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1 Introduction

The conventional wisdom suggests that �rms with high exposure to risk should have high

expected returns and low market values, and be closer to default as a result of the latter.

Consequently, �rms�default probabilities should be positively correlated with market-based

risk characteristics, such as dividend-price, earnings-price, and book-to-market ratios, and

�rms that are more likely to default should have higher expected equity returns. Indeed,

Fama and French (1992) claim that size and value premiums result from distress risk.1

However, recent empirical research, including Dichev (1998), Gri¢ n and Lemmon (2002),

and Campbell, Hilscher, and Sziglayi (henceforth, CHS) (2008), has reached the opposite

conclusion that �nancially distressed �rms have lower returns, using empirical estimates of

default probabilities. Table 1 summarizes the evidence.

This paper argues that these patterns are not so puzzling once we realize that the default

measures discussed above aim to capture the probability of observing a default under the

real probability measure, and that this probability does not necessarily line up with the

risk-neutral default probability that governs the market value of equity and the risk charac-

teristics based thereon. We cannot back out risk-neutral default probabilities using default

observations from the data even if we have the perfect model because we are trying to �t

the econometric model to observed defaults. The discrepancy between real and risk-neutral

probability measures can explain the patterns observed above.

A simple example clari�es this point. Let x be a stock�s payo¤ tomorrow, that is, its

future price plus dividends, and let m be the discount factor. Then, today�s price is given

by p = E [mx] and, using the gross risk-free rate Rf = 1=E [m], the expected excess return

of stock is given by
E[Re]

Rf
=

E [x]

E [Rfmx]
=
E [x]

E� [x]
. (1)

1The positive relationship between stock returns and market-based risk charateristics is well documented.
See Fama and French (1992) for the relationsship between B/M and returns. See Ball (1978) and Lettau
and Wachter (2007) for the relationship between D/P, E/P, and returns.
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Table 1: Average stock returns in di¤erent portfolios. The portfolio returns for
earnings-price (E/P) and book-to-market (B/M) ratios are adapted from Table I of excess
returns in Lettau andWachter (2007). The returns for distress portfolios based on O-score are
adapted from Table IV of Dichev (1998) and those based on CHS-score (CHS) are adapted
from Table VI of Campbell, Hilscher, Szilagyi (2008). All returns are modi�ed using the
monthly T-bill and market return series in Ken French�s website and then multiplied by
12 so that all returns are annualized actual returns rather than excess returns. Note two
things: First, the distress premium implied by O-score and CHS-score are di¤erent because
the default frequency in the data is low so that the empirical estimates of default probabilities
can vary signi�cantly across di¤erent methodologies. Second, all portfolios except CHS are
constructed by sorting the �rms into deciles, whereas the CHS portfolios include the following
percentiles: 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-90, 90-95, 95-99, 99-100.

Portfolio E/P B/M O-Score CHS
1 9.21 10.17 14.16 13.30
2 9.52 11.05 15.12 11.48
3 11.47 11.48 15.72 10.97
4 11.54 11.01 16.32 10.93
5 11.50 12.50 15.36 10.58
6 13.68 12.83 14.88 9.77
7 14.44 12.77 15.00 5.49
8 15.68 14.58 15.48 2.03
9 16.18 14.48 13.44 3.20
10 17.45 15.05 7.20 -6.14
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The denominator of this expression is the expected payo¤ under the risk-neutral probability

measure, whereas the numerator is the expected payo¤ under the real measure.2 If the

risk-neutral and real probability distributions do not comove perfectly across �rms or across

time, then E [x] and E� [x] will be only weakly correlated. In addition, because the market

value of equity, E [mx], is determined by the risk-neutral probability measure, market-based

risk characteristics will be weakly correlated with real default probabilities determined by

the real measure. Similarly, the expected payo¤, E [x], is determined by the real probability

measure and will be weakly correlated with risk-neutral default probabilities.

Moreover, if we let DF denote the real default probability, we can take the logarithms

and then take the derivative of both sides of equation (1) to get

d lnE[Re]

dDF
=
d lnE [x]

dDF
� d lnE [mx]

dDF
.

Intuitively, �rms with lower real default probabilities are more likely to have higher expected

payo¤s under the real probability measure, E [x], and hence the �rst term should be negative.

However, the weak correlation between E [mx] and the real default probabilities implies that

the second term is only weakly negative. As a result, expected returns decrease with observed

likelihood of default.

A similar argument can be made for risk-neutral default probabilities. If we let DF �

denote the risk-neutral default probability, we can take the logarithms and then the derivative

2Let f (x;m) denote the joint distribution of x and m. Then we can write the real and risk-neutral
probabilities as

� (x) =

Z
m2M

f (x;m) dm

�� (x) =

Z
m2M

f (x;m)
m

E (m)
dm.

Note that both of these quantities are probability measures, that is, they satisfy � > 0 and
R
� = 1. Hence,

the numerator is E [x] =
R
� (x)xdx and the denominator is E� [x] =

R
�� (x)xdx.
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of both sides of equation (1) to get

d lnE[Re]

dDF �
=
d lnE [x]

dDF �
� d lnE [mx]

dDF �
.

Intuitively, �rms with lower risk-neutral default probabilities are more likely to have higher

expected payo¤s under the risk-neutral probability measure, E [mx], and hence the second

term should be negative. However, the weak correlation between E [x] and risk-neutral

default probabilities implies that the �rst term is only weakly negative. As a result, expected

returns increase with the risk-neutral likelihood of default.

The bottom line of this hypothesis is that both Fama and French and the studies that �nd

a negative relationship between stock returns and likelihood of default are right. On the one

hand, as empirical studies suggest, �rms with a higher observed likelihood of default should

have lower returns, given risk-neutral default probabilities. On the other hand, �rms with a

higher default probability under the risk-neutral measure should have higher market-based

risk characteristics and higher returns, given observed default probabilities.

This is not the �rst paper that tries to explain the distress premium in a theoretical model.

George and Hwang (2009) show in a static model that high distress cost leads to low leverage

and default probability and higher returns for the total (unlevered) �rm.3 Garlappi, Shu,

and Yan (2007) show that violation of the absolute priority rule in bankruptcies creates a

hump-shaped relationship between expected equity returns and default probability. However,

Bharath, Panchapagesan, and Werner (2007) state that there has been a secular decline in

the frequency of absolute priority deviations (APDs) in favor of shareholders: APDs were

commonplace, as high as 75 percent, before 1990; 22 percent in the 1991-2005 period, and

as low as 9 percent for the period 2000-2005. This �nding puts a question mark on the

explanation of the distress premium via APDs, since the negative distress premium seems

3The proof of proposition 1 in George and Hwang�s paper is presented for the expected returns on the
total �rm value, not for stock returns, although their main aim is to explain the negative distress premium
in stock returns. It seems that their mechanism does not necessarily carry over to stock returns, that is,
their mechanism does not solve the negative distress premium puzzle for stock returns.
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to persist after 1990. Avramov, Cederburg, and Hore (2010) relate the negative distress

premium to long-run risk, which seems quite intuitive, but they lose the negative relationship

between price-earnings ratios and returns observed in the data: In their model, an increase

in relative shares (��=� in their paper) increases the price-dividend ratios (equation 13 in their

paper) and increases expected returns (Figure 2(a) in their paper), which implies a positive

relationship between P/D and returns. This contradicts the data presented in Lettau and

Wachter (2007).

The criticism to Avramov, Cederburg, and Hore (2010) can also be generalized to George

and Hwang (2009), Garlappi, Shu, and Yan (2007) and Garlappi and Yan (2010). In all

of these papers, the risk-neutral and real default probabilties are monotonically related.

Therefore, the market-based risk characteristics that are governed by risk-neutral default

probabilities are highly correlated with real default probabilities, and a negative distress

premium should imply a negative value premium. This creates another challenge, which is

the need to capture simultaneously the negative distress premium and the positive value

premium.

To summarize, this paper tries to capture the following three regularities observed in the

distress premium literature:

1- Firms with higher default likelihood have lower returns, as discussed in CHS (2009)

and the references therein.

2- Firms with higher earnings-price ratios and higher book-to-market values have higher

returns, as discussed in Fama and French (1992) and Lettau and Wachter (2007).

3- When the �rms are ranked according to their bond yields, �rms with higher bond

yields have higher returns. Indeed, Anginer and Yildizhan (2010) �nd that �rms with higher

bond yields have higher stock returns.

Aside frommatching these regularities, Section 5 shows that the model predicts that �rms

with higher default probability under a risk-neutral measure should have higher returns, a

prediction that can be tested using the risk-neutral default probabilities implied by credit
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default swaps. Moreover, Section 6 shows that the model successfully captures the following

patterns that involve book-to-market value, �nancial leverage, and stock returns:

1- Stock returns are positively related with market leverage (Bhandari (1988), Fama and

French (1992), Gomes and Schmid (2010)) but are insensitive to book leverage (Gomes and

Schmid (2010)).

2- Stock returns are less sensitive to market leverage than to book-to-market ratios.

3- Market leverage is only weakly linked to stock returns after controlling for book-to-

market value. (Johnson (2003), Gomes and Schmid (2010))

4- Book leverage remains insensitive to stock returns after controlling for book-to-market

value but becomes negatively related to stock returns after controlling for market leverage.

(Fama and French (1992))

2 The Model

This section presents investors�preferences and the dynamic model of the �rm, where the

levels and riskiness of the cash �ows, the latter measured by the exposure of cash-�ow

growth to systematic risk, are the only sources of heterogeneity.4 Therefore, although a

reduction in cash �ow will increase the default probability, the risk-neutral and risk-free

default probabilities will not comove perfectly across �rms because of heterogeneity in the

riskiness of their cash �ows.

The investor�s preferences for intertemporal substitution and risk are given by a constant

risk-free interest rate, r, and price of risk, �S:

d�

�
= �rdt� �SdwA,

where �t+s=�t is the stochastic discount factor and dwA is a Brownian increment that cap-

4The heterogeneity of cash-�ow riskiness is a realistic assumption. Some companies, like fast food and
dollar store chains, have less cyclical earnings than their more upscale counterparts. Good examples are
McDonald�s (MCD) and Family Dollar Stores (FDO) versus Ruby Tuesday (RT) and Kohl�s (KSS).
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tures macroeconomic shocks.

2.1 Equity Valuation

Firm i�s cash �ow, Xi, follows a geometric Brownian motion

dXi
Xi

= �Xdt+ �

�
�idwA +

q
1� �2i dwi

�
,

where �X and � are the growth rate and volatility of cash �ow, assumed to be the same across

�rms for the sake of parsimony, and �i captures the heterogeneity of cash �ow�s riskiness

across �rms.

Similar to its formulation in He and Xiong (2010), the debt takes the form of a coupon

bond with a maturity date arriving at an exogenously given rate, �, and the debt level is

chosen optimally by the �rm at date zero. Upon maturity of existing debt, the �rm can

choose to re�nance by paying o¤ the existing debt and issuing new debt or to go bankrupt,

leaving the ownership of the �rm to the lenders, who incur a bankruptcy cost proportional

to the after-tax value of the �rm, given by (1� �). Similar to Fisher, Heinkel, and Zechner

(1989), I assume that the cost of issuing new debt is proportional to the size of the new

issue, with b the proportionality factor of the cost of issuing new debt, and that the debt is

issued at par value.

The assumption regarding debt maturity ensures that relatively few �rms are close to the

endogenous default boundary, so that the equity betas of the most distressed �rms do not

explode, as discussed in Garlappi and Yan (2010). Having a �xed maturity date would serve

the same purpose and would not change the results qualitatively. However, a �xed maturity

date would make solution of the model harder because time would enter the model as a state

variable. The debt structure in this paper generates the time homogeneity of the problem

and allows for closed-form solutions. An alternative interpretation of this assumption is that

the �rm issues short-term debt that gets rolled over at the same coupon rate in each time
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period (t; t+dt); with probability (1� �dt). This interpretation is similar to the one Leland

(1994a, p. 1215) proposes for in�nite maturity debt, which is a special case of this model with

� = 0. Other time-homogeneous settings are presented in Leland (1994b) and Leland and

Toft (1996). However, in both models debt is issued continuously, which contradicts Welch�s

(2004) �ndings that �rms change their debt levels infrequently in response to changes in

their stock prices.

If we let instantenous coupon payment be c, the corporate tax rate be � ; and the market

value of debt be B (X; c) ; we can write the Hamilton-Jacobi-Bellman (HJB, henceforth)

equation for the market value of equity, J (X; c), as

rJ (X; c) = (1� �) (X � c) + �XJX (X; c) +
1

2
�2X2JXX (X; c)

+�
�
max

n
0;max

c0
J (X; c0) + (1� b)B (X; c0)�B (X0; c)

o
� J (X; c)

�
;

where � = �X � ���S is the risk-adjusted drift of the cash-�ow process and X0 is the value

of cash �ow at the time of the last debt issue.5 Since debt is issued at par by assumption,

B (X0; c) is equal to the par value of debt. The �rm-speci�c indices are dropped for parsimony

from here on.

The �rm chooses its default boundary, XB, optimally so that J (X; c) satis�es the value

matching and smooth pasting conditions

J (XB; c) = JX (XB; c) = Jc (XB; c) = 0:

5I omit the personal income tax and assume full loss o¤set via taxes, as is customary in the literature.
For recent examples, see Maio (2005) and Chen (2010). These assumptions can be relaxed without changing
any result qualitatively.
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2.2 Debt Valuation

Noting that the after tax value of debt upon bankruptcy is �(1��)
r�� X, one can write the HJB

equation for the market value of debt as

rB (X; c) = c+ �XB (X; c) +
1

2
�2X2BXX (X; c)

+�

�
(1� IB)B (X0; c) + IB

� (1� �)
r � � X �B (X; c)

�

with the boundary condition

B (XB; c) =
� (1� �)
r � � XB;

where IB is the indicator function that is equal to 1 if the �rm prefers bankruptcy at debt

maturity and zero if the �rm chooses to re�nance, that is,

IB=
�
1 if maxc0 J (X; c0) + (1� b)B (X; c0)�B (X0; c) � 0

0 otherwise
:

3 Solution

3.1 Homogeneity of Market Values

I will solve the joint problem of the �rm and debtholders, using the guess and verify technique.

Since the payo¤s and boundary conditions are homogeneous in X and c, I start with the

guess that both J (X ; c) and B (X; c) are linearly homogeneous inX and c.6 De�ne y � c=X,

E (y) � J (X; c) =X, and D (y) � B (X; c) =X.7 Then the HJB for market value of equity

6It is possible to use a more direct solution since the HJB equations for equity and debt can be treated
as ordinary di¤erential equations whose solution has constants of integration that depend on c. However,
the method presented here illuminates the intuition regarding the optimal behavior of the �rm addressed in
the next section.

7The variable y also has an economic meaning: it is the interest coverage ratio. Moreover, E (y) is the
P/E ratio.
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becomes

(r � �)E (y) = (1� �) (1� y)� �yE 0 (y) + 1
2
�2y2E 00 (y)

+�

�
max

�
0;max

y0
E (y0) + (1� b)D (y0)� B (X0; c)

X

�
� E (y)

�

with the boundary conditions

E (yB) = E
0 (yB) = 0;

where yB � c=XB.

Similarly, the HJB for debt becomes

(r � �)D (y) = y � �yD0 (y) +
1

2
�2y2D00 (y)

+�

�
(1� IB)

B (X0; c)

X
+ IB

� (1� �)
r � � �D (y)

�

with boundary condition

D (yB) =
� (1� �)
r � �

and the indicator function

IB=
�
1 if maxy0 E (y0) + (1� b)D (y0)� B(X0;c)

X
� 0

0 otherwise
.

Finally, we can verify the guess by showing that both of the HJB equations can be

represented in terms of y, yB, E (y) ; and D (y). Since the only term that does not depend

exclusively on y in these equations is B(X0;c)
X

; we will focus on this term. Before doing that,

let us de�ne y0 as

y0 � argmax
y0
E (y0) + (1� b)D (y0)

and note that y0 is a constant number because neither E (y) nor D (y) depends explicitely

on time. This implies that the �rm chooses the same value of y = y0 whenever it issues new
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debt, including the time of its inception. It follows that c=X0 = y0, since X0 is the value

of the cash �ow at the time of the last debt issue and c is the current value of the coupon

payment determined at the time of last issue. Using this result and our guess of homogeneity

of the debt function B (X; c) ; we get

B (X0; c)

X
=
X0D (y0)

X
=
X0=c

X=c
D (y0) =

y

y0
D (y0) ;

and hence the term B(X0;c)
X

can be expressed as a linear function of y. Substituting B(X0;c)
X

with

y
y0
D (y0) veri�es the intial guess of homogeneity, as both HJB equations can be represented

in terms of functions of y. In particular, the indicator function becomes

IB=
�
1 if E (y0) + (1� b)D (y0)� y

y0
D (y0) � 0

0 otherwise
,

which we will use in the next section.

3.2 Optimal Policy of the Firm

In this section we characterize basic properties of the optimal policy of the �rm and leave the

complete characterization to the appendix. We have seen that the �rm chooses bankruptcy

whenever re�nancing provides a non-positive value to the shareholders, that is,

S (y) � E (y0) + (1� b)D (y0)�
y

y0
D (y0) � 0.

The following proposition characterizes the optimal behavior of the �rm at the time of debt

maturity.

Proposition 1 There is a threshold level of y, denoted as �y, above (below) which the �rm

chooses bankruptcy (re�nancing) at the time of debt maturity.

Proof. Note that y > 0 and limy!0+ S (y) = E (y0) + (1� b)D (y0) > 0, because if E (y0) +

(1� b)D (y0) � 0 the �rm would choose not to enter the market at its inception. Moreover,
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S 0 (y) < 0 and limy�>1 S (y) = �1. Therefore, by the intermediate value theorem, there

exists a unique �y > 0 that satis�es S (�y) = 0 and S (y) 7 0 if y ? �y. Since S (y) � 0

(S (y) > 0) implies bankruptcy (re�nancing) this completes the proof.

This proposition tells us that the �rm chooses bankruptcy at debt maturity if its cash

�ow is low so that the shareholders rather pass on the ownership of the �rm to the lenders,

and that the �rm chooses to re�nance its debt if its cash �ow is high enough so that the

net value of restructuring is positive to the shareholders. If the �rm prefers to re�nance,

it chooses its debt level so as to maximize its shareholder value, that is, the new coupon

payment is chosen so that it is equal to y0X. Therefore, default occurs either because the

�rm is insu¢ ciently productive at the time of debt maturity or because the �rm�s cash �ow

hits the endogenous default boundary before debt maturity.

The following proposition and its corollary show the relative positioning of y0; �y, and yB

when the cost of debt issuance is small, thereby re�ning the properties of optimal policy.

Proposition 2 In the absence of debt issuance costs, that is b = 0, �y satis�es y0 < �y < yB.

Proof. See Appendix

The following corollary follows from the fact that the value functions and boundary

conditions are continuous and di¤erentiable in b.

Corollary 3 For su¢ ciently small cost of issuing debt, y0 < �y < yB.

According to my analysis, the choice of debt issuance cost, b, in my calibration is small

enough so that y0 < �y < yB. Therefore, the rest of the analysis in the paper is based on the

case y0 < �y < yB, although the intuition derived from the analysis would be similar under

di¤erent scenarios.
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4 Stock Returns, Default Probabilities, and the Long-

Run Distribution of Firms

The instantanous expected excess stock returns are given by the sum of dividends and capital

appreciation divided by the current value of the �rm under the real measure minus the risk-

free rate,

Et (dRei )� rdt = Et
�
(1� �) (Xi � c)dt+ dJi

Ji

�
� rdt

= �i��S
JiXXi

Ji
dt = �i��S

�
1� E

0
i (yi) yi
Ei (yi)

�
dt.

The �rst equality in the second line comes from the HJB equation for the market value of

equity and the relationship between the real and the risk-netural drift of cash �ow. The

second equality comes from the homogeneity property of the market value of equity.

As discussed in the previous section, the �rm defaults when its cash �ow hits the endoge-

nous default boundary, y = yB; or when y > �y at the time of debt maturity. The appendix

shows that the moment generating function for the distribution of time to default is given

by

M (s; y)=

� Am

�
�
�s

�
y0
yB

��2
+
�
y
yB

��2�
if y � �y

�
�s+� +

�s
�s+�

�
y
yB

��2
+Bm

��
y
yB

��1
�
�
y
yB

��2�
otherwise

,

where �2 > 0 > �1 are the roots of

1

2
�2�2 +m� � (s+ �) = 0
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and Am and Bm satisfy 
�

�s

�
y0
yB

��2
+

�
�y

yB

��2!
Am =

�

�s+ � +
�s

�s+ �

�
�y

yB

��2
+Bm

 �
�y

yB

��1
�
�
�y

yB

��2!

�2

�
�y

yB

��2
Am =

�s
�s+ ��2

�
�y

yB

��2
+Bm

 
�1

�
�y

yB

��1
� �2

�
�y

yB

��2!
.

Since y and � are the only source of heterogeneity across �rms, we can index the �rms

by (y; �). The appendix shows that the long-run distribution of �rms for a given cash-�ow

riskiness � is

' (yj�) =
� �A=y

�
y
yB

��2
if y � y0

�B=y
��

y
yB

��1
�
�
y
yB

��2�
if y0 < y � yB

,

where �1 < 0 < �2 are the roots of

1

2
�2�2 +

�
�X �

1

2
�2
�
�� � = 0

and �A and �B satisfy

�A�2

�
y0
yB

��2
�
�
�1

��
y0
yB

��1
� 1
�
� �2

��
y0
yB

��2
� 1
��

�B =
2�

�2�
y0
yB

��2
�2

�A�

0@
�
y0
yB

��1
� 1

�1
�

�
y0
yB

��2
� 1

�2

1A �B = 1.

Therefore, the long-run distribution of the �rms is given by

f (y; �) = ' (yj�)h (�) ,

where h (�) is the distribution of �i�s assumed to be uniform between �L and �H , and ' (yj�)

is the distribution of �rms whose cash-�ow riskiness is measured by �.
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5 Calibration and Stock Returns in the Long Run

I set �X = 0:02 and � = 0:35.
8 The tax rate is taken to be 35 percent from Taylor (2003)

and Miao (2005). The risk-free rate is taken to be 2 percent, using the time series average

of Fama�s monthly T-bill returns in the CRSP database from 1963 to 2008. Moreover, I

set �S = 0:4 in order to match the average monthly Sharpe ratio of the excess market

return from 1963 to 2008. The cost of debt issuance is chosen to be the same value as in

Fischer, Heinkel, and Zechner (1989), that is, b = 0:01. Following Huang and Huang (2003),

I choose the bankruptcy cost to be half of the �rm�s value, that is, � = 0:5. The support

of the distribution for the riskiness of cash �ows is chosen in order to match the average

P/E ratio of 15 and an equity premium of 6:5 percent. Accordingly, �L = 0:2 and �H = 0:6.

I choose � = 1=3; which implies an average debt maturity of three years, although I have

tried various values between � = 1=4 and � = 1=2, and �nd that the results presented in

this section are not a¤ected qualitatively. Using the calibrated parameters, I calculate the

long-run distribution of �rms as discussed in the previous section and draw 40,000 points

from this distribution. Then, I use these draws to calculate earnings-price ratios, distress

measures, bond yields, and expected stock returns for di¤erent �rms and to form portfolios.

The results are presented in the top panel of Table 2.9

Distress: The moment-generating function for the time to default provides us several

measures of distress. One way is to use a saddlepoint approximation in order to calculate the

probability of default within one year, because the O-score and the CHS-score are based on

estimates of the default probability within one year. However, the saddlepoint approxima-

8Miao (2005) and Cooper (2006) use 0:025 and 0:035 for �X , and 0:25 for �, following the mean and
standard deviation of earnings growth of S&P 500 �rms. However, these numbers hold for total earnings of
S&P 500 �rms. Moreover, the S&P 500 �rms are the ones with the largest capitalization traded in NYSE
or NASDAQ, which implies that they had a particularly successful history. Therefore, calibrating these
numbers from the S&P 500 universe would overestimate the growth rate and underestimate the volatility.
My choice of parameter values aims to reduce this bias. The main results are una¤ected qualitatively by
this choice.

9I also repeat the analysis using simulation, rather than draws from the long-run distribution. Simulation
results presented in the appendix, Table 5, are quantitatively similar to the ones discussed in the rest of the
paper.
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tions are potentially subject to signi�cant numerical errors because the default probabilities

within one year are very low.10 Therefore, I use the moment generating function to calculate

the exact value of the expected time to default as a proxy for �nancial distress. The �rst row

of Table 2 provides the equally weighted average of stock returns when portfolios are formed

according to decreasing expected time to default as a proxy under the real measure for in-

creasing �nancial distress. We see that �rms with greater �nancial distress earn lower stock

returns in the model, implying that the model successfully captures the distress premium

puzzle.

The negative distress premium results from the way the �rms choose their capital struc-

ture. Debt is determined by the tradeo¤ of the tax advantage of debt versus bankruptcy

costs under the risk-neutral measure. The tax advantage of debt results in higher leverage,

whereas bankruptcy costs result in lower leverage. Firms with riskier cash �ows have lower

cash-�ow growth and a higher default probability for a given level of debt under the risk-

neutral measure. This increases expected bankruptcy costs for a given debt level and hence

these �rms choose lower debt. As a result, they have a lower probability of default under

the real measure because their distance to default is greater. Therefore, when we rank the

�rms according to real default probabilities, the �rms with higher rank are those with lower

cash-�ow risk and hence lower expected equity returns. This leads to a negative distress

premium.

Risk-neutral Distress: I repeat the exercise above using the expected time to default

under the risk-neutral measure. The second row of Table 2 provides the equally weighted

average of stock returns when portfolios are formed according to decreasing expected time

to default as a proxy under the risk-neutral measure. We see that the �rms with greater

�nancial distress under the risk-neutral measure earn higher stock returns in the model.

10See Campbell, Hilscher, and Sziglayi (2009) for evidence that the actual default probabilities are low.
Because the default probabilities are so low, any other approximation method, such as simulated probabilities,
will also be subject to signi�cant errors. Nevertheless, the saddlepoint approximations with normal and
inverse-Gaussian bases provide qualitatively similar results when I use them to approximate the probability
of default within �ve years. The saddlepoint approximation is discussed in detail in the appendix.
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Table 2: Equally weighted annualized average of stock returns. 40000 observations
are drawn from the joint distribution of (�; y). Portfolios are ranked according to increasing
price-earnings ratios, decreasing expected time to default and increasing bond yields as a
proxy for �nancial distress under real and risk-neutral measures, increasing book-to-market
values, market leverage and book leverage.

Portfolio Returns with Di¤erent Rankings
A. Cash-Flow Model

Portfolio 1 2 3 4 5
Distress 13.49 12.41 11.2 9.96 9.71

Risk-Neutral Distress 8.58 9.95 11.23 12.48 14.51
Earnings/Price 8.58 9.95 11.23 12.49 14.5

Bond Yield 10.31 10.67 11.19 11.45 13.14
B. Investment Model

Portfolio 1 2 3 4 5
Book-to-Market 8.59 9.95 11.24 12.49 14.47
Market Leverage 10.98 11.2 10.87 11. 12.71
Book Leverage 12.04 11.78 11.05 10.45 11.42

Intuitively, �rms with a higher risk-neutral default probability are those that have higher

coupon payments relative to their cash �ow, given cash-�ow risk, or those that have higher

cash-�ow risk given level of cash �ow and coupon payments. Both of these channels increase

the riskiness of the �rm�s equity: The �rst one levers up the net income of the �rm, whereas

the second one increases the exposure of the �rm to systematic risk. This prediction of the

model can be tested using the implied risk-neutral default probabilities from credit default

swap (CDS) data. Given that the CDS intruments are relatively new and currently do not

cover the whole Compustat/CRSP universe, testing this hypothesis in the near future will

be problematic. A preliminary analysis using bond yields as a proxy for risk-neutral default

probability has been performed by Anginer and Yildizhan (2010), discussed at the end of

this section.

Earnings-price ratio: I rank the �rms according to their earnings-price ratio and form

�ve portfolios. The third row of Table 2 provides the equally weighted average of expected

stock returns in each of these portfolios. We see, in accordance with the evidence in Lettau

and Wachter (2007), that the �rms with a higher earnings-price ratio earn higher stock

returns in the model.
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Intuitively, a �rm has a high earnings-price ratio either because its cash-�ow risk is high

or because it is close to default under the risk-neutral measure so that its market value is

low. Both of these e¤ects make equity riskier and hence increase expected stock returns.

Bond yields: Finally, I rank the �rms according to their bond yields. The reason for

this exercise is that Anginer and Yildizhan (2010) use bond yields as a proxy for �nancial

distress under the risk-neutral measure and �nd that when the �rms are ranked according

to their bond yields, the �rms with higher bond yields have higher stock returns, contra-

dicting the evidence in the rest of the literature that estimates default probabilities under

the real measure.11 Since the bond yield is the internal rate of return of the bond under the

counterfactual assumption that the �rm does not go bankrupt, we have12

yield =
c+ �B (X0; c)

B (X; c)
� � = y

y0

y0 + �D (y0)

D (y)
� �.

Note that at the date of bond issue, that is, when X = X0, the yield is equal to c=B (X0; c),

which is familiar to �nancial economists, since the yield of a bond issued at par is equal to

the coupon yield at the time of issue.

The fourth row of Table 2 provides the equally weighted average of stock returns when

portfolios are formed according to bond yields. We see that, in accordance with Anginer and

Yildizhan (2010), the �rms with greater bond yields earn higher stock returns in the model.

The �rms with higher bond yields are those that have higher coupon yields and a higher

risk-neutral default probability, because they have to compensate the lender more for each

dollar they borrow. Moreover, a high risk-neutral default probability implies that these

�rms have higher market leverage, because their market value of equity is low relative to the

11See Campbell, Hilscher, and Szilagyi (2010) and the references therein.
12Let ~B be the discounted value of the payo¤s from holding the bond, assuming counterfactually that the

bond does not default. Then, since the bond is issued at par, we can write

yield � ~B = c+ �
�
B (X0; c)� ~B

�
.

Solving this for ~B and setting ~B = B (X; c) gives the result above.
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market value of their debt. Therefore, these �rms�equity is riskier. This mechanism leads

to a positive relationship between bond yields and equity returns.

Note that the stock return di¤erence across bond yield portfolios is somewhat lower than

the stock return di¤erence across risk-neutral distress and book-to-market portfolios in the

model, suggesting that we might need to come up with a clearer measure of risk-neutral

distress than raw bond yields, such as the risk-neutral default probabilities implied by credit

default swaps. To see, in the context of this model, why bond yields are not a pure measure

of risk-neutral distress, note that we can write the bond yields as

yield =
c

B (X; c)
+ �

�
B (X0; c)

B (X; c)
� 1
�
,

where the �rst term is the coupon yield and the second term captures capital losses (gains)

by the bondholders as the cash �ow changes. The coupon yields are closely related to the

risk-neutral default probabilities, because higher cash-�ow risk implies lower bond value and

higher risk-neutral default probability. However, the cash-�ow risk a¤ects the par value,

B (X0; c), and the market value, B (X; c), of the bond the same way, limiting the e¤ect of

risk-neutral distress on the capital gain term. Moreover, a higher level of current cash �ow,

X, implies a higher market value of the bond, without a¤ecting the par value, and �rms with

a higher value of cash �ow are less likely to default under the real measure, given the cash-

�ow risk. Therefore, the second term is more closely related to the real default probability

than to the risk-neutral default probability.

6 Book-to-Market Value, Financial Leverage, and Stock

Returns

This section discusses the relationship between book-to-market value, �nancial leverage, and

stock returns, and argues that the model can successfully generate the patterns involving
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these quantities. So far, I have focused only on the ability of the model to explain the

negative distress premium and positive value premium simultaneously, in a cash-�ow model.

In order to be able to talk about book-to-market value and �nancial leverage, I need to

model the amount of capital a �rm chooses. The next subsection serves this aim, and the

second subsection discusses the stock return patterns.

6.1 Extension with Investment and Value Premium

Although so far I have modeled the cash �ow of the �rm, modeling investment is a straightfor-

ward exercise, using arguments similar to those in Miao (2005). If we let � be the depreciation

of capital, which is tax-deductible, and r be the rental cost of capital, k, we can write the

after-tax pro�t function of the �rm as

� (k; z; c) = (1� �)
�
z�k1�� � �k � c

�
� rk,

where z�k1�� is the production function and z is the productivity of the �rm, which follows

geometric Brownian motion

dz

z
= �zdt+ �z

�
�idwA +

q
1� �2i dwi

�
.

Then, similar to the treatment in Miao (2005), pro�t maximization implies the neoclassical

investment rule that the marginal after-tax product of capital is equal to the user cost of

capital,

(1� �) z�k�� = r

1� � + �

or equivalently

k =

�
1� �

r= (1� �) + �

�1=�
z.
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Plugging this back into the pro�t function � (k; z) gives the optimized pro�t function �� (X; c) =

(1� �) (X � c), where

X =

"�
1� �

r= (1� �) + �

�(1��)=�
�
�
� +

r

1� �

��
1� �

r= (1� �) + �

�1=�#
z,

which follows the geometric Brownian motion

dX

X
= �Xdt+ �

�
�idwA +

q
1� �2i dwi

�
,

where �X = �z and � = �z. Note that the after-tax pro�t function reduces to the original

pro�t function when there is no investment and the cash-�ow process is the same as before.

Therefore, all the claims regarding the returns, �nancial distress, price-earnings ratios, and

bond yields can be carried over to this model with investment.

The main advantage of this extension is that now we can calculate meaningful values for

book-to-market ratios. This allows me to check whether the model can successfully generate

the value premium as in Fama and French (1992) and to compare the power of book-to-

market value in explaining stock returns with that of �nancial leverage. I focus on the value

premium here and leave the comparison of book-to-market value to �nancial leverage to the

next subsection.

Note that the book value of total assets is given by k, and hence k �B (X0; c) gives the

book value of equity, which is measured as the book value of total assets minus the book

value of debt, whereas J (X; c) gives the market value of equity. Therefore, if we de�ne

� =
1� �

�
�

r
1�� + �

� ,

22



we can write book-to-market value as

BE

ME
=

k �B (X0; c)

J (X; c)
=
�X �B (X0; c)

J (X; c)

=
�� y=y0D (y0)

E (y)
.

Following Miao (2005) I set � = 0:1. Moreover, I set � = 0:05.13

Using the last formula I calculate the book-to-market values and then sort the �rms

according to their book-to-market values. The �rst row in panel B of Table 2 provides the

equally weighted average of stock returns in di¤erent book-to-market portfolios. We see that,

in accordance with Fama and French (1992), the �rms with greater book-to-market values

earn higher stock returns in the model, that is, the model successfully captures the value

premium.

The intuition for the book-to-market e¤ect is similar to the intuition for the earnings-

price ratios. Firms with high book-to-market ratios are those with high cash-�ow risk or are

more likely to default under the risk-neutral measure. The �rst e¤ect increases the overall

business risk of these �rms, whereas the second e¤ect implies that the market value of their

equity is low relative to the market value of their debt, leading to high market leverage.

Both of these e¤ects make the equity of the �rms with high book-to-market values riskier, so

these �rms have higher expected stock returns. This mechanism creates the value premium.

6.2 Leverage and Stock Return Patterns

Table 3 shows six regressions of stock returns on book-to-market values and di¤erent mea-

sures of �nancial leverage. The following summarizes the regression results and cites exam-

ples from previous literature that have similar �ndings:

13My choice of � can be justi�ed using a decreasing returns to scale Cobb-Douglas production function
with capital and labor inputs, where labor is optimized out. Miao (2005) sets � = 0:4. However, this choice
generates a signi�cant number of negative book-to-market values in my model, which contradicts the data.
The choice of � does not change the results qualitatively as long as we make sure that the book-to-market
values are positive.
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Table 3: Fama-MacBeth regressions of stock returns on various variables. Book-
to-market value (BE/ME), market leverage (ML), and book leverage (BL) at the beginning
of the portfolio formation period. The coe¢ cients are the time series average of regression
coe¢ cients for July 1963 to June 2008, and the t-statistics (in parentheses) are the average
regression coe¢ cient divided by its time series standard error.

log BE/ME log ML log BL
0.42 (6.38)

0.18 (2.78)

­0.04 (0.57)

0.45 (8.05) ­0.06 (1.11)

0.42 (6.54) ­0.09 (1.41)

0.62 (6.12) ­0.78 (7.80)

1- Stock returns are positively related with market leverage (Bhandari (1988), Fama and

French (1992), Gomes and Schmid (2010)), but are insensitive to book leverage (Gomes and

Schmid (2010)).

2- Stock returns are less sensitive to market leverage than to book-to-market values.

3- Market leverage is only weakly linked to stock returns after controlling for book-to-

market value (Johnson (2003), Gomes and Schmid (2010)).

4- Book leverage remains insensitive to stock returns after controlling for book-to-market

value, but becomes negatively related to stock returns after controlling for market leverage

(Fama and French (1992)).

Table 4 shows the model-generated regression results using simulations. The model seems

to do a good job in capturing the regularities above.

How does the model generate the result that book-to-market values are a much stronger

predictor of stock returns than �nancial leverage? In a model without heterogeneity in

cash-�ow risk, book-to-market value and market leverage are strongly correlated with each

other, since �rms with higher book-to-market value also have a higher real and risk-neutral
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Table 4: Fama-MacBeth Regressions with simulated data. Book-to-market value
(BE/ME), market leverage (ML), and book leverage (BL) at the beginning of portfolio
formation period. The coe¢ cients are the time series average of regression coe¢ cients, and
the t-statistics (in parentheses) are the average regression coe¢ cient divided by its time
series standard error. A total of 1200 �rms are simulated over 1200 months 100 times, and
the �rst 600 months are dropped to allow the simulations converge to a steady state. The
reported statistics are averages across simulations.

log BE/ME log ML log BL
0.58 (11.38)

0.13 (6.98)

0.02 (0.15)

0.57 (11.45) 0.02 (2.04)

0.58 (11.07) 0.04 (1.49)

0.62 (19.27) ­0.43 (14.50)

default probability and default probabilities are strongly correlated with �nancial leverage.

Therefore, book-to-market value has hardly any explanatory power above and beyond that

of market leverage. However, when there is heterogeneity in cash-�ow risk across �rms, the

cash-�ow risk a¤ects book-to-market values and market leverage in an opposite way. To see

this within the context of the model, note that book-to-market value and market leverage

are given by

BE

ME
=

k �B (X0; c)

J (X; c)
=
�� y=y0D (y0)

E (y)

ML =
B (X0; c)

B(X0; c) + J (X; c)
=

y=y0D (y0)

y=y0D (y0) + E (y)
.

Given the level of cash �ow and coupon payments, higher cash-�ow risk reduces the market

value of equity. This a¤ects book-to-market values and market leverage in the same direction,

since equity is in the denominator of both quantities. However, higher cash-�ow risk also

decreases the value of the �rm�s debt by increasing risk-neutral default probabilities. This
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depresses market leverage but increases book-to-market values, as we can see from the equa-

tions above. Therefore, book-to-market values are more sensitive to a change in cash-�ow

risk than is market leverage. Since cash-�ow risk is positively related to expected returns,

book-to-market values are more strongly correlated with returns than is market leverage and

hence book-to-market subsumes the e¤ect of �nancial leverage.

This intuition also explains why we have a signi�cantly negative sign on book leverage,

after controlling for market leverage. Note that we can write book-to-market value as a

combination of book leverage and market leverage, that is

BE

ME
=

ML

1�ML=
BL

1�BL .

Because book-to-market values subsume the relationship of �nancial leverage with stock

returns, a regression of returns on market leverage and book leverage should imply a signif-

icantly positive sign for market leverage and a signi�cantly negative sign for book leverage.

In a recent paper, Gomes and Schmid (2010) argue that the relationship of growth op-

tions and stock returns can explain the weak link observed between market leverage and stock

returns. In their model, the growth options provide an additional source of risk for small

young �rms, and these �rms have lower market leverage than large mature �rms. Therefore,

although the Modigliani and Miller paradigm suggests that �rms with lower market leverage

should have smaller equity risk, growth options a¤ect this relationship in the opposite di-

rection, resulting in an ambiguous relationship between market leverage and stock returns.

My explanation is based on the heterogeneity of cash-�ow riskiness, and my approach has

important di¤erences: First, in Gomes and Schmid, high book-to-market �rms also have

high default probabilities and they link the relationship between book-to-market values and

stock returns to �nancial distress.14 This implies that their model suggests a positive distress

premium, in contrast with the evidence in CHS (2009) and the references therein. In com-

14Gomes and Schmid (2010, p. 490): "First, our dynamic model of leverage and returns o¤ers theoretical
support to the common intuition that book-to-market value is related to a �nancial distress factor, as this
variable seems to capture much of the impact of leverage in returns."
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parison, my model produces the relationship between stock returns, book-to-market values,

and �nancial leverage, along with a negative distress premium. Second, Tables IV and V in

Gomes and Schmid show that the market leverage premium between the top and bottom

quintiles is 4:2 percent per year, whereas the book-to-market premium is 7 percent per year

in the data. Their model generates 3 percent and 3:7 percent for these quantities, respec-

tively, whereas my model generates 1:7 percent and 5:9 percent, respectively. This di¤erence

is in line with the intuition that book-to-market value has hardly any explanatory power

above and beyond market leverage when there is no heterogeneity in cash-�ow risk, which is

the setup in Gomes and Schmid (2010). Third, an advantage of my approach is that I use

regressions rather than double-sorting of portfolios according to book-to-market value and

market leverage as in Gomes and Schmid (2010). Although the double sorting exercise in

Gomes and Schmid shows that the market leverage premium in each book-to-market quin-

tile is lower than the unconditional premium to market leverage, it does not tell us whether

book-to-market value subsumes market leverage in explaining returns, because if we sorted

the �rms �rst according to market leverage and then by book-to-market value, we would

also �nd that the book-to-market premium in each market leverage quintile was lower than

the unconditional value premium.

7 Conclusion

This paper captures the following empirical regularities in a model where the risk-neutral

and real default probabilities do not comove perfectly across the �rms.

1- Firms with a higher likelihood of default have lower returns, as discussed in CHS

(2009) and the references therein.

2- Firms with higher earnings-price ratios and higher book-to-market values have higher

stock returns.

3- Firms with higher bond yields have higher stock returns.
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4- Stock returns are positively related to market leverage but are insensitive to book

leverage.

5- Stock returns are less sensitive to market leverage than to book-to-market value.

6- Market leverage is only weakly linked to stock returns after controlling for book-to-

market value.

7- Book leverage remains insensitive to stock returns after controlling for book-to-market

value, but becomes negatively related to stock returns after controlling for market leverage.

Aside from matching these regularities, the paper makes an additional claim that can

be checked empirically, for example, by using the market data on credit default swaps:

Firms with a higher default risk under the risk-neutral measure should have higher returns.

Given that the CDS intruments are relatively new and currently do not cover the entire

Compustat/CRSP universe, testing this hypothesis will be problematic with current data. I

hope that we will be able to test this hypothesis in the near future. So far, the �ndings of

Anginer and Yildizhan (2010) using bond yields seem to support this claim.
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9 Appendix

9.1 Determination of Market Values and Optimal Boundaries

Proposition 1 and the analysis in Section 3.1 suggest that we can separate the HJB equations

for equity and debt into separate regions according to the value of y0, �y, and yB. There are

three possible cases depending on the positioning of �y relative to y0 and yB.

Case 1, y0 < �y < yB: The optimal policy of the �rm suggests that we can separate the

HJB equations for debt and equity into two separate equations, one for region 0 < y < �y,

and one for region �y < y < yB. If we denote them region 1 and 2, respectively, and note

that y0 < �y, the equations for these regions are

(r � �+ �)E1 (y) = (1� �) (1� y)� �yE 01 (y) +
1

2
�2y2E 001 (y)

+�

�
E1 (y0) + (1� b)D1 (y0)�

y

y0
D1 (y0)

�
(r � �+ �)E2 (y) = (1� �) (1� y)� �yE 02 (y) +

1

2
�2y2E 002 (y)

(r � �+ �)D1 (y) = y � �yD0
1 (y) +

1

2
�2y2D00

1 (y) + �
y

y0
D1 (y0)

(r � �+ �)D2 (y) = y � �yD0
2 (y) +

1

2
�2y2D00

2 (y) + �
� (1� �)
r � �
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with boundary conditions

E2 (yB) = E 02 (yB) = 0

D2 (yB) =
� (1� �)
r � �

E1 (�y) = E2 (�y)

E 01 (�y) = E 02 (�y)

D1 (�y) = D2 (�y)

D0
1 (�y) = D0

2 (�y) ,

where the last four conditions come from the fact that y = �y is a transitional boundary.15

Since the HJB equations are second order ordinary di¤erential equations, their solution has

the form

E1 (y) =
1� �

r � �+ � +
�

r � �+ � (E1 (y0) + (1� b)D1 (y0))�
�
1� �
r + �

+
�

r + �

D1 (y0)

y0

�
y

+A1y
�1 + A2y

�2

E2 (y) =
1� �

r � �+ � �
1� �
r + �

y +B1y
�1 +B2y

�2

D1 (y) =

�
1 + �

D1 (y0)

y0

�
y

r + �
+M1y

�1 +M2y
�2

D2 (y) =
y

r + �
+

�

r � �+ �
� (1� �)
r � � +N1y

�1 +N2y
�2,

where �1 < 0 and �2 > 1 are the roots of

1

2
�2�2 �

�
�+

1

2
�2
�
� � (r � �+ �) = 0,

because we need r > � for convergence of the market values of debt and equity. This implies

that we need to �nd two constants of integration for each of the E1 (y), E2 (y), D1 (y), and

D2 (y), and also the values of yB, y0, and �y. We need 11 equations to solve for them. Seven of

15See Dixit (1993, p.30) for the details regarding transitional boundaries.
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these come from the aforementioned boundary conditions and two more come from the fact

that the option value of bankruptcy should not explode as X !1 or equivalently y ! 0+,

which implies that A1 = M1 = 0. The last two come from the de�nitions of y0 and �y, that

is,

E 01 (y0) + (1� b)D0
1 (y0) = 0

E1 (y0) + (1� b)D1 (y0)�
�y

y0
D1 (y0) = 0.

Case 2, �y � yB: If �y � yB, proposition 1 implies that the �rm goes bankrupt only when

y hits yB and never at the time of debt maturity. Therefore, the �rms are active only in

the region 0 < y < yB. This is similar to region 1 of case 1 above, because the �rm always

re�nances at the time of debt maturity. As a result, the HJB equations relevant for this case

are

(r � �+ �)E1 (y) = (1� �) (1� y)� �yE 01 (y) +
1

2
�2y2E 001 (y)

+�

�
E1 (y0) + (1� b)D1 (y0)�

y

y0
D1 (y0)

�
(r � �+ �)D1 (y) = y � �yD0

1 (y) +
1

2
�2y2D00

1 (y) + �
y

y0
D1 (y0)

with boundary conditions

E1 (yB) = E 01 (yB) = 0

D1 (yB) =
� (1� �)
r � � .

Since the HJB equations are second order ordinary di¤erential equations, their solution has
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the form

E1 (y) =
1� �

r � �+ � +
�

r � �+ � (E (y0) + (1� b)D (y0))�
�
1� �
r + �

+
�

r + �

D1 (y0)

y0

�
y

+A1y
�1 + A2y

�2

D1 (y) =

�
1 + �

D1 (y0)

y0

�
y

r + �
+M1y

�1 +M2y
�2,

where �1 < 0 and �2 > 1 are the roots of

1

2
�2�2 �

�
�+

1

2
�2
�
� � (r � �+ �) = 0.

This implies that we need to �nd two constants of integration for each of the E1 (y) and

D1 (y), and also the values of yB and y0. We need six equations to solve for them. Three of

these come from the aforementioned boundary conditions and two more come from the fact

that the option value of bankruptcy should vanish as X !1 or equivalently y ! 0+, which

implies that A1 =M1 = 0. The last one comes from the de�nition of y0 and �y, that is,

E 01 (y0) + (1� b)D0
1 (y0) = 0.

Case 3, �y � y0: The optimal policy of the �rm suggests that we can separate the HJB

equations for debt and equity into two separate equations, one for region 0 < y < �y, and one

for region �y < y < yB. If we denote them region 1 and 2, respectively, and note that y0 � �y,
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the equations for these regions are

(r � �+ �)E1 (y) = (1� �) (1� y)� �yE 01 (y) +
1

2
�2y2E 001 (y)

+�

�
E2 (y0) + (1� b)D2 (y0)�

y

y0
D2 (y0)

�
(r � �+ �)E2 (y) = (1� �) (1� y)� �yE 02 (y) +

1

2
�2y2E 002 (y)

(r � �+ �)D1 (y) = y � �yD0
1 (y) +

1

2
�2y2D00

1 (y) + �
y

y0
D2 (y0)

(r � �+ �)D2 (y) = y � �yD0
2 (y) +

1

2
�2y2D00

2 (y) + �
� (1� �)
r � �

with boundary conditions

E2 (yB) = E 02 (yB) = 0

D2 (yB) =
� (1� �)
r � �

E1 (�y) = E2 (�y)

E 01 (�y) = E 02 (�y)

D1 (�y) = D2 (�y)

D0
1 (�y) = D0

2 (�y) ,

where the last four conditions come from the fact that y = �y is a transitional boundary.16

Since the HJB equations are second order ordinary di¤erential equations, their solution has

16See Dixit (1993, p.30) for the details regarding transitional boundaries.
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the form

E1 (y) =
1� �

r � �+ � +
�

r � �+ � (E2 (y0) + (1� b)D2 (y0))�
�
1� �
r + �

+
�

r + �

D2 (y0)

y0

�
y

+A1y
�1 + A2y

�2

E2 (y) =
1� �

r � �+ � �
1� �
r + �

y +B1y
�1 +B2y

�2

D1 (y) =

�
1 + �

D2 (y0)

y0

�
y

r + �
+M1y

�1 +M2y
�2

D2 (y) =
y

r + �
+

�

r � �+ �
� (1� �)
r � � +N1y

�1 +N2y
�2,

where �1 < 0 and �2 > 1 are the roots of

1

2
�2�2 �

�
�+

1

2
�2
�
� � (r � �+ �) = 0.

This implies that we need to �nd two constants of integration for each of the E1 (y), E2 (y),

D1 (y), and D2 (y), and also the values of yB, y0 and �y. We need 11 equations to solve them.

Seven of these come from the aforementioned boundary conditions and two more come from

the fact that the option value of bankruptcy should not explode as X !1 or equivalently

y ! 0+, which implies that A1 =M1 = 0. The last two come from the de�nitions of y0 and

�y, that is,

E 02 (y0) + (1� b)D0
2 (y0) = 0

E2 (y0) + (1� b)D2 (y0)�
�y

y0
D2 (y0) = 0.

9.2 Proof of y0 < �y < yB when b = 0 (Proposition 2)

The normalized net gain of restructuring to the shareholders is de�ned as

SN;b (y) � E (y0) + (1� b)D (y0)�
y

y0
D (y0)� E (y) ,
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which is simply the net gain divided by cash �ow after restructuring.

Lemma 4 If �y � yB, the normalized net gain in the absence of costs of debt issuance,

SN;0 (y), is decreasing in y for y � y0.

Proof. When �y � yB, the active �rms can only be in the �rst region. Therefore, we can

write

SN;0 (y) = E1 (y0) +D1 (y0)�
y

y0
D1 (y0)� E1 (y) ,

which has the �rst and second derivatives

S
0

N;0 (y) = �
�
D1 (y0)

y0
+ E

0

1 (y)

�
S
00

N;0 (y) = �E 00

1 (y) .

Since the term A2y�2 captures the value of the bankruptcy option, which is positive, we have

A2 > 0. Combining this with �2 > 1 we get E
00
1 (y) > 0 and hence S

00
N;0 (y) < 0. Moreover,

using E 01 (y0) + D
0
1 (y0) = 0 when b = 0, �2 > 1, and A2 > 0, it is straightforward to show

that M2 < 0 and

S
0

N;0 (y0) = �
�
D1 (y0)

y0
+D

0

1 (y0)

�
< 0.

Combining S
0
N;0 (y0) < 0 and S

00
N;0 (y) < 0 we get S

0
N;0 (y) < 0 for y � y0.

This lemma combined with yB > y0 and SN;0 (y0) = 0 leads to the following corollary:

Corollary 5 If �y � yB, SN;0 (yB) < 0.

Now we can show y0 < �y < yB when b = 0. Let S0 (y) = E (y0)+D (y0)� y
y0
D (y0) be the

value of shareholder surplus when the cost of issuing debt is zero. Since S0 (y0) = E (y0) > 0,

S 00 (y) < 0 and S0 (�y) = 0 by de�nition, it immediately follows that �y > y0.

Suppose �y � yB. When �y � yB the �rms are active only in the �rst region and we can

write

S0 (y) = E1 (y0) +D1 (y0)�
y

y0
D1 (y0) ,
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which implies that S0 (yB) > 0 because S 00 (y) < 0 and S0 (�y) = 0. Moreover, using E1 (yB) =

0 when �y � yB, we get SN;0 (yB) > 0. However, this contradicts the corollary shown above.

Therefore, �y < yB.

9.3 Long-Run Distribution of Firms

In order to have a stationary long-run distribution, I assume that when a �rm goes bankrupt

it is replaced by another �rm with the same cash-�ow riskiness, �, that chooses its initial

capital structure optimally, which implies that y = y0 at the inception of the new �rm.

Let � (zj�) be the the proportion of the �rms with y=yB < ez among the �rms with cash-

�ow riskiness, �, and let � (zj�) be the corresponding distribution function. If we de�ne

z = ln y=yB and z0 = ln y0=yB, this distribution is the same as the long-run distribution of

a process with an absorbing barrier at z = 0 and which is reset to z = z0 at rate �. The

resetting of this process occurs this way because debt maturity occurs at rate � and implies

that either the �rm returns to y = y0 via re�nancing or it goes bankrupt and is replaced by

a �rm with y = y0. Therefore, until z hits the absorbing barrier it follows the process

dz = �
�
�X �

1

2
�2
�
dt+ �dt+ (z0 � z) dN ,

where

dN =

�
1 with probability �dt

0 with probability 1� �dt .

Note that yB and y0 depend on � and hence a and a0 also depend on �, which is di¤erent

across �rms.

Discretizing the process for z as in Dixit and Pindyck (1994, pp. 272-277), one can show
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that the distribution of the �rms satis�es the following Kolmogorov backward equation

1

2
�2�00 (z) +

�
�X �

1

2
�2
�
�0 (z)� �� (z) = 0

� (0) = 0

1

2
�2
�
�0
�
z+0
�
� �0

�
z�0
�
� �0

�
0�
��
+ � = 0Z 0

�1
� (z) dz = 1,

where we drop � in � (zj�) for simplicity. The solution to these equations is given by

� (z) =

� �Ae�2z if z � z0
�B (e�1z � e�2z) if z0 < z � 0

,

where �1 < 0 < �2 are the roots of

1

2
�2�2 +

�
�X �

1

2
�2
�
�� � = 0

and �A and �B satisfy

�A�2e
�2z0 � [�1 (e�1z0 � 1)� �2 (e�2z0 � 1)] �B =

2�

�2

e�2z0

�2
�A�

�
e�1z0 � 1
�1

� e
�2z0 � 1
�2

�
�B = 1.

Once we �nd the distribution for the process a, �nding the distribution of the �rms in terms

of y is straightforward via ' (yj�) = � (ln (y=yB) j�) =y.

Finally, the long-run distribution of the �rms is given by

f (y; �) = ' (yj�)h (�) ,

where h (�) is distribution of ��s and is assumed to be uniform between �L and �H ; and

' (yj�) is the distribution of �rms that have the riskiness of cash �ows measured by �.
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9.4 Distribution of Time to Bankruptcy

In this section I derive the moment generating function for the distribution of time to bank-

ruptcy.

As we have done with the market value of equity, we divide the the state space into two

regions. If we de�ne a = ln y=yB, and �a = ln �y=yB, and a0 = ln y0=yB, then we have a = 0

as the absorbing barrier so that

da = mdt+ �dw + [Ia>�a(0� a) + (1� Ia>�a) (a0 � a)] dN ,

where m = �
�
�X � 1

2
�2
�
and Ia>�a is the indicator function that is equal to 1 if a > �a and

0 otherwise and

dN =

8><>: 1 with probability �dt

0 with probability 1� �dt
,

where being hit by the �-shock when a > �a implies that the �rm goes bankrupt, which we

denote as a jump to the absorbing barrier, and being hit by this shock when a < �a implies

resetting to a0. Note that yB, y0, and �y depend on � and hence a, �a, and a0 also depend on

�, which is di¤erent across �rms.

Using this and denoting the regions a < �a as region 1 and a > �a as region 2, we �nd that

the distribution of time to bankruptcy satis�es the following Kolmogorov forward equations

g1t (t; a) = mg1a (t; a) +
1

2
�2g1aa (t; a) + �

�
g1 (t; a0)� g1 (t; a)

�
g2t (t; a) = mg2a (t; a) +

1

2
�2g2aa (t; a) + �

�
� (t)� g2 (t; a)

�
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subject to boundary conditions

g2 (t; 0) = � (t)

g1 (0; a) = g2 (0; a) = 0 for a < 0

lim
a!�1

g1a (t; a) = 0

g1 (t; �a) = g2 (t; �a)

g1a (t; �a) = g2a (t; �a) ,

where � (t) is the Dirac-Delta function and the last two conditions come from the fact that

�a is the transitional boundary.

If we de�ne the Laplace transform as


 (s; a) =

Z 1

0

e�stg (t; a) dt,

we can reduce the Kolmogorov equations to the following second order ODEs

(s+ �) 
1 (s; a) = m
1a (s; a) +
1

2
�2
1aa (t; a) + �


1 (t; a0)

(s+ �) 
2 (s; a) = m
2a (s; a) +
1

2
�2
2aa (t; a) + �,

subject to boundary conditions


2 (s; 0) = 1

lim
a!�1


1a (s; a) = 0


1 (s; �a) = 
2 (s; �a)


1a (s; �a) = 
2a (s; �a) ,
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which gives us the solution


1 (s; a) = ~A

�
�

s
e�2a0 + e�2a

�

2 (s; a) =

�

s+ �
+

s

s+ �
e�2a + ~B

�
e�1a � e�2a

�
,

where �2 > 0 > �1 are the roots of

1

2
�2�2 +m� � (s+ �) = 0

and ~A and ~B satisfy

�
�

s
e�2a0 + e�2�a

�
~A =

�

s+ �
+

s

s+ �
e�2�a + ~B

�
e�1�a � e�2�a

�
�2e

�2�a ~A =
s

s+ �
�2e

�2�a + ~B
�
�1e

�1�a � �2e�2�a
�
.

Having found this, we can derive the moment generating function and cumulant generating

function.

M (s; a) = 
 (�s; a)

K (s; a) = lnM (s; a) ,

from which we can generate various distress measures the �rst of which is simply the mean

time to bankruptcy given byM 0 (0; a) = K 0 (0; a) = E [tja].17 The second and the third ones

are saddlepoint approximations to the probability of default within one year using normal

and inverse Gaussian bases.18

The steps for the saddlepoint approximation to the cumulative distribution function

17Here and in the following, the derivative with respect to the moment generating function and cumulant
generating function is always taken with respect to s.
18See sections 1 and 16 in Butler (2007) for an excellent introduction to saddlepoint approximations and

their properties. I choose the normal base because it is the standard base and the inverse Gaussian base
because the probability density function of hitting time is an inverse Gaussian distribution when � = 0.
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(CDF) of �rst hitting time using the normal base are:19

1. Find K 0 (s; a) and K 00 (s; a).

2. Since we are interested in the probability of default within one year and our model is

parameterized for a yearly frequency, �nd the values of ŝ, ŵ, and û that satisfy

K 0 (ŝ; a) = 1

ŵ = sgn(1�K 0 (0; a))
p
2 fŝx�K (ŝ)g

û = ŝ
p
K 00 (ŝ).

3. Find the probability of default within 1 year, using

F̂ (t) =

�
� (ŵ) + � (ŵ) (1=ŵ � 1=û) if K 0 (0; a) 6= 1

1
2
+ K000(0;a)

6
p
2�K00(0;a)3=2

if K 0 (0; a) = 1
.

Note that ŝ should be the root of K 0 (s; a) = 1 for which M (s; a) converges. Since

K 00 (s; a) > 0 in the region of convergence, this root is unique.

The steps for the saddlepoint approximation to the CDF of �rst hitting time using the

inverse Gaussian base are:20

1. Due to the scale invariance property of the base used in the saddlepoint approximation,

the family of inverse Gaussian bases can be reduced to a one-parameter family of inverse

Gaussian bases where the base distribution is given by z~IG (�; �3) with the cumulant

generating function

L (v) = ��1 +
�
��2 � 2v

�1=2
,

and hence the choice of the suitable candidate from the IG family reduces to the choice

19See Butler (2007) Chapter 1. Note that the approximation to CDF does not require normalization,
unlike the approximation to PDF.
20You will use the inverse Gaussian that comes from the problem of regular Brownian motion hitting times

as the base. The following is adapted from Butler (2007, Ch. 16).
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of suitable �.21 The PDF of the chosen base distribution is called � (z) and its CDF is

called � (z).

2. Matching the square of the third standardized cumulants of the base distribution and

the distribution to be approximated gives us the choice of a as

�̂ =
K 000 (ŝ)2

9K 00 (ŝ)3

 
1 + ŵ

s
K 000 (ŝ)2

9K 00 (ŝ)3

!�1
if K 000 (ŝ) > 0,

where ŝ and ŵ are given above. Then we can �nd the saddlepoint approximation for

the CDF of x

F̂ (t) =

�� (ẑ) + � (ẑ)�1=v̂ �pL00 (v̂)=û� if K 0 (0; a) 6= 1

F̂ (K 0 (0; a)) if K 0 (0; a) = 1
,

where

ẑ = �̂+
�̂2

2

�
ŵ2 + ŵ

p
ŵ2 + 4=�̂

�
v̂ =

1

2

�
�̂�2 � ẑ�2

�
.

F̂ (K 0 (0; a)) is given by equation (16.6) in Butler (2007). Here, it is implicitely assumed

that �̂ > 0; which holds for the parameterization here.22

3. For the case K 000 (ŝ) < 0, we can use the formula given by Wood et al. (1993).

9.5 Simulated Portfolio Returns

21See Wood, Booth, and Butler (1993) and Butler (2007). This base can be derived by taking y~IG(�; �2)
as the base distribution, rescaling the base variable as z � �2=�3 � y~IG

�
�2=�2; �6=�6

�
, and replacing

� � �2=�2 to get an equivalent base.
22If this condition does not hold, Butler (2007) suggests the use of a small value for �̂, such as �̂ = 0:1.
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Table 5: Simulation of equally weighted portfolios. At the beginning of each year,
stocks are ranked according to increasing price-earnings ratios, decreasing expected time to
default, and increasing bond yields as a proxy for �nancial distress, under real and risk-
neutral measures, increasing book-to-market values, market leverage, and book leverage to
form equally weighted portfolios. A total of 1200 �rms are simulated over 1200 months 100
times. The �rst 600 months are dropped in each simulation to allow the simulations to
converge to the steady state. The table reports the time series means of equally weighted
portfolio returns averaged across simulations.

Portfolio Returns with Di¤erent Rankings
A. Cash-Flow Model

Portfolio 1 2 3 4 5
Distress 13.74 12.66 11.47 10.24 10.15

Risk-Neutral Distress 8.84 10.24 11.52 12.78 14.89
Earnings/Price 8.84 10.25 11.52 12.77 14.90

Bond Yield 10.42 10.97 11.41 11.83 13.63
B. Investment Model

Portfolio 1 2 3 4 5
Book-to-Market 8.85 10.24 11.52 12.77 14.89
Market Leverage 11.17 11.38 11.21 11.31 13.19
Book Leverage 12.27 11.99 11.34 10.75 11.91

45


