., Glaeser, E. L., and J. M. Shapiro (2003), “Whyédawnericans become more obese?,”
Journal of Economic Perspectivels, 93—-118. Also NBER Working Paper No. 9446.

Dwyer, J.T., J.J. Feldman, and J. Mayer (1970), “The soagatipology of dieting,’Journal of Health
and Social Behaviqrl1(4), 269-287.

Ezzati, M., A.D. Lopez, A. Rodgers, S.V. Hoorn, C.J.L. Murrapd the Comparative Risk Assess-
ment Collaborating Group (2002), “Selected major risk fest@nd global and regional burden
of disease”The LancetOctober 30, http://image.thelancet.com/extras/0R&adeb.pdf.

Flegal, K.M., B.l. Graubard, D.F. Williamson, and M.H. Gal005), “Excess deaths associated with
underweight, overweight, and obesitygurnal of the American Medical Associatij@93, 1861—
1867.

Gale, S.M., V.D. Castracane, and C.S. Mantzoros (2004), tinkeomeostasis, obesity and eating
disorders: recent advances in endocrinologgfirnal of Nutrition 134, 295-298.

Galuska, D.A., J.C. Will, M.K. Serdula, and E.S. Ford (1998je health care professionals advising
obese patients to lose weightRjurnal of the American Medical Associati®82, 1576-1578.

Garner, D.M, Garfinkel, P.E., D. Schwartz, and M. Thompsd@8Q), “Cultural expectations of thin-
ness in women,Psychological Repori€7, 183-191.

Gebhart, L. (2005), “Fashion changes affect the way we thindut ourselves and society,” Copley
News Service, June 26, 2005.

Glaeser, E., and J. Scheinkman (2002), “Non-market intiewrass;” in Advances in Economics and
Econometrics: Theory and Applications, Eight World Congrés. Dewatripont, L.P. Hansen,
and S. Turnovsky (eds.), Cambridge: Cambridge Universitg2re

Graham, C., and A. Felton (2005), “Variance in obesity acomd®rts and countries: a norms-based
explanation using happiness surveys,” Brookings CSED WgrRisper No. 42,
http://www.brookings.edu/es/dynamics/papers/CSki2.htm.

42



Hamermesh, D.S., and J.E. Biddle (1994), “Beauty and the laloket,”American Economic Review
84,1174-1194.

Harris, J.A., and F.G. Benedict (191%,Biometric Study of Basal Metabolism in M&vashington:
Carnegie Institution.

Hassan, M.K., A.V. Joshi, S.S. Madhavan, and M.M. Amonk&0@), “Obesity and health-related
quality of life: a cross-sectional analysis of the U.S. dapan,” International Journal of Obe-
sity, 27(10), 1227-1232.

Hayter, J.E., and C.J. Henry (1994), “A re-examination obbagetabolic rate predictive equations: the
importance of geographic origin of subjects in sample sigle¢ European Journal of Clinical
Nutrition, 48(10), 702—707.

Helser, L. (2004), “Vanity sizing alive, well;The Arizona Republjdanuary 14, 2004.

Henderson, S. (1997), “A Magazine Looks at the Plus SidesFtshion World, The New York Times
Feb. 23, 1997.

Himes, C.L. (2000), “Obesity, disease, and functional katan in later life,” Demography 37(1),
73-82.

Horgan, G.W., and J. Stubbs (2003), “Predicting basal noditakate in the obese is difficultEuro-
pean Journal of Clinical Nutrition57, 335-340.

Huang, K.S. (1993), “A complete system of U.S. demand fodfobddSDA Economic Research Ser-
vice, Technical Bulletin 1821.

Komlos, J., and M. Baur (2003), "From the tallest to (one of fattest: the enigmatic fate of the
American population in the 20th century,” University of Main Discussion Paper in Economics
No. 2003-19.

Kuczmarski, R.J., and K. M. Flegal (2000), “Criteria for defiiom of overweight in transition: back-
ground and recommendations for the United Stat&syérican Journal of Clinical Nutrition72,
1074-81.

Labayen, I., N. Diez, M. D. Parra, A. Gonzalez, and J. A. Meazi (2004), “Time-course changes in
macronutrient metabolism induced by a nutritionally bakthlow-calorie diet in obese women,”
International Journal of Food Sciences and Nutriti@®(1), 27-35.

Lakdawalla, D., and T. J. Philipson (2002), “The growth oésity and technological change: a theo-
retical and empirical examination,” NBER Working Paper N8486.

Leibel, R.L., M. Rosenbaum, and J. Hirsch (1995), “Changes erggnexpenditure resulting from
altered body weight,The New England Journal of Medicin@32(10), 621-628.

43



Levy, A. (2002), “Rational eating: can it lead to overweigéda or underweightnessournal of
Health Economics21, 887-899.

Martin, K., W.T. Garvey, P.F. Rust, and P. Wallace (2004) tifaation of Resting Energy Expenditure
Considering Effects of Race and Diabetes StatDgbetes Care27(6), 1405-1411.

Mazur, A. (1986), “U.S. trends in feminine beauty and ovegadtion,”Journal of Sex Research2,
281-303.

Must, A., J. Spadano, E.H. Coakley, A.E. Field, G. Colditz, &dH. Dietz (1999), “The disease
burden associated with overweight and obesigiirnal of the American Medical Association
282(16), 1523-1529.

Myers, A., and J.C. Rosen (1999), “Obesity stigmatization@ng: relation to mental health symp-
toms, body image, and self-esteermternational Journal of Obesity and Related Metabolic
Disorders 23(3), 221-30.

Oliver, J.E. (2005)Fat Politics: The Real Story behind America’s Obesity Epide USA: Oxford
University Press.

Pagan, J. A., and A. Davila (1997), “Obesity, occupationtiament, and earnings3ocial Science
Quarterly, 78, 756—770.

Philipson, Tomas J., and R.A. Posner (1999), “The long-remr in obesity as a function of techno-
logical change,” NBER Working Paper No. 7423.

Pullicino, E., Copperstone, C., Luzi, L., McNeill, G., and MIi&(1996), “Relationship between
anthropometric indices of body fat distribution and basergy metabolism in healthy Maltese
women,”Acta Diabetologica83: 198-204.

Putnam, J., Allshouse, J., and L.S. Kantor (2002), “U.S.cagita food supply trends: more calories,
refined carbohydrates and fatBgjod Review25(3), 2—15.

Rand, W. M. (1982), “The estimation of BMR,” Rome: Joint FAO/WH®U. Unpublished Report.

Ross, C.E. (1994), “Overweight and depressial@urnal of Health and Social Behavio85(1), 63—
79.

Schofield, W.N., C. Schofield, and W.P.T. James (1985), “Btiedj basal metabolic rate, new stan-
dards review of previous workPuman Nutrition: Clinical Nutrition 39C, Suppl. 1, 5-41.

Simmons, K. (2002), “Body shape analysis using three-dimeasbody scanning technology,” Ph.D.
dissertation, North Carolina State University.

Soares, M.J., L.S. Piers, K. O'Dea, and P.S. Shetty (1998), évidence for an ethnic influence on
basal metabolism: an examination of data from India andraliat’ British Journal of Nutrition
79, 333-341.

44



Spiegelman, B.M., and J.S. Flier (2001), “Obesity and thellegpn of energy balanceCell, 104,
531-543.

Thorpe, K.E., C.S. Florence, D.H. Howard, and P. Joski (200@Ends: the impact of obesity on
rising medical spendingPealth Affairs,Web Exclusive, October 2004.

Troiano, R.P., E.A. Frongillo Jr., J. Sobal, and D.A. Lewt$k996), “The relationship between body
weight and mortality: a quantitative analysis of combinefbimation from existing studies,”
International Journal of Obesity and Related Metabolic@ders 20(1), 63—75.

Villanueva, E.V. (2001), “The validity of self-reported wgét in U.S. adults: a population based cross-
sectional study,BMC Public Health 1-11 (http://www.biomedcentral.com/1471-2458/1/11).

Wadden, T.A., D.A. Anderson, G.D. Foster, A. Bennett, C. $teig, and D.B. Sarwer (2000), “Obese
women’s perceptions of their physicians’ weight managena#itudes and practicesirchives
of Family Medicine9, 854-860.

Wansink, B. (2004), “Environmental factors that unknowingicrease food intake and consumption
volume of unknowing consumersinnual Review of Nutritior24, 455—-479.

Weigle, D.S., K.J. Sande, P.H. Iverius, E.R. Monsen, andBrlnzell (1988), “Weight loss leads to a
marked decrease in nonresting energy expenditure in atobylauman subjectsMetabolism
37, 930-936.

Willett, W.C., and M.J. Stampfer (2003), “Rebuilding the fopgramid,” Scientific American288,
64-71.

45



Mathematical Appendix

In this appendix we provide brief verification of the assaTs of the existence and convergence state-
ments of individual stable weight laid out in Section 3.

The optimal one-period choice of food and non-food consionptbeginning from any initial
weight value, must satisfy equatio(s), (8), and(9), as well as second-order conditions. The three
equations can be combined and rewritten as the followinigngity condition on end-of-period weight,

W, for any initial weightW{_1.

Ur (F (W W) S~ PUS(COW 1)) S = 2300~ M), (14
The left-hand side of equation (14) represents the margifedt on one-period utility of end-of-period
weight, deriving from the changes in food and non-food iatakonsistent with a marginal change in
the final weight. The right-hand side represents the malrgifect of end-of-period weight on the cost
of deviating from the norm. The partial derivati\dg is evaluated at the food level consistent with the
beginning and ending weights, where this food level is dethB{\W |W_1). The partial derivativé)c
is evaluated similarly. The expressign= 3TFV > 0 represents the increase in food consumption needed
to achieve a marginal weight gain, holding basal metabofiged. This is an identical constant for
all individuals, representing the conversion rate of dakito body weight, netting out the calories
consumed in digestion. Values for the left-hand side of epend on both the initial weight and the

final weight, but values for the right-hand side depend onlyhe final weight.

Existence of a stable weight

A stable weight must satisfy the equation above as well agdhelition that\f* =W_1. To check
for existence of such a weight, impose the condition Wat W _1 and determine whether (14) has a

solution. Consider the valuddg (F (W|W)) —pUc(C(W|W))]K. The expression gives the net marginal
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benefit of weight gain beginning from any weigh, where eachW is potentially an initial weight
value at some point in time. If, starting from some initialigig, the net marginal benefit of weight
gain happens to be equal to the marginal cost of weight gaspptimal to maintain the initial weight.
Since any stable weight must satisfy this property, thedafihese net marginal benefits will be termed
the “sustainability locus,” and it will determine stableigiet for anyM. Values on the locus are initially
positive, given the high marginal utility of food at the foodake consistent with just maintaining a
very low weight, and the low marginal utility of non-food carmption. The function decreases in
weight, eventually becoming negative. This decline ocisause metabolism increases in weight,
and therefore the food required to maintain weight is ingiregg as required food intake increases, the
marginal utility of food decreases, and the marginal ytitift non-food consumption increases. The
right-hand side is initially negative (assumikbis greater than some minimal viable adult weight), but

becomes positive as weight gets abteThus, there is a unique weight/S(M), characterized by

[Ur (F (WSWS)) — pUc(CWSIWS))k = 2(WS—M). (15)

Convergence to a stable weight

To show convergence to this stable weight, consider oniegheptimization from any initial weight,
Wb, as illustrated in Figure 9. Consider the marginal net benégnd-of-period weight as seen in the
diagram. Values on this curve are again initially positimsad become negative as final weight,
increases. This marginal benefit curve, however, has aestesgative slope than the sustainability
locus. This is because, as weight increases Wgnto someW;, the marginal net benefit of further
weight gain evaluatedr at F (W |Wp), whereas the locus evaluatds atF (Wi |W,). Since the former
food quantity is greater than the latter, the net marginakke of food (and of weight gain) is less
than the value on the sustainability locusvdt The difference in these food levels arises because

metabolism, measured in pounds of weight burned per weelygjless than proportionally to weight
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itself. For the samé/ the marginal deviation cost behaves exactly as above. Thusny given
initial weight there is a unique intersection point thatatetines\;* (Wp). Second-order conditions are
satisfied at this value, given the strict concavity of thermation problem inF andC. If Wy lies
below the stable weight defined by (15), the analysis in tlegipus paragraph implies that, beginning
atWp, a final weight of\p cannot be optimal. At this point, the marginal benefit of virtigain exceeds
the marginal cost, so it is optimal to gain weight. Howevilg bptimal weight gain is less than the
difference betweeWy and the stable weight. This also follows from the fact thatrarginal benefit
of within-period weight gain declines more rapidly than tl@ues on the sustainability locus. The
diagram depicts the relationship between these two cuinvdisating thatV)" < WS,

Referring to Figure 9, beginning from weighb, let the optimal ending weight B&;, where the
latter satisfiesUr (F (W1|Wb)) — pUc(C(Wi|Wb) )k = 2J(W4 — M). To iterate, let the individual begin
atW; and again solve the one-period problem. Now the individvaluates the marginal benefit of
weight gain relative to this new initial weight. For the filstrement this is just the value on the
sustainability locus at\y. Thus, we have a new within-period net marginal benefit cimersecting
the sustainability locus at this point, where the new cuie&tb the right of that for the previous (lower)
initial weight. Therefore, when the individual wakes up aight\W;, the marginal benefit of weight
gain once again exceeds the marginal cost, and additionghtggin is optimal within the new period.
However, sincdV; is greater thamp, the marginal benefit of weight gain beginning frof is less
than that beginning frotdyp, and the marginal cost is higher, implying a smaller optimeaight gain
from W, toWs, as shown in the diagram. Again, the individual winds up Wetloe stable weight. The
same logic applies at the next iteration, during which tltevidual again gains weight, but less than
in the previous period. Weight gain occurs as long\as WS, yet converges to zero and ceases when
W reaches the stable value. Had the initial weight been gré@e the stable weight value, it can be
shown similarly that the individual would optimally havestaveight period by period until converging

to the stable weight.
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Existence of and convergence to a stable weight norm

The graphical analysis in Figure 10 illustrates the refegiop between the value df and the value of
stable weight. We can identify the stable weight for a givalug ofM by plotting, againstV, each of
the functiongUg (F(W|W)) —pUc(C(W|W))]k and 2(W — M), and finding the value oV, denoted
WS*(M), for which they intersect. The diagram illustrates the eesipe stable weight values for weight
norm values labelleM andM’. The greater the value ®f, the smaller the value ofJ2W — M) for
each value o¥V, and the greater the stable weight. By inspection, we findth®atate of increase in
stable weight with an increase M is less than unity, because the sustainability locus hagatine
slope. This less-than-proportionate increase in stabighwavith an increase itM implies that the
model satisfies the “moderate social influence” conditiolaéSer and Scheinkman 2002), a condition
that guarantees the existence of an equilibrium weight nofime value ofdWS/dM approaches 1
from below asJ approaches infinity, so the existence condition is satigbeall finite values ofJ.

Simulations using FORTRAN90 code confirm uniform convergaiacequilibrium.
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Table 1: Summary of Weight Distributions

Distribution Mean (SD) Min Max Median 95th@ 99th® Skewn® Obes€ Norm®
Empirical Distribution
Women (age 30-60)
NHANESII, 1976-1980 148.4(34.0) 80 360 141.0 215 258 1.356 891
NHANESIII, 1988-1994 157.4(39.5) 77 470 149.6 231 290 1.207 28.0
NHANES99, 1999-2000 168.4 (45.6) 84 420 159.7 251 305 1.178 5.8
BRFSS, 1990 148.4 (31.6) 73 434 142.9 205 256 1.429 14.0
BRFSS, 2002 161.0(38.6) 56 603 153.2 236 288 1.425 24.7
Men (age 30-60)
NHANESII, 1976-1980 177.3(29.8) 100 350 174.3 230 264 0.615 13.7
NHANESIII, 1988-1994 185.4(37.7) 90 532 180.2 251 317 1476 21.6
NHANES99, 1999-2000 191.9(43.4) 94 425 184.4 277 338 1183 7.2
BRFSS, 1990 182.6(31.7) 69 433 179.1 241 283 1.017 15.3
BRFSS, 2002 1945(39.7) 49 629 189.4 267 325 1.289 26.3
Simulated Distribution (Women age 30-60)
Moving Norm (Linear, P=$50) 148.0(30.0) 51 273 146.9 199 2230.240 18.6 130.2
Moving Norm (Linear, P=$40) 157.2(30.4) 59 284 157.2 210 234 0.226 28.7 138.3
Moving Norm (Linear, P=$32) 166.0 (30.6) 64 292 164.9 218 2410.217 37.6 146.1
Moving Norm (Log, P=$50) 148.4(32.1) 67 332 144.6 207 241 (4224 18.9 130.6
Moving Norm (Log, P=$40) 159.8(34.4) 72 354 155.6 222 258 B67 29.4 140.6
Moving Norm (Log, P=$32) 168.6(36.2) 76 370 164.4 234 272 o3 38.6 148.4
Fixed Norm (Log, P=$50) 148.4(32.1) 67 332 144.6 207 241 D.77 18.9 130.6
Fixed Norm (Log, P=$40) 157.6(34.0) 71 349 153.7 219 255 .75 27.2 130.6
Fixed Norm (Log, P=$32) 164.6(35.3) 74 362 160.3 229 266 .74 34.3 130.6
Forward-Looking (Linear, P=$50) 145.0(25.1) 61 248 1442 441 188 0.203 12.4 130.6
Forward-Looking (Linear, P=$32) 157.4(25.4) 71 261 156.7 002 219 0.185 24.4 130.6
Forward-Looking (Log-Linear, P=$50) 144.5(25.8) 72 274 224 191 215 0.557 12.4 130.6
Forward-Looking (Log-Linear, P=$32) 157.5(27.5) 79 294 515 206 232 0.528 24.4 130.6
Rational Addiction (Lineal, P=$50) 145.9(18.8) 98 276 143.6 180 201 0.820 7.5 130.6
Rational Addiction (Lineafr, P=$32) 158.8(20.8) 106 304 156.2 196 220 0.839 20.2 130.6

Note: 295th Percentile?99th Percentile ‘Skewness:

(N

_1)03

for univariate dataXy, Xy, ..., Xy wherep ando denote

mean and standard deviatidtPercentage with BMI of 30 or above (more than 174.5 poundw/émnen of average height
in the simulations)®Population Weight Norm, see text for detail&.inear homoskedastic metabolism.

50



Women 30-60 in 1976-80
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Women 30-60 in 1988-1994
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Women 30-60 in 1999-2000
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Figure 1: Female Weight Distribution 1976-1980, 1988-1984dd 1999-2000, with Kernel density
estimate plot (Source: NHANES II, 1ll, and 99)
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Distribution of Desired and Actual Body Mass
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Figure 2: Actual and Desired BMI by Gender (Source: BRFSS vanaars; BMi>50 set to 50)
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Figure 3: Relationship between Desired and Actual Weight tpu@s (Source: BRFSS various years)
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Relative Price of Selected Food Items in the US, 1980-2004
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Figure 4: Relative Prices of Selected Consumer Food ltem®E8Y&ource: Bureau of Labor Statis-
tics)

Long Run Relative Price of Food in the US, 1946-2004
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Figure 5: Long-Run Trend in Consumer Food Prices (1982-84erc®: Bureau of Labor Statistics)
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Moving Norm (Log-Linear, Price=$50) Moving Norm (Linear, Price=$50)
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Obesity Dynamics: Norm Updated Every Year since 1977
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Obesity Dynamics: Norm Updated Every 5 Years since 1977
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Figure 8: Obesity Dynamics: Annual vs. Five-Year Norm UjpagtLog-Linear Metabolism (Gradual
Price Decline 1977-1993)
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+ Net Marginal Benefit of End-Of-Period Weight:

UR(F(WIW))dF/dW —pUc(C(WIW))dC/dFdE/dW
— Up(F(WIW )dF/dW —pUc(C(WIW ))dC/dFdF/dW

URF(WIWS))dE/dW —pUc(C(WIW®))dC/dFdF/dW

Sustainability Locus: / JLN e
UR(F(WIW))JE/AW —pUc(C(WIW))dC/dFAF/dW

Marginal Cost of Weight
Gain: 2J(W-M) <
N

* = Period-Optimal Weight
W = Weight

W3 = Stable Weight

M = Norm (fixed)

Figure 9: lllustration of Convergence to Stable Period-@ptiWeight (Fixed Weight Norm)
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Figure 10: lllustration of Stable Period-Optimal Weighten a rising Weight Norm
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