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Introduction

We study optimal fiscal policy in a small open economy (SOE) characterized by two frictions:

incomplete financial markets and an inability of the government to commit to policy. Despite

the empirical importance of these two frictions, especially in emerging markets, their com-

bined impact on fiscal policy has not been analyzed in the existing literature. Interestingly,

in such an environment, the best policy choice of a benevolent government may amplify and

prolong shocks to output. Incomplete markets provide an incentive to use fiscal policy to

proxy for missing insurance markets, and the lack of commitment tempts the government to

confiscate foreign capital. The government’s credibility not to expropriate capital is shown

to vary endogenously with the state of the economy and is “scarcest” during recessions.

This increased threat of expropriation depresses investment during downturns, generating

investment cycles even in an environment in which the first-best capital stock is constant.

In the model, the government implements fiscal policy on behalf of risk-averse domestic

agents (or a preferred subset of agents) who lack access to financial markets and do not

own capital. Uncertainty is driven by a stochastic endowment process, generating a risk

against which the domestic agents cannot insure. Risk-neutral foreigners invest capital in

the economy that is immobile for one period and has an opportunity cost given by the

world interest rate. The government provides insurance by transferring income between

foreign capitalists and domestic agents and is assumed to run a balanced budget. A useful

expositional feature of the additive endowment shock is that the marginal product of capital

is independent of the shock’s realization. That is, the first-best capital stock is acyclical.

These assumptions allow us to isolate starkly the role of fiscal policy in generating investment

fluctuations.

If the government could commit, the optimal fiscal policy (the Ramsey solution) would

not distort capital in this economy (similar to Judd 1985 and Chamley 1986). Without

distorting investment, the government can perfectly insure domestic agents across states

within a period. It does so by exploiting the fact that capital is sunk for one period. However,

given the assumed absence of financial assets, the government cannot transfer resources across

periods, and therefore the consumption of domestic agents may still vary over time.

What if the government cannot commit to its promised tax plan? While the sunk nature

of capital allows the government to insure domestic agents, it also tempts the government

to expropriate all capital ex post. To address this, we follow Chari and Kehoe (1990) and

adopt sustainable equilibria as our solution concept.

A main result of the paper proves that there is a range of discount factors for which the
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first-best investment is sustainable for high shocks, but not for low. The intuition stems from

the fact that under the Ramsey plan consumption is increasing in the expected endowment:

When endowment shocks are persistent, a low endowment today implies low consumption

tomorrow. Therefore, the lower the endowment shock today, the greater the government’s

incentive to deviate tomorrow. In other words, the government’s credibility regarding the

taxation of next period’s capital income is lowest during a bad endowment realization. This

is the sense in which credibility is “scarce” during downturns.

Note that this reasoning, as well as the formal proof, does not require strong assumptions

regarding the specific shape of the government’s objective function (other than strict con-

cavity). Moreover, the result requires minimal characterization of the continuation values.

A common feature of models with incentive compatibility constraints is that these con-

straints tend to bind in high states. This stems from the nature of insurance — payments are

made in high states and benefits are received in low states. Empirically, however, we do not

directly observe whether constraints are binding in high or low states. Rather, we observe

actions and allocations. Our model is consistent with incentive constraints’ binding during

good times but distortions appearing during bad times. Specifically, even if the participation

constraints bind only in high-endowment states and these states are least likely following a

recession (that is, there is persistence), it is during recessions that the capital margin will

first be distorted.

We also present results concerning parameterizations in which optimal fiscal policy may

lead to sub-optimal investment following every history. We explore the optimal policy an-

alytically and numerically in such cases. We show that there are regions of the parameter

space in which investment is larger during low realizations of the endowment shock and

provide intuition as to why this may occur. We also explore the sensitivity of our results to

alternative asset market structures. We show that our result extends to the case of static

insurance markets which allow risk-sharing across states within a period but not across pe-

riods. We also show that allowing the government access to a risk-free bond in the Ramsey

problem is equivalent to completing the markets. In that environment, the sustainability of

the Ramsey fiscal policy is independent of history. This case underscores the importance of

incomplete markets in generating the result.

The prediction that the threat of expropriation depresses investment following downturns

is reminiscent of emerging-market crises. Governments often allow foreign capital to earn

large returns in booms but confiscate capital income during crises. Moreover, as documented

by Calvo et al. (2005), investment remains persistently depressed following a crisis. The

most recent crisis in Argentina in January 2002 is a dramatic illustration of this phenomenon.
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During the crisis, Argentina repudiated contracts, froze prices on privately owned utilities,

and imposed taxes on exports. Measures of expropriation risk as calculated by the Heritage

Foundation and Fraser Institute deteriorated sharply. A similar deterioration of property

rights is observed in other emerging-market crises. The oscillation between pro-growth poli-

cies and populism observed in many developing economies seems to contribute to (rather

than stabilize) the volatility of output. Our paper rationalizes such behavior by focusing on

two key characteristics that distinguish emerging-market economies: inadequate insurance

markets and the inability of governments to commit to future policy promises.

Related Literature

There is a large literature on the question of optimal taxation by a benevolent social planner.

See the survey by Chari and Kehoe (1999) and the references therein. Several papers have

studied optimal fiscal policy without commitment. Aside from Chari and Kehoe (1990), in

a paper closely related to ours, Benhabib and Velasco (1996) study an open economy where

the government lacks commitment and needs to finance productive investment. Their paper

differs from ours by considering a deterministic economy. Therefore, there is no scope for

fiscal policy to vary with shocks or to provide insurance. Our paper is also related to Phelan

and Stacchetti (2001), in which a policy game is analyzed for the case without uncertainty

in a closed economy.

In an important paper in the international business cycle literature, Kehoe and Perri

(2002) consider a model of risk-sharing across two countries with limited commitment. Dif-

ferently from Kehoe and Perri (2002), we study a small open economy and emphasize the role

of the government in generating amplification. Also related is Thomas and Worrall (1994),

which presents a model of a multinational subject to expropriation by a host government

that lacks commitment. See also Albuquerque and Hopenhayn (2004).

Tornell and Velasco (1992) and Lane and Tornell (1999) present interesting political

economy games in which a “tragedy of the commons” problem arises that may distort in-

vestment. However, these papers restrict attention to Markov equilibria, and therefore the

issue of state-dependent “reputation” does not arise.

The primary empirical study of emerging markets fiscal policy is Kaminsky, Reinhart and

Vegh (2004). They focus on the spending side (see also Talvi and Vegh 2004) and document

that emerging markets follow fiscal policies that are more procyclical than those in developed

economies. While the quarterly cyclicality of government expenditures is an important issue,

our focus is on the expropriation of foreign capital during crises.
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The paper is organized as follows. In Section 1 we present the model with endow-

ment shocks and describe the full-commitment solution. Section 2 presents the limited-

commitment results. Section 3 extends the model to environments with richer asset markets,

and Section 4 concludes.

1 Model

Time is discrete and runs to infinity. The economy is composed of a government and two

types of agents: domestic agents and foreign capitalists. Domestic agents (or “workers”) are

risk averse and supply inelastically l units of labor every period for a wage w. In addition,

they receive an endowment shock z every period that has the following properties:

Assumption 1. z ∈ Z follows a Markov process and the finite set Z has a highest element

z̄ < ∞ and a lowest element z > 0.

Let zt = {z0, z1, ...zt} be a history of endowment shocks up to time t. Denote by q (zt) the

probability that zt occurs.

The expected lifetime utility of workers is given by

∞∑
t=0

∑
zt

βtq(zt)u
(
c
(
zt
))

,

where c (zt) is their consumption in history zt and u is a standard utility function with

u′ > 0, u′′ < 0, and β ∈ (0, 1) is the discount factor.

Assumption 2 (Segmented Capital Markets). Workers do not have access to financial

markets. Their consumption is given by

c
(
zt
)

= zt + w
(
zt
)
l + T

(
zt
)
,

where T (zt) are transfers received from the government at history zt and w (zt) is the com-

petitive wage at history zt.

There exists a continuum of risk-neutral foreign capitalists who supply capital, but no la-

bor. The foreign capitalists own competitive domestic firms that produce by hiring domestic

labor and using foreign capital. The production function F is of the standard neoclassical

form:
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y = F (k, l) ,

where F is constant returns to scale with Fk > 0 and Fkk < 0.

The capitalists have access to financial markets. We assume a small open economy where

the capitalists face the exogenous world interest rate of r∗. We assume that capital is installed

before the endowment shock and tax rate are realized and cannot be moved until the end of

the period. For simplicity, we assume the depreciation rate is 0. Capital profits are denoted

π (zt), where

π
(
zt
)

= F
(
k
(
zt−1

)
, l
)
− w

(
zt
)
l.

We make the following assumption about the government’s objective function:

Assumption 3 (Redistributive Government). The government’s objective function is to

maximize the lifetime utility of the workers.

We model the government as benevolent towards domestic workers. Alternatively, we could

assume that the government maximizes the utility of a subset of agents, such as political

insiders or public employees. The analysis will make clear that our results extend to these

alternative objective functions as long as the favored agents are risk averse and lack access

to capital markets.

The government taxes capital profits at a linear rate τ (zt) and transfers the proceeds to

the workers T (zt). We assume the government does not have access to international financial

markets:

Assumption 4 (Balanced Budget). The government runs a balanced budget at every state:

τ
(
zt
)
π
(
zt
)

= T
(
zt
)
.

This is an important assumption. Several other studies have exploited a balanced-budget as-

sumption, including Benhabib and Velasco (1996), Krusell and Rios-Rull (1999), and Phelan

and Stacchetti (2001). We discuss relaxing this constraint in Section 3.2.

Taking as given a tax rate plan τ (zt), firms maximize after-tax profits discounted at the

world interest rate,

E0

∑
t

(
1

1 + r∗

)t (
1− τ

(
zt
))

π
(
zt
)
.
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Profit maximization implies the following two first-order conditions:

Fl

(
k
(
zt−1

)
, l
)

= w
(
zt
)
, (1)

and

r∗ = E
[(

1− τ
(
zt
))
|zt−1

]
Fk

(
k
(
zt−1

)
, l
)
, (2)

where E [.|zt−1] indicates expectation conditional on history zt−1, and Fi denotes the partial

derivative of F with respect to i = k, l.

According to equation (2), the expected return to capitalists from investing in the do-

mestic economy should equal the world interest rate r∗. Given the additive nature of the

endowment shock, optimal capital is a constant in a world without taxes.

1.1 Optimal Taxation under Commitment

In this subsection, we characterize the optimal fiscal policy under commitment. We show

that tax policy is not distortionary and that investment will be a constant at the first-best

level.

Suppose that the government can commit at time 0 to a tax policy τ(zt) for every

possible history of shocks zt. This (Ramsey) plan is announced before the initial capital

stock is invested. The government chooses c(zt), k(zt), and τ (zt) to maximize

∞∑
t=0

∑
zt

βtq(zt)u
(
c
(
zt
))

,

subject to

c
(
zt
)

= zt + w
(
zt
)
l + T

(
zt
)
, (3)

τ
(
zt
) (

F
(
k
(
zt−1

)
, l
)
− w

(
zt
)
l
)

= T
(
zt
)
, (4)

Fl

(
k
(
zt−1

)
, l
)

= w
(
zt
)
, (5)

and

r∗ = E
[(

1− τ
(
zt
))
|zt−1

]
Fk

(
k
(
zt−1

)
, l
)
. (6)

By combining the worker and government budget constraints with the optimal labor
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condition of the firms (equation 5), we obtain

c
(
zt
)

= zt + F
(
k
(
zt−1

)
, l
)
−
(
1− τ

(
zt
))

Fk

(
k
(
zt−1

)
, l
)
k
(
zt−1

)
. (7)

We have used the constant-returns-to-scale assumption and Euler’s theorem, F (k, l) = Fkk+

Fll. Taking expectations of equation (7) and substituting in equation (2), we obtain a single

aggregate constraint in expectation,

E
[
zt|zt−1

]
+ F

(
k
(
zt−1

)
, l
)
− E

[
c
(
zt
)
|zt−1

]
− r∗k(zt−1) = 0. (8)

This constraint states that the sum of the expected endowment and produced output

should equal the sum of expected consumption and payments to capitalists. The following

lemma uses equation (8) to simplify the constraint set:

Lemma 1. For any c (zt) and k (zt−1) that satisfy (8), there exists a function τ (zt) such

that (7) and (6) are satisfied.

Proof. For a given c (zt) and k (zt−1), define τ (zt) as the solution to (7). The fact that (6)

holds follows directly from (8).

The previous result exploits the fact that capitalists care only about the expected return

to capital. Given an expected ex post profit, the government can use taxes to transfer

resources to workers across states.

The problem of the government under commitment is then to maximize

∞∑
t=0

∑
zt

βtq(zt)u
(
c
(
zt
))

,

subject to (8).

Proposition 1. Under commitment, the optimal fiscal policy:

(i) Provides full intra-period insurance to the workers:

c
(
{zt, z

t−1}
)

= c
({

z′t, z
t−1
})

for all (zt, z
′
t) ∈ Zt × Zt and zt−1 ∈ Zt−1, and

(ii) At the begining of every period, the expected capital tax payments are zero:

E
[
τ
(
zt
)
|zt−1

]
= 0.
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Proof. The Lagrangian of the problem is

∞∑
t=0

βt

[∑
zt

q(zt)u
(
c
(
zt
))

+
∑
zt−1

q(zt−1)γ
(
zt−1

){ E [zt|zt−1] + F (k (zt−1) , l)

−E [c (zt) |zt−1]− (r∗) k(zt−1)

}]
,

where zt−1 evaluated at t = 0 refers to the initial information set. Notice that if γ (zt−1)

is non-negative, the Lagrangian is concave on c, k. The first-order conditions for the maxi-

mization of the Lagrangian are

u′ (c (zt
))

= γ
(
zt−1

)
, and

Fk

(
k
(
zt−1

)
, l
)

= r∗,

where the first condition implies that c ({zt, z
t−1}) = c ({z′t, zt−1}) for all (zt, z

′
t) ∈ Zt × Zt

and the second condition implies that E [τ (zt) |zt−1] = 0.

Proposition 1 shows that the government can insure all the intra-period risk the workers

are facing without distorting investment: Fk (k (zt−1) , l) = r∗. In this model, it is efficient

to set expected tax payments on capital equal to zero, a result well known in the Ramsey

taxation literature (Judd (1985), Chamley (1986), and the stochastic version in Zhu (1992)).

Chari, Christiano, and Kehoe (1994) obtain a similar result in a business cycle model. The

small open economy assumption implies that capital is infinitely elastic ex ante and therefore

that the zero-taxation of capital is optimal at all dates and not just asymptotically. See Chari

and Kehoe (1999) for a related discussion.

A quick corollary follows,

Corollary 1. Under commitment, (i) realized capital taxes are countercyclical:

τ
(
zt, z

t−1
)

> τ
(
z′t, z

t−1
)

for zt < z′t.

(ii) If E [zt|zt−1] is increasing in zt−1, then τ (zt, z
t−1) is increasing in zt−1.

Proof. From (7), it is possible to solve for the tax rate:

τ
(
zt, z

t−1
)

=
E [zt|zt−1]− zt

r∗k
.

Since k is independent of zt and zt−1, the results follow.

Note that the Ramsey allocation is independent of the discount factor β.
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The government taxes capitalists and transfers to workers in low-endowment states while

transferring from workers to capitalists in high-endowment states. It does so in such a way

that the expected tax burden on capital is zero and the workers are fully insured across

states within a period. The government exploits the fact that capital is ex post inelastic to

transfer capital income across states so that worker consumption is equalized. The ex ante

elasticity of capital provides the necessary incentive to keep average tax payments at zero.

The results in this section tell us that a government with commitment would not amplify

shocks through its tax policy.

2 Optimal Taxation with Limited Commitment

We now turn to the important question of the best policy in the absence of commitment.

Once the investment decision by the capitalists has been made, the government would like

to tax capital as much as possible and redistribute the proceeds to the workers. Thus, the

optimal tax policy under commitment may not be dynamically consistent. As is standard in

the literature, we model the economy as a game between the capitalists and the government

and use sustainability (Chari and Kehoe 1990) as our solution concept. In this section, we

characterize the best sustainable equilibria of the game.

We assume the following:

Assumption 5 (A Maximum Tax Rate). At any state z , the tax rate on capital cannot be

higher than τ̄ > 0.

Throughout the analysis, we assume that τ̄ is greater than the maximal tax rate under the

Ramsey plan (the Ramsey plan is feasible).

Let ht−1 be the history of tax policies and endowment shocks up to the beginning of

period t: ht−1 = {(τs, zs)|s = 0, ..., t− 1}. As shown by Chari and Kehoe (1990), we do not

need to include the capitalists’ previous investment decisions in the definition of the history.

A government’s policy rule at time t is a function τt(ht−1, zt) that maps previous histories

and the current shock into a tax rate less than or equal to τ̄ . A capitalist’s investment rule at

time t is a function k(ht−1) that maps previous histories into a capital level. A government

policy plan is a sequence of policy rules σ = {τ0, τ1, ...}. A capitalist’s investment plan

κ = {k0, k1, ...} is a sequence of investment rules.

Definition 1. A sustainable equilibrium is a pair (σ, κ) such that:
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(i) Given a policy plan σ and any history ht−1, the associated investment rule under κ,

kt(ht−1), is the value of k that solves

r∗ = E
[
(1− τ(ht−1, zt)) Fk (k, l) |zt−1

]
. (9)

(ii) Given κ, for any history (ht−1, zt), the continuation of the policy plan σ maximizes

the expected lifetime utility of the workers from t onwards subject to the budget constraint

(7).

2.1 The Worst Equilibrium

To characterize the best sustainable equilibrium, we first study the worst equilibrium. In

this model, the worst equilibrium is easy to characterize.

Define σW as a tax policy that sets τ equal to τ̄ at every history. Define κW as the

investment plan that sets capital to kW at each history, where kW solves r∗ = (1−τ̄)Fk(kW , l).

Then the following holds:

Proposition 2 (Worst Equilibrium). The pair (σW , κW ) is a sustainable equilibrium. In

particular, of all sustainable equilibria, after any history ht−1, (σW , κW ) generates the lowest

payoff to the government.

Proof. To show that (σW , κW ) is an equilibrium, note that if the capitalists believe that the

government will tax at the maximum rate in the next period, then investing kW is a best

response. Note that if after any history (ht−1, zt) the government believes that the capitalists

will follow the investment plan κW in the future, then it is optimal for the government to

tax at the maximum rate today.

To show that this equilibrium is a lower bound for the the government’s payoff, note first

that in any equilibrium at any possible history, we know that k(zt) ≥ kW . This is because

taxes are restricted to be at most τ̄ and the expected after-tax marginal product of capital

would be greater than r∗ for any k < kW . Given that c(k) = z + F (k, l)− (1− τ̄)Fk(k, l) is

increasing in k, taxing at τ̄ generates consumption at least as high as c(kW ). Starting from

any k, the government, by taxing at τ̄ , can thus guarantee a payoff at least as high as that

of (σW , κW ).

Let W (ht−1) be the payoff to the government at the beginning of period t after a history

ht−1 under the equilibrium (σW , κW ). Given the Markovian nature of the endowment shocks
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and the fact that tax rates are always τ̄ in any history in this equilibrium, we can redefine W

as a function of the current realization W (zt−1). We can use this function W to recursively

generate the sustainable equilibria. We turn to the characterization of these equilibria in the

next subsection.

2.2 The Best Sustainable Equilibrium

We can characterize the set of sustainable equilibrium payoffs by using reversion to the worst

equilibrium as the punishment to government deviations (see Chari and Kehoe 1990). We

are interested in the equilibrium that provides the government with its highest payoff. We

refer to this as the best sustainable equilibrium. We denote strategies in this equilibrium as

(σ∗, κ∗).

To set notation, we define the value function of the government under the best equilibrium

as follows. Let V (ht−1) denote the government’s expected payoff after history ht−1 at the

beginning of period t before shocks and investment are realized. This value function holds

under any history in which the government has not deviated from strategy σ∗. It is possible

to show that best equilibrium payoff can be attained through stationary strategies. To

see this, note that the punishment W is stationary, as are the budget constraint (8) and

the government’s objective function. Therefore, for any sustainable equilibrium with time-

dependent strategies, there exists a sustainable equilibrium with stationary strategies that

achieves at least as high a payoff. Given this and the Markov nature of z, we can redefine V

as a function of the current shock, V (zt−1). Note that the small open economy assumption

makes capital a choice variable each period. That is, the economy freely adjusts capital at

the end of each period through international capital flows. The best equilibrium payoff V

can be shown to solve the following Bellman equation:

V (zt−1) = max
k,c(·)

E [u(c(zt)) + βV (zt)| zt−1], (10)

subject to

E [zt|zt−1] + F (k, l)− E [c (zt) |zt−1]− r∗k = 0, (11)

and

u(c(zt)) + βV (zt) ≥ u(c̄(zt, k)) + βW (zt),∀zt ∈ Z, (12)

for

c̄(zt, k) = zt + F (k, l)− (1− τ̄)Fkk, (13)
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where W is the continuation value of the government in the worst equilibrium.

Equation (11) is the budget constraint of the government, and the inequalities (12) are

the participation constraints. Note that the presence of concave functions of choice variables

on both sides of constraint (12) implies that the constraint set is not convex. However, since

the Bellman operator in (10) is monotone, a numerical solution can be found by iterating

down using the full commitment payoff as the initial guess for V . Subsection 2.5 describes

the results of a numerical analysis.

As a first step in characterizing the best equilibrium, we prove a Folk theorem.

Proposition 3 (A Folk theorem). There exists a β∗ ∈ (0, 1) such that for all β ≥ β∗ the

Ramsey solution is sustainable, and it is not sustainable for β ∈ [0, β∗).

Proof. Note that the Ramsey and the worst equilibrium’s allocations are independent of the

value of β. Let cR(zt−1) denote consumption at time t under the Ramsey plan, conditional

on zt−1. Recall that consumption under the Ramsey plan at time t is independent of zt.

Let cW (zt) denote the consumption allocations under the worst equilibrium, given a current

endowment zt. For a given β, define Ω(zt−1, β) as β times the difference in the government’s

payoff between the Ramsey allocation and the worst equilibrium:

Ω(zt0 , β) ≡
∞∑

t=t0

βt+1−t0
∑
zt

q(zt|zt0)

[
u(cR(zt))−

∑
zt+1

q(zt+1|zt)u(cW (zt+1))

]
. (14)

The terms in square brackets on the right-hand side of (14) represent the difference in

utility of the Ramsey plan relative to that under the worst equilibrium. This difference

is strictly positive. The optimality of the Ramsey plan implies that the difference is non-

negative. That it is strictly positive follows from the fact that k∗ > kW , given that τ̄ > 0.

This implies that Ω is strictly increasing in β, is equal to zero when β = 0, and approaches

infinity as β approaches one.

We can write the participation constraints at the Ramsey allocation as

u(cR(zt−1))− u(c̄(zt, k
∗)) ≥ −Ω(zt, β). (15)

As the right-hand side of (15) is increasing in β, and the left-hand side does not vary with

β, if this constraint is satisfied at β0, then it is satisfied at any β > β0. When β = 0, the

right-hand side of (15) is zero and the constraint will not hold for some z. When β → 1, the

right-hand side of (15) approaches minus infinity, implying there is a β∗ < 1 for which all
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the participation constraints are satisfied at the Ramsey allocation for β ≥ β∗, and at least

one constraint is violated at the Ramsey allocation for β < β∗.

When the government is sufficiently patient, the Ramsey solution is sustainable. As be-

fore, this will imply a fiscal policy that does not distort capital. The interesting question is,

however, what happens when the government is not sufficiently patient to sustain the Ram-

sey solution, nor sufficiently impatient that the worst equilibrium is the unique sustainable

equilibrium.

The following lemma is the first step towards an answer. Let k(z) and c(z′|z) be the

respective policy rules that solve the Bellman equation (10) at state z.

Lemma 2. In a best equilibrium,

(i) For all states z, Fk(k(z), l) ≥ r∗;

(ii) For any state zt−1, if the participation constraints (12) are slack for a subset Zo ⊂ Z,

then c(z|zt−1) = c(z′|zt−1) for all (z, z′) ∈ Zo × Zo;

(iii) If for some (z, z′) ∈ Z×Z we have that c(z|zt−1) 6= c(z′|zt−1), then Fk(k(zt−1), l) > r∗.

Proof. A necessary condition for an optimum is that there exist multipliers λ(z) ≥ 0 and γ

such that

γ{Fk(k, l)− r∗} −
∑
zt

λ(zt)u
′(c̄(zt, k))c̄k(zt, k) = 0. (16)

Another necessary condition for an optimum is that

(q(zt|zt−1) + λ(zt)) u′(c(zt))− γq(zt|zt−1) = 0 (17)

⇔ (1 + λ(zt)/q(zt|zt−1))u
′(c(zt)) = γ. (18)

This implies that γ ≥ 0. Using the definition of c̄k (equation 13), we have that c̄k > 0.

Equation (16) then implies (i).

For part (ii), note for all z0 ∈ Z0, λ(zo) = 0 and from (17), u′(c(zo)) = γ. Strict concavity

of u implies the result.

For part (iii), note that if c(zt) is not constant for all zt ∈ Z at an optimum (by the

hypothesis of part (iii)) then strict concavity implies that λ(zt) > 0 for some zt. Given that

λ(z) ≥ 0, with strict inequality for at least one z ∈ Z, together with the fact that u′ and c̄k

are strictly positive, equation (16) implies (iii) .
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The first part of the lemma states that capital never exceeds the first-best level. Benhabib

and Rustichini (1997) show that in a deterministic closed economy model of capital taxation

without commitment, there are situations where capital is subsidized in the long run, pushing

capital above the first-best level. In our case, with an open economy, such a situation never

arises.

The second part states that the planner will always implement insurance across states

to the extent possible. If two states have unequal consumption and slack constraints, it is a

strict improvement (due to risk aversion) to narrow the gap in consumption.

The final part of the lemma states that if the government fails to achieve perfect insur-

ance, it will also distort capital. To see the intuition for this result, suppose that capital

was at its first-best level but consumption was not equalized across states. The govern-

ment could distort capital down slightly to relax the participation constraints. This has

a second-order effect on total resources in the neighborhood of the first-best capital stock.

However, the relaxation of the participation constraints allows the government to improve

insurance. Starting from an allocation without perfect insurance, this generates a first-order

improvement in welfare.

The lemma indicates that outside the Ramsey allocation, capital will be distorted down

and full insurance will be unattainable. We now turn to the question, in which states will

the Ramsey allocation fail to be sustainable.

2.3 Persistent Shocks and Amplification

In this subsection we prove our main result that investment is distorted “first” following low

shocks.

A careful look at the government’s program (10) reveals that what links one period to

the next is the conditional distribution over the next period’s endowment. In particular, as

seen from the budget constraint (8), the current shock determines the expected resources to

be divided next period between domestic and foreign agents.

In a world in which the current endowment shocks are signals about the distribution

of endowment shocks tomorrow, the promises of future taxation will be functions of the

current state. How do these promises change with the state of the economy? Is it harder for

a government to make promises of not taxing capital following good times or bad?

We begin by defining “persistence” and “full support” in our framework:
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Definition 2 (Persistent Shocks and Full Support). The endowment shocks are persistent

if E(z′|z) is strictly increasing in z. The process z has full support if for every pair

(z′, z) ∈ Z × Z, q(z′|z) > 0.

Our main proposition is as follows:

Proposition 4 (Distortion in Bad States). Suppose that the endowment process is persistent

and has full support. In a best sustainable equilibrium, if k(z) = k∗ for some z ∈ Z, then

k(z′) = k∗ for all z′ > z.

Proof. Consumption under full commitment can be written as:

cR(z) = E(ẑ|z) + F (k∗, l)− rk∗,

where k∗ is such that Fk(k
∗, l) = r. As stated before, consumption under commitment

is independent of the current realization of the endowment shock, ẑ (perfect intra-period

insurance). The fact that k(z) = k∗ implies that the first-best capital level is attained

following a z shock. We know then from lemma (2) and the full support assumption that

for any ẑ following z, c(ẑ|z) = cR(z). This implies that all the participation constraints

following z are satisfied:

u(cR(z)) ≥ u(c̄ (ẑ, k∗)) + β(V (ẑ)−W (ẑ)),∀ẑ ∈ Z. (19)

The full support assumption guarantees that following z, a participation constraint exists

and is satisfied for every element of Z. Note that all terms on the right-hand side of (19)—

the continuation values as well as the deviation consumption — depend only on ẑ and not

on z. Note as well that cR(z) depends on z only through E(ẑ|z). Therefore, the persistence

assumption implies that cR(z) is increasing in z. Therefore, for z′ > z, cR(z′) > cR(z). It

follows from (19) that the participation constraints are satisfied at the Ramsey allocations

for all z′ > z.

We postpone discussion of the intuition of this result until we prove one more proposition.

The above proposition concerns the case in which the Ramsey allocation is sustainable fol-

lowing certain states but is not sustainable following others. The theorem then characterizes

the nature of these two sets. This leaves open the question of whether such a situation ever

arises. That is, we have not ruled out the possibility that either the Ramsey allocation is

sustainable for all states or it is sustainable for no state. Proposition 5 proves that there

always exist discount rates for which the main proposition is relevant.
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Define V (z|β), and W (z|β) as the best equilibrium and worst equilibrium value functions

(as before), but in this notation we make explicit that the payoffs are functions of β. As a

first step toward Proposition 5, we note that at the β∗ of the Folk theorem,

Lemma 3 (Continuity). For all z ∈ Z, the value function, V (z|β), is continuous at β∗.

Proof. See Appendix B.

We now show that there exists a range of βs for which our main proposition is relevant.

Proposition 5. Suppose that the endowment process is persistent and has full support.

Then, there exists β0 such that for all β ∈ (β0, β
∗), we can define an associated zβ < z̄ with

k(z) < k∗,∀z ≤ zβ and k(z) = k∗,∀z > zβ.

Proof. Define ICR(z′, z|β):

ICR(z′, z|β) ≡ u(cR(z)) + βV (z′|β)− u(c̄(z′, k∗))− βW (z′|β).

By definition (and full support) note that at β∗, ICR(z′, z|β∗) = 0 for some z′ ∈ Z. Note

as well that persistence implies cR(z̄) > cR(z). Therefore, ICR(z′, z̄|β∗) > ICR(z′, z|β∗) ≥
0,∀z′ ∈ Z. By continuity in β of V (z|β) at β∗ (from the previous lemma), we can find a β0

such that for all β ∈ (β0, β
∗), ICR(z′, z̄|β) ≥ 0,∀z′ ∈ Z. Therefore, for each β ∈ (β0, β

∗),

there exists at least one element of Z such that k(z) = k∗. By the Folk theorem and part

(iii) of Lemma 2, there is at least one z ∈ Z such that k(z) < k∗. The additional properties

of zβ follow from Proposition 4.

The intuition behind Proposition 4 is as follows. If shocks have persistence, consumption

in the Ramsey plan will be higher following a higher endowment shock. The deviation

consumption and the continuation values depend only on the realized shock next period.

Thus, the gains to deviation will be greater in any state following a recession. Consequently,

the government may not be able to commit to the Ramsey taxes (which are zero on average),

following a low shock. Therefore, capitalists expect average taxes to be positive, leading to

sub-optimal investment. The proposition implies that the inability to commit may result in

an economy in which capital fluctuates, despite a constant optimal capital level.

Proposition 5 tells us more: Given any strictly concave utility function, and any shock

process that satisfies persistence and full support, there always exists a non-empty region of

government impatience (as measured by β) such that, in the best sustainable equilibrium,

investment is distorted for low realizations of the endowment and undistorted for high.
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Proposition 4 presents a general result. It does not require any particular shape of the

utility function other than concavity. In particular, we do not need a full characterization of

the continuation values V and W . However, this generality relies on fairly strong assumptions

regarding asset markets, in particular the absence of government debt. We discuss this

further in Section 3.2.

A common feature of models of insurance with limited commitment is that the partic-

ipation constraints tend to bind when the endowment is high. This results from the fact

that insurance calls for payments during booms and inflows during downturns. However, in

precisely an environment that emphasizes insurance, we show that distortions of investment

can occur during recessions despite undistorted investment during booms. In fact, even if

the participation constraints bind only in high-endowment states and these states are least

likely following a recession (that is, there is persistence), it is during recessions that the

capital margin will first be distorted.

The proposition relies on the fact that the utility function is strictly concave. If utility

is linear, the government is “free” to allocate consumption across states to minimize the

temptation to tax capital ex-post and maximize expected output. We can show that in

this case, investment is a (perhaps sub-optimal) constant, independent of the history of

shocks. There is no propagation of the shocks through fiscal policy. It is, then, the desire to

provide insurance to risk-averse agents (in the absence of commitment) that motivates the

government to distort investment downward during recessions.

Note also that if the endowment follows an i.i.d. process, distortions to investment are

independent of the current shock. Under an i.i.d. process, the conditional distribution of

tomorrow’s endowment is independent of today’s realization. This implies that V and W

are constants, as is consumption under the Ramsey plan. Therefore, gains from deviation

are independent of previous shocks. Investment may be distorted, but will be constant.

The benchmark model considers the case of an additive “endowment” shock. Under fairly

standard restrictions on either the production function or the utility function, the result

extends to a multiplicative “productivity” shock. The main difference between additive

and multiplicative shocks is that first-best capital is not constant in the latter case. This

implies that the gains from expropriation depend on the expected shock, both through the

promised consumption (as before) and through the (now changing) level of capital. This

case is explored in detail in Appendix A.

Finally, we stress that the result does not depend crucially on the benevolence of the

government toward all domestic agents. As the derivation makes clear, the important ele-
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ment is that the government is maximizing a concave utility function using linear taxes on

capital. The analysis holds if “consumption” in the government’s objective function repre-

sents consumption by a subset of domestic agents, such as government employees or political

insiders. The key assumption is that the favored constituents are risk averse and lack access

to financial markets.

2.4 Going Beyond the Main Proposition

In this subsection we explore to what extent the intuition that we obtained in a neighborhood

of the first-best carries over to the rest of the parameter space. Proposition 4 characterizes

the optimum for parameters in a neighborhood of the first best. Our result there was quite

general: As long as the shocks are persistent, capital is distorted first in states where the

endowment is low. However, it is also of interest to know what would happen when we move

away from the first best. To streamline the analysis, we assume in this subsection that τ̄ = 1.

For expositional purposes, we decompose the response of the optimal capital to a change

in z into two separate effects. The “income” effect captures the response of capital to an

increase in the expected endowment, holding constant the probabilities. The “substitution”

effect captures the response to a change in probabilities, holding constant the expected

endowment. This language is meant to be suggestive and does not correspond precisely to

the standard usage in demand theory.

More precisely, consider an expected endowment µ and probabilities P = [p(z), ..., p(z̄)].

Given a value function V (z), define

Ṽ (P, µ; V ) = max
k,c(z′)

∑
z′

p(z′){u(c(z′)) + βV (z′)}, (20)

subject to ∑
z′

p(z′)c(z′)− F (k) + rk ≤ µ,

u(c̄(z′, k))− u(c(z′)) + β (W (z′)− V (z′)) ≤ 0, ∀z′ ∈ Z.

The solution to this relaxed problem yields a policy function for k, k̃(P, µ; V ). To relate

the relaxed problem to the original problem of interest, note that the optimal k(z) coincides

with k̃ at an endowment z when p(z′) = q(z′|z),∀z′ ∈ Z, and µ =
∑

z′ q(z
′|z)z′.

We now consider the response of k̃ to an increase in µ as well as a change in P . In both
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experiments, we take the continuation value function V (z′) as given. This reflects the fact

that the original problem’s state variable z influences ex ante payoffs through its effect on

the probability measure over next period’s endowments. We therefore consider the impact

on investment of alternative values of z by separately exploring the impact of changes to µ

and P , holding all else equal.

The proofs in this subsection rely on the convexity of the problem. Recall that the issue

of convexity is complicated by the role of capital in the incentive compatibility constraints.

We provide sufficient conditions on the utility function to ensure that a transformation of

(20) is convex. Specifically,

Assumption 6. Let U(x) ≡ u′′(x)

(u′ (x))
2 . U(x) is non-decreasing in x.

The condition that U(x) is non-decreasing is satisfied by power utility with a coefficient of

relative risk aversion less than or equal to 1. Note that this is a sufficient condition for

convexity, and the results may still hold for more general utility functions.

In the Appendix, we prove the following proposition.

Proposition 6. Under Assumption 6 k̃ is non-decreasing in µ, and strictly increasing if

k̃ < k∗.

Proposition 6 states that an increase in expected endowment, all else being equal, leads

to a higher level of capital. For intuition, consider the case when the endowment has two

states, high and low. Let cH and cL denote consumption in the high and low state (next

period), respectively, under the optimal allocation. Suppose that the optimum allocation,

conditional on the current shock, implies a binding IC constraint next period in the high

state, but not in the low state. At this optimum, it must be the case that any further

increase in k̃ requires a decrease in cL in order to maintain the high state’s IC constraint.

(If not, then the government could increase consumption in all states by raising k̃, and so

the original allocation could not have been an optimum.) The optimal k̃ is such that the

loss from lowering cL exactly offsets the gain from increasing output through increased k̃. In

this way, the government is forced to trade off higher income from additional capital against

less insurance. Now, suppose that we provide the government with an additional unit of

expected endowment. The marginal utility is highest in the low state and so the government

will raise cL. Recall that at the old cL it was indifferent to raising k̃ and lowering cL. At the

new, higher cL it will therefore strictly prefer to raise k̃. A similar intuition holds if it is the

low state’s IC that binds or if all constraints bind.
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We now consider a change to the probability measure P , holding constant the expected

endowment µ. Unlike the case with the scalar µ, there are numerous dimensions along which

we can perturb the probability measure. We consider a change in probability that lowers

the probability on one state and increases the probability on all other states. In particular,

we lower the probability on the state with the lowest consumption.

More formally, let c(z′) denote consumption in state z′ ∈ Z under the optimal allocation

associated with probability vector P . Define z′0 to be the state in which consumption is

lowest. That is, c(z′0) ≤ c(z′),∀z′ ∈ Z. If there is more than one state with the minimal

consumption, without loss of generality we arbitrarily select one. Define a new probability

measure P̂ that satisfies the following: P̂ (z′0) < P (z′0) and P̂ (z′) > P (z′),∀z′ 6= z′0. We

consider only P̂ such that the constraint set is non-empty at (P̂ , µ). Let k̃(P̂ ) and k̃(P )

denote the optimal capital stocks under P̂ and P , respectively. In the appendix, we prove

the following:

Proposition 7. Under Assumption 6, k̃(P̂ ) ≤ k̃(P ), with a strict inequality absent perfect

intra-period insurance (that is, if ∃z′ ∈ Z such that c(z′) > c(z′0)).

The intuition, like that of the “income” effect, stems from trading off an increase in

capital against a decrease in consumption in states for which the IC constraints are slack.

Raising the probability of the high-consumption states raises the cost of satisfying the IC

constraints.

The algebra of the two-state case clarifies this point. Suppose that cL < cH and the

IC constraint is slack for cL. Consider the optimal allocation under the original probability

measure. The objective is equivalent to maximizing p(zH)u(cH)+p(zL)u(cL), and the budget

constraint implies

cL =
F (k̃)− rk̃ + µ− p(zH)cH

p(zL)
.

The budget constraint highlights that an increase in p(zH)/p(zL) raises the cost of consump-

tion in the high state in terms of forgone consumption in the low state. However, this must

be balanced by the fact that the high state has a larger weight in expected utility.

To sign these competing effects, consider a marginal increase in k̃. To satisfy the IC

constraint, this requires an increase in cH , which we denote dcH

dk̃
. The change in the objective

function is therefore

p(zH)u′(cH)
dcH

dk̃
+ p(zL)u′(cL)

(
Fk − r − p(zH)dcH

dk̃

p(zL)

)
.
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Equating this to zero and rearranging implies at the optimum:

Fk − r − p(zH)

(
1− u′(cH)

u′(cL)

)
dcH

dk̃
= 0. (21)

Now at the optimal k̃∗, consider an increase in the probability of the high state to p̂(zH) >

p(zH). We now show that the marginal value of increasing k̃ (equation 21) becomes negative

at k̃∗. Note that p̂(zH) > p(zH) directly reduces the left-hand side of (21). Any reduction

in cH would violate the (originally binding) IC constraint in the high state, given that k̃

remains at k̃∗. Holding k̃ constant at k̃∗, the budget constraint requires that any increase in

cL be accompanied by a decrease in cH , which is not incentive compatible. Therefore, at k̃∗

and p̂(zH), the marginal return to increasing k̃ is negative. Therefore, the optimal capital

under P̂ will be lower than under P .

Note that Proposition 7 concerns a shift of probability from low-consumption states

to high-consumption states. Whether this corresponds to shifting probability from low-

endowment states to high-endowment states depends on the parameters of the problem. In

the numerical simulations discussed in the next subsection, it is always the case that (next

period’s) consumption is lowest when the (next period’s) endowment shock is lowest.

To move from the relaxed problem to our original problem, we set p(z′) = q(z′|z) and µ =∑
z′ q(z

′|z)z′. Now a change in the current state z today has two effects. With persistence,

an increase in z increases µ. All else equal, this leads to a higher capital stock. However, an

increase in z also reallocates probability mass from low-endowment states to high-endowment

states. As shown by Proposition 7, this change in probabilities may reduce capital if it raises

the likelihood of high consumption states.

Note that the substitution effect is zero under full insurance. Thus, if the Ramsey

allocation is sustainable under z, there is no negative substitution effect on capital as we

move from z to ẑ > z. This leaves only the positive income effect. This is why we can

unambiguously sign the impact on capital of an increase in z at the Ramsey allocation. As

we move away from the Ramsey allocation, whether the income effect or substitution effect

dominates depends on the parameters of the problem. In the next subsection, we explore

such cases numerically.

2.5 A Numerical Example

In this subsection we explore a numerical example that illustrates the previous analytical

results and explores cases in which capital is higher following a low shock. We should note
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that this exercise is designed to shed light on the analytical results and is not meant to be

a formal calibration.

To solve the problem numerically, we exploit the monotone nature of the Bellman operator

and iterate the value function starting from the Ramsey allocation, which is an upper bound

to the no-commitment value function. We consider two discrete values for z: zH = 1 and zL =

0.8. Utility is logarithmic in consumption, and production is Cobb-Douglas (specifically,

F (k, l) = 0.1k0.33l0.67). The probability of z′ = zH conditional on z = zH is set to 0.89. The

probability of z′ = zL conditional on z = zL is also set to 0.89, making the transition matrix

symmetric.

We solve for the optimal allocation under a range of discount parameters, β. For each

β, we obtain the optimal capital stocks, kH and kL, following low- and high-endowment

shocks, respectively. We plot the two series against the corresponding β in Figure 1, Panel

A. Panel B plots the ratio of kH to kL. Note that for a given β, the comparison of kH to

kL corresponds to comparing capital following a high- versus a low-endowment state along

a particular equilibrium path.

As can be seen in Region I of each figure, kH = kL = kW when the agents are extremely

impatient. That is, the myopia of the domestic agents makes the Markov equilibrium the

only sustainable equilibrium.

As domestic agents become more patient, we enter Region II, in which the kH > kL. In

this region, moving from zL to zH raises the expected endowment sufficiently that investment

is greater following a high endowment. That is, the income effect of Proposition 6 dominates

the substitution effect of Proposition 7.

Under the parameterization of the numerical example, there is a range of βs in which

the substitution effect dominates. This is Region III. In this region, kH < kL. Recall that in

this situation, an increase in q(zH)/q(zL) sufficiently raises the price of sustaining capital in

terms of forgone consumption in the low state that the government opts to reduce capital.

We should note that the existence of such a region is not guaranteed — there are other

parameterized examples in which kH ≥ kL for all β ∈ (0, 1).

As β increases, the government is able to achieve better insurance and still satisfy incen-

tive compatibility. Better insurance makes the value of expected consumption less sensitive

to relative probabilities. That is, insurance reduces the impact of raising q(zH)/q(zL) on the

expected consumption term in the budget constraint. (Recall from Proposition 7 that the

substitution effect is zero under perfect insurance.) As the substitution effect diminishes,

the income effect dominates again. That is, kH > kL (Region IV).
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In Region V, kH = k∗ > kL. This region corresponds to Proposition 4 and the range

(β0, β
∗) in Proposition 5. Specifically, the first-best capital stock (and the Ramsey consump-

tion allocation) is incentive compatible following a high shock, but not a low shock.

Finally, in Region VI, capital is always at the first-best level and the Ramsey allocation

is implementable following all endowment shocks. This corresponds to the folk theorem

(Proposition 3), which states that if agents are sufficiently patient, the Ramsey allocation is

sustainable.

3 Enriching the Asset Markets

The main result of the previous sections concerns how the combination of incomplete markets

and lack of commitment may lead to fiscal policies that prolong and deepen an economy’s

response to a shock. The analysis assumed an extreme form of incompleteness by ruling out

all financial transactions. In this section, we discuss two extensions that enrich the menu of

available assets.

The first extension adds financial contracts that allow the government to insure across

shocks within a period, but not move resources across periods. Importantly, we assume that

the credibility issues inherent in taxation also apply to the government’s financial contracts.

Subject to a feasibility condition on taxes, we show that this environment is isomorphic to

the one described in the previous section.

The second extension adds a bond that allows the government to smooth consumption in-

tertemporally. If the domestic agents discount the future at the rate of interest, consumption

under the Ramsey allocation is a constant. That is, the Ramsey allocation replicates com-

plete markets. This breaks the link between the history of shocks and the credibility of the

Ramsey allocation. We conclude the section with some remarks regarding the intermediate

case between our benchmark model and the complete markets case.

3.1 Static Insurance Markets

In this subsection, we extend the model to include “static” insurance contracts. That is,

at node zt−1, the government can buy and sell state-contingent assets that pay out a(zt) at

history zt. However, the government’s portfolio is subject to the constraint E(a(zt)|zt−1) = 0.

The constraint implies that under risk-neutral pricing, the net value of the government’s

portfolio at the start of a period is always zero. The inability to carry net positions across
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periods is why the insurance contracts are considered “static.”

The budget constraint is now given by

c(zt) = zt + F (k(zt−1), l)− (1− τ(zt))Fk + a(zt). (22)

If the government deviates, it also loses its insurance claims:

c̄ (zt, k) = zt + F (k, l)− (1− τ̄) Fkk. (23)

We now state the following equivalence result:

Proposition 8. For any equilibrium with {τ(zt), a(zt)}, there exists a set of taxes τ̃(zt) that,

if less than or equal to τ̄ , supports an equilibrium that uses no insurance (ã(zt) = 0) and

delivers the same utility at any history.

Proof. Define τ̃(zt) at k = k(zt−1) by equating net transfers to workers:

τ(zt)Fk(k, l)k + a(zt) = τ̃(zt)Fkk.

This implies

τ̃(zt) = τ(zt)− a(zt)

Fkk
.

By construction, the budget constraint (22) implies that the consumption allocation under

(τ(zt), a(zt)) is equivalent to that under (τ̃(zt), 0) for any k. Since E(a(zt)|zt−1) = 0, we

have E(τ̃(zt)) = E(τ(zt)) and therefore the capital stock is the same under both allocations.

The deviation consumption c̄ (zt, k) is unchanged. As long as τ̃(zt) satisfies the feasibility

constraint τ̃ ≤ τ̄ at each history, the sequence of τ̃(zt) is an equilibrium delivering the original

allocation.

The equivalence rests on the fact that taxation replicates intraperiod insurance due to the

ex post inelasticity of capital. Therefore, transfers across states achieved via taxation have

the same efficiency implications as those achieved using financial contracts. Moreover, the

incentive to deviate depends only on net transfers from workers, regardless of whether they

take the form of taxes/subsidies to capital or insurance payments. The latter statement,

of course, requires the condition that the government face the same inability to commit

to financial promises as it does in promises regarding fiscal policy. This implies that the

incentive compatibility of an allocation does not depend on whether it is achieved through

insurance contracts or taxation.
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Remark. While taxation of capital substitutes for intraperiod insurance, the assumptions

of the benchmark model rule out the use of taxes to replicate more complicated assets.

The (implicit) assumption of anonymity of capital rules out taxing individual capitalists at

different rates. In particular, the government cannot promise capitalists that current actions

will be compensated by payments beyond the next period. This rules out using taxation to

replicate long-term financial contracts. Moreover, the timing of the budget constraint implies

that period t’s transfers must come from current income and not out of new investment

that period. That is, the government cannot use current investment to pay transfers and

then compensate investors from future endowments. Nor can it use the current endowment

to subsidize investment for the next period, thereby indirectly investing in capital. This

segmentation of each period’s budget constraint rules out using taxation to replicate bonds.

3.2 Debt

The reason the credibility of the Ramsey allocation varies with the shock in our benchmark

model is that consumption under the Ramsey allocation fluctuates as well. This feature is

preserved under static insurance markets due to the restriction on intertemporal contracts.

In this subsection, we introduce a one-period bond. Given the equivalence between taxation

and intraperiod insurance demonstrated in the previous subsection, this is sufficient (subject

to feasibility of taxes) to replicate the complete markets allocation under full commitment.

More formally, the value function of the government under full commitment solves the

following Bellman equation:

V (z, b) = max
k,c(z′),b′(z′)

E [u(c(z′)) + βV (z′, b′(z′))|z] ,

subject to

E [c(z′)|z] + r∗k + E [b′(z′)|z] ≤ E [z′|z] + F (k, l) + (1 + r∗)b, (24)

where b is the level of assets at the start of the period. Define γ to be the Lagrange multiplier

on (24). The first-order conditions are

u′(c(z′)) = γ, ∀z′ ∈ Z (25)

βVb′(z
′, b′(z′)) = γ, ∀z′ ∈ Z (26)

Fk = r∗. (27)

Equation (27) implies the familiar result that capital is always first best under the Ram-
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sey allocation. The envelope condition, Vb(z, b) = (1 + r∗)γ, together with the first-order

conditions, yields the usual Euler equation:

u′(c(z, b)) = β(1 + r∗)E [u′(c(z′, b′(z′))|z] . (28)

From (25), we have that consumption is equalized across states. The Euler equation then

implies that along any history

u′(c(zt)) = β(1 + r∗)u′(c(zt+1)). (29)

If we assume β(1+ r∗) = 1, from (28) and (29) we have that consumption is equalized across

time and across states.

The Ramsey allocation therefore replicates the complete markets allocation. To maintain

a constant level of consumption, the government uses a combination of taxes and debt. In

response to a low shock, the government taxes capital and transfers part of the receipts to

workers. If shocks are persistent, a shock today that is lower than the previous period’s

shock reduces expectations of future endowments. To smooth consumption going forward,

the government saves part of the tax receipts. That is, the receipts from capital taxation in

a low state insure against the innovation to the entire present discounted value of expected

endowment that results from a low-endowment shock. The government’s wealth leaving the

period then exactly offsets the lower expected endowment stream.

Conversely, if today’s shock is high relative to the previous period’s shock, the government

borrows/dis-saves (the change in the present discounted value of expected endowment) and

subsidizes capital. The government then leaves the period with less wealth but a higher

expected endowment stream. The combination of taxes and subsidies leaves ex ante capital

taxes at zero and investment at its first-best level. We saw in Section 2 that taxes alone were

not sufficient to smooth consumption when shocks were persistent. This was due to the fact

the government had no vehicle to save tax receipts.

Note that, perhaps counterintuitively, the government borrows as the endowment in-

creases and saves as the endowment falls. This is because taxation is used to insure the

entire discounted value of the shocks. Persistence implies that the taxes/subsidies dominate

the current endowment realization. The feature that the government borrows in high states

and saves in low states is consistent with the evidence of countercyclical budget balances

observed in the data for developing-country governments.

Note, as well, we have assumed that the complete markets allocation can be achieved
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through a combination of debt and taxes that does not violate the upper bound on tax rates

τ . This assumption is less innocuous than in the benchmark model. If shocks are sufficiently

persistent, this assumption is likely not warranted given the fact that tax revenues are being

used to insure against the entire discounted value of a shock.

We now ask whether the Ramsey allocation is incentive compatible absent commitment.

We assume that, following a deviation, the government loses its assets and does not repay its

debts. The continuation value after a deviation is then identical to the benchmark model’s

W (z). The incentive constraints are now

u(c(z′) + βV (z′, b′(z′)) ≥ u(c̄(k, z′)) + βW (z′), ∀z′ ∈ Z.

Note that under the Ramsey plan and β(1 + r∗) = 1, consumption is a constant c∗. We can

solve for the present discounted value of utility:

u(c(z′)) + βV (z′, b′(z′)) =
u(c∗)

1− β
.

Therefore, the value of the Ramsey allocation at any point in time is independent of the

history of shocks. In particular, the gains from deviating at any state zt are independent of

the previous shocks zt−1.

The ability to completely smooth consumption breaks the link between the histories and

the gains from deviations. Therefore, it remains the case that if the Ramsey allocation is

achievable at z, it is achievable at any ẑ > z, as claimed in Proposition 4. However, the

reverse is true as well: If the Ramsey allocation is achievable at z, it is achievable at any

ẑ < z as well. Put another way, if the Ramsey allocation is not incentive compatible for one

z ∈ Z, it never satisfies incentive compatibility.

Remark. Note that this analysis of the incentive compatibility of the Ramsey allocation

assumes β(1 + r∗) = 1. In this case, there are stochastic processes for endowment under

which the Ramsey plan is sustainable. However, when β(1 + r∗) < 1, the Ramsey plan

would require a forever-falling consumption profile, which cannot be incentive compatible.

A reasonable conjecture is that such “impatience” drives the government to an incentive-

compatible borrowing limit and that consumption eventually fluctuates in response to en-

dowment realizations. The intuition of our benchmark model would then remain relevant,

despite the potential for the government to borrow and lend.
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4 Conclusion

In this paper, we have explored the question of optimal fiscal policy in an open economy when

the government lacks commitment and markets are incomplete. To provide a clear exposition

of the mechanism underlying amplification, we considered a parsimonious specification in our

benchmark model. The workers in this model are subject to endowment shocks that they

cannot insure against. The government, which cares only about the workers (or a preferred

subset of domestic agents), provides insurance through the use of linear taxes on capital.

The insurance motive generates countercyclical taxes, but does not distort investment, under

commitment.

It is when the government lacks commitment that fiscal policy becomes distortionary

in our environment. We show that the incentive to deviate from the Ramsey allocation is

greatest following low shocks. This reduces the government’s credibility following a recession

and depresses investment. In other words, the inability to commit, combined with the desire

to provide insurance, generates a fiscal policy that prolongs and deepens recessions.

A key to the mechanism is that consumption is not perfectly smoothed intertemporally.

We explored in detail the case of no dynamic financial contracts. At the other extreme, if

the government can replicate the complete markets allocation, we show that the incentive

to deviate is no longer history dependent. However, a reasonable conjecture is that if the

government cannot smooth consumption perfectly over time, the amplification mechanism

remains at work. We leave a formal exploration of this “intermediate” case to future research.

Our model is based on two key features that we think are important in characterizing

emerging markets: imperfect access to financial markets and imperfect commitment. The

latter may reflect the fact that emerging-market governments (or their respective constituen-

cies) have relatively high discount rates. The paper demonstrates that in this environment,

even a completely benevolent government would pursue policies that amplify and prolong

shocks to output.
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Appendix

A: Productivity Shocks

In this appendix, we consider the case when z is a productivity shock. Specifically, the

production function takes the form

y = zF (k, l), (30)

where F is constant returns to scale in k and l. Profit maximization by firms and capitalists’

investment decisions imply the following two conditions:

ztFl

(
k
(
zt−1

)
, l
)

= w
(
zt
)
, (31)

r∗ = E
[(

1− τ
(
zt
))

zt|zt−1
]
Fk

(
k
(
zt−1

)
, l
)
. (32)

The main deviation from the benchmark setup is that with persistent shocks, the optimal

level of capital will vary with the state zt−1. However, all the results of Section 2.3, with

the exception of Proposition 4, extend to the multiplicative case with small alterations to

the proofs. For instance, as in Proposition 1, when the government has full commitment,

workers are completely insured intraperiod. Further ex ante taxes, E(ztτ (zt)), on capital

equal 0, and capital is at its first-best level. Proposition 4 does not extend immediately

because k∗(zt−1) is increasing in zt−1 under persistence.

Consumption under full commitment can be written as:

cR(zt|zt−1) = E(zt|zt−1)F (k∗(zt−1), l)− r∗k∗(zt−1), (33)

where k∗(z) satisfies equation (32). As stated before, consumption at time t under com-

mitment is independent of the realization of the productivity shock at time t, zt. Autarkic

consumption similarly can be written as

c̄ (zt, k
∗(zt−1)) = zt (F (k∗(zt−1), l)− (1− τ̄)Fk(k

∗(zt−1), l)) k∗(zt−1). (34)

Since persistence implies that E(zt|zt−1) is increasing in zt−1, the first-best capital stock is

larger following a high shock. Moreover, as c̄ (zt, k
∗(zt−1)) is increasing in k∗, a larger capital

stock, all else equal, raises the gains to deviation.

The extension of Proposition 4 to this environment can be stated as follows:
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Proposition 9. Suppose that the multiplicative shock process is persistent and has full sup-

port. In a best sustainable equilibrium, if k(z) = k∗(z) for some z ∈ Z, then k(z′) = k∗(z′)

for all z′ > z if either of the following statements holds:

(i) The utility function is of the form u(c) = c1−θ

1−θ
with θ ≥ 1 and the production function’s

“capital share,” Fkk
F

, is non-increasing in k; or

(ii) The production function is Cobb Douglas, F (k, l) = kαl1−α, and the shocks are such

that z̄ ≤ (1−α)
α

E(ẑ|z).

Proof. As in the proof of the Proposition 4, we proceed by showing that, for any zt = ẑ such

that the IC constraint binds following zt−1 = z, u(cR(ẑ|z))−u(c̄(ẑ, k∗(z))) is increasing in z.

Defining ∆(z, ẑ) ≡ u(c̄(ẑ, k∗(z)) − u(cR(ẑ|z)), an equivalent statement is that ∆z(z, ẑ) ≤ 0

if the IC constraint binds at ẑ following z. The fact that V (ẑ) ≥ W (ẑ),∀ẑ ∈ Z, implies that

∆(z, ẑ) ≥ 0 when the IC constraint binds at ẑ. The expressions for cR and c̄ are given by

equations (33) and (34), respectively, with zt = ẑ and zt−1 = z. Substituting, we have

∆ = u [zt (F − Fkk + τ̄Fkk)]− u [E (zt|zt−1) (F − Fkk)] , (35)

where k is shorthand for k∗(z) and F for F (k∗).

Case (i): Under case (i), u(c) = c1−θ

1−θ
, θ ≥ 0 and Fkk

F
is non-increasing in k. Substituting and

factoring out F − Fkk gives

∆ = (F − Fkk)1−θ

(
u(ẑ)

(
F − (1− τ̄)Fkk

F − Fkk

)1−θ

− u(E(ẑ|z))

)
.

As k = k∗(z) is increasing in z, the first term on the right is weakly decreasing in z, given

that θ ≥ 1. Given that the the second term is non-negative when the IC constraint binds,

the net effect of the first term is to reduce ∆ as z increases. The term u(E(ẑ|z) is increasing

in z, given persistence. The fact that this term is preceded by a minus sign also implies

that this reduces ∆ in response to an increase in z. It is therefore sufficient to show that(
F−(1−τ̄)Fkk

F−Fkk

)1−θ

is non-increasing in z. Or equivalently, given that θ ≥ 1 and that k is

increasing in z, we need to show that F−(1−τ̄)Fkk
F−Fkk

is non-decreasing in k. Differentiating and

with some algebra, this is equivalent to showing that 1 − Fkk
F
≥ −Fkkk

Fk
. However, this is

equivalent to the statement that Fkk
F

is non-increasing in k, which is the additional premise

of case (i).

Case (ii): Under case (ii), the production function is Cobb-Douglas and the shocks satisfy
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z̄
E(zt|zt−1)

≤ (1−α)
α

. The Cobb-Douglas assumption implies that at k = k∗(z) ,

E(ẑ|z)Fkk = E(ẑ|z)αF = r∗k.

Using this, we can rewrite the Ramsey consumption allocation as cR(ẑ|z) =
(

1−α
α

)
r∗k.

Similarly, we have c̄(ẑ, k) = ẑ (F − (1− τ̄)Fkk) = ẑ(1− α(1− τ̄))F . Substituting, we have

∆(z, ẑ) = u (ẑ(1− α(1− τ̄))F )− u

((
1− α

α

)
r∗k

)
≡ H(k).

Given that k is increasing in z, we need to show that H(k) is non-increasing in k. Differen-

tiating, we have

Hk = u′(c̄)ẑ(1− α(1− τ̄))Fk − u′(cR)
1− α

α
r∗.

At a binding IC constraint, cR ≤ c̄. This implies, with some rearranging, that a sufficient

condition for Hk ≤ 0 is:

ẑ(1− α(1− τ̄))Fk ≤
1− α

α
r∗.

Using the fact that r∗ = E(ẑ|z)Fk, we need

ẑ(1− α(1− τ̄)) ≤ 1− α

α
E(ẑ|z).

Given that ẑ(1− α(1− τ̄)) ≤ z̄, a sufficient condition for this to hold is

z̄ ≤ 1− α

α
E(ẑ|z). (36)

This is satisfied by the premise of case (ii). Note that persistence implies that if (36) holds

for zt−1 = z, it holds for any zt−1 > z as well.

Proposition 9 provides sufficient conditions for our main result that distortions, if they

occur, always occur in low-productivity states. These conditions are satisfied under many

standard assumptions. For example, case (i) is satisfied by a Cobb-Douglas production

function and CRRA utility with a coefficient of relative risk-aversion greater than or equal

to one.

The conditions of case (ii) rule out the possibility that capital responds “too much” to

current productivity. Recall that the multiplicative case is complicated by the fact that

the first-best capital stock is not constant, but generates an incentive to deviate in periods

following a positive shock that may offset the increase in equilibrium consumption. The

Cobb-Douglas production function with enough curvature (that is, α small), implies that
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first-best capital is sufficiently insensitive to shocks that the movement in capital does not

dominate the response of the Ramsey consumption level in determining whether the IC

constraints bind.

B: Proof of Lemma 3

We repeat Lemma 3:

Lemma 3 (Continuity). For all z ∈ Z, the value function, V (z|β), is continuous at β∗.

Before the proof, we note that we cannot appeal directly to the Theorem of the Maximum

because it is not necessarily the case that the constraint correspondence is continuous in β.

Proof. The Folk theorem states that the Ramsey allocation is sustainable for β ≥ β∗. Recall

that the Ramsey allocation is invariant to β and the payoffs depend on β only through the

direct discounting. This implies that V (z|β) is right continuous at β∗.

To prove left continuity at β∗, we first define the following quantities:

ĉ(z, k) ≡ E(z′|z) + F (k)− rk

V̂ (z, k|β) ≡
∞∑

t=0

∑
zt

βtq(zt|z)u(ĉ(zt, k))

Ĥ (z′, z, k|β) ≡ u(ĉ(z′, k)) + βV̂ (z′, k, β)− u(c̄(z′, k))− βW (z′|β).

That is, ĉ(z, k) is the consumption allocation that satisfies the budget constraint (8) when

consumption is constant across states next period and capital is k. V̂ (z, k|β) is the expected

payoff from consuming ĉ every period, holding constant k. Finally, Ĥ(z′, z, k|β) is non-

negative when the consumption plan ĉ(z, k), together with the constant capital stock k,

satisfies the participation constraint at z′ following z. Several remarks follow directly from

these definitions:

(a) For all z ∈ Z, V̂ (z, k|β) is continuous in β and k;

(b) V̂ (z, k∗, β∗) = V (z|β∗),∀z ∈ Z, as k∗ is optimal and sustainable at β∗;

(c) Ĥ(z′, z, k∗|β∗) ≥ 0,∀(z′, z) ∈ Z × Z, or the Ramsey allocation is sustainable at β∗.

We will use the fact that

Ĥk(z
′, z, k∗|β) < 0,∀(z′, z) ∈ Z × Z, (37)
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where Ĥk = ∂Ĥ
∂k

. This follows from (a) k∗ maximizes ĉ(z, k) and V̂ (z′, k, β), and (b) c̄k > 0.

Equation (37) implies that small reductions in k from k∗ strictly relax the participation

constraints (which may already be slack). This, plus the fact that V̂ is continuous in k and

both V̂ and W are continuous in β, implies that there exist k0 < k∗ and β0 < β∗ such that

the participation constraints hold in the set N0 ≡ (k0, k
∗]× (β0, β

∗],

Ĥ(z′, z, k, β) ≥ 0,∀(k, β) ∈ N0.

By definition, continuity of V̂ (z, k|β) in k and β imply that for each ε > 0, there exists a

neighborhood N ε
1 of (k∗, β∗), such that:

|V̂ (z, k|β)− V̂ (z, k∗|β∗)| < ε,∀z ∈ Z and ∀(k, β) ∈ N ε
1 .

Define Nε = N0

⋂
N ε

1 . This set is non-empty. Moreover, by construction of N0, the incentive

constraints are satisfied at allocations associated with elements of Nε. That is, V̂ (z′, z, k|β) ≤
V (z|β) ≤ V (z|β∗),∀(k, β) ∈ Nε, where the second inequality follows from the fact that

V (z|β) is increasing in β. Moreover, by definition of N ε
1 , |V̂ (z, k|β) − V (z|β∗)| < ε. Taken

together:

|V (z|β)− V (z|β∗)| < ε,∀z ∈ Z and ∀(k, β) ∈ Nε.

This implies that V (z|β) is also left continuous at β∗.

C: Proofs of Propositions 6 and 7

The proofs of Propositions 6 and 7 exploit the convexity of the government’s problem. Recall

that the issue of convexity is complicated by the role of capital in the incentive compatibility

constraints. Assumption 6 is a sufficient condition on the utility function to ensure that a

transformation of (20) is convex. Specifically, let H ≡ F (k). Note that the inverses of F and

u are well defined given strict monotonicity. Problem (20) is equivalent to the transformed

problem:

Ṽ (P, µ; V ) = max
H,c(z′)

∑
z′

p(z′){u(c(z′)) + βV (z′)}, (38)

subject to ∑
z′

p(z′)c(z′)−H + rF−1(H) ≤ µ,

H + z′ − u−1 (u(c(z′)) + β (V (z′)−W (z′))) ≤ 0, ∀z′ ∈ Z.

34



Note that we have used the fact that c̄(k, z′) = H + z′. For a given P , there is a non-empty

range of µ for which the constraint set is non-empty. We have the following lemma:

Lemma 4. Under Assumption 6, problem (38) is convex.

Proof. The objective function is concave. The concavity of F implies that F−1(H) is a

convex function of H, implying that the budget set is convex. The IC constraints are linear

in H. We therefore need to show that u−1 (u(c(z′)) + β (V (z′)−W (z′))) is concave in c(z′)

for all z′ ∈ Z. Define

G(x) ≡ u−1 (u(x) + b) ,

where b ≥ 0. Differentiating:

G
′
(x) =

u′(x)

u′(G(x))
,

Differentiating again:

G′′(x) =
u′′(x)

u′(G(x))
− (u′(x))2 u′′(G(x))

(u′(G(x)))3

=
(u′(x))2

u′(G(x))

(
u′′(x)

(u′(x))2 −
u′′(G(x))

(u′(G(x)))2

)
.

Therefore, G′′ ≤ 0 if u′′(x)

(u′(x))2
≤ u′′(G(x))

(u′(G(x)))2
. As b ≥ 0, G(x) ≥ x. Therefore, G′′(x) ≤ 0 if u′′(x)

(u′(x))2

is non-decreasing in x, which is Assumption 6. As this holds for arbitrary b ≥ 0, it holds

when we set b = β (V (z′)−W (z′)) ≥ 0 for each z′ ∈ Z.

Let λ(z′) denote the multiplier on the IC constraint for z′ ∈ Z, and γ the multiplier on

the budget constraint. The Lagrangian for Problem (38) is:

L =
∑
z′

p(z′){u(c(z′)) + βV (z′)} (39)

− γ

(∑
z′

p(z′)c(z′)−H + rF−1(H)− µ

)
−

∑
z′

p(z′)λ(z′)
(
H + z′ − u−1 (u(c(z′)) + β (V (z′)−W (z′)))

)
.

Note that the IC constraints have been multiplied through by p(z′) > 0. The first-order

conditions are

u′(c(z′))− γ + λ(z′)
u′(c(z′))

u′(u−1(u(c(z′)) + β(V (z′)−W (z′))))
= 0 (40)
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and

γ

(
1− r

F ′(F−1(H))

)
−
∑
z′

p(z′)λ(z′) = 0. (41)

We will use the following two lemmas:

Lemma 5. The value function Ṽ (P, µ; V ) is strictly concave in µ.

Proof. In an optimal solution to problem (38), the budget constraint always binds. Let

x = (H, c(.)) denote the choice vector of the problem, and denote by x(µ) the optimum,

given a value for µ (for the proof, we suppress the dependence on P and V ). Note that

by the binding budget constraint we know that x(µ) 6= x(µ′). Let Ω(x) be the set of

choices that are incentive compatible, which, as shown previously, is convex. Define Γ(x) ≡∑
z′ p(z′)c(z′)−H +rF−1(H). Note that Γ is strictly convex in H. Let f(x) be the objective

function of problem (38). Note that f(x) is strictly concave in c(.). We have that Ṽ (µ) =

sup{f(x) : x ∈ Ω, Γ(x) ≤ µ}. For any µ1 6= µ2, it is the case that x(µ1) 6= x(µ2), given that

the budget constraint binds at an optimum.

If c(µ1) 6= c(µ2) , strict concavity of the objective function in c(.) implies that f(ax(µ1)+

(1−a)x(µ2)) > af(x(µ1))+ (1−a)f(x(µ2)). By the convexity of the constraint sets and the

fact that Γ(x(µ1)) ≤ µ1 and Γ(x(µ2)) ≤ µ2, we have that x ∈ Ω and Γ(x) ≤ aΓ(x(µ1)) +

(1− a)Γ(x(µ2)) ≤ aµ1 + (1− a)µ2 for x = ax(µ1) + (1− a)x(µ2). So, Ṽ (aµ1 + (1− a)µ2) ≥
f(x) > af(x(µ1)) + (1− a)f(x(µ2)) = aṼ (µ1) + (1− a)Ṽ (µ2).

If c(µ1) = c(µ2), then the binding budget constraint implies that H(µ1) 6= H(µ2). Let

x = ax(µ1) + (1− a)x(µ2). Convexity implies that x ∈ Ω, and strict convexity of Γ implies

that Γ(x) < aΓ(x(µ1))+(1−a)Γ(x(µ2)). Given that the budget constraint is slack at x, there

exists x̂ ∈ Ω such that Γ(x̂) ≤ aµ1 +(1−a)µ2 and for which the consumption allocations are

strictly higher than in x. This implies that f(x̂) > f(x). Therefore, Ṽ (aµ1 + (1 − a)µ2) ≥
f(x̂) > f(x) = aṼ (µ1) + (1− a)Ṽ (µ2).

Taken together, we have that

Ṽ (aµ1 + (1− a)µ2) > aṼ (µ1) + (1− a)Ṽ (µ2)

for µ1 6= µ2 and a ∈ (0, 1).

Lemma 6. Let γ̂ and γ be the multipliers associated with (39) when the expected endowment

is µ̂ and µ, respectively. If µ̂ > µ, then γ̂ < γ.
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Proof. The envelope theorem implies that γ = ∂Ṽ
∂µ

. The result follows, as Ṽ is strictly concave

in µ.

We are now ready to prove Proposition 6, which we repeat here.

Proposition 6. Under Assumption 6, k̃ is non-decreasing in µ and strictly increasing if

k̃ < k∗.

Proof. We prove an equivalent statement in the transformed problem: H is non-decreasing

in µ and strictly increasing if H < F (k∗).

Let (c(z′), H) be the optimal allocation under µ, and (γ, λ(z′)) be the associated mul-

tipliers. Define G(c(z′), z′) ≡ u−1(u(c(z′)) + β(V (z′) − W (z′))). Define Zcons ≡ {z′ ∈ Z :

λ(z′) > 0} to be the set of states in which the IC constraint binds.

Define Λ(c(z′), γ, z′) by

Λ(c(z′), γ, z′) ≡ u′(G(c(z′), z′))

u′(c(z′))

(
1− u′(c(z′))

γ

)
. (42)

The first-order conditions (40) imply that Λ = λ(z′)
γ

. Note that Λ is increasing in γ. As-

sumption 6, together with G(c(z′), z′) ≥ c(z′), implies that Λ is increasing in c(z′).

Now consider an increase in the expected endowment to µ̂ > µ. Denote the new allocation

and multipliers by “hatting” the respective variables. To create a contradiction, suppose that

Ĥ < H. That is, capital is lower under the new allocation. This implies that F ′(F−1(Ĥ)) >

F ′(F−1(H)). From (41), this implies that(
1− r

F ′(F−1(Ĥ))

)
=
∑
z′

p(z′)
λ̂(z′)

γ̂
>

∑
z′

p(z′)
λ(z′)

γ
=

(
1− r

F ′(F−1(H))

)
(43)

⇒∑
z′

p(z′)Λ(ĉ(z′), γ̂, z′) >
∑
z′

p(z′)Λ(c(z′), γ, z′).

As p(z′) > 0, this requires that there exist at least one z′ at which Λ(ĉ(z′), γ̂, z′) >

Λ(c(z′), γ, z′). Call this z′1. From lemma 6, γ̂ < γ. As Λ is increasing in γ and c, this

implies that ĉ(z′1) > c(z′1). If z′1 ∈ Zcons, then λ̂(z′1) = 0. This follows from the fact that

ĉ(z′1) > c(z′1) and Ĥ < H, which means that the IC constraint must be slack. Therefore,

0 = Λ(ĉ(z′1), γ̂, z′1) < Λ(c(z′1), γ, z′1), a contradiction of the definition of z′1.
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Now suppose z′1 /∈ Zcons. Then the fact that ĉ(z′1) > c(z′1) plus Ĥ < H again im-

plies that λ̂(z′1) = 0. Therefore, Λ(ĉ(z′), γ̂, z′) = 0 = Λ(c(z′), γ, z′). In neither case does

Λ(ĉ(z′1), γ̂, z′1) > Λ(c(z′1), γ, z′1). Therefore, no such z′1 exists and Ĥ < H cannot be an

optimal allocation.

Suppose now Ĥ = H when H is less than the first best. We will now derive a contradic-

tion. If Ĥ = H is the optimal allocation, then ĉ(z′) ≥ c(z′),∀z′ ∈ Z. To see this, suppose

that λ(z′) > 0. Then the claim must be true in order for the IC constraint to hold at ĉ(z′).

If λ(z′) = 0, then u′(c(z′)) = γ > γ̂ ≥ u′(ĉ(z′)) ⇒ c(z′) < ĉ(z′).

Now for any z′ such that c(z′) = ĉ(z′), we have Λ(ĉ(z′), γ̂, z′) < Λ(c(z′), γ, z′) as γ̂ < γ.

For any z′ such that ĉ(z′) > c(z′), we have λ̂(z′) = 0, which implies 0 = Λ(ĉ(z′), γ̂, z′) ≤
Λ(c(z′), γ, z′). Taken together, this implies that Λ(ĉ(z′), γ̂, z′) ≤ Λ(c(z′), γ, z′), with at least

one strict inequality unless λ̂(z′) = 0,∀z′ ∈ Z (that is, the Ramsey allocation). However, if

λ̂(z′) = 0,∀z′ ∈ Z, then Ĥ is the first best. Then our premise Ĥ = H and H is sub-optimal

therefore implies that ∑
z′

p(z′)Λ(ĉ(z′), γ̂, z′) <
∑
z′

p(z′)Λ(c(z′), γ, z′).

Plugging this into first-order condition (41) and rearranging gives F ′(F−1(Ĥ)) < F ′(F−1(H)),

a contradiction of Ĥ = H.

We now prove Proposition 7, which we repeat here:

Proposition 7. Under Assumption 6, k̃(P̂ ) ≤ k̃(P ), with a strict inequality absent perfect

intra-period insurance (that is, ∃z′ ∈ Z such that c(z′) > c(z′0)).

Proof. We prove an equivalent statement in the transformed problem: H(P̂ ) = F (k̃(P̂ )) ≤
H(P ) = F (k̃(P )), with a strict inequality absent perfect insurance.

Let (c(z′), H) be the optimal allocation under (P, µ) and (γ, λ(z′)) be the associated

multipliers. Consider the alternative problem in which the probability measure is P̂ . Define

a new expected endowment µ̂ such that H(P ) is optimal under (P̂ , µ̂). We first must establish

that such a µ̂ exists. The Theorem of the Maximum implies that the optimal H is an upper

hemi-continuous function of µ. ( See Stokey and Lucas 1989, Theorem 3.6. We omit the

proof that our constraint correspondence is continuous and compact valued in µ. We note,

however, that the proof uses the fact that the constraint set in the transformed problem is

convex.) By Proposition 6, the optimal H is monotonic in µ. Therefore, we can trace a

continuous, monotonic mapping from µ to optimal H. The final complication is that for a
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given P , there exists a minimum expected endowment µ(P ) below which the constraint set

is empty (although it may be the case that µ(P ) is negative). The proof below concerns the

case of µ̂ ≥ µ(P̂ ). If µ̂ < µ(P̂ ), we can establish the result with a symmetric proof that

begins with P̂ and considers a shift to P . We omit this latter case from this appendix, as

the details follow closely the following proof.

We now characterize the relationship between µ̂ and µ. If it is the case that µ̂ > µ, then

by Proposition 6, the optimal H(P̂ ) under (P̂ , µ) is less than that under (P, µ).

Let (ĉ(z′), Ĥ) be the optimal allocation under (P̂ , µ̂), and (γ̂, λ̂(z′)) be the associated

multipliers. By construction, Ĥ = H(P ).

Recall that by definition, z′0 is such that c(z′0) ≤ c(z′),∀z′ ∈ Z. We have two cases to

consider: (i) ĉ(z′0) ≥ c(z′0), and (ii) ĉ(z′0) < c(z′0).

(i) Suppose that ĉ(z′0) ≥ c(z′0).

This implies that ĉ(z′) ≥ c(z′),∀z′. To see this, note that if c(z′) > c(z′0), then λ(z′) > 0.

As H is held constant, the IC constraint under the new problem requires ĉ(z′) ≥ c(z′). On

the other hand, if c(z′) = c(z′0) and if it were the case that ĉ(z′) < c(z′), then given the

premise of case (i) (c(z′0) ≤ ĉ(z′0)), we would have that ĉ(z′) < c(z′) = c(z′0) ≤ ĉ(z′0). This

in turn implies λ̂(z′0) > 0. Given that ĉ(z′0) ≥ c(z′0), and the incentive constraint is binding

for ĉ(z′0), it is the case that λ(z′0) > 0. The fact that c(z′0) ≤ c(z′),∀z′ ∈ Z then implies that

λ(z′) > 0,∀z′ ∈ Z. But if all incentive constraints are binding at the allocation c(.) given

H, then ĉ(z′) < c(z′) is not incentive compatible at H. Therefore ĉ(z′) ≥ c(z′),∀z′.

By construction, P̂ places more probability on the states with relatively high con-

sumption. Therefore, given that ĉ(z′) ≥ c(z′),∀z′, it is the case that
∑

z′ p̂(z′)ĉ(z′) ≥∑
z′ p(z′)c(z′), with strict inequality in the absence of perfect insurance (that is, as long

as there exists one z′ such that c(z′) > c(z′0)). The new optimal allocation consumes more

resources for the same H, so the budget constraint requires that µ̂ ≥ µ, with strict inequality

absent perfect insurance.

(ii) Suppose that ĉ(z′0) < c(z′0). Given that H is the same, this implies that at the

original allocation, the incentive constraint has to be slack at z0. Therefore λ(z′0) = 0 and

γ = u′(c(z′0)). Note that it is always the case that u′(ĉ(z′0)) ≤ γ̂. By the premise ĉ(z′0) < c(z′0),

it follows that γ̂ ≥ u′(ĉ(z′0)) > u′(c(z′0)) = γ. Define Λ(c(z′), γ, z′) as in (42). Recall that Λ

is increasing in its first two arguments, and Λ(c(z′), γ, z′) = λ(z′)
γ

. The first-order condition
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(41), plus the fact that H(P ) is optimal under both allocations, implies that(
1− r

F ′(F−1(H))

)
=
∑
z′

p̂(z′)Λ(ĉ(z′), γ̂, z′) =
∑
z′

p(z′)Λ(c(z′), γ, z′). (44)

We now show that ĉ(z′0) < c(z′0) contradicts (44). For z′ such that λ(z′) = 0, non-negativity

of Λ implies that Λ(ĉ(z′), γ̂, z′) ≥ Λ(c(z′), γ, z′) = 0. Note that if λ(z′) = 0,∀z′ ∈ Z, we have

achieved the Ramsey allocation. As consumption is equalized across states, moving from P

to P̂ does not change the cost of the consumption basket. Therefore, the Ramsey allocation

is feasible under P̂ at H(P ). Consequently, ĉ(z′0) < c(z′0) can not be optimal. So, under

the premise of case (ii), there exists a z′ such that λ(z′) > 0. For the set of such z′, the IC

constraints require ĉ(z′) ≥ c(z′). As Λ is increasing in its first two arguments, γ̂ > γ and

ĉ(z′) ≥ c(z′) imply that Λ(ĉ(z′), γ̂, z′) > Λ(c(z′), γ, z′). As P̂ takes probability mass away

from a state in which Λ(ĉ(z′), γ̂, z′) ≥ Λ(c(z′), γ, z′) = 0 and puts additional mass on every

other state, we have ∑
z′

p̂(z′)Λ(ĉ(z′), γ̂, z′) >
∑
z′

p(z′)Λ(c(z′), γ, z′), (45)

which contradicts (44). Therefore case (ii) never happens.

Given that the only case that satisfies the first-order conditions is case (i), it is the case

that µ̂ ≥ µ. From Proposition 6, the optimal H under (P̂ , µ) is less than or equal to that

under (P, µ), with strict inequality absent perfect insurance.
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Figure 1 
Panel A: Optimal Capital for Various Discount Rates 
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Panel B: The Ratio of Optimal Capital following High and Low Shocks 
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Note:   kH and kL refer to the optimal capital stocks following a high- and low-endowment shock, 
respectively.  Each point corresponds to the equilibrium capital stocks, given β.  See text for details.   
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