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1 Introduction

Standard economic theory assumes that agents process information about their own ability as

dispassionate Bayesians do. Social psychologists have questioned this assumption by pointing

out that people systematically rate their own ability as “above average.” To take one classic

and widely cited example, 88 percent of U.S. drivers consider themselves safer than the median

driver (Svenson 1981).1 A quickly expanding literature in behavioral economics (Koszegi 2006)

and finance (Barber and Odean 2001, Malmendier and Tate 2008) has explored the implications

of overconfidence for economic decision-making.

At the same time, economists have pointed out that much of the commonly cited evidence

on biased information processing is in fact consistent with fully rational information processing.

Zábojńık (2004) and Benoit and Dubra (forthcoming) have shown that Bayesian updating can

easily generate highly skewed belief distributions. For example, if there are equally many safe

and unsafe drivers and only unsafe drivers have accidents, then a majority of drivers — the

good drivers and the bad drivers who have not yet had accidents — will rate themselves safer

than average. People might also disagree on the definition of what constitutes a safe driver

(Santos-Pinto and Sobel 2005) or tend to (rationally) choose activities for which they over-rate

their abilities (Van den Steen 2004). As these arguments illustrate, inference about information

processing from cross-sectional data is intrinsically difficult.

Our paper makes two contributions. First, we analyze theoretically the problem of opti-

mally managing one’s self-confidence. Building on Brunnermeier and Parker’s (2005) concept

of optimal expectations, we show that agents who derive utility directly from their beliefs (for

example, ego or anticipatory utility) will exhibit a range of distinctive and measurable biases

in both the way they acquire and the way they process information. This lets us interpret tests

for these behaviors as tests of a unified theory, rather than tests for isolated behavioral anoma-

lies. Second, we implement these tests in a carefully controlled experimental environment. We

repeatedly elicit subjects’ beliefs about well-defined events in an incentive-compatible manner

and study their evolution. In effect, we sidestep the ambiguities inherent in cross-sectional

data by opening the “black box” of belief updating itself.

The model describes an agent who has either high or low ability. She will at some point

have to choose whether or not to take an action whose payoff is positive only if her type is high,

so she places an instrumental value on information. She also derives utility from believing she

is the high type, however, which is interpretable as ego or anticipatory utility. We suppose

that the agent is a “biased Bayesian” updater who uses Bayes’ rule to process information but

decides at an initial stage how to interpret the informativeness of signals and how to value

1See Englmaier (2006) or Benoit and Dubra (forthcoming) for overviews of the evidence on over-confidence.
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information, taking into account the competing demands of belief utility and decision-making.

When the weight placed on belief utility is zero, the model reproduces “perfect” (unbiased)

Bayesian updating.

Like other behavioral models ours can explain why agents are asymmetric updaters, putting

greater weight on positive information about their own ability than on negative information.

Our model also reveals close connections, however, between asymmetry and other biases. We

predict that agents are conservative, responding less than a perfect Bayesian would to infor-

mation. Intuitively, asymmetry on its own increases the agent’s mean belief in her ability in

the low state of the world. However, asymmetry also increases the variance of the low-type’s

beliefs: this increases the likelihood of costly investment mistakes where the low-type agent

takes the action appropriate for the high type. By also becoming conservative, the agent can

reduce the variance of her belief distribution in the bad state of the world. The model also

predicts that less confident agents will be information-averse, willing to pay to avoid learning

their types, since this would upset the careful balance they have struck between belief and

decision utility.

We test these predictions in a large-scale experiment with 656 undergraduate students.

Subjects first perform an IQ test, after which we elicit their belief that they are among the

top half of performers. We then repeat the following procedure four times. We first provide

each subject with an independent binary signal of their performance; each signal tells them

whether they are among the top or bottom half of performers and is correct with probability

75 percent. Second, after each signal we again elicit subjects’ beliefs that they are among the

top half of performers. By explicitly measuring priors and posteriors, and clearly defining the

data-generating process, we eliminate the major confounds found in social psychology studies.

Repeating the process four times gives us a rich data set to study how beliefs change with

information.

Our focus on the binary event “scoring in the top half” is a novel and convenient design

feature that allows us to summarize relevant beliefs in a single number, the subjective prob-

ability of being among the top half of performers. This facilitates a further methodological

advance: we elicit beliefs by asking subjects for what value of x they would be indifferent

between receiving a payoff with probability x and receiving a payoff if their score is among the

top half. Unlike the widely-used quadratic scoring mechanism, this approach is robust to risk

aversion, and also to non-standard models of preferences, provided these are monotonic in the

sense that lotteries that pay out a fixed amount with higher probability are preferred.2

We estimate empirical specifications of belief updating that nest perfect Bayesian updat-

2As Schlag and van der Weele (2009) discuss, our mechanism was also described by Allen (1987) and Grether
(1992) and has since been independently discovered by Karni (2009).
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ing and our own model of biased Bayesian updating. Consistent with both, we find that

information is persistent in the sense that subjects’ priors are fully incorporated into their

posteriors. Consistent only with the latter, we find that subjects are both conservative and

asymmetric updaters. On average our subjects revise their beliefs by only 35 percent as much

as perfect Bayesians with the same priors would. Moreover, subjects who receive positive

feedback revise their beliefs by 15 percent more on average than those who receive negative

feedback. Strikingly, even subjects who received two positive and two negative signals — and

thus learned nothing — ended up significantly more confident than they began. We take this

as unambiguous evidence of self-serving bias.3

An important question about these results is whether they reflect motivated behavior as

posited by our model or merely cognitive limitations. It is, in fact, widely recognized that

standard Bayesian updating is an imperfect positive model even when self-confidence is not

at stake.4 We conduct two tests to study whether our results reflect motivated behavior or

cognitive limitations. First, we show that agents who are of high ability according to our IQ

quiz, and hence arguably cognitively more able, are just as conservative and asymmetric as

those who score in the bottom half of the IQ quiz. Second, we conduct a placebo experiment,

structurally identical to our initial experiment except that subjects report beliefs about the

performance of a “robot” rather than their own performance. Belief updating in this second

experiment is significantly and substantially closer to perfect Bayesian, implying that the desire

to manage self-confidence is an important driver of updating biases.

We also measure subjects’ demand for feedback by allowing them to bid for noiseless infor-

mation on their relative performance. We then test the null hypothesis that subjects’ valuations

for feedback are weakly positive, as would hold if subjects used information purely to improve

their decision-making. On the contrary, we find that approximately 10 percent of our sub-

jects are information-averse, willing to pay to avoid learning their type. We also find that less

confident subjects are more likely to be information-averse, as predicted by our model. To

address the concern that confidence may be correlated with other determinants of information

demand, we show that this result continues to hold when we instrument for confidence using

3Evidence from psychology of “attribution biases” has two limitations in this regard: attribution does not
require learning, and much of the evidence provided for attribution bias is also consistent with perfect Bayesian
updating due to ambiguities in the experimental designs (Ajzen and Fishbein 1975, Wetzel 1982). We discuss
these issues in greater depth in Section 5.5.

4A large literature in psychology during the 1960s tested Bayes’ rule for ego-independent problems such
as predicting which urn a series of balls were drawn from; see Slovic and Lichtenstein (1971), Fischhoff and
Beyth-Marom (1983), and Rabin (1998) for reviews. See also Grether (1980), Grether (1992) and El-Gamal
and Grether (1995) testing whether agents use the “representativeness heuristic” proposed by Kahneman and
Tversky (1973). Charness and Levin (2005) test for reinforcement learning and the role of affect using revealed
preference data to draw inferences about how subjects update. Rabin and Schrag (1999) and Rabin (2002)
study the theoretical implications of specific cognitive forecasting and updating biases.
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exogenous variation generated by our experimental design.

Our results provide support for recent theories that imply a demand for self-confidence man-

agement. In one strand of this literature, self-confidence directly enhances well-being (Akerlof

and Dickens 1982, Caplin and Leahy 2001, Brunnermeier and Parker 2005, Koszegi 2006),

while other papers examine self-confidence as a means to compensate for limited self-control

(Brocas and Carrillo 2000, Benabou and Tirole 2002) or to enhance performance (Compte

and Postlewaite 2004). These models differ in their assumptions about how people manage

their self-confidence, some emphasizing updating, others information acquisition, and others

selective memory. Our results suggest that the first two mechanisms are relevant (but do not

bear on the third, given the short time frame of the experiment).

The most closely related empirical work is by Eil and Rao (forthcoming), who use the

quadratic scoring rule to repeatedly elicit beliefs about intelligence and beauty. Their findings

on updating (agents’ posteriors are less predictable and less sensitive to signal strength after

receiving negative feedback) are not directly comparable with ours (persistence, asymmetry,

and conservatism) due to differences in the design of the experiment and methods of analysis,

but are broadly consistent with motivated information processing. Their estimates of infor-

mation demand match ours — subjects with low confidence are averse to further feedback —

though they treat confidence as exogenous.5

Finally, this paper also contributes to the research on gender differences in confidence. A

large literature in psychology and a growing one in economics have emphasized that men tend

to be more (over-)confident than women, with important economic implications. There are

three possible sources for gender differences in confidence: they could be driven by gender

differences in priors, gender differences in updating about beliefs, and gender differences in

demand for information. Our experiment is designed to answer which combination of these

factors is present. We find that in our data women differ significantly in their priors, are

significantly more conservative updaters than men while not significantly more asymmetric,

and significantly more likely to be averse to feedback. These gender differences are consistent

with our theoretical framework if a larger proportion of women than men value belief utility.

The rest of the paper is organized as follows. Section 2 develops the model. Section 3

describes the details of our experimental design, and Section 4 summarizes the experimental

data. Section 5 discusses econometric methods and presents results for belief updating dy-

namics, and Section 6 presents results on information acquisition behavior. Section 7 discusses

gender differences, and Section 8 concludes.

5In other related work, Charness, Rustichini and Jeroen van de Ven (2011) find that updating about own
relative performance is noisier than updating about objective events. Grossman and Owens (2010), using the
quadratic scoring rule and a smaller sample of 78 subjects, do not find evidence of biased updating about
absolute performance.
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2 Theory

We consider an agent who can either be of high type H or low type L.6 There are T discrete

time periods and the agent observes i.i.d. binary signals about her type in each period; T thus

measures the information-richness of the environment. For τ ∈ [0, 1] we associate with relative

time τ the corresponding absolute time bτT c.
In period 1 ≤ T̃ ≤ T the agent has to decide whether to make an investment at cost c that

pays 1 in the final period if she is of high type and 0 otherwise.7 Not investing gives utility 0.

Both the timing of the investment period T̃ and the cost c are ex ante unknown to the agent.

Nature chooses T̃ with equal probability among periods 1 to T and the cost c from a twice

continuously differentiable and strictly increasing distribution G ∈ C2[0, 1] over the interval

[0, 1]. The timeline of the model is shown in Figure 1.

Figure 1: Timeline of model

t = 0

Agent has subjec-
tive prior belief µ0

of being of typeH

t = 1 t = 2 (..) t = T̃

Agent receives binary signals in period t = 1, .., T
about her type and derives a posterior belief.

t = T

Cost c realized; agent chooses
whether to invest.

We first analyze this model under the assumption that the agent is a “perfect Bayesian”

who uses the correct signal distribution when applying Bayes’ rule to form a posterior. We

then examine the information processing of an “optimally biased Bayesian” who also uses

Bayes’ rule but can choose at time t = 0 how to interpret the informativeness of positive and

negative signals. The biased Bayesian derives utility from believing that she is a high-type

agent. Biased information processing can increase belief utility at the cost of being more likely

to make the wrong investment decision.

6The binary nature of types anticipates our experimental design in which a subject’s type is either “scoring
in the top half” or not.

7The assumption that the instrumental value of investing is realized in the last period simplifies our calcula-
tion of belief utility because the agent only learns her type in the final period and therefore manages her belief
utility over all time periods 1 ≤ t ≤ T .
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2.1 Information Processing of a “Perfect Bayesian”

The agent has a subjective prior belief µ0 ∈ (0, 1) that she is a high type and in each period

t = 1, .., T receives a binary signal st ∈ {H,L} about her type. The signals are conditionally

independently distributed: a high type agent receives a high signal with probability p and a

low type agent receives a high signal with probability q < p. The perfect Bayesian derives her

posterior µt using Bayes’ rule. In the investment period T̃ the agent will invest if µT̃ > c, that

is, if she is sufficiently sure that her type is high.8 Denote by St
H (St

L) the number of H (L)

signals the agent has received by time t. One can show that the Bayesian posterior µt satisfies

logit(µt) = logit(µ0) + St
H ln

(
p

q

)

+ St
L ln

(
1− p

1− q

)

, (1)

where logit(x) = ln(x/(1 − x)). Let λH = ln
(
p
q

)

and λL = ln
(
1−p
1−q

)

denote the log likelihood

ratios or informativeness of positive and negative signals. The vector ~λ = (λH , λL) summarizes

the signal structure of the game.

Logit-beliefs evolve as a random walk with a drift that depends on the agent’s type. The

ex-ante expected logit-belief γtH (γtL) of a high (low) type agent are, respectively,

γtH = logit(µ0) + t [pλH + (1− p)λL] (2)

γtL = logit(µ0) + t [qλH + (1− q)λL] (3)

with γtH increasing and γtL decreasing over time. The standard deviations σt
H and σt

L of the

two types’ logit-beliefs evolve as

σt
H

2
= tp(1− p) (λH − λL)

2 (4)

σt
L
2
= tq(1− q) (λH − λL)

2 . (5)

Figure 2 graphs the distribution of beliefs for high and low type agents. The solid lines

show the evolving mean logit-beliefs of low and high types while the two curves indicate that

the distribution of logit-beliefs in the investment period T̃ will be approximately normally

distributed for large T̃ . The graph is useful for understanding the investment decision of the

perfect Bayesian for large T . The agent will invest at time T if and only if her logit-belief is

greater than the realized cutoff logit(c). As the agent accumulates more and more signals, the

mean logit-beliefs of the low and high type agents converge to minus and plus infinity at rate

T , respectively. At the same time, the standard deviation increases only at rate
√
T in both

cases. Therefore, the agent will make fewer and fewer investment mistakes as T → ∞ because

8We adopt the tie-breaking convention that an indifferent agent does not invest.
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Figure 2: Evolution of logit-beliefs for low and high types as a function of time

logit(µ0)

logit(c)

γ T̃

L

γ T̃

H

σ T̃

L
(µ)

σ T̃

H
(µ)

Time

the probability that her logit-belief is on the correct side of the cutoff converges to 1 in each

state. The expected utility of the low and high type agents will converge to 0 and 1 − E(c),

respectively, where E(c) =
∫ 1
0 xdG(x) is the expected investment cost.

Proposition 1 The expected utility of a perfect Bayesian decision-maker who makes an in-

vestment decision at time T̃ is µ0(1−E(c)) +O(exp(−aT̃ )) for some constant a > 0.

All proofs are delegated to the Appendix.

2.2 Information Processing of a “Biased Bayesian”

The “biased Bayesian” differs in two dimensions from the perfect Bayesian. First, the biased

Bayesian derives direct belief utility µ̂t(1 − E(c)) in every period 1 ≤ t ≤ T and cares about

maintaining a high mean belief over the time interval [0, T ]. By defining preferences directly

over beliefs, we follow the growing literature in behavioral economics in which agents derive

utility from their beliefs in non-standard ways.9 Note, that the agent’s belief utility is linear in

her subjective belief µ̂t and hence does not predispose the agent to either a high or low demand

for information: concavity in the belief utility function tends to generate information aversion

(see, for example, Koszegi (2006)) and we will show that aversion is a rational strategy in our

9The literature has examined various mechanisms including direct “ego” utility (Akerlof and Dickens 1982,
Koszegi 2006), utility from the anticipation of future events (Caplin and Leahy 2001, Brunnermeier and Parker
2005), self-confidence as a means of compensating for a lack of self-control (Carrillo and Mariotti 2000, Benabou
and Tirole 2002), and confidence-enhanced performance (Compte and Postlewaite 2004).
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model even with linear belief utility. The scaling factor 1 − E(c) allows us to motivate belief

utility as a form of anticipatory utility of a perfect Bayesian who expects to learn her type

with probability one before acting and whose expected utility is therefore µ̂t(1− E(c)).

Second, we allow the biased Bayesian to choose at time t = 0 how to interpret the informa-

tiveness of positive and negative signals, as well as her initial belief. Formally, she chooses to

believe that the log-likelihood ratio of a positive signal is λ̂H > 0 and that of a negative signal

λ̂L < 0, along with an initial belief µ̂0. The vector
~̂
λ = (λ̂H , λ̂L) thus summarizes how the

biased Bayesian interprets the signal structure. We also define the parameters βH = λ̂H

λH
and

βL = λ̂L

λL
as the decision-maker’s relative responsiveness to negative and positive information,

respectively; we will directly estimate these parameters in our experiment.

The biased Bayesian’s posterior belief µ̂t evolves according to Bayes’ rule but using her

chosen interpretations:

logit(µ̂t) = logit(µ̂0) + St
H λ̂H + St

Lλ̂L. (6)

We denote the mean logit-beliefs of the low and high type biased Bayesian with γ̂tL and γ̂tH and

the standard deviations with σ̂t
L and σ̂t

H .10 We define the total utility of the decision-maker as

the sum of average belief utility and realized utility from actual investment in the investment

period:

U(µ̂0,
~̂
λ|α, µ0, ~λ) = E{st}Tt=1

[

α
1

T

T∑

t=1

µ̂t(1− E(c))

︸ ︷︷ ︸

average belief utility

+
1

T

T∑

t=1

Ec

(
Iµ̂t≥c

(
µt − c

))

︸ ︷︷ ︸

realized utility

]

(7)

Note that the outer expectation is taken over all possible signal realizations {st}Tt=1, which de-

termine µt and µ̂t; importantly, this expectation is evaluated using the correct data generating

process described by µ0 and ~λ.11

The parameter α captures the relative importance of belief utility. We assume 0 ≤ α <
E(c)

1−E(c) , which we refer to as the long-term learning condition. It ensures that the biased

Bayesian, if she knew she were in fact the low type, would not want to bias her beliefs so

extremely as to convince herself she was the high type. (Such a bias would generate belief

10Formally, these expressions are defined through Equations 2–5 replacing µ0, λH and λL with µ̂0, λ̂H and
λ̂L.

11In our model, the belief and real utility generated in every period receives weight 1
T
. The analysis of our

model would not change if we would introduce discounting, as long as both belief and real utility were discounted
at the same rate. If period T̃ is not chosen uniformly, then our steady state analysis would no longer apply;
Proposition 3 would still hold, however, as long as the minimum probability of taking an action in any period t

is bounded below by m
T

for some m > 0.
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utility α(1−E(c)) at a cost of E(c), resulting in negative net utility.) Read as a condition on

α, long-run learning requires that α be sufficiently low; for example, if the cost distribution G

is uniform over [0, 1], then the long-term learning condition is α < 1. Alternatively, long-run

learning rules out distributions where most of the mass is close to zero, since in that case there

is little cost to biasing one’s belief. Note that when the long-run learning condition holds, the

trade-off between belief utility and decision-making binds and hence we do not need to appeal

to any additional cognitive costs to impose any limit on self-deception.

2.3 Optimally Biased Bayesians

The optimally biased Bayesian chooses (µ̂0,
~̂
λ) to maximize her utility (7). Note that in stan-

dard models, perfectly Bayesian beliefs are self-consistent in the sense that the decision-maker

would not wish to alter her beliefs if she could. While in our model this property will not

generally hold when α > 0, we recover the standard model when α = 0:

Proposition 2 An optimally biased Bayesian who derives no utility from anticipation (α = 0)

processes information like a perfect Bayesian and always chooses βH = βL = 1.

In order to describe the optimal Bayesian bias when the decision-maker has belief utility

(α > 0), we introduce the notions of conservatism and asymmetry.

Definition 1 We say that a biased Bayesian is conservative if the agent’s relative responsive-

ness to positive information (βH) and to negative information (βL) are less than 1. We say

that the agent is asymmetric if her relative responsiveness to positive information is greater

than her relative responsiveness to negative information, that is, if βH > βL.

Our next result shows that, for large T , optimally biased Bayesian decision-makers are both

asymmetric and conservative.

Proposition 3 The responsiveness of the optimally biased Bayesian to both positive and neg-

ative information converges to 0 as T → ∞, so that for sufficiently large T she is conservative.

Moreover, the optimally biased Bayesian is asymmetric for sufficiently large T .

The intuition for the tight connection between asymmetry and conservatism is the following:

a biased Bayesian can only increase her belief utility by preventing her future self from fully

learning her true type in the low state of the world (in the high state, the unbiased Bayesian

already enjoys high belief and realized utility as her belief quickly converges to 1). Asymmetry

partially achieves this by pivoting the mean logit-belief lines in Figure 2 upwards. Asymmetry

does not hurt the high type and can slow or even eliminate the drift of mean logit-beliefs of a

perfect Bayesian in the low state towards −∞ (as indicated in Figure 3). However, asymmetry

10



without conservatism makes the low type agent’s belief very volatile: her belief will often

be very high, which exposes the agent to costly mistakes. The optimally biased Bayesian

can reduce belief volatility in the low state by also becoming conservative: this allows her to

maintain a level of self-confidence that remains bounded away from zero without ever becoming

too high and inducing her to overinvest.12 Conversely, conservatism alone is insufficient to

implement the optimal Bayesian bias. While conservatism can keep the low type’s belief high,

it also prevents the high type from learning her type.

We can obtain a tighter characterization of the optimal Bayesian bias under some weak

additional assumptions. The key idea is to first solve the optimally biased Bayesian’s problem

for an environment where she can freely choose her beliefs in every period t and for both

states H and L. This environment is less restricted than our model where beliefs have to

be derived through Bayes’ rule, albeit with modified informativeness of signals. Let µ̃∗
H,t and

µ̃∗
L,t denote solutions to this relaxed problem. Clearly, the decision-maker would set µ̃∗

H,t = 1,

which maximizes both her belief utility and her realized utility, conditional on being the high

type. She would choose µ∗
L,t to maximize

Lα(µL) = αµL(1− E(c)) −
∫ µL

0
cdG(c) (8)

Note that this problem is independent of t, as we are considering an agent who can choose

beliefs for each period independently. The differentiable function Lα(µL) always has an interior

maximum 0 < µ∗
L < 1.13

For large T , the biased Bayesian can approximate the utility achieved in the solution of

this unrestricted problem through the following bias which we term downward-neutral bias:

(
µ̂0
)T

= µ∗
L

λ̂T
H = T−θλH ,where 1

2 < θ < 1

λ̂T
L = −T−θ q

1− q
λH (9)

Figure 3 illustrates the downward neutral bias by plotting the evolution of induced beliefs in

the high and low state. This bias has three important properties: (a) the low type’s logit-

belief follows a driftless random walk, which allows her to maintain her initial logit-belief in

expectation; (b) the agent is asymmetric and responds relatively more strongly to positive

12Epstein, Noor and Sandroni (2010), studying the class of updating dynamics axiomatized in Epstein, Noor
and Sandroni (2008) make the related point that an agent who over-weights new information relative to his
prior may converge to an incorrect forecast.

13We know that Lα(0) = 0 and Lα(1) < 0. Moreover, for small µL we have Lα(µL) > 0 because G′ is
continuous and hence bounded and therefore

∫ µL

0
cdG(c) ≤

∫ µL

0
cmaxc∈[0,1] (G

′(c)) dc = 1
2
µ2
L maxc∈[0,1] (G

′(c)).
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Figure 3: Evolution of logit-beliefs of optimally-biased agent for large T

logit(µ
L
* )

γT̃

H

σT̃

L
(µ) → 0

γT̃

L
= logit(µ∗

L
)

σT̃

H
(µ) → 0

γT̃

H
→∞

Time

than to negative information than a perfect Bayesian does; (c) the agent becomes increasingly

conservative, which ensures that the low type’s actual logit-belief stays close to its mean.

Lemma 2 in the Appendix shows that as T → ∞ the expected payoff from the downward

neutral bias converges to the agent’s payoff in the unrestricted problem: the downward-neutral

bias induces beliefs at any fixed relative time τ , which converge in probability to 1 in the high

state while low state beliefs stay within an arbitrarily close neighborhood around µ∗
L, with

probability approaching 1.

We now show that the downward-neutral bias essentially characterizes the optimal Baysian

bias:

Proposition 4 If Lα(µL) has a unique maximum at µ∗
L and L′′

α(µ
∗
L) < 0, then the following

hold as T → ∞: (a) the agent’s initial belief at time 0, µ̂0, converges to µ∗
L; (b) the ratio of

the agent’s responsiveness to positive versus negative information converges to 1−q
q

(so that

the ratio of the optimally biased Bayesian’s relative responsiveness to positive and negative

information is strictly greater than 1 in the limit); and (c) the agent’s responsiveness to both

positive and negative information converges to 0 faster than
√
T , that is, (λ̂T

H − λ̂T
L)
√
T → 0.

Moreover, at any relative time τ > 0, the agent’s high state belief converges in probability to 1,

while the agent’s low state belief converges in probability to µ∗
L.

The condition on Lα holds, for example, for any cost distribution that is uniform or has an

increasing density. The proof proceeds by showing that any sequence of strategies that does

not have one of the given properties must yield a strictly lower asymptotic payoff than the

(feasible) downward-neutral bias, a contradiction. The result shows that there is no tradeoff in

the limit between maintaining a moderate belief in one’s ability in the low state while rapidly
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Figure 4: Bayesian and Biased Bayesian Strategies: Numerical Optima for Finite T
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Plots of optimal strategies for the perfect Bayesian (α = 0, solid lines) and optimally biased Bayesian (α = 0.5,

dotted lines) cases. (4a) plots responsiveness to positive and negative signals (βH and −βL) for 1 ≤ T ≤ 80.

(4b) plots information values for realizable values of µ̂[τT ] for T = 31, and [τT ] = 10. The remaining parameters

are fixed in both cases at µ0 = 0.5, c ∼ U [0, 1], p = 0.75, q = 0.25

converging to a high belief in the high state. Interestingly, Proposition 4 has no role for the

initial prior µ0. In particular, the optimal initial belief µ̂0 does not depend on µ0 for large

T : the empirical content of the proposition, just like the focus of our experiment, concerns

information acquisition and processing.

Proposition 4 characterizes optimal behavior for large T , or in other words, as the environ-

ment becomes information-rich. For finite T , the model is amenable to numerical optimization:

since the set of possible signal realizations is also finite, we can calculate the optimal policy

exactly without Monte Carlo techniques. Figure 4a shows the calculated optimal policy for

the case α = 1
2 , µ

0 = 1
2 and uniform cost distribution over the range 1 ≤ T ≤ 80. Signals are

symmetric and each signal is correct with probability 0.75. The calculations confirm that the

decision-maker rapidly becomes both conservative and asymmetric for finite T .

2.4 Value of Information

We now analyze how biased agents value information. Suppose that at relative time τ a biased

Bayesian with subjective belief x who has not yet made an investment decision is presented

with an opportunity to purchase a perfectly informative signal. We are interested in the agent’s

willingness to pay, WTP (x, τ). Consistent with our modeling approach we assume that the
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decision-maker chooses her willingness to pay at time 0. To simplify our analysis and build

on the results from the previous section, we assume that the decision-maker does not take the

possibility of buying information into account when choosing her bias. This assumption seems

appropriate when the probability of purchasing information is small.

To derive WTP (x, τ) we first characterize the biased Bayesian’s utility at relative time τ

if she declines to purchase information:

Unoinfo(x, τ) = E{st}Tt=1

[

α
1

T

T∑

t=bτT c
µ̂t(1− E(c))

︸ ︷︷ ︸

remaining belief

utility

+
1

T − bτT c+ 1

T∑

t=[τT ]

Ec

(
Iµ̂t≥c

(
µt − c

))

︸ ︷︷ ︸

realized utility

∣
∣
∣
∣
∣
µ̂bτT c = x

]

(10)

We take the expectation over all signal realizations {st}Tt=1 such that µ̂bτT c = x. Since the

biased Bayesian’s belief can take on at most bτT c + 1 distinct values at relative time τ , this

expectation is only defined for those values. Note that belief utility becomes relatively less

important than realized utility as τ increases because there are only T − bτT c + 1 periods

left. In fact, the biased Bayesian’s total utility at relative time τ equals the utility of a biased

agent at time 0 who weighs belief utility with weight αT−bτT c+1
T

, has initial belief x, and faces

T − bτT c+ 1 periods.

Next, we derive the agent’s expected utility if she purchases a perfect signal at time τ :14

U info(x, τ) = E{st}Tt=1

[

µbτT c(α
T − bτT c+ 1

T
+ 1)(1− E(c))

∣
∣
∣
∣
µ̂bτT c = x

]

(11)

We can now formally define the agent’s willingness to pay for information:

WTP (x, τ) = U info(x, τ)− Unoinfo(x, τ) (12)

In the special case where the agent is a perfect Bayesian (α = 0) and takes an action immedi-

ately (τ = 1), the above expression reduces to the short-term willingness to pay WTPS(x):

WTPS(x) = x(1− E(c)) −
∫ x

0
(x− c)dG(c) (13)

14Note that each sample path determining µ̂t also uniquely determines µt.
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It is easy to see that WTPS(x) is zero when x = 0 or x = 1 and strictly positive for 0 < x < 1:

a perfect Bayesian decision-maker values information the least when she is sure about her

ability. Moreover, the short-term willingness to pay for information is never negative.

Our first result looks at the willingness to pay for information of the perfect Bayesian:

Lemma 1 Consider some belief 0 < x < 1 and relative time 0 < τ < 1. The perfect Bayesian’s

willingness to pay, WTP (x, τ), converges to zero as T → ∞.

The intuition for this result is simply that with enough periods to go and imprecise beliefs

(0 < x < 1), the perfect Bayesian will accumulate sufficient information to take the correct

action with probability approaching 1. Hence, the value of a perfect signal converges to zero.

In contrast, an optimally biased Bayesian’s asymptotic valuation can be either positive or

negative:

Proposition 5 Consider a biased Bayesian who places weight α > 0 on belief utility. Fix

0 < x < 1 and relative time 0 < τ < 1. The agent’s willingness to pay satisfies:

lim
T→∞

WTP (x, τ) = −Lα(1−τ)(x) (14)

Intuitively, for any x < 1 the agent is likely to be a low type because otherwise her logit-beliefs

would have converged rapidly to 1. Proposition 4 implies that her beliefs in the low state

follow a driftless random walk with vanishing variance and hence stay around x. This implies

that her utility over the remaining relative time 1 − τ is approximately Lα(1−τ)(x). Buying

information, on the other hand, would reveal her to be a low type and yield a payoff of 0.

The difference −Lα(1−τ)(x) is negative for low values of x since in that region the benefits of

sustaining belief utility exceed the costs of mistaken choices, but positive for high values of x

since in that region this relationship is reversed. Thus Proposition 5 implies that the biased

Bayesian will have a negative value of information when her belief is low and a positive value

of information when her belief is high.

Figure 4b plots an example of the numerical demands generated by our model for both

an unbiased and a biased Bayesian. In the former case, information is valued most highly at

intermediate beliefs where uncertainty is highest; in the latter case, valuations are negative for

low levels of confidence but then are positive above a threshold level of confidence.

Proposition 5 characterizes the biased Bayesian’s preferred demand function if she could

commit in advance to information demand at time τ . We can also characterize her demand

function in the absence of commitment. In keeping with our earlier assumptions, consider a

“naive biased Bayesian” who evaluates the return to acquiring information at relative time τ

using belief x that she is the high type and believing that the remaining signals she will receive
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have informativeness
~̂
λ:

WTPNBB(x, τ) ≡ E{st}Tt=1

[

1

T − bτT c+ 1

T∑

t=bτT c
Ec

(
Iµ̂t≥c

(
µ̂t − c

))

∣
∣
∣
∣
∣
µ̂bτT c = x

]

(15)

Note that the agent believes that her beliefs are correct and that
~̂
λ accurately describes the

data-generating process. This implies that (i) belief utility does not enter into the expression

for WTPNBB(x, τ), and (ii) she evaluates future decision utility using µ̂t rather than µt. We

can then show:

Proposition 6 Under the assumptions of Proposition 4, the naive Bayesian’s willingness to

pay satisfies:

lim
T→∞

WTPNBB(x, τ) = WTPS(x) (16)

Intuitively, the optimally biased agent updates her beliefs so slowly that she does not expect

to learn much until taking an action. Hence, the Bayesian component of her willingness to

pay converges to a perfect Bayesian’s immediate value of information. Comparing this to

Proposition 5 we see that the period 0 self prefers to impose a strong dislike for information on

future selves with low self-confidence but an additional taste for information on future selves

with high self-confidence.

3 Experimental Design and Methodology

The aim of the experiment is twofold: to test how agents update their beliefs when they receive

noisy feedback, and to assess their demand for information. To understand the mapping from

the model into the experiment, recall that in the model agents cared about the level of their

beliefs because of belief utility and about the accuracy of their beliefs because of an anticipated

future decision. In the experiment we study subjects’ beliefs about their performance in an

IQ quiz. Participants may obtain utility from beliefs about their relative performance in an

IQ quiz for a variety of reasons: because they want to believe they are intelligent (ego utility),

because they want to believe their future is bright (anticipatory utility), or because they believe

confidence will enhance their subsequent motivation or performance. At the same time relative

IQ is potentially an important factor to take into account when making future decisions. We

think of these as being outside of the experiment, as for example when subjects make future

educational and career choices.

The experiment consisted of four stages, which are explained in detail below. During the

quiz stage, a subject completed an online IQ test. We measured each subject’s belief about
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being among the top half of performers both before the IQ quiz and after the IQ quiz. During

the feedback stage we repeated the following protocol four times. First, a subject receives a

binary signal that indicates whether the subject was among the top half of performers that was

correct with 75% probability. We then measure each subject’s belief about being among the top

half of performers. Overall, subjects receive four independent signals, and we track subjects’

updated beliefs after each signal. In the information purchasing stage we gave subjects the

opportunity to purchase precise information about whether her performance put her in the top

half of all performers. A sub-sample of subjects were invited one month later for a follow-up

which repeated the feedback stage but with reference to the performance of a robot rather

than to their own performance.

3.1 Quiz Stage

Subjects had four minutes to answer as many questions as possible out of 30. Since the

experiment was web-based and different subjects took the test at different times, we randomly

assigned each subject to one of nine different versions of the IQ test. Subjects were informed

that their performance would be compared to the performance of all other students taking the

same test version. The tests consisted of standard logic questions such as:

Question: Which one of the five choices makes the best comparison? LIVED is to

DEVIL as 6323 is to (i) 2336, (ii) 6232, (iii) 3236, (iv) 3326, or (v) 6332.

Question: A fallacious argument is (i) disturbing, (ii) valid, (iii) false, or (iv)

necessary?

A subject’s final score was the number of correct answers minus the number of incorrect

answers. Earnings for the quiz were the score multiplied by $0.25. During the same period

an unrelated experiment on social learning was conducted and the combined earnings of all

parts of all experiments were transferred to subjects’ university debit cards at the end of the

study. Since earnings were variable and not itemized (and even differed across IQ tests), it

would have been very difficult for subjects to infer their relative performance from earnings.

Types. Subjects with IQ scores above the median for their particular IQ quiz correspond

to high types in our model, those with scores below the median to low types. Because types are

binary, a subject’s belief about her type at any point in time is given by a single number, her

subjective probability of being a high type. This will prove crucial when devising incentives

to elicit beliefs, and distinguishes our work from much of the literature where only several

moments of more complicated belief distributions are elicited.15

15For example, Niederle and Vesterlund (2007) elicit the mode of subjects’ beliefs about their rank in groups
of 4.
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3.2 Feedback Stage

Signal Accuracy. Signals were independent and correct with probability 75%: if a subject

was among the top half of performers, she would get a “Top” signal with probability p = 0.75

and a “Bottom” signal with probability 1 − p. If a subject was among the bottom half of

performers, she would get a Top signal with probability q = 0.25 and a Bottom signal with

probability 1 − q. The informativeness of Top and Bottom signals was therefore λH = ln(3)

and λL = − ln(3), respectively. To explain the accuracy of signals over the web, subjects were

told that the report on their performance would be retrieved by one of two “robots” — “Wise

Bob” or “Joke Bob.” Each was equally likely to be chosen. Wise Bob would correctly report

Top or Bottom. Joke Bob would return a random report using Top or Bottom with equal

probability. We explained that this implied that the resulting report would be correct with

75% probability.

Belief elicitation. We used a novel crossover mechanism each time we elicited beliefs.

Subjects were presented with two options,

1. Receive $3 if their score was among the top half of scores (for their quiz version).

2. Receive $3 with probability x ∈ {0, 0.01, 0.02, ..., 0.99, 1}.

and asked for what value of x they would be indifferent between them. We then draw a random

number y ∈ {0, 0.01, 0.02, ..., 0.99, 1}. Subjects were paid $3 with probability y when y > x and

otherwise received $3 when their own score was among the top half of scores. To present this

mechanism in a simple narrative form, we told subjects that they were paired with a “robot”

who had a fixed but unknown probability y between 0 and 100% of scoring among the top half

of subjects. Subjects could base their chance of winning $3 on either their own performance

or their robot’s, and had to indicate the threshold level of x above which they preferred to use

the robot’s performance. We explained to subjects that they would maximize their probability

of earning the $3 by choosing their own subjective probability of being in the top half as the

threshold. Subjects were told at the outset that we would elicit their beliefs several times but

would implement only one choice at random for payment.

To the best of our knowledge, ours is the first paper to implement the crossover mechanism

in an experiment.16 The crossover mechanism has two main advantages over the quadratic

scoring rule commonly used in experimental papers. First, quadratic scoring is truth-inducing

only for risk-neutral subjects;17 the crossover mechanism is strictly incentive-compatible pro-

16After running our experiment we became aware that the same mechanism was also independently discovered
by Allen (1987) and Grether (1992), and has since been proposed by Karni (2009).

17See Offerman, Sonnemans, Van de Kuilen and Wakker (2009) for an overview of the risk problem for scoring
rules and a proposed risk-correction. One can of course eliminate distortions entirely by not paying subjects,
but unpaid subjects tend to report inaccurate and incoherent beliefs (Grether 1992).
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vided only that subjects’ preferences are monotone in the sense that among lotteries that pay

$3 with probability q and $0 with probability 1−q, they strictly prefer those with higher q. This

property holds for all von-Neumann-Morgenstern preferences as well as for many non-standard

preferences such as Prospect theory.

A second advantage is that the crossover mechanism does not generate perverse incentives

to “hedge” performance on the quiz. Consider the incentives facing a subject who has predicted

that she will score in the top half with probability µ̂. Under a quadratic scoring rule she will

earn a piece rate of $0.25 per point she scores and lose an amount proportional to (IS≥S − µ̂)2,

where S is her score and S the median score. If she believes the latter to be distributed

according to F then her total payoff is

$0.25 · S − k ·
∫

(IS≥S − µ̂)2dF (S) (17)

for some k > 0; this may be decreasing in S for low values of µ̂, generating incentives to

“hedge.” In contrast, her quiz payoff under the crossover mechanism is

$0.25 · S + $3.00 · µ̂ ·
∫

IS≥SdF (S), (18)

which unambiguously increases with S. Intuitively, conditional on her own performance being

the relevant one (which happens with probability µ̂), she always wants to do the best she can.

3.3 Information Purchasing Stage

In the final stage of the experiment we elicited subjects’ demand for noiseless feedback on

their relative performance. Subjects stated their willingness to pay for the following bundles:

receiving $2, receiving $2 and receiving feedback through a private email, or receiving $2 and

receiving feedback on a web page visible to all study participants as well as by email. We

offered two variants of the latter two bundles, one in which subjects learned whether they

scored in the top half or not, and another in which they learned their exact quantile in the

score distribution. In total, subjects thus bid for five bundles. We bounded responses between

$0.00 and $4.00.

One of the choices was randomly selected and subjects purchased the corresponding bundle

if and only if their reservation price exceeded a randomly generated price. This design is a

standard application of the Becker-DeGroot-Marschak mechanism (BDM), with the twist that

we measure information values by netting out subjects’ valuations for $2 alone from their other

valuations. This addresses the concern that subjects may under-bid for objective-value prizes.
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3.4 Follow-up Stage

We invited a random sub-sample of subjects through email to a follow-up experiment one

month later. Subjects were told they had been paired with a robot who had a probability

θ of being a high type. We then repeated the feedback stage of the experiment except that

this time subjects received signals of the robot’s ability and we tracked their beliefs about the

robot being a high type.

The purpose of this follow-up was to compare subjects’ processing of information about

a robot’s ability as opposed to their own ability. To make this within-subject treatment as

effective as possible, we matched experimental conditions in the follow-up as closely as possible

to those in the baseline. We set the robot’s initial probability of being a high type, θ, to the

multiple of 5% closest to the subject’s post-IQ quiz confidence. For example, if the subject

had reported a confidence level of 63% after the quiz we would pair the subject with a robot

that was a high type with probability θ = 65%. We then randomly picked a high or low type

robot for each subject with probability θ. If the type of the robot matched the subject’s type

in the earlier experiment then we generated the same sequence of signals for the robot. If the

types were different, we chose a new sequence of signals. In either case, signals were correctly

distributed conditional on the robot’s type.

4 Data

4.1 Subject Pool

The experiment was conducted in April 2005 as part of a larger sequence of experiments at a

large private university with an undergraduate student body of around 6,400. A total of 2,356

students signed up in November 2004 to participate in this series of experiments by clicking

a link on their home page on www.facebook.com, a popular social networking site.18 These

students were invited by email to participate in the belief updating study, and 1,058 of them

accepted the invitation and completed the experiment online. This final sample is 45% male

and distributed across academic years as follows: 26% seniors, 28% juniors, 30% sophomores,

and 17% freshmen. Our sample includes about 33% of all sophomores, juniors, and seniors

enrolled during the 2004–2005 academic year, and is thus likely to be unusually representative

of the student body as a whole.

An important concern with an online experiment is whether subjects understood and were

willing to follow instructions. In light of that concern, our software required subjects to make

18In November 2004 more than 90% of students were members of the site and at least 60% of members logged
into the site daily.
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an active choice each time they submitted a belief — they were free to report beliefs that are

clearly inconsistent with both perfect and biased Bayesian updating, such as updates in the

wrong direction and neutral updates (reporting the same belief as in the previous round). After

each of the 4 signals, a stable proportion of about 36% of subjects reported the same belief

as in the previous round.19 About 16% of subjects did not change their beliefs at all during

all four rounds of the feedback stage. In contrast, the share of subjects who updated in the

wrong direction declined over time (13%, 9%, 8% and 7%), and most subjects made at most

one mistake.20

For most of our analysis we use a restricted sample of subjects who (1) made no updates

in the wrong direction, and (2) revised their beliefs at least once. These restrictions exclude

25% and 13% of our sample, respectively, and leave us with 342 women and 314 men. We

view this exclusion as a conservative way to exclude subjects who misunderstood or ignored

the instructions. Our main conclusions hold on the full sample as well, however, and we also

provide those estimates as robustness checks where appropriate.

We invited 120 subjects to participate in the follow-up stage one month later, and 78

completed this final stage of the experiment. The pattern of wrong and neutral moves was

similar to the first stage of the experiment. Slightly fewer subject made neutral updates (28%

of all updates) and 10% always made neutral updates. Slightly more subjects made wrong

updates (22% made one mistake, 10% made two mistakes, 5% made three mistakes and 3%

made 4 mistakes). The restricted sample for the follow-up has 39 subjects.

4.2 Quiz Scores

The mean score of the 656 subjects was 7.4 (s.d. 4.8), generated by 10.2 (s.d. 4.3) correct

answers and 2.7 (s.d. 2.1) incorrect answers. The distribution of quiz scores (number of correct

answers minus number of incorrect answers) is approximately normal, with a handful of outliers

who appear to have guessed randomly. The most questions answered by a subject was 29, so

the 30-question limit did not induce bunching at the top of the distribution. Table A-1 in the

supplementary appendix provides further descriptive statistics broken down by gender and by

quiz type. An important observation is that the 9 versions of the quiz varied substantially in

difficulty, with mean scores on the easiest version (#6) fives time higher than on the hardest

version (#5). Subjects who were randomly assigned to harder quiz versions were significantly

less confident that they had scored in the top half after taking the quiz, presumably because

they attributed some of their difficulty in solving the quiz to being a low type.21 We will

19The exact proportions were 36%, 39%, 37% and 36% for the four rounds, respectively.
20Overall, 19% of subjects made only one mistake, 6% made two mistake, 2% made 3 mistakes and 0.4%

made 4 mistakes.
21Moore and Healy (2008) document a similar pattern.
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Figure 5: Belief Distributions
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noisy feedback (Post Signal 4).

exploit this variation below, using quiz assignment as an instrument for beliefs.

5 Information Processing

In this section we analyze belief updating in the feedback and follow-up stages, comparing our

model’s predictions to the perfect Bayesian benchmark.

5.1 Summary Statistics

Figure 5 plots the empirical cumulative distribution function of subjects’ beliefs, directly after

the quiz and after four rounds of updating. Updating yields a flatter distribution as mass shifts

towards 0 (for low types) and 1 (for high types). Note that the distribution of beliefs is quite

smooth and not merely bunched around a few focal numbers. This provides some support for

the idea that the new elicitation method generates reasonable answers.22

22In work in progress, Hollard, Massoni and Vergnaud (2010) compare beliefs obtained using several elicitation
procedures and show that using the crossover procedure results in the smoothest distribution of beliefs.
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Figure 6: Conservatism
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Our design with only two states (top half and bottom half of the distribution) allows us to

easily compare the belief updates of subjects to perfectly Bayesian updates. Figure 6 shows the

mean belief revision in response to a Top and Bottom signal by decile of prior belief in being a

top half type for each of the four observations of the 656 subjects. First, note that subjects are

conservative and update much less than the perfect Bayesian benchmark would predict. To

assess whether subjects update asymmetrically, Figure 7 compares subjects whose prior belief

was µ̂ and who received positive feedback with subjects whose prior belief was 1− µ̂ and who

received negative feedback. According to Bayes’ rule, the magnitude of the belief change in

these situations should be identical. However, Figure 7 shows that subjects tend to respond

more strongly to positive feedback. We will study both of these phenomena using a regression

approach next and will confirm the pattern revealed by the figures.

23



Figure 7: Asymmetry
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5.2 Empirical Specification

Our empirical strategy mirrors the theory section, expressing information processing in terms

of the logistic function. For a (possibly biased) Bayesian,

logit(µ̂t) = logit(µ̂t−1) + I(sit = H) · λ̂H + I(sit = L) · λ̂L (19)

This motivates the following linear empirical specification:

logit(µ̂t
i) = δ · logit(µ̂t−1

i ) + βH · I(sit = H)λH + βL · I(sit = L)λL + εit (20)

In our experiment, we have λH = −λL = ln(3), and the error term εit captures unsystematic

errors that subject i made when updating her belief at time t. Note that we do not have to

include a constant in this regression because I(sit = H) + I(sit = L) = 1. The coefficient

δ captures the persistence of prior information; our model predicts δ = 1 for both biased
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and perfect Bayesians. The coefficients βH and βL capture relative responsiveness to positive

and negative information and allow us to distinguish perfect and biased Bayesians. A perfect

Bayesian is fully responsive to positive and negative information (βH = βL = 1). In contrast,

a biased Bayesian is conservative — less responsive to new information overall (βH , βL < 1)

— and asymmetric — more responsive to positive than negative information (βH > βL).

Identifying Equation 20 is non-trivial because we include lagged logit-beliefs (that is, priors)

as a dependent variable. If there is unobserved heterogeneity in subjects’ responsiveness to

information, βL and βH , then OLS estimation may yield upwardly biased estimates of δ due

to correlation between the lagged logit-beliefs and the unobserved components βiL − βL and

βiH −βH in the error term. Removing individual-level heterogeneity through first-differencing

or fixed-effects estimation does not solve this problem but rather introduces a negative bias

(Nickell 1981). In addition to these issues, there may be measurement error in self-reported

logit-beliefs because subjects make mistakes or are imprecise in recording their beliefs.23

To address these issues we exploit the fact that subjects’ random assignment to different

versions of the IQ quiz generated substantial variation in their post-quiz beliefs. This allows

us to construct instruments for lagged prior logit-beliefs. For each subject i we calculate

the average quiz score of subjects other than i who took the same quiz variant to obtain a

measure of the quiz difficulty level that is not correlated with subject i’s own ability but highly

correlated with the subject’s beliefs. We will report both OLS and IV estimates of Equation

20.

5.3 Results from Feedback Stage

Table 1 presents round-by-round and pooled estimates of Equation 20.24 Estimates in Panel

A are via OLS and those in Panel B are via IV using quiz type indicators as instruments. The

F -statistics reported in Panel B indicate that our instrument is strong enough to rule out weak

instrument concerns (Stock and Yogo 2002).

Result 1 (Persistence) Subjects weigh prior information similarly to perfect Bayesian up-

daters.

23See Arellano and Honore (2001) for an overview of the issues raised in this paragraph. Instrumental
variables techniques have been proposed that use lagged difference as instruments for contemporaneous ones
(see, for example, Arellano and Bond (1991)); these instruments would be attractive here since the theory clearly
implies that the first lag of beliefs should be a sufficient statistic for the entire preceding sequence of beliefs,
but unfortunately higher-order lags have little predictive power when the autocorrelation coefficient δ is close
to one, as our model predicts for both perfect and biased Bayesians.

24The logit function is defined only for priors and posteriors in (0, 1); to balance the panel we further restrict
the sample to subjects i for whom this holds for all rounds t. Results using the ragged panel, which includes
another 101 subject-round observations, are essentially identical.
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Table 1: Conservative and Asymmetric Belief Updating

Regressor Round 1 Round 2 Round 3 Round 4 All Rounds Unrestricted

Panel A: OLS
δ 0.814 0.925 0.942 0.987 0.924 0.888

(0.030)∗∗∗ (0.015)∗∗∗ (0.023)∗∗∗ (0.022)∗∗∗ (0.011)∗∗∗ (0.014)∗∗∗

βH 0.374 0.295 0.334 0.438 0.370 0.264
(0.019)∗∗∗ (0.017)∗∗∗ (0.021)∗∗∗ (0.030)∗∗∗ (0.013)∗∗∗ (0.013)∗∗∗

βL 0.295 0.274 0.303 0.347 0.302 0.211
(0.025)∗∗∗ (0.020)∗∗∗ (0.022)∗∗∗ (0.024)∗∗∗ (0.012)∗∗∗ (0.011)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.009 0.408 0.305 0.017 0.000 0.000
N 612 612 612 612 2448 3996
R2 0.803 0.890 0.875 0.859 0.854 0.798

Panel B: IV
δ 0.955 0.882 1.103 0.924 0.963 0.977

(0.132)∗∗∗ (0.088)∗∗∗ (0.125)∗∗∗ (0.124)∗∗∗ (0.059)∗∗∗ (0.060)∗∗∗

βH 0.407 0.294 0.332 0.446 0.371 0.273
(0.044)∗∗∗ (0.017)∗∗∗ (0.023)∗∗∗ (0.035)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗

βL 0.254 0.283 0.273 0.362 0.294 0.174
(0.042)∗∗∗ (0.026)∗∗∗ (0.030)∗∗∗ (0.040)∗∗∗ (0.017)∗∗∗ (0.027)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.056 0.725 0.089 0.053 0.001 0.004
First Stage F -statistic 13.89 16.15 12.47 12.31 16.48 20.61
N 612 612 612 612 2448 3996
R2 - - - - - -

Notes:

1. Each column in each panel is a regression. The outcome in all regressions is the log posterior odds ratio. δ is the coefficient on the log prior
odds ratio; βH and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. Bayesian updating
corresponds to δ = βH = βL = 1.

2. Estimation samples are restricted to subjects whose beliefs were always within (0, 1). Columns 1-5 further restrict to subjects who updated
their beliefs at least once and never in the wrong direction; Column 6 includes subjects violating this condition. Columns 1-4 examine updating
in each round separately, while Columns 5-6 pool the 4 rounds of updating.

3. Estimation is via OLS in Panel A and via IV in Panel B, using the average score of other subjects who took the same (randomly assigned)
quiz variety as an instrument for the log prior odds ratio.

4. Heteroskedasticity-robust standard errors in parenthesis; those in the last two columns are clustered by individual. Statistical significance is
denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Our model implies a coefficient δ = 1 on prior logit-beliefs for both perfect and biased

Bayesians. OLS estimates for the early rounds of belief updating put it close to but sig-

nificantly less than unity. Although it climbs by round, we fail to reject that it equals one

only in Round 4 (p = 0.57). These estimates may be biased upward by heterogeneity in the

responsiveness coefficients, βiL and βiH , or may be biased downwards if subjects report beliefs

with noise. The IV estimates suggest that the latter bias is more important: the pooled point

estimate of 0.963 is larger and none of the estimates are significantly different from unity.

All told, we find strong evidence that information persists once it has been incorporated into

agents’ beliefs.

Result 2 (Conservatism) Subjects respond less to both positive and negative information

than a perfect Bayesian.

Figure 6 suggests that our subjects respond less to new information than a perfect Bayesian.

This observation is reflected in the regressions. Our OLS estimates of βH and βL, 0.370 and

0.302, are substantially and significantly less than unity. Round-by-round estimates do not

follow any obvious trend — therefore, this observation does not seem to be a mere cognitive

error that can be reduced through practice. The IV and OLS estimates are almost identical,

suggesting there is little bias through correlation with lagged prior beliefs.

Result 3 (Asymmetry) Controlling for prior beliefs, subjects respond more to positive than

to negative signals.

The regressions also confirm that subjects respond differently to positive and negative infor-

mation as suggested in Figure 7. To quantify asymmetry we compare estimates of βH and

βL, the responsiveness to positive and negative signals. The difference βH − βL is consistently

positive across all rounds and significantly different from zero in the first round, fourth round,

and for the pooled specification. While estimates of this difference in Rounds 2 and 3 are not

significantly different from zero, we cannot reject the hypothesis that the estimates are equal

across all four rounds (p = 0.32). The IV estimates are somewhat more variable but are again

uniformly positive, and significantly so in Rounds 1 and 4 and in the pooled specification. The

size of the difference is substantial, implying that the effect of receiving both a positive and a

negative signal (that is, no information) is 26% as large as the effect of receiving only a positive

signal.25 As an alternative non-parametric test we can study the net change in beliefs among

the 224 subjects who received two positive and two negative signals. These subjects should

25Table A-2 in the supplementary appendix shows that the results of the regression continue to hold when
we pool all four rounds of observation, even when we eliminate all observations in which subjects do not change
their beliefs. That is, the effect is not driven by an effect of simply not updating at all.
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have ended with the same beliefs as they began; instead their beliefs increased by an average

of 4.8 points (p < 0.001).

A key benefit of our empirical design is that it not only rejects the perfect Baysian model

but shows us exactly in which ways it fails. If instead we simply regress subjects’ logit-beliefs

on those predicted by Bayes’ rule, we estimate a correlation of 0.57, which lets us reject the

perfect Bayesian null but does not disentangle persistence, conservatism, or asymmetry.

Finally, we can summarize the extent to which subjects deviate from perfect Bayesian

updating by comparing their payoffs πactual to those they would have earned if they updated

using Bayes’ rule (πBayes) or if they reported uniformly random posteriors (πrandom). The

ratio πactual−πrandom

πBayes−πrandom
is 0.64, implying that non-Bayesian updating behavior costs subjects 36%

of the potential gains from processing information within this experiment.

5.4 Confidence Management or Cognitive Mistakes?

Our model of self-confidence management explains both conservatism and asymmetry. How-

ever, there are other interpretations unrelated to ego that might explain some of our results.

For example, conservatism might arise if subjects are perfect Bayesians who simply misin-

terpret the informativeness of signals and believe that the signal is only correct with 60%

probability instead of 75%. Subjects might underweight signals because they are used to en-

countering weaker ones in everyday life. We present two pieces of evidence that suggest that

simple cognitive errors are not the driving factor.

First, we show that conservatism and asymmetry do not correlate with the cognitive ability

of participants. Specifically, we assess whether biases are present both among high performers

(those that score in the top half) and low performers on the IQ quiz. Table 2a reports estimates

of Equation 19 differentiated by ability. Able participants do not have different estimates either

on the weight put on the prior, or on the way they incorporate positive and negative signals.

There is no evidence that more able (higher performing) participants update in any different

way than less able participants, which suggests that cognitive errors are not the main factor

that prevent subjects from being perfect Bayesians.

The second analysis that helps distinguish our model from a cognitive errors interpretation

is to examine the results of the follow-up experiment, in which a random subset of subjects

performed an updating task that was formally identical to the one in the original experiment,

but which dealt with the ability of a robot rather than their own ability. For these subjects

we pool the updating data from both experiments and estimate:

logit(µ̂t,e
i )− logit(µ̂t−1,e

i ) = βH · I(sit = H)λH + βL · I(sit = L)λL +

+βRobot
H · 1(e = Robot) · I(sit = H)λH + βRobot

L · 1(e = Robot) · I(sit = L)λL + εti (21)
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Table 2: Heterogeneity in Updating

(a) Heterogeneity by Ability

Regressor OLS IV

δ 0.918 0.966
(0.015)∗∗∗ (0.075)∗∗∗

δAble 0.010 -0.002
(0.022) (0.138)

βH 0.381 0.407
(0.026)∗∗∗ (0.050)∗∗∗

βL 0.317 0.296
(0.016)∗∗∗ (0.034)∗∗∗

βAble
H -0.017 -0.048

(0.030) (0.054)

βAble
H -0.041 -0.011

(0.025) (0.049)

N 2448 2448
R2 0.854 -

(b) Heterogeneity by Gender

Regressor OLS IV

δ 0.925 0.988
(0.015)∗∗∗ (0.103)∗∗∗

δMale -0.007 -0.047
(0.023) (0.125)

βH 0.331 0.344
(0.017)∗∗∗ (0.031)∗∗∗

βL 0.280 0.258
(0.015)∗∗∗ (0.040)∗∗∗

βMale
H 0.080 0.063

(0.027)∗∗∗ (0.038)∗

βMale
L 0.052 0.073

(0.026)∗∗ (0.044)∗

N 2448 2448
R2 0.855 -

Each column is a separate regression. The outcome in all regressions is the log belief ratio. δ, βH , and βL are

the estimated effects of the prior belief and log likelihood ratio for positive and negative signals, respectively.

δj , βj
H , and β

j
L are the differential responses attributable to being male (j = Male) or high ability (j = Able).

Robust standard errors clustered by individual reported in parentheses. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Here, e indexes experiments (Ego or Robot), so that the interaction coefficients βRobot
H and

βRobot
L tell us whether subjects process identical information differently across both treatments.

Note that as we cannot reject δ = 1 (Table 1), we impose that restriction and estimate via

OLS here for brevity. Table 3 reports results.

Result 4 Both conservatism and asymmetry are reduced, the former significantly, when the

same subjects with the same initial priors observe the same flow of information about a robot’s

performance rather than their own performance.

The baseline coefficients βH and βL are similar to their estimated values for the larger sample

(see Table 1), suggesting that participation in the follow-up was not selective on updating

traits. The interaction coefficients are both positive and significant — they imply that subjects

are roughly twice as responsive to feedback when it concerns a robot’s performance as they

are when it concerns their own performance. In fact, we cannot reject the hypothesis that

βH + βRobot
H = 1 (p = 0.13), though we can still reject βL + βRobot

L = 1 (p = 0.004). While

conservatism does not entirely vanish, it is clearly much weaker. This provides support for
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Table 3: Belief Updating: Own vs. Robot Performance

Regressor I II III

βH 0.426 0.349 0.252
(0.087)∗∗∗ (0.066)∗∗∗ (0.043)∗∗∗

βL 0.330 0.241 0.161
(0.050)∗∗∗ (0.042)∗∗∗ (0.033)∗∗∗

βRobot
H 0.362 0.227 0.058

(0.155)∗∗ (0.116)∗ (0.081)

βRobot
L 0.356 0.236 -0.006

(0.120)∗∗∗ (0.085)∗∗∗ (0.089)

P(βH + βRobot
H = 1) 0.128 0.000 0.000

P(βL + βRobot
L = 1) 0.004 0.000 0.000

P(βH = βL) 0.302 0.118 0.039
P(βH + βRobot

H = βL + βRobot
L ) 0.454 0.316 0.030

N 160 248 480
R2 0.567 0.434 0.114

Each column is a separate regression. The outcome in all regressions is the change in the log belief ratio. βH

and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. βRobot
H

and βRobot
L are the differential response attributable to obtaining a signal about the performance of a robot

as opposed to about one’s own performance. Estimation samples are restricted to subjects who participated

in the follow-up experiment and observed the same sequence of signals as in the main experiment. Column I

includes only subjects who updated at least once in the correct direction and never in the wrong direction in

both experiments. Column II adds subjects who never updated their beliefs. Column III includes all subjects.

Robust standard errors clustered by individual reported in parentheses. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

our model where conservatism is driven by anticipatory ego utility. Also consistent with this

view is the fact that subjects are less asymmetric in relative terms when they update about

robot performance (Proposition 4), since βH

βL
>

βH+βRobot
H

βL+βRobot
L

. We cannot reject the hypothesis

that they update symmetrically about robot performance such that βH +βRobot
H = βL+βRobot

L

(p = 0.45).

The data show that conservatism and asymmetry are not correlated with ability and fur-

thermore are reduced when assessing the performance of a robot, rather than one’s own ability.

This suggests that subjects are biased Bayesians and not merely cognitively constrained belief

updaters.

5.5 Discussion

Before we turn to the analysis of the demand for information, we discuss how our results relate

to the existing literature on information processing and self-confidence.
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Memory & Persistence. Our theory of a “biased Bayesian” decision-maker follows the

mainstream approach to modeling belief evolution through Bayesian updating. A Bayesian

framework has the feature that information that is incorporated into beliefs is persistent.

Other models have examined the implications of imperfect memory for learning (Mullainathan

2002, Benabou and Tirole 2002, Wilson 2003). Our results show that subjects’ priors are

essentially fully persistent once measurement error is accounted for. The time frame of the

experiment was short, however, and we do not rule out information decay over longer periods.

Attribution bias. A large literature in psychology has argued for the existence of self-

serving “attribution biases,” or tendencies to take credit for good outcomes and deny blame for

bad ones. These studies do not necessarily imply anything about updating, however, since at-

tributions are possible without revising one’s beliefs, and indeed without any uncertainty at all.

For example, in one prototypical experimental paradigm, subjects taught a student and then

attributed the student’s subsequent performance either to their teaching or to other factors.

The finding that subjects attribute poor performances to lack of student effort, while taking

credit for good performances, is cited as evidence of attribution bias. Yet these attributions are

consistent with the fixed beliefs that (a) student effort and teacher ability are complementary

and (b) the teacher is capable, and these beliefs need not have changed at all to produce the

data. More generally, critics within psychology argue that studies of attribution bias “seem

readily interpreted in information-processing terms” (Miller and Ross 1975, p. 224), because

the data-generating processes were not clearly defined (Wetzel 1982), or because key outcome

variables are not objectively defined or elicited incentive-compatibly.26

In contrast to these studies, we (1) clearly define the probabilistic event (scoring in the top

half) and outcome variables (subjective beliefs about the probability of that event) of interest,

and (2) explicitly inform subjects about the conditional likelihood of observing different signals.

The lack of ambiguity makes our test for asymmetry unconfounded and also stringent, since

it may well be precisely in the interpretation of ambiguous concepts that agents are most free

to be self-serving.

Overconfidence. Over time, asymmetric updating leads to overconfidence, in the sense

that individuals will over-estimate their probability of succeeding at a task compared to the

forecast of a perfect Bayesian who began with the same prior and observed the same stream

of signals. We emphasize this definition to contrast it with others frequently used in the

literature. Findings that more than x% of a population believe that they are in the top x%

26For example, Wolosin, Sherman and Till (1973) had subjects place 100 metal washers on three wooden dowels
according to the degree to which they felt that they, their partner, and the situation were “responsible” for the
outcome. Santos-Pinto and Sobel (2005) show that if agents disagree over the interpretation of concepts like
“responsibility,” this can generate positive self-image on average, and conclude that “there is a parsimonious way
to organize the findings that does not depend on assuming that individuals process information irrationally...”
(p. 1387).
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in terms of some desirable trait are commonly taken as evidence of irrational overconfidence,

but Zábojńık (2004), Van den Steen (2004), Santos-Pinto and Sobel (2005), and Benoit and

Dubra (forthcoming) have all illustrated how such results can obtain under perfect Bayesian

information processing. Our definition and result are not subject to these critiques.

Conservatism and Bayes’ rule. Psychologists have also tested Bayes’ rule as a positive

model of human information-processing in ego-neutral settings. A prototypical experiment in-

volves showing subjects two urns containing 50% and 75% red balls, respectively, then showing

them a sample of balls drawn from one of the two urns and asking them to predict which urn

was used. Unsurprisingly, these studies do not find asymmetry (indeed it is unclear how one

would define it when ego is not at stake). Studies during the 1960s did find conservatism, but

this view was upset by Kahneman and Tversky’s (1973) discovery of the “base rate fallacy,”

seen as “the antithesis of conservativism” (Fischhoff and Beyth-Marom 1983, 248–249). Re-

cently Massey and Wu (2005) have generated both conservative and anti-conservative updating

within a single experiment: their subjects underweight signals with high likelihood ratios, but

overweight signals with low likelihood ratios. In the light of this literature it is important that

we find significantly more conservatism when subjects update about their own performance as

opposed to a robot’s performance, holding constant the data generating process. This supports

the interpretation that conservatism is a motivated and not merely a cognitive bias.

Confirmatory bias. Asymmetry is not obviously more pronounced among subjects with a

more optimistic prior (see Figure 7). This is not consistent with at least simple interpretations

of confirmatory bias (Rabin and Schrag 1999). However, our results do mechanically imply a

steady-state relationship similar to confirmatory bias: more asymmetric individuals will tend

both to have higher beliefs and to respond more to positive information.

6 Demand for Information

The standard economic model of learning predicts that agents always place a weakly positive

value on information. This is because the best action to take after receiving information cannot

do worse on average than the action one would have taken without it. This need not hold in our

model, however (Proposition 5), because hard information tends to destroy the belief utility

built up through asymmetric updating.

We calculate subjects’ implied value for the various information packages. For example, a

subject’s valuation for coarse information on her performance — whether or not she was in

the top half — is defined as her bid for $2 and learning whether she scored in the top half,

minus her bid for $2, all in cents. Taking this difference removes bias due to misunderstanding
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Table 4: Implied Valuations for Information: Summary Statistics

N Mean Std. Dev. P (v < 0)

Estimation Sample
Information (Coarse) 650 16.5 47.8 0.09
Information (Precise) 650 40.0 78.3 0.09
Publicity (Coarse) 651 -52.3 73.0 0.66
Publicity (Precise) 651 -71.1 88.0 0.71

Women
Information (Coarse) 338 16.4 49.8 0.11
Information (Precise) 338 38.7 82.0 0.11
Publicity (Coarse) 339 -57.4 74.3 0.72
Publicity (Precise) 339 -77.1 89.6 0.75

Men
Information (Coarse) 312 16.7 45.5 0.07
Information (Precise) 312 41.5 74.1 0.06
Publicity (Coarse) 312 -46.7 71.2 0.60
Publicity (Precise) 312 -64.5 85.7 0.65

Values for coarse information (learning whether you were in the top or bottom half) and precise information

(learning your exact percentile rank) are the differences between subjects’ bids for $2 and their bids for the

bundle of $2 and learning that information via email. Values for publicity are the differences between (i) bids

for obtaining feedback both publicly online and privately by email, and (ii) bids for obtaining feedback only

by email. Values are in cents. The final column reports the fraction of observations with strictly negative

valuations. There are fewer than 656 observations because 6 (5) subjects did not provide valuations for private

(public) information.

the dominant strategy in the “bid for $2” decision problem.27 Similarly, a subject’s valuation

for publicity of that coarse information is her bid for receiving information both publicly and

privately minus her bid for receiving it privately.

Subjects’ mean value for coarse information is 16.5 (s.d. 47.8), with 9% of subjects reporting

a negative value. The second two rows summarize how these valuations change when the

information is delivered publicly on a web page that other participants can view in addition

to privately via email. The value of publicity for coarse information is -52.3 (s.d. 73.0) with

66% of subjects reporting negative values. Subjects could also receive precise information, their

precise quantile. The value for private precise information exceeded that of coarse information:

the mean value was 40.0 (s.d. 78.3) with 9% of subjects reporting a negative value. Once more

publicity was viewed as much less desirable, with a mean value of -71.1 (s.d. 88.0) and 71%

of subjects reporting a negative value. While mean valuations are positive and more precise

information is valued more on average, a substantial fraction place a strictly negative valuation

27Among our subjects, 89% bid less than $2, and 80% bid less than $1.99.

33



on coarse and precise information about their rank.28

Result 5 (Information Aversion) A substantial fraction of subjects are willing to pay to

avoid learning their type.

A potential concern about this result is that it could be an artefact attributable to noise in

subjects’ recorded valuations. The strongest piece of evidence that this is not the case is our

next result, which suggests that confidence has a significant causal effect on negative valuations.

Another indicator of the information content of our measure is the high correlation (ρ = 0.77)

between having a negative valuation for coarse information and a negative valuation for precise

information. We show in Section A-1 of the supplementary appendix that under the structural

assumption that errors are independently normally distributed, one can build on this intuition

to obtain a formal test of the reporting error hypothesis and that the second moments of the

bid data reject this hypothesis.

Result 6 More confident subjects are causally less information-averse.

In addition to predicting information-aversion, Proposition 5 implies that it should be less

common among more confident agents. To test this implication we regress an indicator I(vi ≥
0) on subjects’ logit posterior belief after all four rounds of updating, which is when they

bid for information. Columns I–III of Table 5 show that, as predicted, subjects with higher

posterior beliefs are significantly more likely to have (weakly) positive information values. The

point estimate is slightly larger and remains strongly significant when we control for ability

(Column II) and gender and age (Column III). Of course, there could be some unobserved

factor orthogonal to these controls that explains the positive correlation. To address this issue

Columns IV and V report instrumental variables estimates. We use two instruments. First,

the average score of other subjects randomly assigned to the same quiz type remains a valid

instrument for beliefs, as in Section 5 above. In addition, once we control for whether or

not the subject scored in the top half, the number of positive signals she received during the

updating stage is also a valid instrument, because the signals were random conditional on

ability. Estimates using these instruments are similar to the OLS estimates, slightly larger,

and though less precise, they are still significant at the 10% level.

7 Gender Differences

Gender differences related to self-confidence have been shown in numerous studies in psychol-

ogy. Economists have just recently begun to investigate gender differences in beliefs about

28As an interesting contrast, Eliaz and Schotter (2010) document that subjects are willing to pay positive
amounts for information (unrelated to ego) even when it cannot improve their decision-making.
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Table 5: Confidence and Positive Information Value

OLS IV
Regressor I II III IV V

logit(µ) 0.017 0.023 0.023 0.027 0.027
(0.007)∗∗ (0.009)∗∗∗ (0.009)∗∗ (0.016)∗ (0.017)∗

Top Half -0.033 -0.035 -0.038 -0.042
(0.028) (0.028) (0.034) (0.034)

Male 0.029 0.027
(0.023) (0.023)

YOG 0.018 0.018
(0.012) (0.012)

First-Stage F -Statistic - - - 118.48 113.19
N 609 609 609 609 609
R2 0.007 0.010 0.016 - -

Notes: Each column is a separate regression. Estimation is via OLS in Columns I–III and by IV in Columns

IV–V using the instruments described in the text. The outcome variable in all regressions is an indicator equal

to 1 if the subject’s valuation for information was positive; the mean of this variable is 0.91. “Top Half” is an

indicator equal to one if the subject scored above the median on his/her quiz type; “YOG” is the subject’s year

of graduation. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

relative ability.29 Consistent with prior work we find that men are significantly more confident

than women. The mean difference in confidence prior to taking the quiz was 6.7% (p < 0.001).

Some of this could reflect differences in actual ability: men scored 7.9 on average while women

scored 6.9, and this difference is highly significant (p < 0.001). However, even when we re-

strict ourselves to variation within groups of subjects who took the same version of the quiz

and received the same score, we find that men are 5.0% more confident on average and this

difference remains highly significant (p < 0.001).

In this paper, we can, however, do more than simply add an additional, albeit very clean,

piece of evidence to the widespread claim that women are less confident than men. We can

ask what is at the root of this finding. Do women and men simply differ in their prior, or do

they process information differently, or have a different demand for information? Furthermore,

we address to what extent the theory of self-confidence maintenance can account for these

differences.

29Numerous psychology studies purport to show that men are more (over-)confident than women; see the
references in Barber and Odean (2001), who use gender as a proxy measure of overconfidence in studying
investment behavior. Niederle and Vesterlund (2007) show that men are much more competitive than women
and that part of this difference is attributable to differences in self-confidence. They also speculate that gender
differences in feedback aversion may have further explanatory power.
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Figure 8: Information Values by Beliefs and by Gender
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Plots, for male and female subjects separately and for quartiles of the posterior belief distribution, the mean

valuations for learning whether or not the subject scored in the top half of performers.

To address gender differences in information processing, Table 2b reports estimates of

Equation 20 differentiated by gender and estimated using both OLS and instrumental vari-

ables. Men are substantially less conservative than women, reacting significantly more to both

positive and negative feedback and 21% more to feedback on average (23% when estimated

by IV). Estimated changes in relative asymmetry are less stable; OLS and IV point estimates

of
βH+βMale

H

βL+βMale
L

− βH

βL
are 0.05 and −0.10, respectively, and neither is significantly different from

zero (p = 0.64, 0.74). We have seen that ability is not correlated with either asymmetry or

conservatism. Hence, gender differences do not reflect simple differences in ability. The evi-

dence thus suggests that women are the more ego-defensive gender; they do not merely have

different priors, but seem to process information differently.

Turning to demand for feedback, men and women place similar average valuations on

information; the means reported in Table 4 are not statistically different from each other.

Men, however, are significantly less averse to feedback. They are 3.6 percentage points less

likely to place negative bids for coarse information, relative to a baseline of 11% for women

(p = 0.09). They are also 4.6 percentage points less likely to place negative bids for precise

information, relative to a baseline of 11% for women (p = 0.03). This also is consistent with

our theory of self-confidence maintenance if women tend to place more weight on anticipatory

utility (are more likely to have α > 0). Figure 8 plots mean information values by gender

and by quartile of the posterior belief distribution. The relationship between beliefs and

valuations is inverse-U shaped for men, as a standard model of information demand would
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predict. For women, however, valuations decline somewhat from the first to second quartile

and then increase dramatically from there to the fourth quartile. Confident women express

significantly stronger demand for information than confident men. Interestingly, valuations

are particularly low for women with beliefs between 26% and 50% (though not between 0%

and 25%). This is consistent with the theory, which predicts that subjects will optimally place

negative valuations on information when their confidence is low (see Figure 4b). Differences in

how men and women weigh anticipatory utility may then explain the sharp gender differences

in valuation curves.

In sum, there are substantial gender differences in both information processing and infor-

mation acquisition, and these are consistent with our theory of self-confidence management if

women place more weight on anticipatory utility than men.

8 Conclusion

Recent theoretical work has argued that information may affect welfare in more subtle ways

than are captured by the traditional paradigm, in which information is useful strictly to im-

prove the accuracy of decision-making. Motivated by this new literature, we build a model to

understand how a biased Bayesian who prefers to be confident will learn about her own ability.

Such an agent reacts less on average to new information than a perfect Bayesian, reacts more

to positive than to negative information, and is averse to obtaining highly informative feedback

when her confidence is low.

Our experimental design allows us to measure beliefs in an incentive-compatible way and

to cleanly separate the role of priors and signals in shaping posterior beliefs. We find that

both our predictions regarding updating are borne out in the data: subjects are on average

conservative and asymmetric updaters. A substantial fraction also exhibit an aversion to

information about their relative ability, and low confidence significantly increases the likelihood

of aversion. Overall, the data support the view that subjects carefully regulate their self-

confidence to the potential detriment of subsequent decision-making.
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A Proofs

A.1 Proof of Proposition 1

We first show that the agent’s logit-belief at time T̃ in the high state converges to infinity in

probability. Consider the lower bound mT̃ = logit(µ) + T̃
2 [pλH + (1− p)λL]. We use Hoeffd-

ing’s (1963) inequality to bound the probability that the agent’s logit-belief falls below the

lower bound mT̃ in the high state:

P (logit(µT̃ ) < mT̃ |H) = P (logit(µT̃ )− γT̃H < mT̃ − γT̃H |H)

≤ exp

(

−2 T̃ 2

4 (pλH + (1− p)λL)
2

T̃ (λH − λL)
2

)

= exp
(

−aT̃
)

, (22)

where a = (pλH+(1−p)λL)
2

2(λH−λL)
2 .

Moreover, if the logit-belief falls above the lower bound mT̃ , then the posterior satisfies
µT̃ ≥ 1−O(exp(−mT̃ )). As the cost distribution has no atoms, the agent will take the action

with probability at least 1−O(exp(−mT̃ )) in this case. Hence, the overall perfect Bayesian’s
utility conditional on being a high type is (1−E(c))+O(exp(−a′T̃ )) for some constant a′ > 0.

Using an analogous argument, we can show that the perfect Bayesian’s utility conditional
on being a low type is O(exp(−a′′T̃ )) for some constant a′′ > 0. By combining both results,
we have proved the proposition.

A.2 Proof of Proposition 2

When α = 0, the objective function in (7) is maximized if for any signal realization
{
(St

H , St
L)
}T̃

t=1
the following holds: µ̂t > c implies µt > c. Since the cost distribution is continuous and posi-
tive, this implies µ̂t = µt for any signal history. It follows that µ̂0 = µ0, λ̂T

H = λH and λ̂T
L = λL

for T ≥ 2 as there are at least 3 signal histories at time T and only three parameters.

A.3 Auxiliary Lemma on Downward-Neutral Bias

The following lemma on the downward-neutral bias (DNB) defined in equation 9 will be useful
for the proofs of Propositions 3 and 4.

Lemma 2 Assume a biased Bayesian with DNB. At any relative time τ > 0, the agent’s high
state belief converges in probability to 1 while the agent’s low state belief converges in probability
to µ∗

L. The total utility of the agent converges to the utility of an unrestricted agent with belief
µ∗
L in the low state and belief 1 in the high state.

Figure 3 illustrates the intuition for the lemma. In the high state, the agent’s logit-belief at
relative time τ is of order (τT ) · T−θ because in each period the agent’s logit-belief moves up
by an expected pλ̂T

H + (1 − p)λ̂T
L. This expression converges to infinity. In the low state, the

agent’s logit-belief behaves like a driftless random walk whose standard deviation is of order√
τTT−θ (as we sum τT conditionally independent observations), which converges to 0.
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To formalize this arguments, we first show that for any lower bound m the probability that
the high type’s logit-belief lies above m at relative time τ converges to 1 as T → ∞:

P (logit(µ̂bτT c) < m|H) = P
(

logit(µbτT c)− γ̂
bτT c
H < m− γ̂

bτT c
H |H

)

(23)

We can simplify the right-hand side of the inequality:

m− γ̂
bτT c
H = m− logit(µ∗

L)− τT (pT−θλH − (1− p)
q

1− q
T−θλH)

= m− logit(µ∗
L)− τT 1−θλH(p − (1− p)

q

1− q
)

This expression converges to −∞ as θ < 1 and p− (1− p) q
1−q

> 0 for p > q. We can therefore
use Hoeffding’s (1963) inequality:

P (logit(µ̂bτT c) < m|H) ≤ exp




−

2
[

m− logit(µ∗
L)− τT 1−θλH(p − (1− p) q

1−q
)
]2

τT
(

T−θλH + q
1−q

T−θλH

)2






≤ exp(−2τT (1− φ) (p(1− q)− (1− p)q)2) (24)

The last inequality holds for some 0 < φ < 1 and any τT 1−θ > t.30 This implies, that the high
type’s logit-belief converges to +∞ in probability and hence the agent’s belief converges to 1
in probability. We can now easily show that the high type’s expected utility converges to the
expected utility of the unconstrained high type who always chooses belief 1: we can simply
choose first m and then any small relative time interval [0, τ∗] so that the above probability
bound applies for sufficiently high T . As the cost distribution is atomless, we can approximate
the high type’s unconstrained solution as closely as we want.

We next show that for any ε > 0 the probability that the low type’s belief stays within
an ε-neighborhood around logit(µ∗

L) converges to 1 in probability as T → ∞. Note, that the
expected logit-belief at any relative time τ is logit(µ∗

L) under the downward-neutral bias. We
can therefore use Hoeffding’s (1963) inequality again:

P (|logit(µ̂bτT c)− logit(µ∗
L)| > ε|L) ≤ 2 exp




−2

ε2

τT
(

T−θλH + q
1−q

T−θλH

)2






= 2exp

(

−T 2θ−1 2ε
2(1− q)2

τλ2
H

)

≤ exp

(

−T 2θ−1 2ε
2(1− q)2

λ2
H

)

(25)

The claim follows, since 2θ − 1 > 0 and τ ≤ 1. Since the cost distribution is atomless and the
probability bound holds for all relative times, it follows that the expected utility of the low

30Here, we exploit the fact that the difference in the numerator is dominated by the τT 1−θ term.
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type agent converges to the utility of the unconstrained low type who always chooses belief
µ∗
L.

A.4 Proof of Proposition 3

We first show conservatism through proof by contradiction. The main argument for the proof is
as follows: assume the agent’s responsiveness does not converge to 0. There will be a sequence
of (T j), such that λ̂T j

H − λ̂T j

L > δ > 0 for some δ > 0. We will show that the agent’s total
utility in the low state converges to 0 as T j → ∞. Hence the biased Bayesian would not do
strictly better than a perfect Bayesian for large Tj . We then construct a downward-neutral
bias that strictly increases the total utility of the biased Bayesian for large enough T : hence,
the responsiveness of the optimally biased Bayesian has to converge to 0.

To formalize this argument we bound the agent’s utility in the low state and then show
that we can make this bound arbitrarily small. We first choose a (small) ε > 0 and bound
the probability that the agent’s posterior belief µ̂t at time t falls into the interval [ε, 1 − ε] in

the low state of the world. There are at most
logit(1−ε)−logit(ε)

δ
signal realizations St

H that
generate logit posteriors in the interval [logit(ε), logit(1− ε)] (note that St

L = t− St
H). We use

the Stirling approximation to bound the maximum of the binomial distribution describing the
random variable St

H :

lim
t→∞

√

2πq(1− q)t max
0≤i≤t

(
Prob(St

H = i)
)
≤ 1 (26)

Hence, we can deduce:

Prob(ε < µ̂t < 1− ε) ≤ logit(1− ε)− logit(ε)

δ

1
√

2πq(1− q)
)

︸ ︷︷ ︸

A(ε))

1√
t
+ o(

1√
t
) (27)

Now fix η > 0 and consider any relative time τ > η. Then we obtain:31

Prob(ε < µ̂τ < 1− ε) ≤ (A(ε) + 1)
1√
ηT

(28)

Note, that this upper bound does not depend on τ .

31We add 1 to be able to omit the term o( 1√
t
).
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Having obtained this probability bound we can bound the agent’s utility in the low state:

U(µ̂0,
~̂
λ|α, µ0, ~λ) ≤ ηα(1 − E(c))

︸ ︷︷ ︸

During first ηT periods
per-period utility is at
most 1− E(c).

+ (1− η)(A(ε) + 1)
α(1 − E(c))√

ηT
︸ ︷︷ ︸

Utility bound if poste-
rior belief falls into the
interval [ε, 1 − ε] after
relative time η

+ (1− η)αε(1 − E(c))
︸ ︷︷ ︸

Utility bound if poste-
rior beliefs is below ε af-
ter relative time η

+(1− η)

[

α(1− E(c)) −
∫ 1−ε

0
cdG(c)

]

︸ ︷︷ ︸

Utility bound if posterior be-
lief is above 1−ε after relative
time η

(29)

Due to the long-term learning condition and the fact that the cost distribution is non-atomic,
the last term is negative for sufficiently small ε. Next, choose η and ε small enough to make the
first and third term as small as desired. Finally, choose T j large enough to make the second
term as small as desired. Therefore, the low type’s utility cannot be bounded away from 0 and
the biased Bayesian does not do strictly better than a perfect Bayesian for large T j .

Now consider the function Lα(x) as defined in equation 8. We show in the main text that
there is some x∗ > 0 such that Lα(x

∗) > 0. Now consider a downward-neutral bias with initial
belief at µ0 = x∗. This bias will generate strictly positive total utility that is bounded away
from 0 for sufficiently large T . This is a contradiction, as we have just shown that the total
utility of the optimally biased agent converges to 0.

We next establish asymmetry. We again use proof by contradiction. Assume that the agent
is not asymmetric in the limit. Then there is a sequence (T j) such that βT j

H ≤ βT j

L along this

sequence. Assume that the mean logit-belief γ̂T
j

H in the final period T j has no upper bound

M . In this case, we can take a further sub-sequence (T j) such that γ̂T
j

H converges to +∞. But

this implies that γ̂T
j

L converges to −∞, as the agent is not asymmetric. But then the agent’s
utility converges to the perfect Bayesian’s utility. We just showed that the biased Bayesian can
do strictly better which is a contradiction. Next, assume that the mean logit-belief γ̂T

j

H in the
final period T j has an upper bound M . In this case, the biased Bayesian again does strictly
worse than under a DNB defined where the agent’s belief converges to 1 in the high state of
the world and to a maximum of the function Lα(x) in the low state of the world. Hence, we
again get a contradiction.

A.5 Proof of Proposition 4

We show that any “non-DNB”-like bias is strictly dominated by a DNB bias. In order to bound
the loss from any non-DNB-like bias, it will be useful to define an upper envelope function
U(x) for Lα(x). Using Taylor’s theorem we can write

Lα(x) = Lα(µ
∗
L) +

1

2
L′′
α(y)(x− µ∗

L)
2 (30)
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for some y ∈ [x, µ∗
L]. Note that L

′′
α is continuous and hence strictly negative in an ε-neighborhood

of µ∗
L, since L′′

α(µ
∗
L) < 0. We can assume that L′′

α(y) ≤ −A for some A > 0 in that neighbor-
hood. We can now define the upper envelope function U(x) for Lα(x) as follows:

U(x) =







Lα(µ
∗
L)− A

2 (µ
∗
L − ε)2 for x ≤ µ∗

L − ε

Lα(µ
∗
L)− A

2 (x− µ∗
L)

2 for µ∗
L − ε ≤ x ≤ µ∗

L + ε

Lα(µ
∗
L)− A

2 (µ
∗
L + ε)2 for x ≥ µ∗

L + ε

(31)

This upper envelope will lie above Lα(x) in the ε-neighborhood. We can refine the upper
envelope function such that the upper envelope function dominates Lα(x) on the interval [0, 1]
by considering the following set M that includes all local maxima outside the ε-neighborhood:

M =
{
x|L′

α(x) = 0
}
\ [µ∗

L − ε, µ∗
L + ε]

Denote the supremum of the Lα(M) with m∗. Due to the Bolzano-Weierstrass theorem,
there is a sequence (xj) ⊂ M such that Lα(x

j) converges to m∗. Due to continuity, there
is a subsequence (xj

′
) of (xj) such that xj

′ → x̃ and Lα(x
j′) → m∗ and Lα(x̃) = m∗. If

m∗ ≥ Lα(µ
∗
L) then we get a contradiction because we assumed that the maximum at µ∗

L is
unique. Hence, m∗ < Lα(µ

∗
L). Therefore, we can simply make the ε-neighborhood of the

upper-envelope function small enough such that it always lies above m∗. This will ensure that
the upper envelope function dominates Lα on the interval [0, 1].32

Proof of part (c). We can now show that any non-DNB-like bias is dominated by a DNB-
like bias. Assume that (λ̂T

H − λ̂T
L)
√
T does not converge to 0. Then there is a subsequence (T j)

and some δ > 0 such that (λ̂T j

H − λ̂T j

L )
√
T j > δ. Given relative time τ , we define the random

variable Xτ,T j

L conditional on the state being low as follows:

Xτ,T j

L =

∑bτT jc
t=1 (Ist=H − q)

bτT jc =
S
bτT jc
H − qbτT jc

bτT jc (32)

This random variable is the mean of a sum of bτT jc i.i.d binary random variables whose
expectation is zero and standard deviation equals

√

q(1− q). We can therefore use the central
limit theorem:

lim
Tj→∞

P

(∣
∣
∣
∣

√

bτT jcXτ,T j

∣
∣
∣
∣
> z

)

= 1− 2Φ

(

− z
√

q(1− q)

)

We take z =
√

q(1− q) and obtain:

lim
Tj→∞

P

(∣
∣
∣S

bτT jc
H − qbτT jc

∣
∣
∣ >

√

bτT jcq(1− q)

)

= 1− 2Φ (−1)

32If there are finitely many local maxima, then the argument simplifies to m∗ being the second-highest
maximum.
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Using some algebra we can show:

(

λ̂T j

H − λ̂T j

L

)(

S
bτT jc
H − qbτT jc

)

= logit(µ̂bτT jc)− γ̂
bτT jc
L

We therefore obtain:

lim
Tj→∞

P

(∣
∣
∣logit(µ̂bτT jc)− γ̂

bτT jc
L

∣
∣
∣ >

√

bτT jcq(1− q)
(

λ̂T j

H − λ̂T j

L

))

= 1− 2Φ (−1)

This finally provides us with:

lim
Tj→∞

P
(∣
∣
∣logit(µ̂bτT jc)− γ̂

bτT jc
L

∣
∣
∣ > δ

√

τq(1− q)
)

≥ 1− 2Φ (−1)

This implies that with probability of at least 1−2Φ (−1) the logit-belief lies at least δ
√

τq(1− q)
away from the mean logit-belief. If we fix some τ∗, it is easy to see that the expected total
utility of the low-type agent using the upper-envelope function U(x) accumulated over time
τ > τ∗ is always strictly worse than the utility of the agent with a DNB who can maintain
beliefs arbitrarily closely to the optimal µ∗

L. Since her actual utility is even lower, we can
strictly improve the agent’s utility by using a DNB. Hence, our initial assumption led to a
contradiction and we can deduce that (λ̂T

H − λ̂T
L)
√
T → 0.

Proof of part (b). We next show that the final mean logit-belief in the high state, γTH
converges to infinity as T → ∞. Otherwise, there would be a subsequence Tj and an upper

bound M such that γT
j

H < M . But together with the previous result that (λ̂T
H − λ̂T

L)
√
T → 0,

this would imply that the optimal Bayesian bias generates strictly less utility than the DNB.
This implies that for any constant M there is sufficiently high T such that λ̂T

H > M
T
.

Now assume that
λ̂T
H

|λ̂T
L
| would not converge to 1−q

q
. Then there would be some ε > 0 and a

subsequence (T j) such that

∣
∣
∣
∣

|λ̂Tj

L |
λ̂Tj

H

− q
1−q

∣
∣
∣
∣
> ε. This implies λ̂T j

L = −Bλ̂T j

H where
∣
∣
∣B − q

1−q

∣
∣
∣ > ε.

We therefore obtain:
γ̂TL = logitµ̂0 + T

[

qλ̂T j

H − (1− q)Bλ̂T j

H

]

(33)

This implies |γ̂T j

L − logitµ̂0| > T j(1 − q)εM
T j = (1 − q)εM . Using a similar argument as in

the proof of part (c) above, it follows that this strategy does strictly worse than following the
DNB.

Proof of part (a). Finally, assume that µ̂0 does not converge to µ∗
L. Then there is a

subsequence (T j) where the initially chosen belief stays outside an ε neighborhood of µ∗
L.

Combining this observation with (λ̂T
H − λ̂T

L)
√
T → 0 and the fact that the drift of the low

type’s logit-belief is close to zero due to part (b), it follows again that the DNB strictly
dominates this strategy.

A.6 Proof of Lemma 1

The proof is identical to the proof of Proposition 1. Since the perfect Bayesian’s error proba-
bility converges to zero, she has no need for information in the limit.
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A.7 Proof of Proposition 5

First of all, note that
σ̂2
L

σ̂2
H

= q(1−q)
p(1−p) . We have also shown that γ̂TL → µ∗

L and γ̂TH → ∞ and

that the variance of the low and high type’s belief at any relative time τ > 0 converges to 0.
For this reason, the probability at relative time τ that the agent is a low type conditional on
µ̂τ = x converges to 1. Hence learning one’s type decreases the agent’s total utility to 0 with
probability approaching 1 as T → ∞ and destroys belief utility Lα(1−τ)(x) (since low type
logit-beliefs follow a driftless random walk with vanishing variance).

A.8 Proof of Proposition 6

Each vector
~̂
λ implies a unique pair (p̂, q̂). Using algebra we obtain:

q̂ =
1− exp(λ̂L)

exp(λ̂H)− exp(λ̂L)
(34)

Proposition 4 implies that λ̂T
H , λ̂T

H = o( 1√
T
). Using the exponential approximation exp(x) =

1 + x+O(x2) we obtain:

q̂T =
−λ̂T

L

λ̂T
H − λ̂T

L

+ o(
1√
T
) (35)

We then obtain:

q̂T λ̂T
H + (1− q̂T )λ̂T

L = o(
1√
T
)λ̂T

H + o(
1√
T
)λ̂T

L = o(
1

T
) (36)

Using an analogous argument we can show:

p̂T λ̂T
H + (1− p̂T )λ̂T

L = o(
1√
T
)λ̂T

H + o(
1√
T
)λ̂T

L = o(
1

T
) (37)

This establishes that the mean logit-beliefs of both the high and low type are driftless random
walks from the perspective of the naive biased Bayesian. Hence, starting from an initial belief
x the naive biased Bayesian does not expect to learn anything in the limit about her type and
her willingness to pay for information converges to WTPS(x).
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A-1 A Test for Non-negative Information Valuations

If subjects are not careful recording their answers, there may be cases where they record a lower
value for $2 and information than for $2 alone, simply by chance. This section constructs a
formal test of this hypothesis under weak assumptions about the structure of reporting errors.
Let Si, Si + Ci, and Si + Pi be agent i’s true valuation of $2, $2 and coarse feedback, and $2
and precise feedback, respectively. Drop i subscripts for brevity. We assume that agents report
these quantities with additive errors that are distributed normally, identically, independent of
each other, and independent of true valuations, so that we observe

Ŝ = S + εS

Ĉ = S + C + εC

P̂ = S + P + εP ,

where εz ∼ N(0, σ2) for z ∈ {S,C, P}. The second moments of our data are

V (Ŝ) = V (S) + σ2

V (Ĉ) = V (S) + V (C) + 2Cov(S,C) + σ2

V (P̂ ) = V (S) + V (P ) + 2Cov(S,P ) + σ2

Cov(Ŝ, Ĉ) = V (S) + Cov(S,C)

Cov(Ŝ, P̂ ) = V (S) + Cov(S,P )

Cov(Ĉ, P̂ ) = V (S) + Cov(S,C) + Cov(S,P ) + Cov(C,P ).

This system is not point-identified as there are 7 parameters and 6 equations. However, we can
bound the parameters by imposing the requirements that variances be positive and correlation
coefficients within [−1, 1]. To bound σ2, note that

V (C) = V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)− 2σ2

V (P ) = V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )− 2σ2

Cov(C,P ) = Cov(Ĉ, P̂ ) + V (Ŝ)− Cov(Ŝ, Ĉ)− Cov(Ŝ, P̂ )− σ2,

1



Figure A-1: Noise Tests
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Plots probabilities of observing n(x) reported information values less than x under the null hypothesis that all

true information values are 0, for various values of x.

which implies the following must hold:

σ2 ≤ 1

2

(

V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)
)

σ2 ≤ 1

2

(

V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )
)

−1 ≤

(

Cov(Ĉ, P̂ ) + V (Ŝ)− Cov(Ŝ, Ĉ)− Cov(Ŝ, P̂ )− σ2
)

√
(

V (Ĉ) + V (Ŝ)− 2Cov(Ŝ, Ĉ)− 2σ2
)(

V (P̂ ) + V (Ŝ)− 2Cov(Ŝ, P̂ )− 2σ2
) ≤ 1

The largest value of σ that satisfies these restrictions for our data is σ ' 26.4.
Now fix any x < 0 and let n(x) be the number of observations for which both Ĉi−Ŝi < x and

P̂i− Ŝi < x. Under the null hypothesis that Ci and Pi are bounded below by 0, the probability
that these inequalities hold for any agent i is at most ζ(x, σ2) ≡ P(εS ≥ max{εC , εP }−x), the
probability when Ci = Pi = 0. Note that this yields a very conservative test, since presumably
many subjects do value information. The bound can be calculated numerically for any given
x and σ2, and consequently the probability that Ĉi − Ŝi < x and P̂i − Ŝi < x hold for n(x) or

2



more out of N individuals in a sample can be bounded by

p(x, σ2) ≡
N∑

m=n(x)+1

(
N

m

)

ζ(x, σ2)m(1− ζ(x, σ2))N−m. (38)

We calculated p(x, σ2) for σ = 26.4 and for a variety of thresholds x. Figure A-1 plots the
results. For any threshold below −60 we can reject the null at the 0.01 level.

A-2 Additional Tables

Table A-1: Quiz Performance: Summary Statistics

Correct Incorrect Score
N Mean SD Mean SD Mean SD

Overall
Restricted Sample 656 10.2 4.3 2.7 2.1 7.4 4.8
Full Sample 1058 9.7 4.3 3.0 2.4 6.8 4.9

By Quiz Type
1 79 8.1 3.1 1.7 1.2 6.4 3.3
2 85 13.0 2.9 2.7 2.1 10.3 3.4
3 69 8.9 3.3 3.0 2.1 5.9 3.8
4 74 12.2 3.8 3.1 2.3 9.2 4.6
5 75 6.5 1.6 4.0 2.3 2.5 2.8
6 63 14.5 4.5 2.3 1.7 12.3 4.7
7 73 7.6 2.6 2.2 1.7 5.4 3.1
8 69 13.6 2.8 3.2 1.8 10.4 3.3
9 69 7.3 3.5 2.7 2.8 4.7 4.5

By Gender
Male 314 10.6 4.2 2.7 2.3 7.9 4.8
Female 342 9.7 4.4 2.8 2.0 6.9 4.8
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Table A-2: Conservative and Asymmetric Belief Updating

Regressor Round 1 Round 2 Round 3 Round 4 All Rounds Unrestricted

Panel A: OLS
δ 0.777 0.946 0.943 1.009 0.937 0.888

(0.042)∗∗∗ (0.020)∗∗∗ (0.030)∗∗∗ (0.027)∗∗∗ (0.016)∗∗∗ (0.014)∗∗∗

βH 0.448 0.400 0.456 0.568 0.487 0.264
(0.021)∗∗∗ (0.020)∗∗∗ (0.024)∗∗∗ (0.035)∗∗∗ (0.016)∗∗∗ (0.013)∗∗∗

βL 0.477 0.422 0.457 0.471 0.454 0.211
(0.033)∗∗∗ (0.025)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗ (0.016)∗∗∗ (0.011)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.471 0.492 0.989 0.030 0.083 0.000
N 420 413 422 458 1713 3996
R2 0.754 0.882 0.874 0.864 0.846 0.798

Panel B: IV
δ 1.262 0.953 1.058 0.943 1.032 0.977

(0.325)∗∗∗ (0.098)∗∗∗ (0.136)∗∗∗ (0.157)∗∗∗ (0.078)∗∗∗ (0.060)∗∗∗

βH 0.617 0.401 0.456 0.578 0.496 0.273
(0.129)∗∗∗ (0.024)∗∗∗ (0.025)∗∗∗ (0.041)∗∗∗ (0.016)∗∗∗ (0.013)∗∗∗

βL 0.414 0.421 0.450 0.477 0.446 0.174
(0.052)∗∗∗ (0.025)∗∗∗ (0.028)∗∗∗ (0.033)∗∗∗ (0.015)∗∗∗ (0.027)∗∗∗

P(βH = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βL = 1) 0.000 0.000 0.000 0.000 0.000 0.000
P(βH = βL) 0.231 0.567 0.864 0.031 0.044 0.004
First Stage F -statistic 4.85 14.47 11.24 8.40 14.86 20.61
N 420 413 422 458 1713 3996
R2 - - - - - -

Notes:

1. Each column in each panel is a regression. The outcome in all regressions is the log posterior odds ratio. δ is the coefficient on the log prior
odds ratio; βH and βL are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. Bayesian updating
(for both perfect and biased Bayesians) corresponds to δ = βH = βL = 1.

2. Estimation samples are restricted to subjects whose beliefs were always within (0, 1). Columns 1-5 further restrict to subjects who updated
their beliefs in every round and never in the wrong direction; Column 6 includes subjects violating this condition. Columns 1-4 examine
updating in each round separately, while Columns 5-6 pool the 4 rounds of updating.

3. Estimation is via OLS in Panel A and via IV in Panel B, using the average score of other subjects who took the same (randomly assigned)
quiz variety as an instrument for the log prior odds ratio.

4. Heteroskedasticity-robust standard errors in parenthesis; those in the last two columns are clustered by individual. Statistical significance is
denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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