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Abstract

I consider a simultaneous spatial panel data model, jointly modeling three effects:

simultaneous effects, spatial effects and common shock effects. This joint modeling and

consideration of cross-sectional heteroskedasticity result in a large number of incidental

parameters. I propose two estimation approaches, a quasi-maximum likelihood (QML)

method and an iterative generalized principal components (IGPC) method. I develop

full inferential theories for the estimation approaches and study the trade-off between

the model specifications and their respective asymptotic properties. I further investi-

gate the finite sample performance of both methods using Monte Carlo simulations. I

find that both methods perform well and that the simulation results corroborate the

inferential theories. Some extensions of the model are considered. Finally, I apply the

model to analyze the relationship between trade and GDP using a panel data over time

and across countries.
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1 Introduction

In this paper, I consider a simultaneous spatial panel data model, jointly modeling three

effects: simultaneous effects, spatial effects and common shock effects.1 First, the simultane-

ous effect comes from the endogeneity of the dependent variables in a simultaneous equation

system, and is important in many structural economic modeling. Second, the spatial effect

is present in models where dependent variables are spatially interacted and spatial weights

matrices are specified based on location and distance, in a geographic space or in more gen-

eral economic, social or production network spaces. Third, common shocks stem from a

common factor structure in panel data models, where the dependent variables’ responses to

shocks (i.e., factors) are heterogeneous and captured by the factor loadings.

That the model includes all three effects is useful in various fields. For example, this

framework can be applied to analyze the relationship between trade volume and gross domes-

tic product (GDP) within and across countries, a prominent research topic in international

trade and macroeconomics. Within a country, trade volume is endogenously correlated with

GDP, which can be regarded as a simultaneous effect. Across countries, a country’s trade

volume (or GDP) might be affected by other countries’ trade volumes (or GDPs) through

trade and financial linkages. This type of impact can be viewed as a spatial effect. Moreover,

a global financial shock or a common energy shock might affect all countries’ trade volumes

and GDPs, which is referred to as a common shock effect. The model can also be applied in

social network studies such as peer effects analysis in applied microeconomics, or in regional

economic studies.2

In this paper, I consider the following simultaneous spatial panel data model, combining

all three effects, with both a large time dimension T and a large cross-sectional dimension

N :

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it +

k1∑
p=1

x1itpβ1p + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it +

k2∑
q=1

x2itqβ2q + ψ′ift + e2it

(1.1)

where i = 1, 2, . . . , N ; t = 1, 2, . . . , T ; y1it and y2it are the dependent variables for cross-

section i at time t; x1itp, p = 1, 2, . . . , k1 and x2itq, q = 1, 2, . . . , k2 are explanatory variables,

with their coefficients denoted as β1p and β2q, respectively; ft is an r-dimensional vector of

1Related literature and studies of these three effects are provided in the end of the introduction section.
2For the peer effects studies as in Cohen-Cole et al. (2013) and Liu (2014), the common factor structure

in my model can be used to capture unobservable individual characteristics which have time-varying impacts
on individuals’ decisions or choices. For these regional economic studies as in Jeanty et al. (2010), Baltagi and
Bresson (2011), Gebremariam et al. (2011) and Hauptmeier et al. (2012), the common shocks can capture
macroeconomic shocks which have heterogeneous impacts on local economies.
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unobservable common shocks, termed the common factor; λi and ψi are the corresponding r-

dimensional vectors of unobservable heterogeneous responses to the common shocks, termed

the factor loadings; for l = 1, 2, Wl = (wlij)N×N is a pre-specified spatial weights matrix

whose diagonal elements wlii are 0;3 e1it and e2it are the idiosyncratic errors; and α1i and

α2i are the intercepts. In model (1.1), taking the y1it equation as an example, the term

(γ1y2it) captures the simultaneous effect from y2it to y1it, (ρ1

∑N
j=1 w1ijy1jt) captures the

spatial effect, and (λ′ift) captures the common shock effect. The (λ′ift) part can also be

viewed as an interactive fixed effect, which is more general than an additive fixed effect

and provides a flexible way to model cross-sectional and serial correlations.4 My interest is

estimating the key coefficients (ρ1, ρ2, γ1, γ2, β1, β2) and analyzing the asymptotic properties

of their estimates.

In the econometrics literature, to the best of my knowledge, no existing paper jointly

models these three effects. However, recently, a few papers consider two types of models

combining two of these three effects. The first type is a spatial panel data model with com-

mon shocks in a single-equation system. Extending this type of model to a simultaneous

equation system would make it applicable when multiple dependent variables are simultane-

ously interdependent, e.g., the above trade and GDP case. In estimating this type of model,

Pesaran and Tosetti (2011) implement the same common correlated effects (CCE) estima-

tion used in Pesaran (2006), while Bai and Li (2014b) propose a quasi-maximum likelihood

(QML) method and Kuersteiner and Prucha (2015) use a generalized method of moments

(GMM).5 However, these estimation methods cannot be directly applied to my model due

to the additional simultaneous structure of my framework. In addition, in the above trade

and GDP example, if we use a single-equation system to study the effect of trade on GDP,

their endogeneity would make the existing estimation methods in these papers inconsistent.

The second type is a spatial model in a simultaneous equation system but without the

common shock effect. Two estimation methods have been studied for this type of model,

instrumental variable (IV) methods (see Kelejian and Prucha (2004), Cohen-Cole et al.

(2013), Baltagi and Deng (2015) and Liu (2014))6 and QML methods (see Baltagi and

3More details of the weights can be found in Remark 2.1 on page 11 in this paper.
4The interactive fixed effects have been widely considered in the econometric literature, see Pesaran

(2006), Bai (2009), Pesaran and Tosetti (2011), Bai and Li (2014a), and to name a few.
5The difference between the first two papers is that Pesaran and Tosetti (2011) specify the spatial inter-

action of the unobservable errors, while Bai and Li (2014b) specify the spatial interaction of the observable
dependent variables. Thus, the CCE method cannot be applied to the model studied in Bai and Li (2014b),
due to the endogeneity of the dependent variables. Kuersteiner and Prucha (2015) is based on a dynamic
case where the dependent variable also depends on its previous value. In the estimation, Kuersteiner and
Prucha (2015) first perform a quasi-transformation to eliminate the common shocks and then implement
GMM.

6All of these papers focus on cross-sectional data, except Baltagi and Deng (2015), which is based on a
panel data setting with random effects.
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Bresson (2011), Wang et al. (2014) and Yang and Lee (2017)).7 However, neither approach

can be directly applied to my model due to the additional common shock effect. In all these

papers, the errors are assumed to be idiosyncratic (i.e., uncorrelated over time and cross

section), which is too strong in applications, and potential correlation of the errors would

cause their estimation methods to be inconsistent. Augmenting this type of model with

common shock effects can make it reasonable to assume that the new errors are idiosyncratic,

since the common shocks would capture the correlations in the original errors, making the

new errors idiosyncratic.8

In this paper, I focus on model (1.1). I present its estimation method and the corre-

sponding asymptotic properties of the estimators. Under the joint presence of these three

effects, there exist a large number of incidental parameters. In addition, I allow for cross-

sectional heteroskedasticity in the errors, which is useful and important in spatial models9

but gives rise to further incidental parameters due to the large number of variance param-

eters. To estimate the model, I propose two different approaches: a QML method and an

iterative generalized principal components (IGPC) method. I show that both methods can

effectively deal with the incidental parameters in model (1.1). For each method, I derive a

full inferential theory for its estimators, which includes consistency, convergence rates and

limiting distributions. To investigate finite sample performance, I conduct Monte Carlo sim-

ulations. I find that both methods perform well and that the simulation results corroborate

the inferential theories derived in this paper. Furthermore, some extensions of the model are

discussed. Finally, I apply the model to analyze the causal relationship between trade and

GDP, taking into account spatial effects and global common shock effects.

Comparing the two approaches, I show that there is a trade-off between the model spec-

ification and the asymptotic property of the estimator. In the QML approach, I specify a

model for the explanatory variables assuming that they are also affected by the common

shocks and follow a common factor structure. The same specification of the explanatory

variables has been considered in many papers; see Pesaran (2006), Bai and Li (2014a) and

Castagnetti et al. (2006). Based on the fully specified model of the dependent and explana-

tory variables, I consider an objective function, which is the likelihood function if the factors

and errors are assumed to be i.i.d normal distributed. Since the normality assumption is

not required in this paper, this approach is referred to as the QML method. In computing

its estimator (QMLE), the expectation maximization (EM) algorithm is implemented. Note

7Baltagi and Bresson (2011) propose a QML method to estimate a spatial seemingly unrelated regression
panel data model with spatially correlated errors. Both Wang et al. (2014) and Yang and Lee (2017) are
based on cross-sectional data with homoskedasticity. By comparison, Wang et al. (2014) implement a limited
QML method without cross-equation correlation of the errors, while Yang and Lee (2017) consider a full
information QML method allowing the errors to be correlated across equations.

8This common shock effect is an important feature to be implemented by various techniques, as noted in
Pesaran (2006), Pesaran and Tosetti (2011), Bai (2009), Bai and Li (2014b) and Castagnetti et al. (2006).

9On inference, see Anselin (1988), Lin and Lee (2010), Kelejian and Prucha (2010), Bai and Li (2014b)
and Baltagi and Deng (2015).
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that I estimate the sample variance of the common factors instead of the factors themselves.

The inferential theory shows that the QMLE is consistent, and its limiting distribution is

unbiased (i.e., centered at zero) and has a smaller variance than that of the IGPC estima-

tor. The gains of unbiasedness and more efficiency of the QMLE come at the cost of fully

specifying the model of both the dependent and the explanatory variables.

In the IGPC approach, I do not specify the model for the explanatory variables but

allow them to be arbitrarily correlated with the common factors and loadings, which is a

more general approach than that used in QML. Unlike the treatment of the factors in the

QML approach, I treat these as parameters and estimate them directly. In the estimation,

I consider an objective function which is the likelihood function if errors are assumed to

be i.i.d normal distributed, though such normality is not required in this paper. I then

propose the IGPC method which is an iterative method based on the first-order conditions

derived from the objective function. I call this estimation procedure the IGPC since one of

the first-order conditions involves a generalized principal components method, and the word

“generalized” stems from the heteroskedasticity assumption. The IGPC estimator (IGPCE)

is consistent. Compared to the QMLE, the limiting distribution of the IGPCE is biased (i.e.,

not centered at zero) and has a larger variance. The cost of the bias and less efficiency of

the IGPCE is offset by the gain of a more flexible model specification for the explanatory

variables. In addition, based on the limiting distribution of the IGPCE, a bias-corrected

IGPCE is obtained.

In Section 6, I apply the model to explore the relationship between trade volume and GDP

using a panel data over time and across countries. My model is able to address endogeneity

between trade and GDP, which is a well-known problem encountered in analyzing their

relationship, as noted in Helpman (1988), Bradford et al. (1993), Rodrik (1995), Winters

(2004) and Winters and Masters (2013). Thus far, economists have been making efforts to

construct valid IVs for trade to tackle the endogeneity problem. For inferences, see Frankel

and Romer (1999), Feyrer (2009), Felbermayr and Groschl (2013) and Ortega and Peri

(2014). However, the validity of these IVs is still questionable. Unlike those papers that use

a single-equation approach, I study the same type of question by modeling trade and GDP as

a system of simultaneous equations and taking into account the endogeneity between them

naturally. Moreover, despite their importance, global common shocks have not been well

captured in the existing literature, whereas they can be captured using my model through a

factor structure. Additionally, my model incorporates the spatial effect through international

trade, which is implied from gravity theory as noted in Helpman (1987) and Anderson and

van Wincoop (2003). In estimating the model, I implement the IGPC method, which does

not need IVs. The empirical results show that all three effects emphasized in the model

play important roles: 1) trade and GDP mutually and positively affect each other within a

country (i.e., the simultaneous effect); 2) there exist spatial effects across countries for both

trade and GDP (i.e., the spatial effect); and 3) global common shocks cannot be ignored.
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The key finding is that the elasticity of GDP with respect to trade is approximately 0.1,

while Feyrer (2009) finds an elasticity of approximately 0.5 using an IV approach.

Related literature. In both the empirical and theoretical literature, many papers consider

the three effects separately. First, regarding spatial models, two estimation methods have

been considered so far. One is the generalized method of moments (GMM) (see Kelejian

and Prucha (1998, 1999, 2010), among others), and the other is the QML method (see

Anselin (1988), Lee (2004a), Yu et al. (2008), Lee and Yu (2010a,b), Yu and Lee (2010),

among others). Spatial models can be applied in many fields, such as spatial propogation of

macroeconomic shocks in europe (Dewachter et al. (2012)), propogation of monetary policy

shocks through production network (Ozdagli and Weber (2017)), international trade (Baltagi

et al. (2008), Lawless (2009), and Rauch and Trindade (2002)), interregional trade (Keller

and Shiue (2007)), banking and finance (Arezki et al. (2011) and Korte and Steffen (2014)),

public economics (Egger et al. (2005)), transportation research (Frazier and Kockelman

(2005)), good demand (Baltagi and Li (2006)), and agricultural economics (Druska and

Horrace (2004)), among others.

Second, various methods have been studied for panel data models with common shocks.

For instance, Pesaran (2006) propose CCE estimation; both Bai (2009) and Moon and

Weidner (2017) consider a principle components (PC) method; Ahn et al. (2013) use GMM,

and Bai and Li (2014b, 2015) implement QML. Regarding applications, common shocks

models can be used in economic forecasting (Stock and Watson (2002a,b)), time trends

modeling (Kneip et al. (2012)), analyzing spillovers in private returns to R&D (Eberhardt

et al. (2013)), asset pricing (Bai and Ando (2014)), and so on.

Third, for simultaneous panel data models, IV approaches have been widely implemented;

see Baltagi (1981), Balestra and Varadharajan-Krishnakumar (1987), Cornwell et al. (1992),

Baltagi and Li (1992), among others. In practice, simultaneous panel data models can

be applied to earnings studies (such as the income-schooling-ability simultaneous equations

model considered in Chamberlain (1977a,b), Chamberlain and Griliches (1975), and Griliches

(1979)), trade economics (Egger and Pfaffermayr (2004) and Serlenga and Shin (2007)),

finance (Chen et al. (2006)) and operational management (Jain et al. (2013)).

In the application of spatial models, although many existing examples are based on a

single-equation setup, spatial models with simultaneous equations have received more atten-

tion lately and have been widely used in various areas. For instance,these models have been

in regional science studies of housing economics (Jeanty et al. (2010); Baltagi and Bresson

(2011)); environmental and health economics (Ho and Hite (2008)); the determinants of lo-

cal growth (interactions among migration, employment and income; see Gebremariam et al.

(2011)); fiscal policy analysis (Hauptmeier et al. (2012) focus on fiscal competition over taxes

and public input provisions, and Allers and Elhorst (2011) focus on the interactions between

governments expenditures); and agricultural economics (Wu and Lin (2010)). Moreover, si-

multaneous spatial models can be applied in social network studies, such as the multi-choice
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games in Cohen-Cole et al. (2013), Goldsmith-Pinkham and Imbens (2013) and Liu (2014).

It would be potentially useful to apply my model to these areas by allowing common shocks

to control for cross-sectional or serial correlations.

This paper proceeds as follows. I present the QML approach in Section 2 and the IGPC

method in Section 3. In each section, I describe the model specification, assumptions, ob-

jective function, first-order conditions, inferential theory and computing algorithm. Then,

in Section 4, I report the Monte Carlo simulation results for both approaches. Some ex-

tensions of the model are considered in Section 5, and an application is provided in Section

6. Finally, Section 7 concludes. Important notation is provided in Appendix A and B, and

some proofs are presented in Appendix C. Other technical proofs and additional simulation

results are provided in the supplementary material. Throughout the paper, ‖A‖ is defined

as the Frobenius norm of A, where ‖A‖ = [tr(A′A)]1/2 for any m× n matrix A. In addition,

ȧt represents the de-meaned version of a column vector at, defined as ȧt = at − 1
T

∑T
t=1 at,

and Mab is defined as Mab = 1
T

∑T
t=1 ȧtḃ

′
t for any column vectors at and bt.

2 First approach: the QML method

In the first approach, in addition to model (1.1), I specify a model of the explanatory

variables by assuming that they are also affected by the common shocks and follow a factor

structure. Such specification of the explanatory variables is applicable and widely considered,

see Pesaran (2006), Bai and Li (2014a) and Castagnetti et al. (2006). Then, based on the fully

specified model of both the dependent and explanatory variables, I consider the likelihood-

based objective function and propose the QML method. In the estimation, I do not estimate

the common factor ft itself but its sample variance. Further, I develop a full inferential

theory of its estimator and provide its computation algorithm. Some simulations results of

this QML approach are presented in Section 4.

2.1 Model description and assumptions

In this section, in addition to model (1.1), I specify the model for the explanatory variables

assuming that they are affected by the common shocks and following a factor structure of

ft, described as follows:

x1itp = ν1ip + φ′1ipft + v1itp, p = 1, 2, . . . , k1

x2itq = ν2iq + φ′2iqft + v2itq, q = 1, 2, . . . , k2

(2.1)

where φ1ip is an r-dimensional factor loading, representing the heterogeneous response of x1itp

to the common factor ft; φ2iq is defined in a similar way. Therefore, in the first approach,

I consider a fully specified model of both dependent and explanatory variables, combining
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(1.1) and (2.1).

Let x1it = (x1it1, x1it2, . . . , x1itk1)
′, β1 = (β11, β12, . . . , β1k1)

′, ν1 = (ν11, ν12, . . . , ν1N)′, φ1i =

(φ1i1, φ1i2, . . . , φ1ik1), v1it = (v1it1, v1it2, . . . , v1itk1)
′, and define x2it, β2, ν2, φ2i, v2it in a similar

way. Then, I can rewrite the model (1.1) and (2.1) as follows:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + x′1itβ1 + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + x′2itβ2 + ψ′ift + e2it

x1it = ν1i + φ′1ift + v1it

x2it = ν2i + φ′2ift + v2it

(2.2)

Let µi = (α1i, α2i, ν
′
1i, ν

′
2i)
′, Li = (λi, ψi, φ1i, φ2i), and εit = (e1it, e2it, v

′
1it, v

′
2it)
′. I can rewrite

the above model as:
y1it − ρ1

∑N
j=1 w1ijy1jt − γ1y2it − x′1itβ1

y2it − ρ2

∑N
j=1 w2ijy2jt − γ2y1it − x′2itβ2

x1it

x2it

 = µi + L′ift + εit

Denote δ = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2), k = k1 + k2, and k̄ = k + 2. Let D(δ) be an Nk̄ × Nk̄

matrix whose (i, j) subblock, denoted by Dij(δ), a k̄ × k̄ matrix, is equal to:

Dij(δ) =




1 −γ1 −β′1 0

−γ2 1 0 −β′2
0 0 Ik1 0

0 0 0 Ik2

 if i = j


−ρ1w1ij 0 0 0

0 −ρ2w2ij 0 0

0 0 0k1 0

0 0 0 0k2

 if i 6= j

(2.3)

Now model (2.2) can be further transformed into the following matrix form (also a factor-

structured model):

D(δ)zt = µ+ Lft + εt (2.4)

where zt = (z1t, z2t, . . . , zNt)
′, with zit = (y1it, y2it, x

′
1it, x

′
2it)
′, L = (L1, L2, . . . , LN)′, µ =

(µ′1, µ
′
2, . . . , µ

′
N)′, and εt = (ε′1t, ε

′
2t, . . . , ε

′
Nt)
′. This matrix form will be used throughout the
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first approach.

Throughout the paper, I assume that the number of factors r is fixed and known. In the

simulation section, I propose a modified information criterion based on Bai and Ng (2002)

to determine r for each of the two approaches.

2.1.1 Assumptions

To analyze model (2.2), I assume that there exists a constant C > 0 sufficiently large such

that the following assumptions hold.

Assumption A: The factor ft can be either fixed constants or random variables such

that

A.1 Let ḟt = ft − 1
T

∑T
t=1 ft, and Mff = T−1

∑T
t=1 ḟtḟ

′
t be the sample variance of ft. If ft

is fixed, I assume that ‖ft‖ ≤ C for all t and Mff → ΩF . If ft are random variables, I

assume that E(‖ft‖4) ≤ C for all i and Mff
p−→ ΩF , where ΩF is some positive definite

matrix.

A.2 If ft are random variables, I assume ft to be independent of εis for all t and s.

Assumption B: The loading Li can be either fixed constants or random variables such

that

B.1 If Li is fixed, I assume that ‖Li‖ ≤ C for all i and 1
N
L′Σ−1

εε L→ ΩL. If Li are random

variables, I assume that E(‖Li‖4) ≤ C for all i and 1
N
L′Σ−1

εε L
p−→ ΩL, where Σεε is

defined in Assumption B, and ΩL is some positive definite matrix.

B.2 If Li are random variables, I assume Li to be independent of the idiosyncratic errors

εjt for all i and j.

Assumptions A and B allow both the loadings and the common factors to be either fixed

or random, which results in a model that is more general and applicable in various empirical

studies.

Assumption C: The idiosyncratic errors εit = (e1it, e2it, v
′
1it, v

′
2it)
′ are such that

C.1 elit is independent and identically distributed over t and uncorrelated over i, with

E(elit) = 0 and E(e8
lit) ≤ ∞ for all l = 1, 2, i = 1, · · · , N and t = 1, · · · , T . Let σ2

li

denote the variance of elit. I assume C−1 ≤ σ2
li ≤ C.

C.2 e1it is independent of e2js for all (i, j, t, s). Let Σiie denote the variance matrix of

eit = (e1it, e2it)
′, so I have Σiie = diag(σ2

1i, σ
2
2i), a diagonal 2× 2 matrix. Let Σee denote

the variance matrix of et = (e′1t, e
′
2t, . . . , e

′
Nt)
′. Then, Σee = diag(Σ11e,Σ22e, . . . ,ΣNNe)

is a diagonal 2N × 2N matrix.

C.3 vlit is independent and identically distributed over t and uncorrelated over i, with

E(vlit) = 0 and E(‖vlit‖4) ≤ ∞ for all (l, i, t). Let Σiivl denote the variance matrix of

vlit and assume that all eigenvalues of Σiivl are uniformly bounded (UB) for all l and i.

In addition, v1it is independent of v2js for all (i, j, t, s). Let vit = (v1it, v2it)
′ and assume

vit is independent of ejs for all (i, j, t, s).
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C.4 Let Σii denote the variance matrix of εit, so I have Σii = diag(σ2
1i, σ

2
2i,Σiiv1,Σiiv2), a

block-diagonal k̄× k̄ matrix, where k̄ = k1 +k2 +2. Let Σεε denote the variance matrix

of εt. Then, Σεε = diag(Σ11,Σ22, . . . ,ΣNN) is a block-diagonal Nk̄ ×Nk̄ matrix.

Assumption C is that the variance of the idiosyncratic errors εt is a block-diagonal matrix,

extending traditional factor analysis wherein a diagonal matrix is assumed instead. More-

over, Assumption C allows cross-sectional heteroskedasticity, which extends exiting studies

with simultaneous spatial models where homoskedasticity is assumed, such as Kelejian and

Prucha (2004), Baltagi and Bresson (2011), Wang et al. (2014), Baltagi and Deng (2015),

Liu (2014) and Yang and Lee (2017). Note that neither Σiiv1 nor Σiiv2 need be diagonal,

meaning that the k1 components within the error v1it can be correlated with each other.

This is also the case for v2it.

Assumption D: The underlying value δ = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2)′ satisfies ‖δ‖ ≤ C.

Assumption E: Compactness of estimates.

E.1 The variances Σii for all i and Mff are estimated in a compact set, i.e., all the eigen-

values of Σ̂ii and M̂ff are in an interval [C−1, C].

E.2 The key parameters δ = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2)′ are estimated in a compact set A1×A2×

A3×A4×A5×A6 ⊂ R×R×R×R×Rk1 ×Rk2 , where R is the set of real numbers.

Assumption E requires that the variance parameters are estimated in a compact set.

Compactness is a condition for theoretical analysis, which is usually used when the objective

function is highly nonlinear, for instance, in Newey and McFadden (1994), Jennrich (1969)

and Wu (1981). I impose Assumption E here since the objective functions considered in

both approaches presented in this paper are highly nonlinear. However, I do not require

restrictions on the factor loading Li.

Assumption F: Aassumptions about some important matrices.

F.1 The transformation matrix D(δ) is invertible.

F.2 W1 and W2 are constant N ×N weights matrices with diagonal elements being zero.

F.3 Let P1 = (IN − ρ1W1) and P2 = (IN − ρ2W2). Then, I assume all matrices P1, P2, (I −
γ1γ2P

−1
1 P−1

2 ) and (I − γ1γ2P
−1
2 P−1

1 ) are invertible.

F.4 Let B12 = (I − γ1γ2P
−1
1 P−1

2 )−1 and B21 = (I − γ1γ2P
−1
2 P−1

1 )−1. I assume that the row

and column sums of matrices W1,W2, P
−1
1 , P−1

2 , B12 and B21 are all UB in absolute

value.

Assumptions F.1–F.4 are standard in the spatial econometrics literature, for instance,

Kelejian and Prucha (2004), Lee (2004a), Yu et al. (2008), Bai and Li (2014b) and Yang

and Lee (2017). The invertibility of D(δ) (Assumption F.1) is standard in spatial models

when using the QML method, which guarantees that the first-order conditions of δ exist

10



and the system has an equilibrium. Assumption F.2 is a standard normalization assumption

for weights matrices. Assumption F.3 guarantees the invertibility of key matrices that will

be used frequently in the theoretical analysis. The UB condition in Assumption F.4 keeps

the degree of spatial correlation manageable and will be used in the theoretical analysis,

especially in the consistency analysis.

Remark 2.1. In empirical applications, weights can be defined in many ways. Let wij be

the entry of an N×N weights matrix W . The weight wij measures the presence and strength

of an interaction between location i and j in a geographic space, or more generally, wij can

be interpreted as the strength of a link between nodes i and j or between observations i

and j in an economics or social network space. In applications, wij is usually a decreasing

function of distance, as higher weights are assigned to closer observations than to distant

observations. The most popular weighting scheme in practice is K-nearest neighbor weights,

where location i is only affected by its K-nearest neighbors; more details about this scheme

will be given in the simulation section. In the simplest case, when K = 1, the weights matrix

is binary, where wij = 1 if i and j are neighbors (sharing a common boundary), and wij = 0

otherwise. The choice of weights matrix always depends on the empirical application. 10

Remark 2.2. There is an alternative way to write the UB condition defined in Assump-

tion F.4. First, an equivalent way to say that an m-by-n matrix A is UB in absolute row

sum and column sum is to assume that lim sup
N→∞

‖A‖∞ < ∞ and lim sup
N→∞

‖A‖1 < ∞, where

‖A‖∞ = max1≤i≤m
∑n

j=1 |aij| represents the maximum absolute row-sum of A; ‖A‖1 =

max1≤j≤n
∑m

i=1 |aij| represents the maximum absolute column sum of A, where aij is the

(i, j)th element of A. Second, a set of three conditions lim sup
N→∞

‖W1‖∞ ≤ 1, lim sup
N→∞

‖W1‖1 ≤ 1

and |ρ1| < 1, imply that P−1
1 is UB. This is because by definition of P = (IN − ρ1W1),

lim sup
N→∞

‖P−1‖∞ ≤ lim sup
N→∞

∞∑
j=0

(‖ρ1W1‖∞)j ≤ 1

1− ρ1

<∞

and

lim sup
N→∞

‖P−1‖1 ≤ lim sup
N→∞

∞∑
j=0

(‖ρ1W1‖1)j ≤ 1

1− ρ1

<∞

Further, a set of sufficient conditions for the assumption that B12 is UB can be that

lim sup
N→∞

‖P−1
1 P−1

2 ‖∞ ≤ 1, lim sup
N→∞

‖P−1
1 P−1

2 ‖1 ≤ 1 and |γ1γ2| < 1. Similar arguments can

be made for P−1
2 and B21.

10For example, in geographic spatial models, Ho and Hite (2008) uses a binary weights matrix, where the
weight wij is nonzero only if i and j are neighbors. Jeanty et al. (2010) consider two choices of weights. One
defines wij as a binary distance-based weight, as wij equals one only if the distance is smaller than a certain
distance threshold and zero otherwise. The other defines the weight wij as an inverse distance function d−aij ,
where dij measures the distance, and a is a dampening coefficient indicating how fast the weight decreases
with distance. Furthermore, Cohen-Cole et al. (2013) and Liu (2014) consider the weights in the multi-choice
game framework of a social network model.
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Assumption G: Let η = (ρ1, ρ2, γ1, γ2), for all η† = (ρ†1, ρ
†
2, γ
†
1, γ
†
2, ) ∈ A1×A2×A3×A4,

with η† 6= η. One of the following two conditions holds:

G.1 For β1 6= 0 and β2 6= 0,

lim inf
N→∞

Ma > 0

where Ma =


a1 0 b1 0

0 a2 0 b2

b1 0 c1 0

0 b2 0 c2

, with a1, a2, b1, b2, c1, c2 being scalars and functions of

(ρ1, ρ2, γ1, γ2), depending on N , as defined in Table A2 in Appendix A.11

G.2

lim inf
N→∞

M > 0

where M is a 4×4 matrix, depending onN, η, η† and variances (σ2
1j, σ

2
2j) (j = 1, 2, . . . , N).

Its (i, j)th entry is defined as Mij = 1
N

tr(MiM
′
j), where each Ml is an N ×N matrix,

for l = 1, 2, 3, 4, defined in Table A2 in Appendix A, and tr(·) is the trace operator.12

The condition G.2 is equivalent to that, matrix M is positive definite for all N .

Remark 2.3. Assumption G imposes identification conditions for the key coefficients δ =

(ρ1, ρ2, γ1, γ2)′. Specifically, Assumption G.1 depends on β 6= 0, while Assumption G.2

does not depend on β. Conditions (G.1) and (G.2) are related to Assumption 8 and 9

respectively in Lee (2004a), and the two conditions in Assumption 8 in Yu et al. (2008), but

differ in that they impose homoskedasticity and use a single-equation setup, while I allow

cross-sectional heteroskedasticity and focus on a simultaneous equation system together with

common shocks in this paper. Assumption G is also related to Lemmas 2, 3 and 4 in Yang

and Lee (2017), but the difference is that they consider a cross-sectional simultaneous spatial

model without common shocks and assume homoskedasticity. As shown in Appendix C,

condition G.2 is related to the unique solution to T1N(ρ†1, ρ
†
2, γ
†
1, γ
†
2, σ

†2
11, σ

†2
21, . . . , σ

†2
1N , σ

†2
2N) = 0,

with:

T1N(ρ†1, ρ
†
2, γ
†
1, γ
†
2, σ

†2
11, σ

†2
21, . . . , σ

†2
1N , σ

†2
2N) = − 1

2N
tr[R†ΣeeR†′Σ†−1

ee ]+
1

2N
ln[R†ΣeeR†′Σ†−1

ee ]+1

where R† = Υ(η†)Υ(η)−1, with η = (ρ1, ρ2, γ1, γ2) and η† = (ρ†1, ρ
†
2, γ
†
1, γ
†
2).

Remark 2.4. The intuition behind the above identification condition is that, if there are

explanatory variables x1 and x2, the model can be identified based on condition G.1; if not,

the model can still be identified if either spatial effect or cross-sectional heteroskedasticity

exists, implied from condition G.2.

11All a1, a2, b1, b2, c1, c2 involve matrices W1,W2, P1, P2, B12, B21 and Gl (l = 1, . . . , 4). The N × N
matrices Gl (l = 1, . . . , 4) are defined in Table A1 in Appendix A

12Compared to the definitions of a1, a2, b1, b2, c1, c2, the matrices Mi not only depend on
W1,W2, P1, P2, B12, B21,Gl, but also on the variances (σ2

1j , σ
2
2j) (j = 1, 2, . . . , N).

12



Remark 2.5. The matrix Ma in Assumption G.1 is positive-definite if and only if that

a1 > 0, (a1c1 − b2
1) > 0, a2 > 0, (a2c2 − b2

2) > 0.

Furthermore, a sufficient condition for a1 > 0 is following denoted as (GS.1.1): there exists

a positive constant ε such that at least one of the following two conditions holds:

1

N

[
tr(Σ−1

1eeG1Σ1eeG′1) + tr(G2
1)− 2

N∑
i=1

[G1,ii]
2
]
> ε

1

N

[
tr(Σ−1

1eeW1G4Σ1eeG′4W ′
1) + tr[(W1G4)2]− 2

N∑
i=1

[(W1G4)ii]
2
]
> ε

where Σ1ee = diag(σ2
11, σ

2
12, . . . , σ

2
1N); the N ×N matrices G1 and G4 are defined in Table A1

in Appendix A; G1,ii denotes the (i, i)th entry of matrix G1, which is similar for (W1G1)ii.

To see this, it can be shown that the above condition 1
N

[
tr(Σ−1

1eeG1Σ1eeG′1) + tr(G2
1) −

2
∑N

i=1[G1,ii]
2
]
> ε implies 1

2N

∑N
i=1

∑N
j=1,j 6=i[G1,ij]

2 > ε1 for some positive constant ε1. Simi-

larly, the above condition 1
N

[
tr(Σ−1

1eeW1G4Σ1eeG′4W ′
1)+tr[(W1G4)2]−2

∑N
i=1[(W1G4)ii]

2
]
> ε

implies that 1
2N

∑N
i=1

∑N
j=1,j 6=i[(W1G4)ij]

2 > ε2 for some positive constant ε2. Then, summa-

rizing the preceding analysis, together with the definition of a1 = 1
2N

∑N
i=1

∑N
j=1,j 6=i

[
[G1,ij]

2+

[(W1G4)ij]
2
]
, it follows that condition (GS.1.1) implies a1 > 0. Similar arguments can be

made for the other conditions involved in the above sufficient condition for (G.1). More

details can be found in the supplementary material.

2.1.2 Normalization conditions for factors and factor loadings

In the factor analysis literature, it is well known that the factors and corresponding loadings

can only be identified up to a rotation. The model considered in this paper can be regarded

as an extension of the factor model and has the same rotational indeterminacy problem.

Thus, in this section, I introduce a set of normalization conditions (NC) for both factors and

factor loadings in order to facilitate the inference analysis.

Model (2.4) can be alternatively written as follows:

D(δ)zt = µ+ Lft + εt (2.5)

= (µ+ Lf̄) + L(ft − f̄) + εt

= (µ+ Lf̄)︸ ︷︷ ︸
µ?

+
(
LM

1/2
ff R

)︸ ︷︷ ︸
L?

(
R′M

−1/2
ff (ft − f̄)

)
︸ ︷︷ ︸

f?t

+εt

13



where R is an orthogonal matrix that consists the eigenvectors of MffL
′Σ−1

εε LMff arranged

in descending order. Let µ?, L? and f ?t be the new intercepts, new loadings and new factors,

respectively, as defined in the above equation. Then, model (2.4) is equivalent to:

D(δ)zt = µ? + L?f ?t + εt

where 1
T

∑T
t=1 f

?
t = 0, 1

T

∑T
t=1 f

?
t f

?′
t = Ir, and 1

N
L?′Σ−1

εε L
? is a diagonal matrix. Therefore,

without loss of generality, I can impose the following NC for the factors and factor loadings

in model (2.4):

NC.1 f̄ = 1
T

∑T
t=1 ft = 0

NC.2 Mff = 1
T

∑T
t=1(ft − f̄)(ft − f̄)′ = Ir

NC.3 1
N
L′Σ−1

εε L = QN , where QN is a diagonal matrix with its distinct diagonal elements

arranged in descending order.

Remark 2.6. As shown later, NC.3 is not needed for the QML estimation of the regression

coefficients δ, but it is needed to identify the factors and factor loadings. Under this NC,

the orthogonal matrix R in (2.5), which is associated with the rotational indeterminacy of

factors and factor loadings, now can be uniquely determined up to a column sign change. In

addition, NC.3 simplifies the asymptotic analysis of the QMLE of δ.

Remark 2.7. In the factor analysis literature, the above NC are commonly used in maximum

likelihood estimation; see, for instance, Anderson (2003). There are other NC to deal with

rotational indeterminacy; see Bai and Li (2012) and Bai and Ng (2013).13 For the QML

approach in this paper, different NC will induce different estimates of the sample variance

of factors Mff and loadings L, which are the nuisance parameters in this paper, but they

will not change the estimates of the key parameters δ and Σεε.

2.2 Objective function and first-order conditions

Let θ1 = (δ, L,Σεε) be the parameters to be estimated. In this approach, I consider the

following objective function:

L1(θ1) = − 1

2N
ln |Σzz|+

1

N
ln |D| − 1

2N
tr[DMzzD

′Σ−1
zz ] (2.6)

where Σzz = LL′ + Σεε; D = D(δ) is given in equation (2.3); and Mzz = 1
T

∑T
t=1 żtż

′
t is the

data matrix. The above objective function is the likelihood function if ft and εt are assumed

13Bai and Li (2012) consider five different sets of identification conditions and derive the inferential
theories of the the corresponding QMLEs. Bai and Ng (2013) discuss three different sets of identification
conditions for static factors in the PC analysis.
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to be i.i.d. normal. Without such assumption, function (2.6) is referred to as the quasi-

likelihood function.14 The QMLE denoted as θ̂ = (δ̂, L̂, Σ̂εε) is defined as the maximizer of

the above objective function:

θ̂ = argmax
θ1∈Θ1

L1(θ1)

where Θ1 is the parameter space specified by Assumptions E and G, NC.1, NC.2 and

NC.3. By the definition of D, as shown in Lemma A.1, det(D) = det(Υ(η)), where

η = (ρ1, ρ2, γ1, γ2)′, and Υ(η) is a 2N × 2N matrix, with its (i, j)th block, a 2 × 2 ma-

trix, equal to:

Υij(η) =



[
1 −γ1

−γ2 1

]
if i = j

[
−ρ1w1ij 0

0 −ρ2w2ij

]
if i 6= j

(2.7)

Compared to D = D(δ), Υ(η) only depends on η, without involving β1 and β2. Replacing

det(D) with det(Υ(η)) in (2.6) implies the following alternative objective function, which

will simplify the derivation of the first-order conditions thereafter:

L1(θ1) = − 1

2N
ln |Σzz|+

1

N
ln |Υ(η)| − 1

2N
tr[DMzzD

′Σ−1
zz ] (2.8)

where only the last part, − 1
2N

tr[DMzzD
′Σ−1

zz ], involves β1, β2. Based on the above expression,

we can derive the following first-order conditions for θ1.

The first-order condition for L is:

L̂′Σ̂−1
εε (D̂MzzD̂

′ − Σ̂zz) = 0 (2.9)

where D̂ = D(δ̂). The first-order condition for Σεε is:

D̂MzzD̂
′ − Σ̂zz = W (2.10)

where W is an Nk̄×Nk̄ matrix (k̄ = k1 +k2 + 2) whose ith k̄× k̄ diagonal subblock denoted

as Wii is such that the diagonal entries of the upper-left 2 × 2 are zeros. Regarding the

lower-right (k1 +k2)× (k1 +k2) submatrix of Wii, all entries of the upper-left k1×k1 and the

lower-right k2× k2 are zeros. The rest of the elements of W are unspecified. The unspecified

elements of W correspond to the zero elements of Σεε.

The first-order condition for ρ1 is:

14In this paper, such normality assumption of εt is not required, as shown in both the theoretical analysis
and the simulation section, the QML method is robust for different underlying distributions of errors.
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1

N
tr
(

Υ(η̂)−1 ·Υρ1

)
+

1

NT

N∑
i=1

T∑
t=1

ÿ1it

σ̂2
1i

(ẏ1it − ρ̂1ÿ1it − γ̂1ẏ2it − ẋ′1itβ̂1)

− 1

NT

N∑
i=1

T∑
t=1

ÿ1it

σ̂2
1i

λ̂′iĜL̂
′Σ̂−1

εε D̂żt = 0

(2.11)

where ÿpit =
∑N

j=1 wpij ẏpjt for p = 1, 2, Ĝ = (Ir+L̂
′Σ̂−1

εε L̂)−1, and Υρ1 is the partial derivative

of Υ(η) with respect to ρ1, which is a constant 2N × 2N matrix dependent only on weights

W1. Specifically, the (i, j)th subblock of Υρ1 is a 2 × 2 matrix denoted by (Υρ1)ij, which

equals 02×2 if i = j and (−w1ij, 0; 0, 0) otherwise.

The first-order condition for ρ2 is:

1

N
tr
(

Υ(η̂)−1 ·Υρ2

)
+

1

NT

N∑
i=1

T∑
t=1

ÿ2it

σ̂2
2i

(ẏ2it − ρ̂2ÿ2it − γ̂2ẏ1it − ẋ′2itβ̂2)

− 1

NT

N∑
i=1

T∑
t=1

ÿ2it

σ̂2
2i

ψ̂′iĜL̂
′Σ̂−1

εε D̂żt = 0

(2.12)

where Υρ2 is the partial derivative of Υ(η) with respect to ρ2, which is a constant 2N × 2N

matrix dependent only on weights W2. Specifically, the (i, j)th subblock of Υρ2 is a 2 × 2

matrix denoted by (Υρ2)ij and equal to 02×2 if i = j and (0, 0; 0,−w2ij) otherwise.

The first-order condition for γ1 is:

1

N
tr
(

Υ(η̂)−1 ·Υγ1

)
+

1

NT

N∑
i=1

T∑
t=1

ẏ2it

σ̂2
1i

(ẏ1it − ρ̂1ÿ1it − γ̂1ẏ2it − ẋ′1itβ̂1)

− 1

NT

N∑
i=1

T∑
t=1

ẏ2it

σ̂2
1i

λ̂′iĜL̂
′Σ̂−1

εε D̂żt = 0

(2.13)

where Υγ1 is the partial derivative of Υ(η) with respect to γ1, which is a constant 2N × 2N

matrix. Specifically, the (i, j)th subblock of Υγ1 is a 2 × 2 matrix denoted by (Υγ1)ij and

equal to 02×2 if i 6= j and (0,−1; 0, 0) otherwise.

The first-order condition for γ2 is:

16



1

N
tr
(

Υ(η̂)−1 ·Υγ2

)
+

1

NT

N∑
i=1

T∑
t=1

ẏ1it

σ̂2
2i

(ẏ2it − ρ̂2ÿ2it − γ̂2ẏ1it − ẋ′2itβ̂2)

− 1

NT

N∑
i=1

T∑
t=1

ẏ1it

σ̂2
2i

ψ̂′iĜL̂
′Σ̂−1

εε D̂żt = 0

(2.14)

where Υγ2 is the partial derivative of Υ(η) with respect to γ2, which is a constant 2N × 2N

matrix. Specifically, the (i, j)th subblock of Υγ2 is a 2 × 2 matrix denoted by (Υγ2)ij and

equal to 02×2 if i 6= j and (0, 0;−1, 0) otherwise.

The first-order condition for β1 is:

1

NT

N∑
i=1

T∑
t=1

1

σ̂2
1i

ẋ1it(ẏ1it − ρ̂1ÿ1it − γ̂1ẏ2it − ẋ′1itβ̂1)− 1

NT

N∑
i=1

T∑
t=1

1

σ̂2
1i

ẋ1itλ̂
′
iĜL̂

′Σ̂−1
εε D̂żt = 0

(2.15)

The first-order condition for β2 is:

1

NT

N∑
i=1

T∑
t=1

1

σ̂2
2i

ẋ2it(ẏ2it − ρ̂2ÿ2it − γ̂2ẏ1it − ẋ′2itβ̂2)− 1

NT

N∑
i=1

T∑
t=1

1

σ̂2
2i

ẋ2itψ̂
′
iĜL̂

′Σ̂−1
εε D̂żt = 0

(2.16)

The above first-order conditions are useful in the derivation of the asymptotic properties,

including the convergence rate and limiting distributions of the QMLE δ̂. They are involved

neither in the proof of consistency nor in the computation of the QMLE. The QMLEs are

computed via the expectation maximization (EM) algorithm, which does not need to solve

these first-order conditions, but the EM solutions satisfy these conditions (proof is provided

in the supplementary material).

2.3 Asymptotic properties of the QMLE

In this section, I first show that the QMLE is consistent and then present its convergence

rates. Further, I provide the asymptotic representation and limiting distributions of the

QMLE.

Proposition 2.1. (Consistency) Under Assumptions A–G, when N, T → ∞, for δ =

(η′, β′1, β
′
2)′, I have:

δ̂ − δ = op(1)

1

N

N∑
i=1

‖Σ̂ii − Σii‖2 = op(1)
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In addition, if NC.1–NC.3 hold, I have:

1

N

N∑
i=1

‖Σ̂−1
ii ‖ · ‖L̂i − Li‖2 = op(1)

Remark 2.8. In order to derive asymptotic properties, I need to specify det(D), D−1 and

DD−1, where D is the high dimensional transformation matrix and makes the theoretical

analysis complicated. The number of incidental parameters goes to infinity when N, T →∞
brings additional complex.

Based on the consistency result, I further derive the rates of convergence of the QMLE.

Theorem 2.1. (Convergence rates) Under Assumptions A–G, when N, T →∞, I have:

δ̂ − δ = Op(N
−1/2T−1/2) +Op(T

−3/2)

1

N

N∑
i=1

‖Σ̂ii − Σii‖2 = Op(T
−1)

In addition, if NC.1–NC.3 hold, I have:

1

N

N∑
i=1

‖Σ̂−1
ii ‖ · ‖L̂i − Li‖2 = Op(T

−1)

Remark 2.9. From Theorem 2.1, it can be seen that the QMLE of δ is
√
T -consistent

even when N is finite, implying that the QML method still works when N is finite. Under

fixed N , however, the asymptotic representation and limiting distribution of the QMLE will

change. Theorem 2.1 also implies that based on the result that δ̂−δ has a faster convergence

rate, the limiting distributions of vec(L̂i − Li) and vech(Σ̂ii − Σii) are not affected by the

estimation of δ and are the same as those in the pure factor model without regressors. Thus,

in the following, I provide only the asymptotic representation of δ̂, excluding the estimated

loadings and variances.15

15Bai and Li (2012) provide asymptotic representations and limiting distributions of the QMLE of the
loadings and variances.
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In order to state the asymptotic representation of δ̂, I introduce the following notation:

Ω =


Ω11 Ω12 . . . Ω16

Ω21 Ω22 . . . Ω26

. . . . . . . . . . . .

Ω61 Ω62 . . . Ω66

 ; ε =



ε1

ε2

ε3

ε4

ε5

ε6


where the details of each Ω and ε entry are given in Tables A4 and A5, respectively, of

Appendix A. Then, I have the following theorem.

Theorem 2.2. (Asymptotic representation) Under Assumptions A–G, when N, T →∞
and
√
N/T → 0, I have:

√
NT (δ̂ − δ) = Ω−1

√
NTε+ op(1)

Remark 2.10. The above expression is equivalent to:

√
NT



ρ̂1 − ρ1

ρ̂2 − ρ2

γ̂1 − γ1

γ̂2 − γ2

β̂1 − β1

β̂2 − β2


=


Ω11 Ω12 . . . Ω16

Ω21 Ω22 . . . Ω26

. . . . . . . . . . . .

Ω61 Ω62 . . . Ω66


−1

·
√
NT



ε1

ε2

ε3

ε4

ε5

ε6


+ op(1)

From the calculation of Ω and var(
√
NTε) in the supplementary material, I show that Ω

is symmetric and that Ω = var(
√
NTε), implying the following corollary.

Corollary 2.1. (Limiting distribution) Under the assumptions of Theorem 2.2, I have:

√
NT (δ̂ − δ) d−→ N(0,ΩQML)

where ΩQML = lim
N→∞

Ω−1.

Remark 2.11. To gain an intuitive understanding of the asymptotic expression in Theorem
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(2.2), consider the following simultaneous spatial panel data model without common shocks:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + v′1itβ1 + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + v′2itβ2 + e2it

(2.17)

where e1it, e2it, v1it and v2it satisfy the same conditions as in Assumption C, but v1it and

v2it are assumed to be observable (kind of the regressors). Conditional on v1it and v2it, the

quasi-likelihood function of the above model (2.17), assuming normality of the errors (after

concentrating out α1i and α2i), is:

L′(θ) =− 1

2N

N∑
i=1

lnσ2
1i −

1

2N

N∑
i=1

lnσ2
2i +

1

N
ln |∆(η)|

− 1

2N

N∑
i=1

T∑
t=1

1

σ2
1i

(ẏ1it − ρ1ÿ1it − γ1ẏ2it − v̇′1itβ1)2

− 1

2N

N∑
i=1

T∑
t=1

1

σ2
2i

(ẏ2it − ρ2ÿ2it − γ1ẏ1it − v̇′2itβ2)2

(2.18)

where ∆(η) = I2N − P , with P =

[
ρ1W1 γ1IN

γ2IN ρ2W2

]
, and ÿpit is defined as in (2.11). Let

θ̃ = (ρ̃1, ρ̃2, γ̃1, γ̃2, σ̃
2
11, . . . , σ̃

2
21, . . . , σ̃

2
1N , σ̃

2
2N) be the QMLE of the above likelihood function.

It can be shown that (δ̃ − δ) has the same asymptotic representation as in Theorem (2.2),

which implies that the QML method can help address the endogenous parts of x1it and x2it,

as they are affected by the common factors.

Remark 2.12. From Corollary 2.1, it can be seen that the limiting variance of the QMLE

is not of a sandwich form, indicating that the QMLE is asymptotically efficient for simulta-

neous spatial panel models under cross-sectional heteroskedasticity. However, the situation

becomes different when homoskedasticity is imposed instead, where the limiting variance of

the QMLE would have a sandwich form. More details follow.

Consider model (2.2) but assume homoskedasticity. Then, the asymptotic expression for

the QMLE (estimating homoskedastic variances) becomes:

√
NT (δ̃ − δ) = Ω̃−1

√
NT ε̃+ op(1)

where δ̃ is the QMLE of δ under homoskedasticity; Ω̃−1 and ε̃ are defined in Table 6 and

Table 7, respectively, of Appendix A. Note that Ω̃ and ε̃ are different from Ω and ε in the

heteroskedastic case. More importantly, ε̃ now involves e2
1it and e2

2it, while ε does not, imply-
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ing that the limiting variance of δ̃ − δ will depend on the kurtosis of e1it and e2it. However,

Ω̃ does not depend on such kurtosis, so the limiting variance of δ̃ − δ has a sandwich form,

unless normality of the errors is assumed. As shown in Corollary 2.1, the limiting variance

of the QMLE under the heteroskedasticity assumption is not of a sandwich form, regard-

less of normality. This is a meaningful finding, demonstrating two important advantages

of imposing the heteroskedasticity assumption. First, it makes the limiting variance of the

QMLE robust to the underlying distributions of the errors; second, it eliminates potential

inconsistency when homoskedasticity is incorrectly imposed.

2.4 Computation of the QMLE

To compute the QMLE, I propose a computing algorithm for the QMLE of model (2.2) com-

bining the usual maximization procedures with the EM algorithm. Let θ(s) = (η(s), β
(s)
1 , β

(s)
2 , L(s),Σ

(s)
εε )

with η(s) = (ρ
(s)
1 , ρ

(s)
2 , γ

(s)
1 , γ

(s)
2 ) denote the estimated value at the sth iteration. My updating

procedures consist of two steps. In the first step, I update L,Σεε, β1 and β2 according to the

EM algorithm:

L(s+1) =
[ 1

T

T∑
t=1

E(Dżtf
′
t |θ(s))

][ 1

T

T∑
t=1

E(ftf
′
t |θ(s))

]−1

(2.19)

Σ(s+1)
εε = Dg

[
D(s)MzzD

(s)′ − L(s+1)L(s)′(Σ(s)
zz )−1D(s)MzzD

(s)′
]

= Dg

{[
IN(k1+k2+2) − L(s+1)L(s)′(Σ(s)

zz )−1
]
D(s)MzzD

(s)′

}
(2.20)

and

β
(s+1)
1 =

[ N∑
i=1

T∑
t=1

1

(σ
(s+1)
1i )2

ẋ1itẋ
′
1it

]−1

×
[ N∑
i=1

T∑
t=1

1

(σ
(s+1)
1i )2

ẋ1it

(
ẏ1it − ρ(s)

1

N∑
j=1

w1ij ẏ1jt − γ(s)
1 ẏ2it − λ(s+1)′

i f
(s)
t

)] (2.21)

β
(s+1)
2 =

[ N∑
i=1

T∑
t=1

1

(σ
(s+1)
2i )2

ẋ2itẋ
′
2it

]−1

×
[ N∑
i=1

T∑
t=1

1

(σ
(s+1)
2i )2

ẋ2it

(
ẏ2it − ρ(s)

2

N∑
j=1

w2ij ẏ2jt − γ(s)
2 ẏ1it − ψ(s+1)′

i f
(s)
t

)] (2.22)

where Dg is the operator that sets the entries of its argument to zero if their counterparts

in E(εtε
′
t) are zeros; (σ

(s+1)
1i )2 is the [(i − 1)(k1 + k2 + 2) + 1]th diagonal element of Σ

(s+1)
εε ,
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and (σ
(s+1)
2i )2 is the [(i − 1)(k1 + k2 + 2) + 2]th diagonal element of Σ

(s+1)
εε ; λ

(s+1)
i is the

transpose of the [(i− 1)(k1 + k2 + 2) + 1]th row of L(s+1), and ψ
(s+1)
i is the transpose of the

[(i− 1)(k1 + k2 + 2) + 2]th row of L(s+1). In addition:

1

T

T∑
t=1

E(Dżtf
′
t |θ(s)) = D(s)MzzD

(s)′(Σ(s)
zz )−1L(s) (2.23)

1

T

T∑
t=1

E(ftf
′
t |θ(s)) = Ir − L(s)′(Σ(s)

zz )−1L(s) + L(s)′(Σ(s)
zz )−1D(s)MzzD

(s)′(Σ(s)
zz )−1L(s) (2.24)

and

f
(s)
t = L(s)′(Σ(s)

zz )−1D(s)żt (2.25)

In the second step, η is updated by maximizing (2.6) with respect to η at β1 = β
(s+1)
1 ,β2 =

β
(s+1)
1 , L = L(s+1) and Σεε = Σ

(s+1)
εε with an initial value of η at η(s). The two-step

procedure suggested above is a version of the Expectation/Conditional Maximization Ei-

ther (ECME) procedure in Liu and Rubin (1994). Combining these two steps, I obtain

θ(s+1) = (η(s+1), β
(s+1)
1 , β

(s+1)
2 , L(s+1),Σ

(s+1)
εε ). The iteration continues until ‖θ(s+1) − θ(s)‖ is

smaller than a preset tolerance.

This two-step iterative procedure guarantees that the value of the objective function (2.6)

in each iteration does not decrease. This is because in the first step, letting η = η(s) be fixed

and drawing on the standard theory of the EM algorithm, (for the inference, see Dempster

et al. (1977) and McLachlan and Krishnan (1997)), I have the following inequality:

L(η(s), β
(s+1)
1 , β

(s+1)
2 ,Φ(s+1),Σ(s+1)

εε ) ≥ L(η(s), β
(s)
1 , β

(s)
2 ,Φ(s),Σ(s)

εε ) (2.26)

In the second step, by the definition of η(s+1), I have the following inequality:

L(η(s+1), β
(s+1)
1 , β

(s+1)
2 ,Φ(s+1),Σ(s+1)

εε ) ≥ L(η(s), β
(s+1)
1 , β

(s+1)
2 ,Φ(s+1),Σ(s+1)

εε ) (2.27)

In the supplementary material, I show that the limit of the iterated solution satisfies the

first-order conditions (2.9)–(2.16) and hence possesses the local optimality property.

In the simulation results reported in the next section, I use the within-group estimator

as the starting value for η(1), β
(1)
1 , β

(1)
2 , ignoring the endogeneity problem and the common

shock effect. Then, let the initial values of L(1) and Σ
(1)
εε be the maximizer of (2.6) given

η = η(1), β1 = β
(1)
1 and β2 = β

(1)
2 .

3 Second approach: the IGPC method

In the second approach, I do not specify the model for the explanatory variables but allow

them to be arbitrarily correlated with the common factors, the factor loadings or both, which
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is more general than the model specification considered in the first approach. Regarding the

common factor ft, I treat it as parameter and estimate it directly instead of estimating its

sample variance as in the first approach. For this estimation, I propose an iterative approach

based on a generalized principal components (GPC) method. Furthermore, I derive a full

inferential theory of its estimator, the IGPCE, as in the first approach. Finally, I describe

the computation of the IGPCE. The simulation results are provided in Section 4.

3.1 Model description and assumptions

In the second approach, I study model (1.1) without specifying the model for the explanatory

variables. Using the same definitions of x1it, x2it, β1 and β2 given in (2.2), I can rewrite (1.1)

as follows:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + x′1itβ1 + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + x′2itβ2 + ψ′ift + e2it

(3.1)

Let αi = (α1i, α2i)
′, xit =

[
x1it 0

0 x2it

]
, β = (β′1, β

′
2)′, Γi = (λi, ψi), and eit = (e1it, e2it)

′. I can

then rewrite model (3.1) as:[
y1it − ρ1

∑N
j=1 w1ijy1jt − γ1y2it

y2it − ρ2

∑N
j=1 w2ijy2jt − γ2y1it

]
= αi + x′itβ + Γ′ift + eit

Using the same notation, η = (ρ1, ρ2, γ1, γ2) and Υ(η), as in (2.7) in the first approach and

letting yit = (y1it, y2it)
′, model (3.1) can be transformed to:

N∑
j=1

Υij(η)yjt = αi + x′itβ + Γ′ift + eit (3.2)

Finally, let Yt = (y′1t, y
′
2t, . . . , y

′
Nt)
′, Xt = (x1t, x2t, . . . , xNt)

′, α = (α′1, α
′
2, . . . , α

′
N)′, Γ =

(Γ1,Γ2, . . . ,ΓN)′, and et = (e′1t, e
′
2t, . . . , e

′
Nt)
′. I can then rewrite model (3.1) in the following

matrix form:

Υ(η)Yt = α +Xtβ + Γft + et (3.3)

3.1.1 Assumptions

In addition to the assumptions made in Section 2.1.1 in the first approach, I impose the

following additional assumptions to facilitate the analysis in this second approach. Assume
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that there is a sufficiently large constant C > 0 such that the following assumptions hold.

Assumption H: The explanatory variables xlit can be either fixed constants or random

variables for l = 1, 2. If xlit is fixed, I assume ‖xlit‖ ≤ C for all i and t. If xlit are random

variables, I assume E(‖xlit‖4) ≤ C for all i and t; in addition, xlit is independent of the

idiosyncratic error emjs for all (l,m, i, j, t, s).

Assumption H is newly imposed on the explanatory variables, since in this approach, I do

not specify a model for them. To analyze model (3.1), I need to make the above assumption.

Assumption A′.2: If ft are random variables, I assume ft is independent of eis for all

t and s.

Assumption B′: The loading Γi can be either fixed constants or random variables such

that

B′.1 If Γi is fixed, I assume that ‖Γi‖ ≤ C for all i and 1
N

Γ′Σ−1
ee Γ → ΩΓ. If Γi are random

variables, I assume that E(‖Γi‖4) ≤ C for all i and 1
N

Γ′Σ−1
ee Γ

p−→ ΩΓ, where Σee is

defined in Assumption C, and ΩΓ is some positive definite matrix.

B′.2 If Γi are random variables, I assume that Γi is independent of the idiosyncratic errors

ejt for all i and j.

Assumption B′ is similar to Assumption B, but it is based on the new loading Γ, which

is part of the loading L in the first approach. Since L contains Γ, Assumption B.2 implies

Assumption B′.2 but not vice versa. However, Assumption B.1 cannot imply Assumption

B′.1, and vice versa.

Assumption E′: Compactness of the estimates.

E′.1 The variances σ1i and σ2i for i = 1, 2, . . . , N are all estimated in compact sets, i.e., all

variances σ1i and σ2i are estimated in an interval [C−1, C].

Assumption E.1 implies Assumption E′.1, since σ1i and σ2i are parts of Σii. However, I

do not need the compactness assumption of the estimate of Mff here because in the second

approach, I estimate the factor ft itself instead of Mff . Moreover, the compactness of the

estimate of ft is not required due to the nature of this estimation approach.

To state the following Assumption G′, let = be the parameter space for Γ and Σee,

satisfying the assumptions and NC (which will be included in the following Section 3.1.2):

= =
{
θ = (Γ,Σee)

∣∣∣C−1 ≤ σ2
1i ≤ C,C−1 ≤ σ2

2i ≤ C, ∀i; 1

N
Γ′Σ−1

ee Γ = Ir

}
Assumption G′: One of the following two conditions holds:
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G′.1 For β1 6= 0 and β2 6= 0, the matrix Da =

[
Db ζ

ζ ′ Dc

]
is positive definite on = for all

N , where the k × k matrix Db, 4 × 4 matrix Dc and k × 4 matrix ζ are all defined in

Appendix B.

G′.2 For all η† = (ρ†1, ρ
†
2, γ
†
1, γ
†
2, ) ∈ A1 × A2 × A3 × A4, with η† 6= η, both M and Db are

positive definite on = for all N , where the 4 × 4 matrix M is defined the same as in

Assumption G.2.

Remark 3.1. The intuition behind Assumption G′ is similar to that behind Assumption G.

In addition, the first part of condition G′.2 involving matrix M is same as Assumption G.2.

However, Assumption G′.2 includes additional positive definite condition on Db because now

I estimate the factor ft itself instead of its sample variance, which introduces more incidental

parameters.

3.1.2 Normalization conditions for factors and factor loadings

As in Section 2.1.2, I introduce a set of NC to facilitate the inference analysis in the second

approach. Note that model (3.3) can always be written as:

Υ(η)Yt = (α + Γf̄)︸ ︷︷ ︸
α†

+Xtβ + ΓQ−1/2︸ ︷︷ ︸
Γ†

Q1/2(ft − f̄)︸ ︷︷ ︸
f†t

+et

where Q = 1
N

Γ′Σ−1
ee Γ, and f̄ = 1

T

∑T
t=1 ft. Using the definitions of α†, Γ† and f †t given in

the above expression, I can treat them as the new intercept, new loading and new factor,

respectively. Then, it can be seen that
∑T

t=1 f
†
t = 0, and 1

N
Γ†′Σ−1

ee Γ† = Ir. Thus, without

loss of generality, in addition to NC.1 stated in Section 2.1.2, I can impose the following NC:

NC.4: 1
N

Γ′Σ−1
ee Γ = Ir, where Σee is defined in Assumption C.2.

3.2 Objective function and first-order conditions

In this approach, I allow the explanatory variables x1it and x2it to be arbitrarily correlated

with the loading Γi and factor ft. I treat both Γi and ft as parameters and estimate them

together.

Using the same definitions of δ, η,Σee and Υ(η) as in the first approach, let F = (f1, f2, . . . , fT )′
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and θ2 = (δ,Γ,Σee). I thus consider the following objective function in this approach:

L∗2(θ2, α, F ) =− 1

2NT

T∑
t=1

(
Υ(η)Yt − α−Xtβ − Γft

)′
Σ−1
ee

(
Υ(η)Yt − α−Xtβ − Γft

)
− 1

2N
ln |Σee|+

1

N
ln |Υ(η)|

(3.4)

The above expression can be viewed as the quasi-likelihood function by assuming the nor-

mality of eit. Given δ,Γ and Σee, it is easy to see that α and ft maximize the above function

L∗2(θ2, α, F ) at:

α = Υ(η)Ȳ − X̄β − Γf̄ (3.5)

and

ft = (Γ′Σ−1
ee Γ)−1Γ′Σ−1

ee (Υ(η)Ẏt − Ẋtβ) (3.6)

where Ȳ = 1
T

∑T
t=1 Yt, X̄ = 1

T

∑T
t=1Xt, f̄ = 1

T

∑T
t=1 ft, Ẏt = Yt − Ȳ , and Ẋt = Xt −

X̄. Substituting the above two formulas into L∗2(θ2, α, F ) to concentrate out α and ft, the

objective function becomes:

L2(θ2) = − 1

2NT

T∑
t=1

(
Υ(η)Ẏt − Ẋtβ

)′
M̈
(

Υ(η)Ẏt − Ẋtβ
)
− 1

2N
ln |Σee|+

1

N
ln |Υ(η)| (3.7)

where M̈ = Σ−1
ee − Σ−1

ee Γ(Γ′Σ−1
ee Γ)−1Γ′Σ−1

ee = Σ−1
ee − 1

N
Σ−1
ee ΓΓ′Σ−1

ee with the second equality

due to NC.4.

Let θ̃2 = (δ̃, Γ̃, Σ̃ee) be the maximizer of the above objective function, defined as:

θ̃2 = argmax
θ2∈Θ2

L2(θ2)

where Θ2 is the parameter space specified by Assumptions E.2, E′.1, G′, NC.1 and NC.4.

Based on the above L2(θ2), the first-order conditions for θ2 can be derived as following

(3.8)-(3.15). To compute θ̃2, I propose an iterative estimation procedure based on these

first-order conditions. Since the first-order condition for loading Γi involves the generalized

principal components (GPC) methodology, this estimation approach is referred to as an

iterative generalized principal components method (IGPC) and its estimator (IGPCE) is

denoted as θ̌ = (δ̌, Γ̌, Σ̌ee). The following are the first-order conditions for θ2.

The first-order condition for Γ is:[
1

NT

T∑
t=1

(
Υ(η̌)Ẏt − Ẋtβ̌

)(
Υ(η̌)Ẏt − Ẋtβ̌

)′]
Σ̌−1
ee Γ̌ = Γ̌V̌ (3.8)
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where V̌ is a diagonal r × r matrix consisting of the first r largest eigenvalues of the 2N ×
2N matrix ĎΓ = 1

NT

∑T
t=1

(
Υ(η̌)Ẏt − Ẋtβ̌

)(
Υ(η̌)Ẏt − Ẋtβ̌

)′
Σ̌−1
ee . Here, Γ̌ contains the r

eigenvectors associated with these r eigenvalues in V̌ . Thus, the computation algorithm

using the above equation is referred to as the GPC method, where the word “generalized”

stems from the assumption of heteroskedasticity of the errors.

The first-order condition for σ2
1i is:

σ̌2
1i =

1

T

T∑
t=1

(
ẏ1it − ρ̌1ÿ1it − γ̌1ẏ2it − ẋ′1itβ̌1 − λ̌′if̌t

)2

(3.9)

and the first-order condition for σ2
2i is:

σ̌2
2i =

1

T

T∑
t=1

(
ẏ2it − ρ̌2ÿ2it − γ̌2ẏ1it − ẋ′2itβ̌2 − ψ̌′if̌t

)2

(3.10)

where ẏ1it = y1it − 1
T

∑T
s=1 y1is, ẏ2it, ẋ1it and ẋ2it are defined in a similar way; ÿ1it =∑N

j=1 w1ij ẏ1jt, and ÿ2it =
∑N

j=1w2ij ẏ2jt; and

f̌t = (Γ̌′Σ̌−1
ee Γ̌)−1Γ̌′Σ̌−1

ee

(
Υ(η̌)Ẏt − Ẋtβ̌

)
=

1

N
Γ̌′Σ̌−1

ee

(
Υ(η̌)Ẏt − Ẋtβ̌

)
The first-order condition for ρ1 is:

− 1

NT

T∑
t=1

(
Υρ1 · Ẏt

)′̂̈M(Υ(η̌)Ẏt − Ẋtβ̌
)

+
1

N
tr
{

Υ(η̌)−1 ·Υρ1

}
= 0 (3.11)

where Υρ1 is defined in (2.11) and ̂̈M = Σ̌−1
ee −Σ̌−1

ee Ľ(Ľ′Σ̌−1
ee Ľ)−1Ľ′Σ̌−1

ee = Σ̌−1
ee − 1

N
Σ̌−1
ee ĽĽ

′Σ̌−1
ee .

The first-order condition for ρ2 is:

− 1

NT

T∑
t=1

(
Υρ2 · Ẏt

)′̂̈M(Υ(η̌)Ẏt − Ẋtβ̌
)

+
1

N
tr
{

Υ(η̌)−1 ·Υρ2

}
= 0 (3.12)

where Υρ2 is defined in (2.12). The first-order condition for γ1 is:

− 1

NT

T∑
t=1

(
Υγ1 · Ẏt

)′̂̈M(Υ(η̌)Ẏt − Ẋtβ̌
)

+
1

N
tr
{

Υ(η̌)−1 ·Υγ1

}
= 0 (3.13)
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where Υγ1 is defined in (2.13). The first-order condition for γ2 is:

− 1

NT

T∑
t=1

(
Υγ2 · Ẏt

)′̂̈M(Υ(η̌)Ẏt − Ẋtβ̌
)

+
1

N
tr
{

Υ(η̌)−1 ·Υγ2

}
= 0 (3.14)

where Υγ2 is defined in (2.14). The first-order condition for β = (β′1, β
′
2)′ is:

1

NT

T∑
t=1

Ẋ ′t
̂̈M(Υ(η̌)Ẏt − Ẋtβ̌

)
= 0 (3.15)

More details about the computation of the IGPCE are given in Section 3.4. These first-

order conditions will be used in the derivation of the asymptotic properties of the IGPCE

in Section 3.3.

3.3 Asymptotic properties of the IGPCE

In this section, I first show that the IGPCE is consistent and then derive its convergence

rates, asymptotic representation and limiting distributions.

Proposition 3.1. (Consistency) Under Assumptions A.1, A′.2, B′, C.1, C.2, D, E′.1,

E.2, F, G′ and H, when N, T →∞, I have:

δ̌ − δ = op(1)

1

N

N∑
i=1

||Σ̌iie − Σiie||2 = op(1)

1

N
Γ′̂̈MΓ = op(1)

where δ = (η′, β′)′ = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2)′, Σiie = diag(σ2

1i, σ
2
2i), and̂̈M = Σ̌−1

ee − Σ̌−1
ee Γ̌(Γ̌′Σ̌−1

ee Γ̌)−1Γ̌′Σ̌−1
ee = Σ̌−1

ee − 1
N

Σ̌−1
ee Γ̌Γ̌′Σ̌−1

ee .

Based on the consistency result, I derive the rates of convergence.

Theorem 3.1. (Convergence rates) Let H = 1
NT
V̌ −1(Γ̌′Σ̌−1

ee Γ)(F ′F ). Under Assump-

tions A.1, A′.2, B′, C.1, C.2, D, E′.1, E.2, F, G′ and H, when N, T →∞, I have:

δ̌ − δ =Op(N
−1) +Op(N

−1/2T−1/2) +Op(T
−3/2)

1

N

N∑
i=1

||Σ̌iie − Σiie||2 =Op(N
−2) +Op(T

−1)

1

N

N∑
i=1

||Γ̌i −HΓi||2 =Op(N
−2) +Op(T

−1)
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Remark 3.2. In the convergence rate for δ̂, note that there is a bias term of order Op(N
−1),

but there is no such bias term in the QMLE in the first approach. This bias term comes

from the additional incidental parameters involved in the treatment of the common shocks.

In this approach, I treat ft as parameter and estimate it directly, whereas I estimate its

sample variance instead in the first approach. Similarly, the extra term Op(N
−2) included

in the average convergence rates for Σ̌iie and Γ̌i occurs for the same reason. Because these

extra terms depend only on N , the IGPCE is no longer consistent under fixed N , which is

different from the QMLE. However, it is still true that since δ̌ − δ has a faster convergence

rate, the limiting distributions of vec(Γ̌i − Γi) and vech(Σ̌iie − Σiie) are the same as in the

case of no regressors.

Theorem 3.2. (Asymptotic representation) Under Assumptions A.1, A′.2, B′, C.1,

C.2, D, E′.1, E.2, F, G′ and H, when N, T →∞ and
√
N/T → 0,

√
T/N → 0, I have:

√
NT (δ̌ − δ + b) = D−1

√
NTξ + op(1)

where δ = (η′, β′)′ = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2)′; b,D and ξ are defined as follows.

Let k = k1 + k2 and k̃ = k + 4, and the k̃ × 1 vector ξ is defined as:

ξ =
1

NT



∑T
t=1(Ẋtβ + Γft)

′Q′1M̈et −
∑T

t=1

∑T
s=1(Ẋtβ + Γft)

′Q′1M̈esπst + ϕ1∑T
t=1(Ẋtβ + Γft)

′Q′2M̈et −
∑T

t=1

∑T
s=1(Ẋtβ + Γft)

′Q′2M̈esπst + ϕ2∑T
t=1(Ẋtβ + Γft)

′Q′3M̈et −
∑T

t=1

∑T
s=1(Ẋtβ + Γft)

′Q′3M̈esπst + ϕ3∑T
t=1(Ẋtβ + Γft)

′Q′4M̈et −
∑T

t=1

∑T
s=1(Ẋtβ + Γft)

′Q′4M̈esπst + ϕ4∑T
t=1 Ẋ

′
tM̈et −

∑T
t=1

∑T
s=1 Ẋ

′
tM̈esπst


where M̈ = Σ−1

ee − 1
N

Σ−1
ee ΓΓ′Σ−1

ee ; πst = f ′s(F
′F )−1ft; Q1 = −Υρ1Υ(η)−1; Q2 = −Υρ2Υ(η)−1;

Q3 = −Υγ1Υ(η)−1; and Q4 = −Υγ2Υ(η)−1, with all Υρ1 ,Υρ2 ,Υγ1 ,Υγ2 being constant matri-

ces defined as in the first-order conditions (2.11)–(2.14) in Section 2.2. For p = 1, 2, 3, 4, the

scalar ϕp is defined as:

ϕp =
1

NT

T∑
t=1

e′tQ
o′
p Σ−1

ee et

where Qo
p is an 2n × 2N matrix that is obtained by setting all the diagonal elements of Qp

to zero. The k × 1 vector b is defined as:

b = D−1



1
N

tr[Γ′Qo
1Σ−1

ee Γ(Γ′Σ−1
ee Γ)−1]

1
N

tr[Γ′Qo
2Σ−1

ee Γ(Γ′Σ−1
ee Γ)−1]

1
N

tr[Γ′Qo
3Σ−1

ee Γ(Γ′Σ−1
ee Γ)−1]

1
N

tr[Γ′Qo
4Σ−1

ee Γ(Γ′Σ−1
ee Γ)−1]

0k×1

 = D−1



1
N2 tr[Γ′Qo

1Σ−1
ee Γ]

1
N2 tr[Γ′Qo

2Σ−1
ee Γ]

1
N2 tr[Γ′Qo

3Σ−1
ee Γ]

1
N2 tr[Γ′Qo

4Σ−1
ee Γ]

0k×1
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The k̃ × k̃ matrix D is defined as:

D =

[
Dη + Φ ϑ

ϑ′ Dβ

]

where the 4× 4 matrices Dη and Φ, the 4× k matrix ϑ and the k× k matrix Dβ are defined

in Appendix B.

Remark 3.3. There is a bias term b of order Op(
1
N

) in the IGPCE δ̌ due to the treatment of

the common shocks. The IGPC approach estimates ft itself instead of its sample variance,

which introduces more incidental parameters to the time dimension. As a comparison, the

first approach estimates the sample variance of ft instead, and its corresponding QMLE is

unbiased in terms of limiting distribution.

Remark 3.4. There is some connection between matrix D in the above theorem and Da in

Assumption G′. Note that all matrices X̃l (l = 1, 2, . . . , k̃) involved in Da and (Ẋ1p, Ẋ2q)

(p = 1, 2, . . . , k1; q = 1, 2, . . . , k2) involved in D are defined on the explanatory variables,

different only in the ordering and presentation. Thus, I can simplify Db (part of Da, which is

associated with the identification of β) to Dβ (part of D, which is associated with the limiting

variance of β̌). However, the matrix Dc (part of Da), which depends on the explanatory

variables, does not equal Dη (part of D), which depends on the dependent variables.

In the supplementary material, I show that D−1/2
√
NTξ

d−→ N(0, Ik̃) under the same

conditions as in Theorem 3.2, which implies the following corollary.

Corollary 3.1. (Limiting distribution) Under the assumptions of Theorem 3.2, when

N, T →∞ and T/N → κ > 0, I have:

√
NT (δ̂ − δ) d−→ N(−b�,ΩIGPC)

where ΩIGPC = plimN,T→∞D−1 and:

b� = plimN,T→∞


D−1


κ 1
N

tr[Γ′Qo
1Σ−1

ee Γ]

κ 1
N

tr[Γ′Qo
2Σ−1

ee Γ]

κ 1
N

tr[Γ′Qo
3Σ−1

ee Γ]

κ 1
N

tr[Γ′Qo
4Σ−1

ee Γ]

0k×1




Remark 3.5. Regarding the limiting disribution, IGPCE has a bias term b� while QMLE

does not. In terms of efficiency, the limiting variance of the IGPCE is larger than that of the

QMLE when the explanatory variables indeed follow the specification in QML, as shown in

the supplementary material and such finding is also confirmed by the simulation results in
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Section 4. The better asymptotic performance of the QMLE compared to the IGPCE comes

at a cost: the QML approach restricts the model for the explanatory variables, whereas the

IGPC approach does not.

Bias-corrected estimator: Using the asymptotic representation of δ̌ stated in Theorem

3.2, I can construct a bias-corrected estimator for δ by substitution as follows:

δ̌? = δ̌ + b̌

where b̌ is the estimator of b by replacing all the true parameters δ,Γ, F,Σee with their

IGPCEs δ̌, Γ̌, F̌ , Σ̌ee. Then, I have the following limiting distribution for the bias-corrected

estimator δ̌?.

Theorem 3.3. (Limiting distributions for bias-corrected estimators) Under the

assumptions of Theorem 3.2, when N, T →∞ and T/N → κ > 0, I have:

√
NT (δ̌? − δ) d−→ N(0,ΩIGPC)

where ΩIGPC is defined in Corollary 3.1.

3.4 Computation of the IGPCE

Computation of the IGPCE involves an iterative procedure based on the first-order conditions

(3.8)–(3.15) in Section 3.2. In sth iteration, I update θ̌(s+1) = (Γ̌(s+1), Σ̌
(s+1)
ee , β̌(s+1), η̌(s+1)),

where η̌(s+1) = (ρ̌
(s+1)
1 , ρ̌

(s+1)
2 , γ̌

(s+1)
1 , γ̌

(s+1)
2 ) as follows.

In the first step, Γ̌(s+1) is computed as the first r eigenvectors associated with the first r

largest eigenvalues of the 2N ×2N matrix Ď
(s)
Γ = 1

NT

∑T
t=1

(
Υ(η̌(s))Ẏt− Ẋtβ̌

(s)
)(

Υ(η̌(s))Ẏt−

Ẋtβ̌
(s)
)′(

Σ̌
(s)
ee

)−1
.

In the second step, update Σ̌
(s+1)
ee according to:

(σ̌
(s+1)
1i )2 =

1

T

T∑
t=1

(
ẏ1it − ρ̌(s)

1 ÿ1it − γ̌(s)
1 ẏ2it − ẋ′1itβ̌

(s)
1 − λ̌

(s+1)′
i f̌

(s)
t

)2

and

(σ̌
(s+1)
2i )2 =

1

T

T∑
t=1

(
ẏ2it − ρ̌(s)

2 ÿ2it − γ̌(s)
2 ẏ1it − ẋ′2itβ̌

(s)
2 − ψ̌

(s+1)′
i f̌

(s)
t

)2

where

f̌
(s)
t =

1

N
Γ̌(s+1)′(Σ̌(s)

ee )−1
(

Υ(η̌(s))Ẏt − Ẋtβ̌
(s)
)
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In the third step, update β̌(s+1) according to:

β̌(s+1) =
(
Ẋ ′t
̂̈M (s+1)

Ẋt

)−1(
Ẋ ′t
̂̈M (s+1)

Υ(η̌(s))Ẏt

)−1

where ̂̈M (s+1)

= (Σ̌
(s+1)
ee )−1 − 1

N
(Σ̌

(s+1)
ee )−1Γ̌(s+1)Γ̌(s+1)′(Σ̌

(s+1)
ee )−1.

In the final step, update η̌(s+1) = (ρ̌
(s+1)
1 , ρ̌

(s+1)
2 , γ̌

(s+1)
1 , γ̌

(s+1)
2 ) by directly maximizing the

likelihood L2(θ2) (3.7) with respect to η at Γ = Γ̌(s+1),Σee = Σ̌
(s+1)
ee and β = β̌(s+1). Combin-

ing these steps, I obtain θ̌(s+1) = (Γ̌(s+1), Σ̌
(s+1)
ee , β̌(s+1), η̌(s+1)). The iteration continues until

the distance ‖θ̌(s+1) − θ̌(s)‖ is smaller than a preset tolerance.

In the simulation results reported in Section 4, similar to the QML approach, I use

the within-group estimator as the starting value for β̌(1) and η̌(1). Then let Γ̌(1), Σ̌
(1)
ee be

the solution according to the above first and second steps, given β̌(1), η̌(1). The simulation

results show that the IGPCE performs well in finite sample and corroborate its asymptotic

properties, as derived in this paper.

4 Finite sample properties via simulations

In this section, I investigate the finite sample performance of both approaches by Monte

Carlo simulation. The simulation results reported in the following sections show that both

approaches work well and corroborate the inferential theories derived in this paper.

4.1 Data generating processes

I consider two different data generating processes (DGPs). Both DGPs follow the model

of the dependent variables in (1.1), but they use different specifications of the explanatory

variables. DGP1 generates the explanatory variables according to (2.1), while DGP2 does

not follow (2.1).

Specifically, both DGP1 and DGP2 generate the dependent variables according to:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + x1itβ1 + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + x2itβ2 + ψ′ift + e2it

((ρ1, ρ2, γ1, γ2, β1, β2) = (0.2, 0.2, 0.2, 0.2, 1, 2))

where ft = (ft1, ft2)′, λi = (λi1, λi2)′, and ψi = (ψi1, ψi2)′. The variables α1i, α2i, λil, ψil and

ftl are all i.i.d. N(0, 1). I generate the errors e1it and e2it with cross-sectional heteroskedas-

ticity. I set et =
√

diag(Ξ†)ε†t , where ε†t is a 2N dimensional column vector with all the
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elements being (χ2
2−2)/2 independently, where χ2

2 denotes the chi-squared distribution with

two degrees of freedom, and normalized to zero mean and unit variance. In addition, Ξ† is

a 2N dimensional column vector, whose mth element is set to:

Ξ†m = 0.1 +
1− ηm
ηm

ι′mιm, m = 1, 2, . . . , 2N

where ηm is drawn from U[0.1, 0.9], and ιm is the transpose of the mth row of Γ; the constant

0.1 keeps the variance away from zero.

The spatial weights matrices W1 and W2 are generated based on the “q ahead and q

behind” framework, similar to that in Kelejian and Prucha (1999), Baltagi and Deng (2015),

among others. In the “q ahead and q behind” framework, all the individuals are arranged

in a circle, and each individual is affected only by the q individuals immediately in front

and immediately behind it with equal weight. Then, the weight matrix is row normalized

to ensure that the sum of each row is equal to 1. Thus, the non-zero weight equals 1
2q

.16 I

consider two setups of the spatial weights matrix, “1 ahead and 1 behind” and “5 ahead and

5 behind”, for both the QML and the IGPC approaches.

DGP1 and DGP2 differ in the generation of the explanatory variables, as explained in

the following.

4.1.1 DGP1

DGP1 generates them according to model (2.1) in the following specification:

x1it = ν1i + a1φ
′
1ift + v1it

x2it = ν2i + a2φ
′
2ift + v2it, (a1 = a2 = 1)

where ft is the same as in the above model of y; φ1i = (φ1i1, φ1i2)′, and φ2i = (φ2i1, φ2i2)′,

where φ1il = λil + u1il and φ2il = ψil + u2il. All the variables ν1i, ν2i, u1il and u2il are i.i.d.

with N(0, 1). I also generate the errors v1it and v2it with cross-sectional heteroskedasticity

by setting vt =
√

diag(Ξ?)ε?t , where ε?t is a 2N dimensional vector generated as in ε†t ; Ξ? is

a 2N dimensional column vector generated similar to Ξ† but Γ is replaced with Γ?, where

Γ? = (Γ?1,Γ
?
2, . . . ,Γ

?
N)′, with Γ?i = (φ1i, φ2i).

16In the simulation, I set the cross-sectional dimension N to be larger than 2q, so the non-zero weight
under the “q ahead and q behind” framework is always 1

2q . In practice, when N < 2q, then the weights
matrix under the “q ahead and q behind” is defined as follows: all the diagonal elements are 0, and all the
off-diagonal elements are 1

(N−1) .
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4.1.2 DGP2

DGP2 generates the explanatory variables based on DGP1 but with truncation (similarly to

Moon et al. (2014)), specified as follows:

x1it =
[
ν1i + a1φ

′
1ift + v1it

][
ν1i + a1φ

′
1ift + v1it > −3.5

]
x2it =

[
ν2i + a2φ

′
2ift + v2it

][
ν2i + a2φ

′
2ift + v2it > −3.5

]
, (a1 = a2 = 1)

where the variables νli, φli, ft and v1it are the same as in DGP1. With truncation, the

explanatory variables are no longer a factor structure of common shocks ft as in model (2.1).

Remark 4.1. The errors in the above two DGPs are non-normal and skewed. I also consider

the cases when the errors have normal or student’s t distributions. The corresponding

simulation results for both approaches are provided in the supplementary material.

4.2 Finite sample performance of the QMLE

In this section, I provide the simulation results of the QML approach based on the above

two DGPs and both setups of the spatial weights matrix.

In addition, since the number of factors r is usually unknown in practice, I propose a

likelihood-based information criterion following Bai and Ng (2002) to determine it in the

QML approach. Specifically, r is determined by:

r̂ = argmin
0≤m≤rmax

IC(m) (4.1)

with

IC(m) =
1

2Nk̄
ln
∣∣∣L̂mL̂m′ + Σ̂m

εε

∣∣∣− 1

Nk̄
ln |Υ(η̂m)|+m

Nk̄ + T

2Nk̄T
ln[min(Nk̄, T )]

where k̄ = k1 + k2 + 2, and (η̂m, L̂m, Σ̂m
εε) are the QMLE of (η, L,Σεε) when the number of

factors is set to m. In the simulation, I take DGP1, for example, and report the percentage

of r values that are correctly estimated by (4.1) (set rmax = 4) based on 1000 repetitions in

the third row of Tables 1 and 2. The results show that the percentage of correctly estimated

r values is very high and equal to or close to 100% for different combinations of (N, T ) and

different setups of the weights matrix. I then conduct simulations for the QMLE by assuming

that the true number of factors is known in both DGP1 and DGP2.

Tables 1–3 present the simulation results of the QMLE based on 1000 repetitions. Both

biases and root mean square errors (RMSE) are reported. From the results for both DGP1

and DGP2, I find that the biases are small and the RMSE decrease as the sample increases,

indicating that the QMLE performs well and is consistent. Moreover, the simulation re-
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sults corroborate the asymptotic properties of the QMLE derived in this paper. Additional

simulation results based on different distributions of errors (normal and student’s t distri-

butions) are reported in the supplementary material, which confirm that QMLE has good

finite sample properties and is robust to different distributions of errors.

Table 1: The performance of QMLE under DGP1 & “1 ahead and 1 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

% r̂ = r 99.8 100.0 100.0 99.8 100.0 100.0

ρ1 Bias 0.0005 0.0002 0.0002 0.0003 0.0001 0.0002
RMSE 0.0070 0.0043 0.0027 0.0048 0.0030 0.0020

ρ2 Bias 0.0001 0.0002 0.0001 0.0002 0.0000 0.0002
RMSE 0.0043 0.0026 0.0017 0.0030 0.0019 0.0012

γ1 Bias 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001
RMSE 0.0035 0.0020 0.0013 0.0023 0.0014 0.0009

γ2 Bias -0.0001 0.0005 0.0004 0.0002 0.0003 0.0003
RMSE 0.0057 0.0033 0.0023 0.0038 0.0025 0.0016

β1 Bias 0.0002 0.0000 0.0001 0.0000 0.0001 -0.0001
RMSE 0.0090 0.0059 0.0035 0.0065 0.0039 0.0026

β2 Bias -0.0001 -0.0001 -0.0001 0.0001 -0.0003 -0.0002
RMSE 0.0101 0.0058 0.0037 0.0071 0.0041 0.0027
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Table 2: The performance of QMLE under DGP1 & “5 ahead and 5 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

% r̂ = r 99.8 100.0 100.0 99.8 100.0 100.0

ρ1 Bias -0.0001 -0.0001 0.0003 0.0002 0.0000 0.0000
RMSE 0.0150 0.0076 0.0050 0.0088 0.0056 0.0036

ρ2 Bias 0.0002 0.0003 0.0001 0.0001 -0.0002 0.0002
RMSE 0.0083 0.0050 0.0033 0.0059 0.0036 0.0022

γ1 Bias -0.0001 0.0000 0.0001 -0.0001 0.0001 0.0001
RMSE 0.0036 0.0020 0.0013 0.0023 0.0014 0.0009

γ2 Bias -0.0002 0.0003 0.0003 0.0001 0.0002 0.0001
RMSE 0.0057 0.0033 0.0023 0.0039 0.0026 0.0016

β1 Bias 0.0003 0.0000 0.0001 0.0000 0.0001 -0.0001
RMSE 0.0090 0.0058 0.0034 0.0065 0.0039 0.0026

β2 Bias 0.0000 -0.0001 0.0000 0.0002 -0.0002 -0.0001
RMSE 0.0102 0.0058 0.0037 0.0071 0.0041 0.0026

Table 3: The performance of QMLE under DGP2 & “1 ahead and 1 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

ρ1 Bias 0.0015 -0.0002 -0.0001 -0.0007 0.0002 0.0003
RMSE 0.0098 0.0058 0.0038 0.0060 0.0041 0.0026

ρ2 Bias -0.0011 0.0003 -0.0001 0.0003 0.0003 0.0001
RMSE 0.0070 0.0043 0.0030 0.0047 0.0034 0.0020

γ1 Bias 0.0006 0.0001 0.0003 0.0000 -0.0005 0.0001
RMSE 0.0058 0.0035 0.0023 0.0044 0.0024 0.0016

γ2 Bias -0.0001 0.0008 0.0000 0.0005 0.0001 0.0002
RMSE 0.0060 0.0053 0.0031 0.0056 0.0037 0.0024

β1 Bias -0.0010 -0.0024 -0.0005 -0.0027 -0.0013 -0.0009
RMSE 0.0154 0.0118 0.0062 0.0103 0.0062 0.0046

β2 Bias -0.0019 -0.0017 -0.0009 0.0004 -0.0018 -0.0014
RMSE 0.0167 0.0098 0.0062 0.0110 0.0076 0.0052
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4.3 Finite sample performance of the IGPCE

In this section, I present the simulation results of the IGPC approach based on the above

two DGPs and both setups of the spatial weights matrix.

Similarly to the QML approach, I propose an information criterion adapting the ideas in

Bai and Ng (2002) to determine the number of factors r for the IGPC approach, specified

as:

ř = argmin
0≤m≤rmax

IC2(m) (4.2)

with

IC2(m) =
1

2Nk̄

N∑
i=1

(
ln
[
(σ̌m1i)

2
]

+ ln
[
(σ̌m2i)

2
])
− 1

Nk̄
ln |Υ(η̌m)|+m

Nk̄ + T

2Nk̄T
ln[min(Nk̄, T )]

and

(σ̌m1i)
2 =

1

T

T∑
t=1

(
ẏ1it − ρ̌m1 ÿ1it − γ̌m1 ẏ2it − ẋ′1itβ̌m1 − λ̌m′i f̌mt

)2

(σ̌m2i)
2 =

1

T

T∑
t=1

(
ẏ2it − ρ̌m2 ÿ2it − γ̌m2 ẏ1it − ẋ′2itβ̌m2 − ψ̌m′i f̌mt

)2

where k̄ = 2; (η̌m, β̌m1 , β̌
m
2 , λ̌

m
i , f̌

m
t ) are the IGPCEs of (η, β1, β2, λi, ft) when the number of

factors is set to m. Again, I set rmax = 4 and report the percentage of r values correctly

estimated by (4.2) based on 1000 repetitions for DGP1. From the results shown in the

third row of Tables 4 and 5, it can be seen that the percentage is high for most choices of

(N, T ) (except small (N, T )) and setups of the weights matrix. Although the percentage is

slightly lower than that in the QML approach, it is a reasonably good choice in practice

when researchers prefer to allow the explanatory variables to be arbitrarily correlated with

the factors and loadings. Therefore, I assume that r is known in the simulation of the IGPCE

under both DGPs.

Tables 4–6 state the simulation results of the IGPCE based on 1000 repetitions. The

results show that both the bias and the RMSE of the IGPCE are small in terms of the sample

size and the magnitude of the true underlying parameters across different combinations of

(N, T ) and different choices of the weights matrix. In addition, the RMSE of the IGPCE

declines as sample becomes larger, indicating that the IGPCE is consistent. Thus, the

simulation results indicate that the IGPCE works well in a finite sample.
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Table 4: The performance of IGPCE under DGP1 & “1 ahead and 1 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

% r̂ = r 78.60% 88.40% 88.00% 84.40% 86.80% 90.00%

ρ1 Bias -0.0025 -0.0017 -0.0011 -0.0024 -0.0019 -0.0014
RMSE 0.0118 0.0073 0.0049 0.0091 0.0071 0.0058

ρ2 Bias -0.0011 -0.0006 -0.0005 -0.0009 -0.0006 -0.0006
RMSE 0.0071 0.0046 0.0032 0.0057 0.0035 0.0028

γ1 Bias -0.0012 -0.0005 -0.0005 -0.0012 -0.0009 -0.0007
RMSE 0.0066 0.0035 0.0026 0.0070 0.0037 0.0030

γ2 Bias -0.0064 -0.0030 -0.0016 -0.0052 -0.0033 -0.0027
RMSE 0.0251 0.0155 0.0067 0.0215 0.0176 0.0108

β1 Bias 0.0002 0.0006 0.0003 0.0006 0.0003 0.0003
RMSE 0.0121 0.0073 0.0043 0.0080 0.0054 0.0033

β2 Bias 0.0035 0.0014 0.0006 0.0024 0.0017 0.0011
RMSE 0.0158 0.0097 0.0051 0.0130 0.0096 0.0055

Table 5: The performance of IGPCE under DGP1 & “5 ahead and 5 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

% r̂ = r 77.40% 87.80% 86.00% 85.00% 88.40% 88.00%

ρ1 Bias -0.0021 -0.0012 -0.0010 -0.0023 -0.0014 -0.0007
RMSE 0.0186 0.0110 0.0073 0.0142 0.0084 0.0053

ρ2 Bias -0.0010 -0.0005 -0.0002 -0.0006 -0.0003 -0.0004
RMSE 0.0123 0.0073 0.0047 0.0092 0.0051 0.0033

γ1 Bias -0.0016 -0.0007 -0.0006 -0.0012 -0.0010 -0.0007
RMSE 0.0099 0.0038 0.0030 0.0058 0.0039 0.0026

γ2 Bias -0.0061 -0.0027 -0.0017 -0.0059 -0.0030 -0.0024
RMSE 0.0236 0.0133 0.0074 0.0238 0.0137 0.0091

β1 Bias 0.0001 0.0004 0.0001 0.0004 0.0002 0.0002
RMSE 0.0122 0.0074 0.0042 0.0080 0.0052 0.0031

β2 Bias 0.0032 0.0012 0.0005 0.0024 0.0013 0.0010
RMSE 0.0153 0.0090 0.0049 0.0146 0.0077 0.0048
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Table 6: The performance of IGPCE under DGP2 & “1 ahead and 1 behind” weights matrix

N 25 50 100 25 50 100
T 50 50 50 100 100 100

ρ1 Bias -0.0025 -0.0009 -0.0018 -0.0011 -0.0027 -0.0017
RMSE 0.0162 0.0126 0.0096 0.0106 0.0095 0.0068

ρ2 Bias -0.0012 -0.0014 -0.0001 -0.0006 -0.0008 -0.0003
RMSE 0.0109 0.0086 0.0061 0.0099 0.0061 0.0043

γ1 Bias -0.0020 -0.0015 -0.0021 -0.0021 -0.0007 -0.0009
RMSE 0.0096 0.0078 0.0055 0.0075 0.0046 0.0041

γ2 Bias -0.0065 -0.0046 -0.0038 -0.0036 -0.0014 -0.0026
RMSE 0.0280 0.0150 0.0119 0.0231 0.0085 0.0101

β1 Bias 0.0011 0.0028 0.0047 0.0022 0.0012 0.0012
RMSE 0.0254 0.0173 0.0123 0.0151 0.0102 0.0076

β2 Bias 0.0021 0.0022 0.0028 0.0014 0.0018 0.0002
RMSE 0.0251 0.0166 0.0138 0.0185 0.0125 0.0102

4.4 Comparison of the performance of both approaches

A comparison of both approaches reveals that: (1), when the explanatory variables x are

correctly specified, QML performs better than IGPC, otherwise the superiority of QML is

weakened; (2), IGPC is robust for different underlying models of x.

Based on DGP1 when the model of explanatory variables is correctly specified in the

QML approach, I find that the bias of IGPCE is relatively obvious compared to QMLE

whose bias is close to zero. This finding is consistent with the inferential theory that IGPCE

has a bias term in its limiting distribution while QMLE does not. At the same time, the

RMSE of IGPCE is slightly larger than that of QMLE, implying that QMLE is more efficient

than IGPCE.

Based on DGP2 when the explanatory variables do not satisfy the specification as in the

QML approach but are still affected by the common shocks, QML performs slightly worse

than in DGP1, while the performance of IGPC is similar to that in DGP1. This implies

that IGPCE is robust to different underlying specifications of the explanatory variables,

while QMLE is more sensitive. In addition, the superiority of QMLE is weakened when the

explanatory variables are not correctly specified.

5 Some extensions

In this section, I discuss four important and useful extensions of model (1.1) with a brief

summary as follows: (1) models with additional explanatory variables, denoted x3it, which

affect both dependent variables y1 and y2; (2) models with time-invariant and common

regressors; (3) models with spatial autoregressive (SAR) errors; (4) models with additional
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spatial lags: the dependent variable y1 is affected not only by its own spatial lag but also by

the spatial lag of y2, and vice versa.17

5.1 Models with additional common explanatory variables

In model (1.1), I consider two different sets of explanatory variables x1it and x2it in the

y1it and y2it equations, respectively. In this section, I augment model (1.1) with additional

common explanatory variables, denoted x3it, which affect both y1it and y2it, as follows:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it +

k1∑
p=1

x1itpβ1p +

k3∑
l=1

x3itlβ3l + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it +

k2∑
q=1

x2itqβ2q +

k3∑
l=1

x3itlβ4l + ψ′ift + e2it

(5.1)

where x3itl, (l = 1, 2, . . . , k3) are additional explanatory variables. I then propose both QML

and IGPC approaches for the above extension.

5.1.1 Extension 1 using QML approach

For model (5.1), I assume the additional explanatory variable x3it is also affected by the

common factor ft and follows the same factor structure model as (2.1):

x3itl = ν3il + φ′3ilft + v3itl, l = 1, 2, . . . , k3 (5.2)

Then, the extended model combining (5.1), (2.1) and (5.2) can be rewritten as:
y1it − ρ1

∑N
j=1w1ijy1jt − γ1y2it − x′1itβ1 − x′3itβ3

y2it − ρ2

∑N
j=1w2ijy2jt − γ2y1it − x′2itβ2 − x′3itβ4

x1it

x2it

x3it

 = µ†i + L†′i ft + ε†it

where x3it = (x3it1, x3it2, . . . , x3it,k3)
′; β3 = (β31, β32, . . . , β3,k3)

′, which is similar for β4 and

v3it; µ
†
i = (α1i, α2i, ν

′
1i, ν

′
2i, ν

′
3i)
′; L†i = (λi, ψi, φ1i, φ2i, φ3i); and ε†it = (e1it, e2it, v

′
1it, v

′
2it, v

′
3it)
′.

Let δ† = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2, β

′
3, β

′
4), k† = k1 + k2 + k3 and k̄† = k† + 2. I can then rewrite

the above model into the same framework used in (2.4):

D†(δ†)z†t = µ† + L†ft + ε†t (5.3)

17For each extension, I discuss both QML and IGPC estimation methods with modification. The large
sample theory can be derived, but is much more involved.
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where z†t = (z†1t, z
†
2t, . . . , z

†
Nt)
′ with z†it = (y1it, y2it, x

′
1it, x

′
2it, x

′
3it)
′, L† = (L†1, L

†
2, . . . , L

†
N)′,

µ† = (µ†′1 , µ
†′
2 , . . . , µ

†′
N)′ and ε†t = (ε†′1t, ε

†′
2t, . . . , ε

†′
Nt)
′. The new transformation matrix D†(δ†) is

an Nk̄† ×Nk̄† matrix whose (i, j) subblock, denoted by D†ij(δ
†), a k̄† × k̄† matrix, equals:

D†ij(δ
†) =




1 −γ1 −β′1 0 −β′3
−γ2 1 0 −β′2 −β′4

0 0 Ik1 0 0

0 0 0 Ik2 0

0 0 0 0 Ik3

 if i = j


−ρ1w1ij 0 0 0 0

0 −ρ2w2ij 0 0 0

0 0 0k1 0 0

0 0 0 0k2 0

0 0 0 0 0k3

 if i 6= j

(5.4)

Similarly, I propose the QML method to estimate this extended model. In order to derive the

inferential theory of its QMLE, the key is to study the determinant and the inverse matrix

of the transformation matrix D†(δ†). Then, a similar analytical approach can be used in the

analysis of the QMLE. Let η and Υ(η) be defined as in Section 2.2. Then, it can be verified

that det(D†(δ†)) = det(Υ(η)). Let V †(δ†) denote the inverse matrix of D†(δ†), which is an

Nk̄†×Nk̄† matrix. Its (i, j)th subblock is denoted by V †ij, a k̄†× k̄† matrix, and has the same

expression as in Lemma A.2 of the supplementary material, with the same definition of Fij

but a different β†. Here, β†′ =

[
β′1 0 β′3

0 β′2 β′4

]
. Lemma A.3 of the supplementary material still

holds but with the preceding definition of β†. Based on the preceding analysis, the inferential

analysis for this extended model can be studied in a similar way as that for model (2.2).

5.1.2 Extension 1 using IGPC approach

In this approach, I consider model (5.1) without specifying the model for all explanatory

variables and propose the IGPC method.

Let x†it =

[
x′1it 0 x′3it 0

0 x′2it 0 x′3it

]′
, and β† = (β′1, β

′
2, β

′
3, β

′
4)′. Then, model (5.1) can be

rewritten as: [
y1it − ρ1

∑N
j=1w1ijy1jt − γ1y2it

y2it − ρ2

∑N
j=1w2ijy2jt − γ2y1it

]
= αi + x†′itβ

† + Γ′ift + eit (5.5)

where all αi,Γi and eit are defined as in Section 3.1. With the same η and Υ(η), I can rewrite
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the above model into the form of (3.2) with the new x†it and β†. Then, I propose the same

IGPC method for this extended model.

5.2 Models with time-invariant and common regressors

In applications, it is common to observe some time-invariant regressors (i.e., not varying with

t, such as gender, race and education in microeconomic earnings studies) and some common

regressors (i.e., not varying with individual i, such as unemployment rates, aggregate price

index representing trends and other macroeconomic policy variables). Therefore, in this

section, I extend model (1.1) to include some time-invariant and common regressors using

both QML and IGPC approaches as follows.

5.2.1 Extension 2 using QML approach

In this approach, I allow the regression coefficients of the time-invariant regressors to be time

varying and the coefficients of the common regressors to be individual dependent (varying

with i). In addition, I allow both x1it and x2it to be affected by the time-invariant regressors

ri and the common regressors pt using a factor structure specification. Specifically, I consider

the following extended model:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it +

k1∑
p=1

x1itpβ1p + r′ih1t + τ ′1ipt + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it +

k2∑
q=1

x2itqβ2q + r′ih2t + τ ′2ipt + ψ′ift + e2it

x1itp = ν1ip + r′is1tp + η′1ippt + φ′1ipft + v1itp, p = 1, 2, . . . , k1

x2itq = ν2iq + r′is2tq + η′2iqpt + φ′2iqft + v2itq, q = 1, 2, . . . , k2

(5.6)

where ri represents a vector of observable time-invariant variables, and pt represents a vector

of observable common variables.

The above model can be rewritten as follows:
y1it − ρ1

∑N
j=1w1ijy1jt − γ1y2it − x′1itβ1

y2it − ρ2

∑N
j=1w2ijy2jt − γ2y1it − x′2itβ2

x1it

x2it

 = µi + L†′i f
†
t + εit
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where f †t = (h′1t, h
′
2t, p

′
t, s
′
1t1, . . . , s

′
1t,k1

, s′2t1, . . . , s
′
2t,k2

, f ′t)
′, and

L†′i =


r′i 0 τ ′1i 0 0 λ′i

0 r′i τ ′2i 0 0 ψ′i

0 0 η′1i Ik1 ⊗ r′i 0 φ′1i

0 0 η′2i 0 Ik2 ⊗ r′i φ′2i


with η1i = (η1i1, . . . , η1i,k1) and η2i = (η2i1, . . . , η2i,k2).

The above model specification is similar to that in Section 2, with the difference that

some components of the common factors f †t and some components of the factor loadings L†i
are now observable. The QML method can still be implemented for this extension but with

modifications (for the observable components of f †t and L†i , the QMLE does not estimate

them but fixes them at the observed value). The asymptotic properties of the QMLE can be

analyzed in a similar way as for the basic model (2.2), with attention to the fact that some

components of f †t and L†i are observable.

5.2.2 Extension 2 using IGPC approach

In this section, I do not specify a model for time-invariant or common regressors but allow

them to be arbitrarily correlated with the common shocks. In addition, I treat them as

explanatory variables with constant coefficients and specify the extended model as follows:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + x′1itβ1 + r′iβ3 + p′tβ5 + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + x′2itβ2 + r′iβ4 + p′tβ6 + ψ′ift + e2it

(5.7)

where ri is a vector of observable time-invariant variables, and pt is a vector of observable

common variables. The above model can be rewritten in the same form as (5.5) with different

definitions of x†it and β†: x†it =

[
x′1it 0 r′i 0 p′t 0

0 x′2it 0 r′i 0 p′t

]
and β† = (β′1, β

′
2, . . . , β

′
6)′. Again, I

propose the IGPC method for this extended model, and the corresponding inferential theory

can be studied in a similar way as in Section 3.

5.3 Models with SAR disturbances

In the spatial econometric literature, SAR disturbances have received much attention and are

considered an important part of spatial models. Based on model (1.1), which only considers

spatial correlations in the dependent variables, I now develop a more general model by

including additional spatial correlations on the errors (i.e., SAR errors) in the following

43



model specification:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + x′1itβ1 + λ′ift + u1it, u1it = π1

N∑
j=1

m1iju1jt + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + x′2itβ2 + ψ′ift + u2it, u2it = π2

N∑
j=1

m2iju2jt + e2it

(5.8)

where m1ij and m2ij are spatial weights involved in the SAR disturbances. The above model

can be rewritten as:

Y1t = α1 + ρ1W1Y1t + γ1Y2t +X1tβ1 + Λ′ft + U1t, U1t = π1M1U1t + e1t

Y2t = α2 + ρ2W2Y2t + γ2Y1t +X2tβ2 + Ψ′ft + U2t, U2t = π2M2U2t + e2t

(5.9)

where Y1t is an N × 1 vectors, defined as Y1t = (y11t, y12t, . . . , y1Nt)
′, which is similar for

Y2t, α1, α2, U1t, U2t, e1t and e2t; X1t = (x11t, x12t, . . . , x1Nt)
′ isN×k1; X2t = (x21t, x22t, . . . , x2Nt)

′

is N × k2; Λ = (λ1, λ2, . . . , λN)′; and Ψ = (ψ1, ψ2, . . . , ψN)′. Both W1 and W2 are N × N
weights matrices associated with the spatial effects of the dependent variables, while M1

and M2 are N × N weights matrices representing the additional spatial correlations in the

errors. Baltagi and Deng (2015) consider the above model (5.9) without the common shocks

parts Λft and Ψft. Furthermore, they impose an error component specification instead of

the SAR structure and assume cross-sectional homoskedasticity of the errors, while I allow

cross-sectional heteroskedasticity here.18

To transform (5.9) into the framework of (1.1), premultiply IN − π1M1 on both sides

of the Y1t equation and premultiply IN − π2M2 on both sides of the Y2t equation. Then, I

obtain:

Y1t =(α1 − π1M1α1) + ρ1W1Y1t + π1M1Y1t − ρ1π1M1W1Y1t + γ1Y2t − γ1π1M1Y2t

+X1tβ1 − π1M1X1tβ1 + (Λ− π1M1Λ)ft + e1t

Y2t =(α2 − π2M2α2) + ρ2W2Y2t + π2M2Y2t − ρ2π2M2W2Y2t + γ2Y1t − γ2π2M2Y1t

+X2tβ2 − π2M2X2tβ2 + (Ψ− π2M2Ψ)ft + e2t

(5.10)

Note that (α1 − π1M1α1) is a free parameter, so I can treat it as a new α1, Similarly, treat

(Λ− π1M1Λ) as a new Λ, (α2 − π2M2α2) as a new α2 and (Ψ− π2M2Ψ) as a new Ψ. Then,

18The error component specification in Baltagi and Deng (2015) is described as Ult = ϕl + εlt, where
ϕl ∼ i.i.d.(0, σ2

ϕllIN ) and εlt ∼ i.i.d.(0, σ2
εllIN ), for l = 1, 2.
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(5.10) can be rewritten as:

Y1t =α1 + ρ1W1Y1t + π1M1Y1t − ρ1π1M1W1Y1t + γ1Y2t − γ1π1M1Y2t

+X1tβ1 − π1M1X1tβ1 + Λft + e1t

Y2t =α2 + ρ2W2Y2t + π2M2Y2t − ρ2π2M2W2Y2t + γ2Y1t − γ2π2M2Y1t

+X2tβ2 − π2M2X2tβ2 + Ψft + e2t

(5.11)

This can be further rewritten as:

y1it =α1i + ρ1

( N∑
j=1

w1ijy1jt

)
+ π1

( N∑
j=1

m1ijy1jt

)
− ρ1π1

( N∑
j=1

N∑
l=1

m1ijw1jly1lt

)
+ γ1y2it − γ1π1

( N∑
j=1

m1ijy2jt

)
+ x′1itβ1 − π1

( N∑
j=1

m1ijx
′
1jt

)
β1 + λ′ift + e1it

y2it =α2i + ρ2

( N∑
j=1

w2ijy2jt

)
+ π2

( N∑
j=1

m2ijy2jt

)
− ρ2π2

( N∑
j=1

N∑
l=1

m2ijw2jly2lt

)
+ γ2y1it − γ2π2

( N∑
j=1

m2ijy1jt

)
+ x′2itβ2 − π2

( N∑
j=1

m2ijx
′
2jt

)
β2 + Ψ′ift + e2it

(5.12)

Then, I analyze the above model using the following two approaches.

5.3.1 Extension 3 using QML approach

I assume that the explanatory variables follow the same model as (2.1). Then, combining

(5.12) and (2.1), I can rewrite this extended model in the same framework as (2.4):

D†(δ†)zt = µ+ Lft + εt (5.13)

where δ† = (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2, π1, π2)′; zt, µ, L and εt are defined in the same way as in

Section 2; and D†(δ†) is an Nk̄×Nk̄ transformation matrix whose (i, j)th subblock, denoted
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by D†ij(δ
†), is defined as:

D†ij(δ
†) =




1 + ρ1π1m1i∗w1∗i −γ1 −β′1 0

−γ2 1 + ρ2π2m2i∗w2∗i 0 −β′2
0 0 Ik1 0

0 0 0 Ik2

 if i = j


d1,ij γ1π1m1ij π1m1ijβ

′
1 0

γ2π2m2ij d2,ij 0 π2m2ijβ
′
2

0 0 0k1 0

0 0 0 0k2

 if i 6= j

(5.14)

where d1,ij = −ρ1w1ij − π1m1ij + ρ1π1m1i∗w1∗j and d2,ij = −ρ2w2ij − π2m2ij + ρ2π2m2i∗w2∗j,

and mli∗ is the ith row of matrix Ml and wl∗j is the jth column of matrix Wl, for l = 1, 2.

Note that model (5.13) is similar to model (2.4) but with a new δ† (including additional

parameters π1, π2 due to the SAR errors) and a more complicated transformation matrix

D†(δ†). The QML method can be easily implemented in this extended model. To develop

the inferential theory, similar to the derivation for model (2.2), the key is to specify the

determinant and the inverse matrix of D†(δ†). Let η† = (ρ1, ρ2, γ1, γ2, π1, π2)′ and Υ†(η†) be

a 2N ×2N matrix whose (i, j)th subblock, denoted by Υ†ij(η
†), is a 2×2 matrix that equals:

Υ†ij(η
†) =



[
1 + ρ1π1m1i∗w1∗i −γ1

−γ2 1 + ρ2π2m2i∗w2∗i

]
if i = j

[
d1,ij γ1π1m1ij

γ2π2m2ij d2,ij

]
if i 6= j

(5.15)

where d1,ij and d2,ij are the same as in the definition of D†ij(δ
†). Then, it can be verified that

det(D†(δ†)) = det(Υ†(η†)). Furthermore, let V †(δ†) be the inverse matrix of D†(δ†). Then,

its (i, j)th block, a (k + 2) × (k + 2) matrix (k = k1 + k2) denoted by V †ij(δ) has a closed

form, which is equal to:

V †ij(δ
†) =



[
F †ii F †iiβ

′

0 Ik

]
if i = j

[
F †ij F †ijβ

′

0 0k×k

]
if i 6= j

(5.16)

where β =

[
β1 0

0 β2

]
, and F †ij is the (i, j)th 2× 2 block of the inverse matrix of Υ†(η). The
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QML method can be used to estimate model (5.13), and the inferential theory can be studied

similarly to basic model (2.2), together with the preceding results for the determinant and

inverse of D†(η†).

5.3.2 Extension 3 using IGPC approach

In this approach, I do not specify the model for the explanatory variables.

Using the same notation as in Section 5.3.1, let ΥX(δ†) be a 2N × 2N matrix, with its

(i, j)th subblock denoted as ΥX
ij (δ

†), a 2× 2 matrix that equals:

ΥX
ij (η

†) =



[
β′1 0

0 β′2

]
if i = j

[
−π1m1ijβ

′
1 0

0 −π2m2ijβ
′
2

]
if i 6= j

(5.17)

Then, the extended model (5.12) can be rewritten similarly to (3.2):

N∑
j=1

Υ†ij(η
†)yjt = αi +

N∑
j=1

ΥX
ij (δ

†)xjt + Γ′ift + eit (5.18)

where yjt, xjt, αi,Γi and eit are defined as in (3.2); Υ†ij(η
†) is defined in Section 5.3.1. Then,

based on the above expression, the IGPC method can be applied in this extension.

5.4 Models with additional spatial lags

In model (1.1), y1it is affected by its own spatial lag only; likewise for y2it. In this section, I

enrich model (1.1) with additional spatial lags in both y1it and y2it equations as follows:

y1it = α1i + ρ1

N∑
j=1

w1ijy1jt + γ1y2it + ρ3

N∑
j=1

w3ijy2jt + x′1itβ1 + λ′ift + e1it

y2it = α2i + ρ2

N∑
j=1

w2ijy2jt + γ2y1it + ρ4

N∑
j=1

w4ijy1jt + x′2itβ2 + ψ′ift + e2it

(5.19)

where y1it is affected by the spatial lag of y2it, and y2it is affected by the spatial lag of y1it,

with ρ3, ρ4 being the additional parameters measuring the magnitudes of the spatial effects,

and W3 = (w3ij)N×N and W4 = (w4ij)N×N being additional weights matrices. I analyze the

above model using both the QML and IGPC approaches as follows.
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5.4.1 Extension 4 using QML approach

I assume that the explanatory variables follow (2.1). Then, the extended model combining

(5.19) and (2.1) can be rewritten as:

D†(δ)zt = µ+ Lft + εt (5.20)

in the same framework as (2.4) but with a different transformation matrix D†(δ) whose

(i, j)th subblock is defined below:

D†ij(δ) =




1 −γ1 −β′1 0

−γ2 1 0 −β′2
0 0 Ik1 0

0 0 0 Ik2

 if i = j


−ρ1w1ij −ρ3w3ij 0 0

−ρ4w4ij −ρ2w2ij 0 0

0 0 0k1 0

0 0 0 0k2

 if i 6= j

(5.21)

Again, I implement the QML method for this extended model, and the inferential analysis

of the QMLE can be derived in a similar way as for (2.2). In order to derive the inferential

theory of the QMLE, the key is to study the determinant and the inverse matrix of the

transformation matrix D†(δ). Unlike (2.7), I define a new 2N × 2N matrix Υ†(η) whose

(i, j)th block, a 2× 2 matrix, is equal to:

Υ†ij(η) =



[
1 −γ1

−γ2 1

]
if i = j

[
−ρ1w1ij −ρ3w3ij

−ρ4w4ij −ρ2w2ij

]
if i 6= j

(5.22)

A preliminary step needed to conduct inferential analysis is to study the determinant and

the inverse of the new transformation matrix Υ†ij(η). With mathematical calculation, it can

be verified that det(D†(δ)) = det(Υ†(η)). Let V †(δ) denote the inverse matrix of D†(δ),

which is an Nk̄ ×Nk̄ matrix. Its (i, j)th subblock, denoted by V †ij, a k̄ × k̄ matrix, has the

same expression as in Lemma A.2 of the supplementary material but with a different F †ij,

which now is the (i, j)th 2× 2 block of the inverse matrix of Υ†(η).19

19In this extended model, Lemma A.3 needs modification due to the new D†(δ) and Υ†(η).
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5.4.2 Extension 4 using IGPC approach

In this section, I apply the IGPC method to the extended model (5.19) without specifying

the model for the explanatory variables. With the notation Υ†(η) defined in Section 5.4.1, I

can rewrite (5.19) as in (3.2) (with a new Υ†(η)):

N∑
j=1

Υ†ij(η)yjt = αi + x′itβ + Γ′ift + eit (5.23)

Based on the above expression, the IGPC method can be implemented.

Remark 5.1. This paper considers a system of simultaneous equations with two dependent

variables y1 and y2. It can be generalized to the multiple dependent variables case, i.e.,

y1, y2, . . . , yp. Both the estimation and the corresponding inferential analysis could be studied

in a similar way but would require more mathematical calculation. This generalization

warrants further study.

Remark 5.2. In this paper, I assume that the diagonal elements of the weights matrix

w1ii and w2ii are zero for all i. This is a standard assumption implemented in the spatial

modeling literature. However, in practice, there are cases where the diagonal elements of

weights matrix are not all zero, for example, in an input-output matrix (in the production

network by sector level as in Ozdagli and Weber (2017)). Then, one can slightly modify the

definition of the transformation matrices D(δ) and Υ(η) and still apply the QML and IGPC

estimation methods. The corresponding inferential theory needs modification according to

the changes involved in D(δ) and Υ(η). The asymptotic analysis could be conducted as

this paper with the same consistency and convergence rate but changes are needed for the

limiting distribution. To avoid replication of the analysis in this paper, this is left for future

research.

Remark 5.3. This paper considers a static case in the sense that the dependent variable

yt does not depend on its previous observation yt−1. However, in practice, there might be

cases when dynamic effects exist. In the trade and macroeconomics examples mentioned in

the introduction, this year’s GDP growth or trade growth might be affected by the previous

year’s values. Thus, it is potentially useful to study the dynamic case, where there are extra

dynamic lags on the right-hand side of model (1.1). Taking the y1it equation, for example,

there would be a dynamic lag y1i,t−1 on the right-hand side. The dynamic case of model

(1.1) combines four effects: spatial effects, simultaneous effects, common shock effects and

dynamic effects. Such a dynamic model would be useful for economic forecasting. Jointly

modeling the first three effects is already difficult; the extra dynamic effect would make the

analysis even more challenging. The dynamic case is studied in a work-in-progress paper.
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6 Applications

In this section, I apply model (1.1) to explore the relationship between trade and GDP

over time and across countries, taking into account spatial effects and global common shock

effects.

In the literature on international trade, it has been difficult to establish a robust rela-

tionship between trade and GDP, due to the endogeneity issue between them. Many studies

try to examine such a relationship using an IV approach. For instance, Frankel and Romer

(1999) use a geographic instrument for trade and find a positive effect of trade on GDP in

a cross-country setting. Such instruments are implemented by Irwin and Tervio (2002) and

extended by Noguer and Siscart (2005), Felbermayr and Groschl (2013), Ortega and Peri

(2014). Despite the importance of geographic instruments, as discussed in Winters and Mas-

ters (2013), they are time-invariant and thus preclude the use of panel data to analyze the

effects of trade. Then, Feyrer (2009) makes progress by proposing a time-varying geographic

instrument for trade. Based on a panel data model with simple additive individual and time

fixed effects,20 he finds that trade has a significant, positive impact on GDP, with an elas-

ticity of approximately one-half. However, as mentioned in Feyrer (2009), his IV estimates

are nearly identical to ordinary least squares estimates, indicating that his instrument is

doubtful. Regardless of the contribution on the endogeneity issue, common shocks are not

captured well by his model setup.

Instead, I apply framework (1.1) to model trade and GDP in a simultaneous equation

system and incorporate common shock effects using a factor structure. Such a factor struc-

ture can be regarded as a form of interactive fixed effects, which provides a flexible way to

control for potential serial and cross-sectional correlations. In addition, my model considers

the spatial effect (i.e., spillover effects across countries for both trade and GDP) implied by

gravity theory as noted in Helpman (1987) and Anderson and van Wincoop (2003).21 In this

application, the model is specified as follows:

Tradeit = α1i + ρ1

N∑
j=1

wijTradejt + γ1GDPit + β1x1it + λ′ift + e1it

GDPit = α2i + ρ2

N∑
j=1

wijGDPjt + γ2Tradeit + β2x2it + ψ′ift + e2it

where Tradeit and GDPit are the log of total trade volume (export plus import) and the log

20Feyrer (2009) uses the real GDP per capita from the Penn World Tables, from 1950 to 1995 and cross
62 countries, with all estimation conducted on a panel with observations every 5 years.

21Similar spatial effects among firms due to cultural and social networks among firms as well as regional
trade agreements have been studied in Baltagi et al. (2008), Lawless (2009), Rauch and Trindade (2002) and
Defever et al. (2015).
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Table 7: Estimation results using IGPC for the case without x (∗∗ significant at 1%)

ρ1 ρ2 γ1 γ2

0.9597∗∗ 0.7751∗∗ 0.6326∗∗ 0.1074∗∗

(0.0146) (0.0195) (0.0298) (0.0047)

Table 8: Estimation results using IGPC for the case with x (∗∗ significant at 1%)

ρ1 ρ2 γ1 γ2 β1 β2

0.9903∗∗ 0.5061∗∗ 0.5952∗∗ 0.0933∗∗ 0.1956∗∗ 0.9041∗∗

(0.0332) (0.0043) (0.0853) (0.0336) (0.0118) (0.0207)

of GDP, respectively, for country i in year t; weight wij is computed as
TotalTradeij∑N
j=1 TotalTradeij

with

TotalTradeij being the total trade volume between country i and j.22

I investigate the above model in two ways, without explanatory variables and using

population as an explanatory variable (i.e., x1it = x2it = xit denotes the log of population

for country i in year t). Frankel and Romer (1999) adopt the same explanatory variable to

control for country size.23

Without explanatory variables, I find one common factor based on the information cri-

terion in (4.2). Given that r = 1, I estimate the model using the IGPC method; the results

are presented in Table 7.24 First, I find that trade and GDP are positively and significantly

affected by each other. Specifically, the elasticity of trade with respect to GDP (γ1) is ap-

proximately 0.6, while the elasticity of GDP with respect to trade (γ2) is much smaller,

approximately 0.1. By comparison, Feyrer (2009) identifies an elasticity of approximately

one-half of GDP with respect to trade using an IV approach, which is much larger. The

result in Feyrer (2009) might be less convincing, since the instrument is probably inappropri-

ate, the spatial effect is not captured, and only additive individual and time fixed effects are

controlled for. On the contrary, my model captures general interactive fixed effects through

a factor structure. Moreover, his panel runs from 1950 to 1995 with observations every 5

years, while the application here uses annual data from 1961 to 2013. Second, I find that

the trade volume of a country is positively affected by the trading parties’ trade volumes;

likewise for GDP. Specifically, the trade volume of a country can increase by almost 1% if

22Data source: Trade data and the weighting matrix (i.e. bilateral trade data) comes from IMF Directions
of Trade Statistics. GDP and population data is obtained from Penn World Table. The sample period is
from 1961 to 2013, with total 61 countries. In this case, N = 61 and T = 53. Weights are constructed using
the bilateral trade data of the base year 1960, to avoid potential reversal causality. Both trade and GDP
data are inflation adjusted.

23In both cases of without and with explanatory variables, the model is identified, by Assumption G′.
24Based on the IGPC results, I did panel unit root check for the errors by various tests, and overwhelming

evidence rejects the hypothesis that the errors contain unit roots. Similarly for the case with control variable.
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the average trade volume of the trading parties increases by 1%; similarly, the GDP of a

country can increase by 0.77% if the average GDP of the trading parties increases by 1%.

With population included as a control variable, the estimation results and corresponding

findings are similar. Again, the information criterion in (4.2) implies that there exists one

common factor. The estimation results obtained by IGPC based on r = 1 are provided in

Table 8. Similar estimated results are found for coefficients (ρ1, ρ2, γ1, γ2). Additionally, the

estimates of β1 and β2 indicate that country size in terms of population has positive impacts

on both trade and GDP, with a larger impact on GDP: a 1% increase in population raises

total trade volume by 0.2% whereas it increases GDP by 0.9%. By comparison, Frankel

and Romer (1999) also find a positive impact of population on GDP but the magnitude is

smaller: a 1% increase in population increases GDP by approximately 0.35% based on a

cross-country study and an IV approach in a single equation setting.25

7 Conclusion

In this paper, I consider a simultaneous spatial panel data model, jointly modeling three

important effects: spatial effects, common shock effects and simultaneous effects. Under

joint modeling, there are many incidental parameters. Moreover, I take into account cross-

sectional heteroskedasticity, which gives rise to additional incidental parameters. To estimate

the model, I propose two different approaches, the QML method and the IGPC method. For

each approach, I derive its identification condition and develop a full inferential theory for its

estimators, including consistency, convergence rates and limiting distributions. The estima-

tors from both methods are consistent. There is a trade-off between the model specification

of the explanatory variable x and the asymptotic properties of the estimators for the two

approaches. The QML method requires the model specification of x, but the gain is that

its limiting distribution is unbiased (i.e., centered at zero) and more efficient (less variance

than that of IGPC); the IGPC method does not require the specification of x, but the cost

is that its limiting distribution contains a bias term and less efficient. Based on the limiting

distribution of the IGPC estimator, the bias-corrected IGPC estimator is obtained. Then, I

investigate the finite sample performance of both methods using Monte Carlo simulations. I

find that both methods perform well and that the simulation results corroborate the infer-

ential theories I derived in this paper. I also consider some extensions of the model. Finally,

I apply the model to analyze the relationship between trade and GDP over time and cross

countries, taking into account spatial effects and global common shock effects.

25The data used in Frankel and Romer (1999) are based on year 1985 only. In addition, Frankel and
Romer (1999) use trade share (i.e., trade as a percentage of GDP) instead of trade itself, to study how
openness affects GDP.
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Appendix A Notation I

In this Appendix, I define the important notation used in this paper. Table A1 includes the

definitions of important matrices.

Table A1: Some important symbols used in the paper

Y1t = (y11t, . . . , y1Nt)
′ Y2t = (y21t, . . . , y2Nt)

′

Ÿ1t = (ÿ11t, . . . , ÿ1Nt)
′ Ÿ2t = (ÿ21t, . . . , ÿ2Nt)

′

Λ = (λ1, λ2, . . . , λN )′ Ψ = (ψ1, ψ2, . . . , ψN )′

Φ1p = (φ1p, φ2p, . . . , φNp)
′ Φ2p = (φ1p, φ2p, . . . , φNp)

′

e1t = (e11t, . . . , e1Nt)
′ e2t = (e21t, . . . , e2Nt)

′

V1t = (v11t, . . . , v1Nt)
′ V2t = (v21t, . . . , v2Nt)

′

Σ1ee = diag(σ2
11, . . . , σ

2
1N ) Σ2ee = diag(σ2

21, . . . , σ
2
2N )

∆11 = diag(σ2
11 + β′1Σ11v1β1, . . . , σ

2
1N + β′1ΣNNv1β1)

∆22 = diag(σ2
21 + β′2Σ11v2β2, . . . , σ

2
2N + β′2ΣNNv2β2)

P1 = IN − ρ1W1 P2 = IN − ρ2W2

B12 = (IN − γ1γ2P−11 P−12 )−1 B21 = (IN − γ1γ2P−12 P−11 )−1

G1 = W1B12P
−1
1 G2 = W2B21P

−1
2

G3 = γ2B21P
−1
2 P−11 G4 = γ1B12P

−1
1 P−12

Table A2 presents the definitions of scalars a1, a2, b1, b2, c1, c2 and matrices Mi (i = 1, 2, 3, 4)
used in Assumption G.

Table A2: The definition of a1, a2, b1, b2, c1, c2 as in Section 2

a1 = 1
2N

∑N
i=1

∑N
j=1,j 6=i

[
[G1,ij ]

2 + [(W1G4)ij ]
2
]

a2 = 1
2N

∑N
i=1

∑N
j=1,j 6=i

[
[(W2G3)ij ]

2 + [G2,ij ]
2
]

b1 = 1
2N

∑N
i=1

∑N
j=1,j 6=i

[
G1,ijG3,ij + (W1G4)ij(B21P

−1
2 )ij

]
b2 = 1

2N

∑N
i=1

∑N
j=1,j 6=i

[
(W2G3)ij(B12P

−1
1 )ij + G2,ijG4,ij

]
c1 = 1

2N

∑N
i=1

∑N
j=1,j 6=i

[
[G3,ij ]

2 + [(B21P
−1
2 )ij ]

2
]

c2 = 1
2N

∑N
i=1

∑N
j=1,j 6=i

[
[(B12P

−1
1 )ij ]

2 + [G4,ij ]
2
]

M1 = −W1G4Σ2ee + G1Σ1eeG′3W ′2(ρ†2 − ρ2) + G1Σ1eeP
−1′
1 B′12(γ†2 − γ2)

M2 = −Σ1eeG3W
′
2 +W1G4Σ2eeG′2(ρ†1 − ρ1) +B21P

−1
2 Σ2eeG′2(γ†1 − γ1)

M3 = −B21P
−1
2 Σ2ee + G3Σ1eeG′3W ′2(ρ†2 − ρ2) + G3Σ1eeP

−1′
1 B′12(γ†2 − γ2)

M4 = −Σ1eeP
−1′
1 B′12 +W1G4Σ2eeG′4(ρ†1 − ρ1) +B21P

−1
2 Σ2eeG′4(γ†1 − γ1)
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Tables A3 and A4 list the definitions of Ω and ε, which are contained in Theorem 2.2.

Table A3: The detailed definition of Ω

Ω11 = 1
N tr

[
Σ−11ee

(
G1∆11G′1 +W1G4∆22G′4W ′1

)]
−
[

2
N

∑N
i=1(G1,ii)

2
]

+ 1
N tr

[
G2

1

]
Ω13 = 1

N tr
[
Σ−11ee

(
G1∆11G′3 +W1G4∆22P

−1′
2 B′21

)]
−
[

2
N

∑N
i=1 G1,iiG3,ii

]
+ 1

N tr
[
G3G1

]
Ω12 = 1

N tr
[
W2G3W1G4

]
Ω14 = 1

N tr
[
B12P

−1
1 W1G4

]
Ω15 = β′1

[
1
N

∑N
i=1 G1,iiΣiiv1/σ

2
1i

]
Ω16 = 01×k2

Ω22 = 1
N tr

[
Σ−12ee

(
W2G3∆11G′3W ′2 + G2∆22G′2

)]
−
[

2
N

∑N
i=1(G2,ii)

2
]

+ 1
N tr

[
G2

2

]
Ω24 = 1

N tr
[
Σ−12ee

(
W2G3∆11P

−1′
1 B′12 + G2∆22G′4

)]
−
[

2
N

∑N
i=1 G2,iiG4,ii

]
+ 1

N tr
[
G4G2

]
Ω21 = 1

N tr
[
W1G4W2G3

]
Ω23 = 1

N tr
[
B21P

−1
2 W2G3

]
Ω25 = 01×k1 Ω26 = β′2

[
1
N

∑N
i=1 G2,iiΣiiv2/σ

2
2i

]
Ω31 = 1

N tr
[
Σ−1′1ee

(
G3∆11G′1 +B21P

−1
2 ∆22G′4W ′1

)]
−
[

2
N

∑N
i=1 G1,iiG3,ii

]
+ 1

N tr
[
G1G3

]
Ω33 = 1

N tr
[
Σ−1′1ee

(
G3∆11G′3 +B21P

−1
2 ∆22P

−1′
2 B′21

)]
−
[

2
N

∑N
i=1(G3,ii)

2
]

+ 1
N tr

[
G2

3

]
Ω32 = 1

N tr
[
W2G3B21P

−1
2

]
Ω34 = 1

N tr
[
B12P

−1
1 B21P

−1
2

]
Ω35 = β′1

[
1
N

∑N
i=1 G3,iiΣiiv1/σ

2
1i

]
Ω36 = 01×k2

Ω42 = 1
N tr

[
Σ−12ee

(
W2G3∆11P

−1′
1 B′12 + G2∆22G′4

)]
−
[

2
N

∑N
i=1 G2,iiG4,ii

]
+ 1

N tr
[
G2G4

]
Ω44 = 1

N tr
[
Σ−12ee

(
B12P

−1
1 ∆11P

−1′
1 B′12 + G4∆22G′4

)]
−
[

2
N

∑N
i=1(G4,ii)

2
]

+ 1
N tr

[
G2

4

]
Ω41 = 1

N tr
[
W1G4B12P

−1
1

]
Ω43 = 1

N tr
[
B21P

−1
2 B12P

−1
1

]
Ω45 = 01×k1 Ω46 = β′2

[
1
N

∑N
i=1 G4,iiΣiiv2/σ

2
2i

]
Ω51 =

[
1
N

∑N
i=1 G1,iiΣiiv1/σ

2
1i

]
β1 Ω52 = 0k1×1

Ω53 =
[

1
N

∑N
i=1 G3,iiΣiiv1/σ

2
1i

]
β1 Ω54 = 0k1×1

Ω55 = 1
N

∑N
i=1 Σiiv1/σ

2
1i Ω56 = 0k1×k2

Ω62 =
[

1
N

∑N
i=1 G2,iiΣiiv2/σ

2
2i

]
β2 Ω61 = 0k2×1

Ω64 =
[

1
N

∑N
i=1 G4,iiΣiiv2/σ

2
2i

]
β2 Ω63 = 0k2×1

Ω66 = 1
N

∑N
i=1 Σiiv2/σ

2
2i Ω65 = 0k2×k1
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Table A4: The detailed definition of ε = (ε1, ε2, . . . , ε6)′

ε1 = 1
NT

∑T
t=1 β

′
1V
′
1tG′1Σ−11eee1t + 1

NT

∑T
t=1 β

′
2V
′
2tG′4W ′1Σ−11eee1t

+ 1
NT

∑T
t=1 e

′
2tG′4W ′1Σ−11eee1t + 1

NT

∑T
t=1 e

′
1tGo′1 Σ−11eee1t

ε2 = 1
NT

∑T
t=1 β

′
2V
′
2tG′2Σ−12eee2t + 1

NT

∑T
t=1 β

′
1V
′
1tG′3W ′2Σ−12eee2t

+ 1
NT

∑T
t=1 e

′
1tG′3W ′2Σ−12eee2t + 1

NT

∑T
t=1 e

′
2tGo′2 Σ−12eee2t

ε3 = 1
NT

∑T
t=1 β

′
2V
′
2tP
−1′
2 B′21Σ−11eee1t + 1

NT

∑T
t=1 β

′
1V
′
1tG′3Σ−11eee1t

+ 1
NT

∑T
t=1 e

′
2tP
−1′
2 B′21Σ−11eee1t + 1

NT

∑T
t=1 e

′
1tGo′3 Σ−11eee1t

ε4 = 1
NT

∑T
t=1 β

′
1V
′
1tP
−1′
1 B′12Σ−12eee2t + 1

NT

∑T
t=1 β

′
2V
′
2tG′4Σ−12eee2t

+ 1
NT

∑T
t=1 e

′
1tP
−1′
1 B′12Σ−12eee2t + 1

NT

∑T
t=1 e

′
2tGo′4 Σ−12eee2t

ε5 = 1
NT

∑T
t=1 V

′
1tΣ
−1
1eee1t

ε6 = 1
NT

∑T
t=1 V

′
2tΣ
−1
2eee2t

where Gop = Gp−Gdp, with Gdp being a diagonal matrix whose diagonal elements equal the diagonal elements
of Gp for p = 1, 2, 3, 4.

Tables A6 and A5 provide the definitions of Ω̃ and ε̃, which are involved in Remark 2.15.

Table A5: The detailed definition of ε̃ = (ε̃1, ε̃2, . . . , ε̃6)′

ε̃1 = 1
NTσ2

1

∑T
t=1 β

′
1V
′
1tG′1e1t + 1

NTσ2
1

∑T
t=1 β

′
2V
′
2tG′4W ′1e1t

+ 1
NTσ2

1

∑T
t=1 e

′
2tG′4W ′1e1t + 1

NTσ2
1

[∑T
t=1 e

′
1tGo′1 e1t + ω1

]
ε̃2 = 1

NTσ2
2

∑T
t=1 β

′
2V
′
2tG′2e2t + 1

NTσ2
2

∑T
t=1 β

′
1V
′
1tG′3W ′2e2t

+ 1
NTσ2

2

∑T
t=1 e

′
1tG′3W ′2e2t + 1

NTσ2
2

[∑T
t=1 e

′
2tGo′2 e2t + ω2

]
ε̃3 = 1

NTσ2
1

∑T
t=1 β

′
2V
′
2tP
−1′
2 B′21e1t + 1

NTσ2
1

∑T
t=1 β

′
1V
′
1tG′3e1t

+ 1
NTσ2

1

∑T
t=1 e

′
2tP
−1′
2 B′21e1t + 1

NTσ2
1

[∑T
t=1 e

′
1tGo′3 e1t + ω3

]
ε̃4 = 1

NTσ2
2

∑T
t=1 β

′
1V
′
1tP
−1′
1 B′12e2t + 1

NTσ2
2

∑T
t=1 β

′
2V
′
2tG′4e2t

+ 1
NTσ2

2

∑T
t=1 e

′
1tP
−1′
1 B′12e2t + 1

NTσ2
2

[∑T
t=1 e

′
2tGo′4 e2t + ω4

]
ε̃5 = 1

NT

∑T
t=1 V

′
1tΣ
−1
1eee1t

ε̃6 = 1
NT

∑T
t=1 V

′
2tΣ
−1
2eee2t

where
ω1 =

∑N
i=1

∑T
t=1

[
G1,ii − 1

N
tr(G1)

]
(e2

1it − σ2
1), ω2 =

∑N
i=1

∑T
t=1

[
G2,ii − 1

N
tr(G2)

]
(e2

2it − σ2
2)

ω3 =
∑N

i=1

∑T
t=1

[
G3,ii − 1

N
tr(G3)

]
(e2

1it − σ2
1), ω4 =

∑N
i=1

∑T
t=1

[
G4,ii − 1

N
tr(G4)

]
(e2

2it − σ2
2)
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Table A6: The detailed definition of Ω̃

Ω̃11 = 1
N tr

[
1
σ2
1

(
G1∆11G′1 +W1G4∆22G′4W ′1

)]
− 2

N2

[
tr(G1)

]2
+ 1

N tr
[
G2

1

]
Ω̃13 = 1

N tr
[

1
σ2
1

(
G1∆11G′3 +W1G4∆22P

−1′
2 B′21

)]
− 2

N2

[
tr(G1)tr(G3)

]
+ 1

N tr
[
G3G1

]
Ω̃12 = 1

N tr
[
W2G3W1G4

]
Ω̃14 = 1

N tr
[
B12P

−1
1 W1G4

]
Ω̃15 = β′1

[
1
N

∑N
i=1 G1,iiΣiiv1/σ

2
1

]
Ω̃16 = 01×k2

Ω̃22 = 1
N tr

[
1
σ2
2

(
W2G3∆11G′3W ′2 + G2∆22G′2

)]
− 2

N2

[
tr(G2)

]2
+ 1

N tr
[
G2

2

]
Ω̃24 = 1

N tr
[

1
σ2
2

(
W2G3∆11P

−1′
1 B′12 + G2∆22G′4

)]
− 2

N2

[
tr(G2)tr(G4)

]
+ 1

N tr
[
G4G2

]
Ω̃21 = 1

N tr
[
W1G4W2G3

]
Ω̃23 = 1

N tr
[
B21P

−1
2 W2G3

]
Ω̃25 = 01×k1 Ω̃26 = β′2

[
1
N

∑N
i=1 G2,iiΣiiv2/σ

2
2

]
Ω̃31 = 1

N tr
[

1
σ2
1

(
G3∆11G′1 +B21P

−1
2 ∆22G′4W ′1

)]
− 2

N2

[
tr(G1)tr(G3)

]
+ 1

N tr
[
G1G3

]
Ω̃33 = 1

N tr
[

1
σ2
1

(
G3∆11G′3 +B21P

−1
2 ∆22P

−1′
2 B′21

)]
− 2

N2

[
tr(G3)

]2
+ 1

N tr
[
G2

3

]
Ω̃32 = 1

N tr
[
W2G3B21P

−1
2

]
Ω̃34 = 1

N tr
[
B12P

−1
1 B21P

−1
2

]
Ω̃35 = β′1

[
1
N

∑N
i=1 G3,iiΣiiv1/σ

2
1

]
Ω̃36 = 01×k2

Ω̃42 = 1
N tr

[
1
σ2
2

(
W2G3∆11P

−1′
1 B′12 + G2∆22G′4

)]
− 2

N2

[
tr(G2)tr(G4)

]
+ 1

N tr
[
G2G4

]
Ω̃44 = 1

N tr
[

1
σ2
2

(
B12P

−1
1 ∆11P

−1′
1 B′12 + G4∆22G′4

)]
− 2

N2

[
tr(G4)

]2
+ 1

N tr
[
G2

4

]
Ω̃41 = 1

N tr
[
W1G4B12P

−1
1

]
Ω̃43 = 1

N tr
[
B21P

−1
2 B12P

−1
1

]
Ω̃45 = 01×k1 Ω̃46 = β′2

[
1
N

∑N
i=1 G4,iiΣiiv2/σ

2
2

]
Ω̃51 =

[
1
N

∑N
i=1 G1,iiΣiiv1/σ

2
1

]
β1 Ω̃52 = 0k1×1

Ω̃53 =
[

1
N

∑N
i=1 G3,iiΣiiv1/σ

2
1

]
β1 Ω̃54 = 0k1×1

Ω̃55 = 1
N

∑N
i=1 Σiiv1/σ

2
1 Ω̃56 = 0k1×k2

Ω̃62 =
[

1
N

∑N
i=1 G2,iiΣiiv2/σ

2
2

]
β2 Ω̃61 = 0k2×1

Ω̃64 =
[

1
N

∑N
i=1 G4,iiΣiiv2/σ

2
2

]
β2 Ω̃63 = 0k2×1

Ω̃66 = 1
N

∑N
i=1 Σiiv2/σ

2
2 Ω̃65 = 0k2×k1

Table A7 provides the specifications of matrices Ql (l = 1, . . . , 4), which are involved in the
IGPC approach as in Assumption G′ and Theorem 3.2. Each Ql is a 2N × 2N matrix whose
(i, j)th 2× 2 subblock Ql,ij is defined as below.

Table A7: The specification of Ql,ij (l = 1, . . . , 4) involved in the IGPC approach

Q1,ij =

[
G1,ij (W1G4)ij

0 0

]
, Q2,ij =

[
0 0

(W2G3)ij G2,ij

]
Q3,ij =

[
G3,ij (B21P

−1
2 )ij

0 0

]
, Q4,ij =

[
0 0

(B12P
−1
1 )ij G4,ij

]
where matrices Gl for l = 1, 2, . . . , 4 are defined in Table A1.
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Appendix B Notation II

In this Appendix, I first introduce the definitions of Db,Dc and ζ, which are involved in

Assumption G′, and then the definitions of the Dη,Φ, ϑ and Dβ matrices involved in Theorem

3.2. All these matrices are used in the IGPC approach.

Some matrices in Assumption G′: Db,Dc and ζ.

For p = 1, . . . , k1, let X̃p = (X̃1p, . . . , X̃Tp) be a 2N × T matrix, where

X̃tp = (ẋ11t,p, 0, ẋ12t,p, 0, . . . , ẋ1Nt,p, 0)′, with ẋ1it,p being the de-meaned version of x1it,p defined

as ẋ1it,p = x1it,p− 1
T

∑T
s=1 x1is,p. For p = k1+1, . . . , k with k = k1+k2, let X̃p = (X̃1p, . . . , X̃Tp)

be a 2N × T matrix,where X̃tp = (0, ẋ21t,(p−k1), 0, ẋ22t,(p−k1), . . . , 0, ẋ2Nt,(p−k1))
′ with ẋ2it,p is

defined as ẋ1it,p. For p = (k + 1), . . . , (k + 4), let X̃p = Qp−k

(∑k
q=1 X̃qβ̃q

)
, where β̃l = β1l

for l = 1, . . . , k1 and β̃l = β2,l−k1 for l = k1 + 1, . . . , k. Each Ql (l = 1, . . . , 4) is a 2N × 2N

matrix, defined as in Theorem 3.2, with its specification presented in Table A7 in Appendix

A. Further, Db is a k × k matrix defined as:

Db =
1

NT


tr(X̃ ′1M̈X̃1MF ) tr(X̃ ′1M̈X̃2MF ) . . . tr(X̃ ′1M̈X̃kMF )

tr(X̃ ′2M̈X̃1MF ) tr(X̃ ′2M̈X̃2MF ) . . . tr(X̃ ′2M̈X̃kMF )
...

...
. . .

...

tr(X̃ ′kM̈X̃1MF ) tr(X̃ ′kM̈X̃2MF ) . . . tr(X̃ ′kM̈X̃kMF )


Dc is a 4× 4 matrix defined as:

Dc =
1

NT


tr(X̃ ′k+1M̈X̃k+1MF ) tr(X̃ ′k+1M̈X̃k+2MF ) . . . tr(X̃ ′k+1M̈X̃k+4MF )

tr(X̃ ′k+2M̈X̃k+1MF ) tr(X̃ ′k+2M̈X̃k+2MF ) . . . tr(X̃ ′k+2M̈X̃k+4MF )
...

...
. . .

...

tr(X̃ ′k+4M̈X̃k+1MF ) tr(X̃ ′k+4M̈X̃k+2MF ) . . . tr(X̃ ′k+4M̈X̃k+4MF )


ζ is a k × 4 matrix defined as:

ζ =
1

NT


tr(X̃ ′1M̈X̃k+1MF ) tr(X̃ ′1M̈X̃k+2MF ) . . . tr(X̃ ′1M̈X̃k+4MF )

tr(X̃ ′2M̈X̃k+1MF ) tr(X̃ ′2M̈X̃k+2MF ) . . . tr(X̃ ′2M̈X̃k+4MF )
...

...
. . .

...

tr(X̃ ′kM̈X̃k+1MF ) tr(X̃ ′kM̈X̃k+2MF ) . . . tr(X̃ ′kM̈X̃k+4MF )


where MF = IT − F (F ′F )−1F ′, and M̈ = Σ−1

ee − 1
N

Σ−1
ee ΓΓ′Σ−1

ee with Σee as defined in As-

sumption C.
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Some matrices in Theorem 3.2: Dη,Φ, ϑ and Dβ. First, Dη is defined as:

Dη =
1

NT


tr[Ÿ ′1M̈ΛŸ1MF ] tr[Ÿ ′1M̈ΛΨŸ2MF ] tr[Ÿ ′1M̈ΛẎ2MF ] tr[Ÿ ′1M̈ΛΨẎ1MF ]

tr[Ÿ ′2M̈ΨΛŸ1MF ] tr[Ÿ ′2M̈ΨŸ2MF ] tr[Ÿ ′2M̈ΨΛẎ2MF ] tr[Ÿ ′2M̈ΨẎ1MF ]

tr[Ẏ ′2M̈ΛŸ1MF ] tr[Ẏ ′2M̈ΛΨŸ2MF ] tr[Ẏ ′2M̈ΛẎ2MF ] tr[Ẏ ′2M̈ΛΨẎ1MF ]

tr[Ẏ ′1M̈ΨΛŸ1MF ] tr[Ẏ ′1M̈ΨŸ2MF ] tr[Ẏ ′1M̈ΨΛẎ2MF ] tr[Ẏ ′1M̈ΨẎ1MF ]


where Λ = (λ1, λ2, . . . , λN)′; Ψ = (ψ1, ψ2, . . . , ψN)′; M̈Λ = Σ−1

1ee − 1
N

Σ−1
1eeΛΛ′Σ−1

1ee; M̈Ψ =

Σ−1
2ee − 1

N
Σ−1

2eeΨΨ′Σ−1
2ee; M̈ΛΨ = − 1

N
Σ−1

1eeΛΨ′Σ−1
2ee; and M̈ΨΛ = − 1

N
Σ−1

2eeΨΛ′Σ−1
1ee, with both

Σ1ee and Σ2ee being N × N matrices defined as Σ1ee = diag(σ2
11, σ

2
12, . . . , σ

2
1N) and Σ2ee =

diag(σ2
21, σ

2
22, . . . , σ

2
2N). In addition, Ÿ1 is an N × T matrix whose (i, t)th entry is ÿ1it; the

N × T matrices Ÿ2, Ẏ1, Ẏ2 are defined similarly.

Then, Φ is a 4×4 symmetric matrix whose diagonal elements and upper diagonal elements

are denoted by Φij defined as follows:

Φpp = −
[ 2

N

N∑
i=1

(Gp,ii)
2
]

+
1

N
tr
[
G2
p

]
, for p = 1, 2, 3, 4

Φ12 =
1

N
tr[W2G3W1G4], Φ13 = − 2

N

N∑
i=1

(G1,iiG3,ii) +
1

N
tr[G3G1]

Φ14 =
1

N
tr[B12P

−1
1 W1G4], Φ24 = − 2

N

N∑
i=1

(G2,iiG4,ii) +
1

N
tr[G4G2]

Φ23 =
1

N
tr[B21P

−1
2 W2G3], Φ34 =

1

N
tr[B12P

−1
1 B21P

−1
2 ]

where those N×N matrices Gp for p = 1, 2, 3, 4 are defined in Table A1 in Notation Appendix

I, with its (i, j)th entry being denoted by Gp,ij; those N × N matrices P1, P2, B12, B21 are

defined in Assumption F.

The 4× k matrix ϑ is defined as:

ϑ = [ϑa ϑb]

with ϑa being a 4× k1 matrix:

ϑa =
1

NT


tr[Ÿ ′1M̈ΛẊ11MF ] tr[Ÿ ′1M̈ΛẊ12MF ] . . . tr[Ÿ ′1M̈ΛẊ1k1MF ]

tr[Ÿ ′2M̈ΨΛẊ11MF ] tr[Ÿ ′2M̈ΨΛẊ12MF ] . . . tr[Ÿ ′2M̈ΨΛẊ1k1MF ]

tr[Ẏ ′2M̈ΛẊ11MF ] tr[Ẏ ′2M̈ΛẊ12MF ] . . . tr[Ẏ ′2M̈ΛẊ1k1MF ]

tr[Ẏ ′1M̈ΨΛẊ11MF ] tr[Ẏ ′1M̈ΨΛẊ12MF ] . . . tr[Ẏ ′1M̈ΨΛẊ1k1MF ]
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and ϑb being a 4× k2 matrix:

ϑb =
1

NT


tr[Ÿ ′1M̈ΛΨẊ21MF ] tr[Ÿ ′1M̈ΛΨẊ22MF ] . . . tr[Ÿ ′1M̈ΛΨẊ2K2MF ]

tr[Ÿ ′2M̈ΨẊ21MF ] tr[Ÿ ′2M̈ΨẊ22MF ] . . . tr[Ÿ ′2M̈ΨẊ2k2MF ]

tr[Ẏ ′2M̈ΛΨẊ21MF ] tr[Ẏ ′2M̈ΛΨẊ22MF ] . . . tr[Ẏ ′2M̈ΛΨẊ2k2MF ]

tr[Ẏ ′1M̈ΨẊ21MF ] tr[Ẏ ′1M̈ΨẊ22MF ] . . . tr[Ẏ ′1M̈ΨẊ2k2MF ]


where Ẋ1p is a N × T matrix whose (i, t)th entry is ẋ1it,p for p = 1, 2, . . . , k1; Ẋ2q is defined

similarly for q = 1, 2, . . . , k2.

The k × k matrix Dβ is defined as

Dβ =

[
Da
β Db

β

Db′
β Dc

β

]

where the k1 × k1 matrix Da
β is defined as

Da
β =

1

NT


tr[Ẋ ′11M̈ΛẊ11MF ] tr[Ẋ ′11M̈ΛẊ12MF ] . . . tr[Ẋ ′11M̈ΛẊ1k1MF ]

tr[Ẋ ′12M̈ΛẊ11MF ] tr[Ẋ ′12M̈ΛẊ12MF ] . . . tr[Ẋ ′12M̈ΛẊ1k1MF ]
...

...
. . .

...

tr[Ẋ ′1k1M̈ΛẊ11MF ] tr[Ẋ ′1k1M̈ΛẊ12MF ] . . . tr[Ẋ ′1k1M̈ΛẊ1k1MF ]


and the k1 × k2 matrix Db

β is defined as

Db
β =

1

NT


tr[Ẋ ′11M̈ΛΨẊ21MF ] tr[Ẋ ′11M̈ΛΨẊ22MF ] . . . tr[Ẋ ′11M̈ΛΨẊ2k2MF ]

tr[Ẋ ′12M̈ΛΨẊ21MF ] tr[Ẋ ′12M̈ΛΨẊ22MF ] . . . tr[Ẋ ′12M̈ΛΨẊ2k2MF ]
...

...
. . .

...

tr[Ẋ ′1k1M̈ΛΨẊ21MF ] tr[Ẋ ′1k1M̈ΛΨẊ22MF ] . . . tr[Ẋ ′1k1M̈ΛΨẊ2k2MF ]


and the k2 × k2 matrix Dc

β is defined as

Dc
β =

1

NT


tr[Ẋ ′21M̈ΨẊ21MF ] tr[Ẋ ′21M̈ΨẊ22MF ] . . . tr[Ẋ ′21M̈ΨẊ2k2MF ]

tr[Ẋ ′22M̈ΨẊ21MF ] tr[Ẋ ′22M̈ΨẊ22MF ] . . . tr[Ẋ ′22M̈ΨẊ2k2MF ]
...

...
. . .

...

tr[Ẋ ′2k2M̈ΨẊ21MF ] tr[Ẋ ′2k2M̈ΨẊ22MF ] . . . tr[Ẋ ′2k2M̈ΨẊ2k2MF ]
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Appendix C Some proofs

This appendix only includes the proof of consistency in Proposition 2.1 of QML approach.

The proofs of other propositions and theorems in this paper are provided in the Supplemen-

tary Material. The symbols introduced in Table A1 and the following table will be used

throughout proofs.

Table A8: More symbols

Ĥ = (L̂′Σ̂−1
εε L̂)−1 ĤN = N · Ĥ

Ĝ = (Ir + L̂′Σ̂−1
εε L̂)−1 ĜN = N · Ĝ

Ĵ = Υ(η)−Υ(η̂) SN = Υ(η)−1

From (A+B)−1 = A−1−A−1B(A+B)−1, I have Ĥ = Ĝ(Ir−Ĝ)−1 and Ĥ+Ĝ = ĤĜ = ĜĤ.

From Σzz = LL′ + Σεε, I have

Σ−1
zz = Σ−1

εε − Σ−1
εε L(Ir + L′Σ−1

εε L)−1L′Σ−1
εε (C.1)

The above formulas will be used frequently throughout the appendix.

While in the main text, I use (δ, L,Σεε) to denote the true value of the coefficients. For

proving consistency, I shall use a superscript “*” to denote the true values of parameters;

the variables without “*” denote the input variables of the likelihood function. This no-

tation is only used in Appendix A. Proofs of all the following lemmas are provided in the

Supplementary Material.

Lemma A.1. Let η = (ρ1, ρ2, γ1, γ2) and Υ(η) be a 2N × 2N matrix, with its (i, j)th block,

a 2× 2 matrix, equal to

Υij(η) =



[
1 −γ1

−γ2 1

]
if i = j

[
−ρ1w1ij 0

0 −ρ2w2ij

]
if i 6= j

(A.1)

Then I have det(D(δ)) = det(Υ(η)).

Lemma A.2. Let V (δ) be the inverse matrix of D(δ), then its (i, j)th block, a (k+2)×(k+2)
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matrix, denoted as Vij(δ) has a closed form, which is equal to

Vij(δ) =



[
Fii Fiiβ

′

0 Ik

]
if i = j

[
Fij Fijβ

′

0 0k×k

]
if i 6= j

(A.2)

where β =

[
β1 0

0 β2

]
and Fij is the (i, j)th 2× 2 block of the inverse matrix of Υ(η).

Lemma A.3. Let R = Υ(η)(Υ(η∗))−1, which is a 2N × 2N matrix, then I can specify its

(i, j)th block, a 2× 2 matrix, denoted as Rij, as following. For i = j,

Rii = I2−

[
(ρ1 − ρ∗1)G1,ii + (γ1 − γ∗1)G3,ii (ρ1 − ρ∗1)(W1G4)ii + (γ1 − γ∗1)(B21P

−1
2 )ii

(ρ2 − ρ∗2)(W2G3)ii + (γ2 − γ∗2)(B12P
−1
1 )ii (ρ2 − ρ∗2)G2,ii + (γ2 − γ∗2)G4,ii

]

For i 6= j,

Rij = −

[
(ρ1 − ρ∗1)G1,ij + (γ1 − γ∗1)G3,ij (ρ1 − ρ∗1)(W1G4)ij + (γ1 − γ∗1)(B21P

−1
2 )ij

(ρ2 − ρ∗2)(W2G3)ij + (γ2 − γ∗2)(B12P
−1
1 )ij (ρ2 − ρ∗2)G2,ij + (γ2 − γ∗2)G4,ij

]

where W1 and W2 are the weights matrices defined in Assumption E, and G1,G2,G3,G4, P1, P2, B12

and B21 are defined in Table 1.

Furthermore, let D = DD∗−1 with D∗ = D(δ∗), I have

Dij =



[
Rii Riiβ

∗′ − β′

0 Ik

]
if i = j

[
Rij Rijβ

∗′

0 0k×k

]
if i 6= j

where β =

[
β1 0

0 β2

]
and β∗ =

[
β∗1 0

0 β∗2

]
as defined in Lemma A.2; Dij is the (i, j)th (k +

2)× (k + 2) subblock of D and Rij is the (i, j)th 2× 2 subblock of R defined as above.

Lemma A.4. Let (ρ1, ρ2, γ1, γ2, β
′
1, β

′
2)′ ∈ A1×A2×A3×A4×A5×A6, where Al is a compact

set for all l = 1, . . . , 6. Under Assumptions A-F, uniformly on A1×A2×A3×A4×A5×A6,
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I have

(a)
∥∥∥ N∑
j=1

(ϕ∗i + ϕ∗iβ
∗)R′ij − φ∗iβ

∥∥∥ ≤ C, for all i;

(b)
1

N

N∑
i=1

∥∥∥ 1

T

T∑
t=1

( N∑
j=1

Rij(ejt + β∗′vjt)− β′vit
)
f ′t

∥∥∥2

= Op(T
−1),

(c)
1

N

N∑
i=1

∣∣∣ 1

T

T∑
t=1

[ẽ2
pit − E(ẽ2

pit)]
∣∣∣2 = Op(T

−1), for p = 1, 2, 3, 4;

(d)
1

N

N∑
i=1

∣∣∣ 1

T

T∑
t=1

[ẽpiteqit − E(ẽpiteqit)]
∣∣∣2 = Op(T

−1), for (p, q) = (1, 1), (3, 1), (2, 2), (4, 2);

(e)
1

N

N∑
i=1

∥∥∥ 1

T

T∑
t=1

[ẽpitvqit − E(ẽpitvqit)]
∥∥∥2

= Op(T
−1), for (p, q) = (1, 1), (3, 1), (2, 2), (4, 2);

(f)
1

N

N∑
i=1

∣∣∣ 1

T

T∑
t=1

[ẽpitẽqit − E(ẽpitẽqit)]
∣∣∣2 = Op(T

−1), for (p, q) = (1, 3), (2, 4);

(g)
1

N2

N∑
i=1

N∑
j=1

∣∣∣ 1

T

T∑
t=1

[ẽpitẽqjt − E(ẽpitẽqjt)]
∣∣∣2 = Op(T

−1), for p, q = 1, 2, 3, 4;

(h)
1

N2

N∑
i=1

N∑
j=1

∣∣∣ 1

T

T∑
t=1

[ẽpiteqjt − E(ẽpiteqjt)]
∣∣∣2 = Op(T

−1), for p = 1, 2, 3, 4 and q = 1, 2;

(i)
1

N2

N∑
i=1

N∑
j=1

∣∣∣ 1

T

T∑
t=1

[ẽpitvqjt − E(ẽpitvqjt)]
∣∣∣2 = Op(T

−1), for p = 1, 2, 3, 4 and q = 1, 2;

(j)
1

N2

N∑
i=1

N∑
j=1

∣∣∣ 1

T

T∑
t=1

[ẽpitvqjtl − E(ẽpitvqjtl)]
∣∣∣2 = Op(T

−1),

for p = 1, 2, 3, 4, q = 1, 2 and l = 1, 2, . . . , kq;

where β, β∗ are the same as defined in Lemma A.3; ϕ∗i = (λ∗i , ψ
∗
i ), φ∗i = (φ∗1i, φ

∗
2i); ẽ1it =∑N

j=1

[
G1,ij(e1jt + β∗′1 v1jt) + (W1G4)ij(e2jt + β∗′2 v2jt)

]
, ẽ2it =

∑N
j=1

[
(W2G3)ij(e1jt + β∗′1 v1jt) +

G2,ij(e2jt +β∗′2 v2jt)
]
, ẽ3it =

∑N
j=1

[
G3,ij(e1jt +β∗′1 v1jt) + (B21P

−1
2 )ij(e2jt +β∗′2 v2jt)

]
, and ẽ4it =∑N

j=1

[
(B12P

−1
1 )ij(e1jt+β

∗′
1 v1jt)+G4,ij(e2jt+β

∗′
2 v2jt)

]
, where the matrices G1,G2,G3,G4, P1, P2, B12, B21

are defined in Table 1.
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Lemma A.5. Under Assumptions A-F,

(a) sup
θ∈Θ

∣∣∣∣ 1

N
tr
[
DL∗

( 1

T

T∑
t=1

ftε
′
t

)
D′Σ−1

zz

]∣∣∣∣ = op(1)

(b) sup
θ∈Θ

∣∣∣∣ 1

N
tr
[
D

1

T

T∑
t=1

(εtε
′
t − Σ∗εε)D′Σ−1

zz

]∣∣∣∣ = op(1)

(c) sup
θ∈Θ

∣∣∣∣ 1

N
tr
[
Dε̄ε̄′D′Σ−1

zz

]∣∣∣∣ = op(1)

where D = DD∗−1 and Σzz = LL′ + Σεε.

Lemma A.6. Let P (η) =

[
ρ1W1 γ1IN

γ2IN ρ2W2

]
, ∆(η) = I2N − P (η) and R = ∆(η)

(
∆(η∗)

)−1
.

Then I have

tr
(

(RΣ∗eeR
′ − Σee)(RΣ∗eeR

′ − Σee)
′
)

= tr
(

(RΩ∗eeR′ − Ωee)(RΩ∗eeR′ − Ωee)
′
)

where R is defined in Lemma A.3; Ωee =

[
Ω1ee 0

0 Ω2ee

]
with Ω1ee = diag(σ2

11, σ
2
12, . . . , σ

2
1N)

and Ω2ee = diag(σ2
21, σ

2
22, . . . , σ

2
2N); Ω∗ee equals Ωee with parameters evaluated at their true

values. In addition,

R = I2N −

[
(ρ1 − ρ∗1)G1 + (γ1 − γ∗1)G3, (ρ1 − ρ∗1)W1G4 + (γ1 − γ∗1)B21P

−1
2

(ρ2 − ρ∗2)W2G3 + (γ2 − γ∗2)B12P
−1
1 , (ρ2 − ρ∗2)G2 + (γ2 − γ∗2)G4

]

where matrices P1, P2, B12, B21 and Gl (l = 1, 2, 3, 4) are defined in Table A1 with parameters

evaluated at true values.

Proof of Proposition 2.1: Consider the following centered objective function:

L(θ) = − 1

2N
ln |Σzz|+

1

N
ln |D| − 1

2N
tr[DMzzD

′Σ−1
zz ]

+
1

2N
ln |Σ∗zz| −

1

N
ln |D∗|+ k + 2

2
.

(A.3)

Note that the term ( 1
2N

ln |Σ∗zz| − 1
N

ln |D∗| + k+2
2

) is a constant as it does not depend on

any unknown parameters and is for the purpose of centering. By D∗żt = Φ∗ft + ε̇t and the

identification condition f̄ = 0, I have

D∗MzzD
∗′ = Σ∗zz + L∗

( 1

T

T∑
t=1

ftε
′
t

)
+
( 1

T

T∑
t=1

εtf
′
t

)
L∗′ +

1

T

T∑
t=1

(εtε
′
t − Σ∗εε)− ε̄ε̄′,
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where Σ∗zz = L∗L∗′ + Σ∗εε and ε̄ = 1
T

∑T
t=1 εt. Then I get

Mzz = D∗−1Σ∗zzD
∗′−1 + R, (A.4)

where

R = D∗−1L∗
( 1

T

T∑
t=1

ftε
′
t

)
D∗′−1 +D∗−1

( 1

T

T∑
t=1

εtf
′
t

)
L∗′D∗′−1

+D∗−1 1

T

T∑
t=1

(εtε
′
t − Σ∗εε)D

∗′−1 −D∗−1ε̄ε̄′D∗′−1.

Substituting (A.4) into (A.3),

L(θ) = L1(θ) + L2(θ), (A.5)

where

L1(θ) =− 1

2N
ln |Σzz|+

1

N
ln |D| − 1

2N
tr[DD∗−1Σ∗zzD

∗−1′D′Σ−1
zz ]

+
1

2N
ln |Σ∗zz| −

1

N
ln |D∗|+ k + 2

2

and

L2(θ) = − 1

2N
tr[DRD′Σ−1

zz ]. (A.6)

Since θ̂ maximizes L(θ), I have L(θ̂) ≥ L(θ∗), implying L1(θ̂) ≥ L1(θ∗) +L2(θ∗)−L2(θ̂).

By Lemma A.5, I have sup
θ∈Θ
|L2(θ)| = op(1), and then |L2(θ∗) − L2(θ̂)| ≥ −2 sup

θ∈Θ
|L2(θ)| =

−|op(1)|. Given this result, together with L1(θ∗) = 0, I have

L1(θ̂) ≥ −|op(1)|. (A.7)

With notation D̂ = D̂D∗−1, I rewrite L1(θ̂) as

L1(θ̂) =− 1

2N
ln |Σ̂zz|+

1

N
ln |D̂| − 1

2N
tr[D̂Σ∗zzD̂′Σ̂−1

zz ]

+
1

2N
ln |Σ∗zz| −

1

N
ln |D∗|+ k + 2

2

With the definition Σ̂zz = L̂L̂′ + Σ̂εε, I have |Σ̂zz| = |Σ̂εε| · |Ir + L̂′Σ̂−1
εε L̂|. Thus,

ln |Σ̂zz| = ln |Σ̂εε|+ ln |Ir + L̂′Σ̂−1
εε L̂| =

N∑
i=1

(ln |Σ̂iie|+ ln |Σ̂iiv|) + ln |Ir + L̂′Σ̂−1′
εε L̂|
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Similarly ln |Σ∗zz| =
∑N

i=1(ln |Σ∗iie|+ln |Σ∗iiv|)+ln |Ir+L∗′Σ∗−1
εε L∗|. Notice that |Ir+L∗′Σ∗−1

εε L∗| =
Op(N), so uniformly on Θ,

− 1

2N
ln |Σ̂zz|+

1

2N
ln |Σ∗zz| = −

1

2N

N∑
i=1

(ln |Σ̂iie|+ ln |Σ̂iiv|) +
1

2N

N∑
i=1

(ln |Σ∗iie|+ ln |Σ∗iiv|)

− 1

2N
ln |Ir + L̂′Σ̂−1′

εε L̂|+Op(
ln(N)

N
)

Next consider the term 1
2N

tr[D̂Σ∗zzD̂′Σ̂−1
zz ], which can be written as, in view of Σ∗zz =

L∗L∗′ + Σ∗εε,

1

2N
tr[D̂Σ∗zzD̂′Σ̂−1

zz ] =
1

2N
tr[D̂Σ∗εεD̂′Σ̂−1

zz ] +
1

2N
tr[D̂L∗L∗′D̂′Σ̂−1

zz ] , i1 + i2, say.

By the Woodbury formula Σ̂−1
zz = Σ̂−1

εε − Σ̂−1
εε L̂ĜL̂

′Σ̂−1
εε , where Ĝ = (Ir + L̂′Σ̂−1

εε L̂)−1, i1 can

be written as

i1 =
1

2N
tr[D̂Σ∗εεD̂′Σ̂−1

εε ]− 1

2N
tr[D̂Σ∗εεD̂′Σ̂−1

εε L̂ĜL̂
′Σ̂−1

εε ] , i3 − i4, say

With the definition of D and calculation, I get

i3 =
1

2N

N∑
i=1

N∑
j=1

tr
(
R̂ijΣ

∗
jjeR̂

′
ijΣ̂
−1
iie

)
+

1

2N

N∑
i=1

tr
(

(R̂iiβ
∗′ − β̂′)Σ∗iiv(R̂iiβ

∗′ − β̂′)′Σ̂−1
iiv

)
+

1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijβ

∗′Σ∗jjvβ
∗R̂′ijΣ̂

−1
iie

)
+

1

2N
tr
[ N∑
i=1

Σ∗iivΣ̂
−1
iiv

]

where R̂ij is the (i, j)-th subblock R̂. Now we show i4 = op(1) uniformly on Θ. To see this,

by the boundedness of Σ̂ii and Σ∗ii, D̂Σ∗εεD̂′Σ̂−1
εε is less than26 C1D̂D̂′ for some C1, which is

further less than C1C2IN(k+2) for some constant C2, as shown in the proof of Lemma A.5

(c). This result leads to i4 ≤ C1C2
1

2N
tr[L̂′Σ̂−1

εε L̂Ĝ] = Op(N
−1).

Given the above results, together with the fact that ln |D̂| − ln |D∗| = ln |D̂D∗−1| =

ln |D̂| = ln |R̂|, I can rewrite the L1(θ) as

L1(θ̂) = − 1

2N

N∑
i=1

(ln |Σ̂iie|+ ln |Σ̂iiv|) +
1

2N

N∑
i=1

(ln |Σ∗iie|+ ln |Σ∗iiv|)−
1

2N
ln |Ir + L̂′Σ̂−1′

εε L̂|

− 1

2N

N∑
i=1

N∑
j=1

tr
(
R̂ijΣ

∗
jjeR̂

′
ijΣ̂
−1
iie

)
− 1

2N

N∑
i=1

tr
(

(R̂iiβ
∗′ − β̂′)Σ∗iiv(R̂iiβ

∗′ − β̂′)′Σ̂−1
iiv

)
26For matrices A and B, I say A ≤ B if B −A is a semi-definite positive matrix.
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− 1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijβ

∗′Σ∗jjvβ
∗R̂′ijΣ̂

−1
iie

)
− 1

2N
tr
[ N∑
i=1

Σ∗iivΣ̂
−1
iiv

]
− 1

2N
tr[D̂L∗L∗′D̂′Σ̂−1

zz ] +
1

N
ln |R̂|+ k + 2

2
≥ −|op(1)| (A.8)

Notice that the term − 1
2N

∑N
i=1

∑N
j=1 tr

(
R̂ijΣ

∗
jjeR̂

′
ijΣ̂
−1
iie

)
+ 1

N
ln |R̂| is equivalent to

− 1

2N
tr[R̂Σ∗eeR̂

′Σ̂−1
ee ] +

1

2N
ln |R̂Σ∗eeR̂

′Σ̂−1
ee |+

1

2N

N∑
i=1

(ln |Σ̂iie| − ln |Σ∗iie|) (A.9)

Substituting (A.9) into (A.8), I can rewrite L1(θ̂) as

L1(θ̂) = −
{ 1

2N
tr[R̂Σ∗eeR̂

′Σ̂−1
ee ]− 1

2N
ln |R̂Σ∗eeR̂

′Σ̂−1
ee | − 1

}
−
{ 1

2N
tr[D̂L∗L∗′D̂′Σ̂−1

zz ]
}

−
{ 1

2N

N∑
i=1

tr
(

(R̂iiβ
∗′ − β̂′)Σ∗iiv(R̂iiβ

∗′ − β̂′)′Σ̂−1
iiv

)}
−
{ 1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijβ

∗′Σ∗jjvβ
∗R̂′ijΣ̂

−1
iie

)}
−
{ 1

2N

N∑
i=1

(
tr[Σ∗iivΣ̂

−1
iiv ]− ln |Σ∗iivΣ̂−1

iiv | − k
)}
−
{ 1

2N
ln |Ir + L̂′Σ̂−1

εε L̂|
}
≥ −|op(1)|

In the above equation, all the expressions in the braces are non-negative, so each expression

must be op(1). From the first five expressions, I have

1

2N
tr[R̂Σ∗eeR̂

′Σ̂−1
ee ]− 1

2N
ln |R̂Σ∗eeR̂

′Σ̂−1
ee | − 1 = op(1) (A.10)

1

2N

N∑
i=1

tr
(

(R̂iiβ
∗′ − β̂′)Σ∗iiv(R̂iiβ

∗′ − β̂′)′Σ̂−1
iiv

)
= op(1) (A.11)

1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijβ

∗′Σ∗jjvβ
∗R̂′ijΣ̂

−1
iie

)
= op(1) (A.12)

1

2N

N∑
i=1

(
tr[Σ∗iivΣ̂

−1
iiv ]− ln |Σ∗iivΣ̂−1

iiv | − k
)

= op(1) (A.13)

1

2N
tr[D̂L∗L∗′D̂′Σ̂−1

zz ] = op(1) (A.14)

First consider (A.12). For β∗1 6= 0 and β∗2 6= 0, by definition of β∗ = (β′1, β
′
2)′ and the

boundedness of Σ∗iiv and Σ̂iie, there exists a positive constant c such that β∗′Σ∗jjvβ
∗ > c and
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Σ̂−1
iie > cI2. Then together with (A.12), I have

op(1) =
1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijβ

∗′Σ∗jjvβ
∗R̂′ijΣ̂

−1
iie

)
>

c2

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijR̂

′
ij

)
> 0

which implies that

1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijR̂

′
ij

)
= op(1) (A.15)

By the expressions of Rij in Lemma A.3, I have

op(1) =
1

2N

N∑
i=1

N∑
j=1,j 6=i

tr
(
R̂ijR̂

′
ij

)
=(ρ̂1 − ρ∗1)2a1 + 2(ρ̂1 − ρ∗1)(γ̂1 − γ∗1)b1 + (γ̂1 − γ∗1)2c1

+ (ρ̂2 − ρ∗2)2a2 + 2(ρ̂2 − ρ∗2)(γ̂2 − γ∗2)b2 + (γ̂2 − γ∗2)2c2

=(η̂ − η∗)′Ma(η̂ − η∗)

(A.16)

where the 4×4 matrix Ma is defined as in Assumption G.1, and ap, bp, cp for (p = 1, 2) are all

scalars, and their definitions are given in Table A2. Based on the above equation, together

with Assumption (G.1), I have the consistency η̂ − η∗ = op(1).

Next consider (A.10), which can be written as

1

2N
tr[Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee ]− 1

2N
ln |Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee | − 1 = op(1)

Let li (i = 1, 2, . . . , 2N) denote the eigenvalues of the 2N × 2N matrix Σ̂
−1/2
ee R̂Σ∗eeR̂

′Σ̂
−1/2
ee .

By the boundedness of η̂ and Σ̂iie, there exits some large constant C such that li ∈ [C−1, C]

for all i. Together with the fact that x− lnx− 1 ≥ 1
4C2 (x− 1)2 for all x ∈ [C−1, C], I have

op(1) =
1

2N
tr[Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee ]− 1

2N
ln |Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee | − 1

=
1

2N

2N∑
i=1

(li − ln li − 1) ≥ 1

4C2

1

2N

2N∑
i=1

(li − 1)2 =
1

4C2

1

2N
‖Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee − I2N‖2

implying
1

2N
‖Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee − I2N‖2 = op(1)

which is equivalent to

1

2N
tr
[
(Σ̂−1/2

ee R̂Σ∗eeR̂
′Σ̂−1/2

ee − I2N)(Σ̂−1/2
ee R̂Σ∗eeR̂

′Σ̂−1/2
ee − I2N)′

]
= op(1)
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can be further written as

1

2N
tr
[
Σ̂−1/2
ee (R̂Σ∗eeR̂

′ − Σ̂ee)Σ̂
−1
ee (R̂Σ∗eeR̂

′ − Σ̂ee)Σ̂
−1/2
ee

]
= op(1)

By the boundedness of Σ̂iie, there exists come constant c such that Σ̂
−1/2
ee ≥ cI2N . Then

op(1) =
1

2N
tr
[
Σ̂−1/2
ee (R̂Σ∗eeR̂

′ − Σ̂ee)Σ̂
−1
ee (R̂Σ∗eeR̂

′ − Σ̂ee)Σ̂
−1/2
ee

]
≥c4 1

2N
tr
[
(R̂Σ∗eeR̂

′ − Σ̂ee)(R̂Σ∗eeR̂
′ − Σ̂ee)

]
= c4 1

2N
‖R̂Σ∗eeR̂

′ − Σ̂ee‖2 > 0

implying
1

2N
‖R̂Σ∗eeR̂

′ − Σ̂ee‖2 = op(1) (A.17)

By Lemma A.6, the above equation is equivalent to

1

2N
‖R̂Ω∗eeR̂′ − Ω̂ee‖2 = op(1) (A.18)

Let U = R̂Ω∗eeR̂′ − Ω̂ee, together with Lemma A.6, I have

U = Ω∗ee − Ω̂ee + H

where H = −ĤΩ∗ee − Ω∗eeĤ
′ + ĤΩ∗eeĤ

′, and

Ĥ =

[
(ρ̂1 − ρ∗1)G1 + (γ̂1 − γ∗1)G3, (ρ̂1 − ρ∗1)W1G4 + (γ̂1 − γ∗1)B21P

−1
2

(ρ̂2 − ρ∗2)W2G3 + (γ̂2 − γ∗2)B12P
−1
1 , (ρ̂2 − ρ∗2)G2 + (γ̂2 − γ∗2)G4

]

where matrices P1, P2, B12, B21 and Gl (l = 1, 2, 3, 4) are all evaluated at true parameters.

Then (A.18) can be further rewritten as

op(1) = tr

[(
Ω∗ee − Ω̂ee + diag(H)

)2
]

+ (η̂ − η∗)′tr(M)(η̂ − η∗) = m1 +m2, say

where the 4× 4 matrix M is defined in Assumption G. Note that both m1 and m2 are non-

negative, therefore I have m1 = op(1) and m2 = op(1). Combining the result m2 = op(1) and

Assumption (G.2) implies that η̂ − η∗ = op(1), which further implies H = op(1). Plugging

these results into m1 = op(1), together with the boundedness of variances, I get the average
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consistency for the variances:

1

N

N∑
i=1

(σ∗21i − σ̂2
1i)

2 = op(1)

1

N

N∑
i=1

(σ∗22i − σ̂2
2i)

2 = op(1)

(A.19)

The consistency of η̂ = (ρ̂1, ρ̂2, γ1, γ2) implies that the 2 × 2 subblock R̂ii → I2 for all

i. Plug this result into (A.11), I prove the consistency that β̂1 → β∗1 and β̂2 → β∗2 . Now

consider (A.13) and (A.14), which are the results corresponding to the pure factor structure

part. Using a similar way as in Bai and Li (2014a), I can show from (A.13) that

1

N

N∑
i=1

‖Σ̂iiv − Σ∗iiv‖2 = op(1) (A.20)

Combining the results (A.19) and (A.20), I have

1

N

N∑
i=1

‖Σ̂ii − Σ∗ii‖2 = op(1) (A.21)

The last claim of Proposition (2.1) can be proved from (A.14) together with NC.1–NC.3 and

first order condition of L, using a similar approach as in Bai and Li (2014a). This completes

the proof for Proposition 2.1. �
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