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1 Introduction

Undoubtedly, the public’s inflation expectations greatly influence actual inflation and, there-

fore, a central bank’s ability to achieve price stability. But what do we mean precisely by the

“state of inflation expectations”? And, most importantly, what role does monetary policy

play in shaping or managing inflation expectations?1

In this paper, the central bank’s management of private beliefs becomes an integral part

of the theory of optimal monetary policymaking.

In our model economy, constructed in the tradition of monetary models by Calvo (1978)

and Chang (1998), a representative household derives utility from consumption and real money

holdings. The government uses the newly printed money to finance transfers or taxes to house-

holds. Taxes and transfers are distortionary. The only source of uncertainty in this economy is

a shock that affects the degree of tax distortions through its influence on households’ income.

At the heart of this paper lies the assumption that the government has a single approx-

imating model that describes the evolution of the underlying shock while a representative

household fears that this model might be misspecified. To confront this concern, a represen-

tative household contemplates a set of nearby probability distributions or probability models

and seeks decision rules that would work well across these models. The household assesses the

performance of a given decision rule by computing the expected utility under the worst-case

distribution within the set. This worst-case distribution can be seen as the outcome that

follows from twisting the approximating model with adequate probability distortions.

The fact that private agents seem unable to assign a unique probability distribution to

alternative outcomes has been demonstrated in Ellsberg (1961) and similar experimental

studies.2 Moreover, a lack of confidence in the current models seems to have become apparent

during the recent financial crisis3 as noted in Bernanke (2010):

Most fundamentally, and perhaps most challenging for researchers, the crisis should

motivate economists to think further about modeling human behavior. Most eco-

nomic researchers continue to work within the classical paradigm that assumes

rational, self-interested behavior and the maximization of “expected utility”....

An important assumption of that framework is that, in making decisions under

uncertainty, economic agents can assign meaningful probabilities to alternative

outcomes. However, during the worst phase of the financial crisis, many economic

actors—including investors, employers, and consumers—metaphorically threw up

1These questions are subject of Bernanke (2007).
2See, e.g. Halevy (2007).
3See e.g. Caballero and Krishnamurthy (2008) and Uhlig (2010).
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their hands and admitted that, given the extreme and, in some ways, unprece-

dented nature of the crisis, they did not know what they did not know.

In our model the government follows the above advice to go beyond the expected utility

framework. The government recognizes that households are not able or willing to assign

a unique probability distribution to alternative realizations of the stochastic state of the

economy. The government wants to design optimal monetary policy that explicitly accounts

for the fact that households’ allocation rules are influenced by how they form their beliefs in

light of model uncertainty.

We characterize optimal policy under two timing protocols for the government’s choices.

First, we work under the assumption that at time zero the government can commit to a

policy specifying its actions for all current and future dates and states of nature. Under this

assumption, at time zero a government chooses the best competitive equilibrium from the

set of competitive equilibria with model uncertainty, i.e. one that maximizes the households’

expected lifetime utility but under the government’s own unique beliefs. We will refer to such

a government as paternalistic Ramsey planner.

The competitive equilibrium conditions in our model are represented by the households’

Euler equations and an exponential twisting formula for the probability distortions. Using

insights from Kydland and Prescott (1980), we express the competitive equilibria in a re-

cursive structure by introducing an adequate pair of state variables. We first need to keep

track of the equilibrium (adjusted) marginal utilities to guarantee that the Euler equations

are satisfied after each history. Our second state variable is the households’ lifetime utility.

This variable is needed to express the equilibrium probability distortions in the context of

model uncertainty. These two variables summarize all the relevant information about future

policies and allocations for households’ decisionmaking when the government has the ability

to commit. Through the dynamics of the promised marginal utility and households’ value,

which the government has to deliver in equilibrium, the solution to the government’s problem

under commitment, the Ramsey plan, exhibits history dependence.

Once we abstract from the assumption that the government has the power to commit

but instead chooses sequentially, a time inconsistency problem may arise, as first noted by

Kydland and Prescott (1977) and Calvo (1978). The government will adhere to a plan only if

it is in its own interest to do so. As a consequence, it is urgent to check whether the optimal

policies derived by our paternalistic Ramsey planner are time consistent, and, more generally,

to characterize the set of sustainable plans with model uncertainty.4 This latter notion should

4The notion of a sustainable plan inherits sequential rationality on the government’s side, jointly with

the fact that households always respond to government actions by choosing from competitive equilibrium
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be thought of as an extension of Chari and Kehoe (1990).

Using the government’s value as an additional third state variable, an appropriate incentive

constraint for the government can then be constructed to complete the formulation of a

sustainable plan in a recursive way. This introduces a new source of history-dependence given

by the restrictions that the system of households’ expectations impose on the government’s

policy actions in equilibrium.

To our knowledge this paper constitutes the first attempt to characterize the set of all

time-consistent outcomes when agents are uncertainty averse in an infinite-horizon model.

This feature of our environment provides the government with opportunities to influence

households’ beliefs about exogenous variables through their expectations of future policies,

which have to be confirmed in equilibrium. The management of households’ beliefs becomes an

active channel of policymaking as the government will exploit this mechanism when designing

monetary policies.

Characterizing time-consistent outcomes is a challenging task because any time-consistent

solution must include a description of government and market behavior such that the con-

tinuation of such behavior after any history is a competitive equilibrium and it is optimal

for the government to follow that policy. In this paper, we use insights from the work by

Abreu, Pearce, and Stacchetti (1990), Chang (1998), and Phelan and Stacchetti (2001) to

compute the sets of equilibrium payoffs as the largest fixed point of an appropriate operator.

We also adapt algorithms based on hyperplane approximation methods in the spirit of Judd,

Yeltekin, and Conklin (2003) that let us compute the sets in question. The characterization of

the entire set of sustainable equilibrium values facilitates the examination of practical policy

questions. Our numerical examples suggest that government policies that account for the fact

that households contemplate a set of probability distributions may lead to better outcomes.

Although in this paper we restrict attention to the type of models of monetary policy-

making that can be cast in the spirit of Calvo (1978), our approach could be applicable to

many repeated or dynamic games between a government and a representative household who

distrusts the model used by the government.

To our knowledge, there are two papers that try to explore the policymaker’s role in

managing households’ expectations. Karantounias, Hansen, and Sargent (2009) study the

optimal fiscal policy problem in Lucas and Stokey (1983) but in an environment where a

representative household distrusts the model governing the evolution of exogenous government

expenditure. Karantounias, Hansen, and Sargent (2009) apply the techniques of Marcet

and Marimon (2009) to characterize the optimal policies when the government has power to

allocations.
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commit. Woodford (2003) discusses the optimal monetary policy under commitment in an

economy where both the government and the private sector fully trust their own models, but

the government distrusts its knowledge of the private sector’s beliefs about prices.

The remainder of this paper is organized as follows. Section 2 sets up the model and out-

lines the assumptions made. In Section 3 we introduce the notion of competitive equilibrium

with model uncertainty. In Section 4 we discuss the recursive formulation of the Ramsey

problem for the paternalistic government. Section 5 contains the discussion of sustainable

plans with model uncertainty. In Section 6 we describe the computational algorithms we have

implemented to determine the entire set of equilibrium values to the government and to the

representative household, and their promised marginal utilities. We also present some numer-

ical results. Section 7 briefly discusses an alternative hypothesis with both the government

and households possibly using distinct sets of models. Finally, Section 8 concludes.

2 Benchmark Model

The model economy is populated by two infinitely lived agents: a representative household

(with her evil alter ego, which represents her fears about model misspecification) and a govern-

ment. The household and the government interact with each other at discrete dates indexed

as t = 0, 1, ....

At the beginning of each period, the economy is hit by an exogenous shock. The govern-

ment in our model has a reference or approximating probability model for this shock, which is

its best estimate of the economic dynamics. Throughout the paper, we use the terms “prob-

ability model” and “probability distribution” interchangeably. While the government fully

trusts the probability distribution for the shock, the representative household fears that it

is misspecified. In turn, she contemplates a set of alternative probability distributions to be

endogenously determined, and seeks decision rules that perform well over this set of distri-

butions. Given her doubts on which model actually governs the evolution of the shock, the

household designs decision rules that guarantee lower bounds on expected utility level under

any of the distributions.

Let (Ω,F ,Pr) be the underlying probability space. Let the exogenous shock be given by

st, where s0 ∈ S is given (there is no uncertainty at time 0) and st : Ω→ S for all t > 0. The

set S for the shock is assumed to be finite with cardinality S. We assume that st follows a

Markov process for all t > 0, with transition probabilities given by π (st+1|st).
Throughout this paper we will refer to the conditional distribution π (st+1|st) as the ap-

proximating model. Let st ≡ (s0, s1, ..., st) ∈ S × S × ... × S ≡ St+1 be the history of the

4



realizations of the shock up to t. Finally, we denote by St ≡ F
(
st
)

the sigma-algebra gener-

ated by the history st.

2.1 The Representative Household’s Problem and Fears about Model Mis-

specification

The households in this economy derive utility from consumption of a single good, c(st), and

real money balances, m(st). The household’s period payoff is given by u
(
ct
(
st
))

+v(mt

(
st
)
),

where the utility components u and v satisfy the following assumptions:

[A1] u : R+ → R is twice continuously differentiable, strictly increasing, and strictly

concave

[A2] v : R+ → R is twice continuously differentiable, and strictly concave

[A3] limc→0 u
′ (c) = limm→0 v

′ (m) = +∞

[A4] ∃m < +∞ such that v′ (m) = 0.

The assumptions [A1]-[A3] are standard. Assumption [A4] defines a satiation level for real

money balances.

In this paper we model the representative household as being uncertainty-averse. While

the government fully trusts the approximating model π
(
st
)
, the household distrusts it. For

this reason, she surrounds it with a set of alternative distributions π̃
(
st
)

that are statistical

perturbations of the approximating model, and seeks decision rules that perform well across

these alternative distributions. We assume that these alternative distributions, π̃ (st), are

absolutely continuous with respect to π (st), i.e. π (st) = 0⇒ π̃
(
st
)

= 0, ∀st ∈ St+1.

By invoking the Radon-Nikodym theorem we can express any of these alternative distorted

distributions using a nonnegative St-measurable function given by

Dt

(
st
)

=


π̃(st)
π(st) ifπ

(
st
)
> 0

1 ifπ
(
st
)

= 0,

which is a martingale with respect to π
(
st
)
, i.e.

∑
st+1

π (st+1|st)Dt+1

(
st+1

)
= Dt

(
st
)
. We can

also define the conditional likelihood ratio as dt+1

(
st+1|st

)
≡ Dt+1(st,st+1)

Dt(st)
for Dt

(
st
)
> 0.

Notice that in case Dt

(
st
)
> 0 it follows that

dt+1

(
st+1|st

)
=


π̃(st+1|st)
π(st+1|st) if π

(
st+1

)
> 0

1 if π
(
st+1

)
= 0,
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and that the expectation of the conditional likelihood ratio under the approximating model

is always equal to 1, i.e.
∑
st+1

π
(
st+1|st

)
dt+1(st+1|st) = 1.

To express the concerns about model misspecification, we follow Hansen and Sargent

(2008) and endow the household with multiplier preferences. In this case, the set of alternative

distributions over which the household evaluates the expected utility of a given decision rule

is given by an entropy ball. We can then think of the household as playing a zero-sum

game against her evil alter ego, who is a fictitious agent that represents her fears about

model misspecification. The evil alter ego will be distorting the expectations of continuation

outcomes in order to minimize the household’s lifetime utility. She will do it by selecting

a worst-case distorted model π̃
(
st
)
, or equivalently, a sequence of probability distortions{

Dt

(
st
)
, dt+1

(
st+1|st

)}∞
t=0

.

The representative household ranks contingent plans for consumption and money balances

according to

V H = max
{ct(st),mt(st)}

min
{Dt(st),dt+1(st+1)}

∞∑
t=0

βt
∑
st

π(st)Dt(s
t)
{[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

+θβ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)
}

(1)

Dt+1(st+1) = dt+1(st+1|st)Dt(s
t) (2)∑

st+1

π(st+1|st)dt+1(st+1|st) = 1, (3)

where mt ≡ qtMt is the real money balances, Mt is the money holdings at the end of period

t, qt is the value of money in terms of the consumption good (that is, the reciprocal of the

price level), and θ ∈ (θ,+∞] is a penalty parameter that controls the degree of concern about

model misspecification. Through the last term, the entropy term, the evil alter ego is being

penalized whenever she selects a distorted model that differs from the approximating one.

Note that the higher the value of θ, the more the evil alter ego is being punished. If we let

θ → +∞ the probability distortions to the approximating model vanish, the household and

the government share the same beliefs, and expression (1) collapses to the standard expected

utility.

Conditions (2) and (3) discipline the choices of the evil alter ego. Condition (2) defines

recursively the likelihood ratio Dt. Condition (3) guarantees that every distorted probability

is a well-defined probability measure.

The evil alter ego’s minimization problem yields lower bounds (in terms of expected util-

ity) on the performance of any of the household’s decision rules. The probability distortion
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d(st+1|st) that solves this minimization problem satisfies the following exponential twisting

formula

d(st+1|st) =
exp

(
−V H(st+1)

θ

)
∑

st+1∈S π(st+1|st) exp
(
−V H(st+1)

θ

)
,

where V H(st+1) is the t+ 1−equilibrium value for the household. Condition (2.1) shows how

the evil alter ego pessimistically twists the household’s beliefs by assigning high probability

distortions to the states st+1 associated with low utility for the household, and low probability

distortions to the high-utility states. See the Appendix A.1 for the derivation of condition

(2.1). Notice from (2.1) that to express the optimal belief distortions chosen by the evil alter

ego, we need to know the household’s equilibrium values. Using expression (2.1) the expected

lifetime utility of the household at time t, in equilibrium, is

V (st) = u(c(st)) + v(m(st))− βθ log
∑
st+1∈S

π(st+1|st)
(

exp

(
−V

H(st+1)

θ

))
.

The representative household takes sequences of prices,
{
qt
(
st
)}∞

t=0
, income,

{
yt
(
st
)}∞

t=0
,

taxes or subsidies,
{
xt
(
st
)}∞

t=0
, and the conditional likelihood ratio chosen by her evil alter

ego,
{
dt+1

(
st+1|st

)}∞
t=0

, as well as the initial money supply M−1, shock realization s0 and

D0 = 1, as given.

The household then maximizes (1) subject to the following constraints

qt
(
st
)
Mt

(
st
)
≤ yt

(
st
)
− xt

(
st
)
− ct

(
st
)

+ qt
(
st
)
Mt−1(st−1) (4)

qt
(
st
)
Mt

(
st
)
≤ m. (5)

Condition (4) represents the household’s budget constraint, which states that for all t ≥ 0 and

all st after-tax income in period t, yt − xt, together with the value of money holdings carried

from last period, must be sufficient to cover the period-t expenditures on consumption and

new purchases of money. Condition (5) is introduced for technical reasons, in order to bound

real money balances from above.

2.2 Government

In this economy the government chooses how much money, Mt(s
t) to create or to withdraw

from circulation. In particular, it chooses a sequence {ht}∞t=0 where ht is the reciprocal of the

gross rate of money growth for all t ≥ 0, i.e. ht ≡ Mt−1

Mt
. We make the following assumption

on the set of values for the inverse money growth rate,

[A5] ht(s
t) ∈ Π ≡ [π, π] with 0 < π < 1

β ≤ π.
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[A5] establishes ad hoc bounds on the admissible rates for money creation. A positive lower

bound implies that the supply of money has to be positive. The upper bound is set for

technical reasons.

The government runs a balanced budget by printing money to finance the transfers to

households or destroying the money it collects in the form of tax revenues, xt,

xt(s
t) = qt(s

t)
[
Mt−1

(
st−1

)
−Mt(s

t)
]
. (6)

Using the definition of mt and ht, (6) can be reformulated as

xt(s
t) = mt(s

t)
[
ht(s

t)− 1
]
. (7)

Notice that from equation (7) xt(s
t) ∈ X ≡ [(π − 1)m, (π − 1)m] .

As in Chang (1998), we assume that taxes and subsidies are distortionary. To model that,

we consider an ad hoc functional form for households’ income, f : X × S → R, that depends

on tax collections in period t and the exogenous shock, st, i.e. yt(s
t) ≡ f(xt(s

t), st). The

function f : X×S→ R is assumed to be at least twice continuously differentiable with respect

to its first argument and

[A6] f(x, s) > 0, f1(0, s) = 0, f11(x, s) < 0 for all x ∈ X, for all s ∈ S

[A7] f(x, s) = f(−x, s) > 0 for all x ∈ X, for all s ∈ S ,

where f1 and f11 denote, respectively, the first and second derivative of function f with

respect to its first argument. Function f is intended to convey that taxes (and transfers)

are distortionary without the need to model the nature of such distortions explicitly. [A6]

indicates that it is increasingly costly in terms of consumption to set taxes or to make transfers

to households. This assumption will play a key role in the time-inconsistent nature of the

Ramsey plan, when the government can commit to its announced policies. The symmetry of

f given by [A7] implies that taxes and subsidies are equally distortionary.

2.3 The Within-Period Timing Protocol

The timing protocol within each period is as follows. First, the shock realization, st(s
t−1),

occurs. Then, the government observes the shock, chooses the money supply growth rate

ht(s
t) and taxes xt(s

t) for the period, and announces a sequence of future money growth

rates and tax collections {ht+1(st+1), xt+1(st+1)}∞t=0. After that, given prices qt(s
t−1), the

current policy actions (ht(s
t), xt(s

t)) and their expectations of future policies, the household

chooses Mt(s
t−1), or equivalently real balances mt(s

t). When making her choice of mt(s
t),
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the household can be thought of as playing a zero-sum game against her evil alter ego, who

distorts her beliefs’ about the evolution of future shock realizations.5 Then taxes are collected

and output is realized, yt(s
t) = f(st(s

t−1), xt(s
t)). Finally, consumption ct(s

t) takes place.

In our economy, the government would want to promote utility by increasing the real

money holdings towards the satiation level. In equilibrium, however, this can only be achieved

by reducing the money supply over time, which in turn induces a gradual deflationary process

along the way. In order to balance its budget the government has to set positive taxes

withdrawing money from circulation. Taxes are assumed to be distortionary, and, hence, this

has negative effects on households’ income.

In this simple framework, as discussed by Calvo (1978) and Chang (1998), the optimal

policies for the Ramsey government with the ability to commit would typically be time-

inconsistent. A discussion of the source of the time-inconsistency of the Ramsey plan is

presented in section 4.

3 Competitive Equilibrium With Model Uncertainty

In this section we define and characterize a competitive equilibrium with model uncertainty

in this economy. Throughout the rest of the paper we will use bold letters to denote state-

contingent sequences.

Definition 3.1. A government policy in this economy is given by sequences of (inverse)

money growth rates h = {ht(st)}∞t=0 and tax collections x = {xt(st)}∞t=0. A price system is q =

{qt(st)}∞t=0. An allocation is given by a triple of nonnegative sequences of consumption, real

balances and income, (c,m,y), where c = {ct(st)}∞t=0, m = {mt(s
t)}∞t=0, and y = {yt(st)}∞t=0.

Definition 3.2. Given M−1, s0, a competitive equilibrium with model uncertainty is given

by an allocation (c,m,y), a price system q, belief distortions d, and a sequence of households’

utility values VH = {V H
t+1}∞t=0 such that for all t and all st

(i) given q, beliefs’ distortions d, and government’s policies h and x,
(
m,VH

)
solves house-

holds’ maximization problem;

(ii) given q and
(
m,x,h,VH

)
, d solves the evil alter ego’s minimization problem;

(iii) government’s budget constraint holds;

(iv) money and consumption good markets clear, i.e. ct(s
t) = yt(s

t) and mt(s
t) = qt(s

t)Mt(s
t).

5Since the game between the household and her evil alter ego is zero sum, the timing protocol between their

moves do not affect the solution.
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Under assumptions [A1-A6] we can prove the following proposition:

Proposition 3.1. A competitive equilibrium is completely characterized by sequences
(
m,x,h,d,VH

)
such that for all t and all st, mt

(
st
)
∈ M, xt

(
st
)
∈ X, ht

(
st
)
∈ Π, dt+1

(
st+1

)
∈ D ⊆ RS+,

and V H
t+1(st+1) ∈ V and

mt

(
st
) {
u′(f(xt

(
st
)
, st))− v′(mt

(
st
)
)
}

=

β
∑
st+1

π(st+1|st)dt+1(st+1|st)
{
u′(f(xt+1

(
st+1

)
, st+1)ht+1

(
st+1

)
mt+1

(
st+1

)}
, ≤ if mt = m (8)

dt+1(st+1|st) =

exp

(
−V

H
t+1(s

t+1)
θ

)
∑
st+1

π(st+1|st) exp
(
−V

H
t+1(st+1)

θ

) (9)

V Ht = u
(
f(xt

(
st
)
, st)

)
+ v

(
mt

(
st
))
− βθ log

∑
st+1

π (st+1|st) exp

(
−V Ht+1

(
st+1

)
θ

)
(10)

−xt
(
st
)

= mt

(
st
) (

1− ht
(
st
))
. (11)

Proof. See Appendix A.1.

Equation (8) is an Euler equation for real money balances. Equation (9) is simply the

exponential twisting formula for optimal probability distortions, rewritten from (2.1). Equa-

tion (10), as in (2.1), expresses the household’s utility values recursively once the probability

distortions chosen by the evil alter ego are incorporated. Finally, equation (11) is the govern-

ment’s balanced budget constraint.

Note that households’ transversality condition is not included in the list of conditions

characterizing competitive equilibrium. In Appendix A.1. we explain why this is the case.

Formally, let E ≡M×X×Π×D×V and E∞ ≡M∞ ×X∞ ×Π∞ ×D∞ ×V∞. We define

a set of competitive equilibria for each possible realization of the initial state s0

CEs =
{(

m,x,h,d,VH
)
∈ E∞| (8)-(11) hold and s0 = s

}
.

In Appendix A.2, we present an example of a competitive equilibrium sequence.

Corollary 3.1. CEs for all s ∈ S is nonempty.

Proof. See Appendix A.2.

Corollary 3.2. CEs for all s ∈ S is compact.

Proof. See Appendix A.3.
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Corollary 3.3. A continuation of a competitive equilibrium with model uncertainty is a com-

petitive equilibrium with model uncertainty, i.e. if
(
m,x,h,d,VH

)
∈ CEs0 then

{
mt, xt, ht, dt, V

H
t+1

}∞
j=t
∈

CEst for all t and all s0, st ∈ S.

Proof. Follows immediately from Proposition 3.1.

4 Ramsey Problem for a Paternalistic Government: Recursive

Formulation

We start by formulating and solving the government’s time-zero Ramsey problem. Although

the assumption that the government has the ability to commit might be put in question,

studying such environment will be useful for two reasons. First, it will allow us to describe

the notion of a paternalistic government and to characterize the set of equilibrium values

(both for the government and households) that the government can attain with commitment.

This set of equilibrium values is interesting as it constitutes a larger set which includes the set

of values that could be delivered when the government chooses sequentially. The discrepancy

between these two sets sheds some light on the severity of the time-inconsistency problem.

Second, as it will become clearer later on, the procedure for solving the Ramsey problem will

constitute a helpful step towards deriving a recursive structure for the credible plans.

We assume first that the government sets its policy once and for all at time zero. That

is, at time zero it chooses the entire infinite sequence of money growth rates {ht(st)}∞t=0 and

commits to it. A benevolent government in this economy would exhibit households’ preference

orderings and, hence, maximize households’ expected utility under the distorted model given

by (1). In our setup, we depart from the assumption of a benevolent government, and assume

instead that the government is paternalistic in the sense that it cares about households’ utility

but under its own beliefs, which are assumed to be π(st). The assumption of a paternalistic

government implies in turn that the households and the government do not necessarily share

the same beliefs when evaluating contingent plans for consumption and real balances. While

the government believes that the exogenous shock evolves according to the approximating

model π(st), the households act as if the evolution of the shock is governed by π̃(st).

For a given initial shock realization s0 and initial M−1, the Ramsey problem that the

government solves in our environment therefore consists of choosing (m,x, h, d) ∈ CEs0 to

maximize households’ expected utility under the approximating model, i.e.,

V G
t = max

(m,x,h,d,VH)

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

s.t. (8) - (11). (12)
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We solve the Ramsey problem by formulating it in a recursive fashion. To do so, we need

to adopt a recursive structure for the competitive equilibria. It is key then to identify any

variables that summarize all relevant information about future policies and future allocations

for households’ decisionmaking in the current period. From the Euler equation (8) we imme-

diately identify the variables we are after. For time t, history st, and the households’ choice

of real balances mt(s
t), we need to know the (discounted) expected value of money at t+ 1,

defined by the right hand side of equation (8). The expected value of money at t+ 1 can be

expressed in terms of the value of money for each shock realization st+1 and the probability

distribution households assign to st+1. Following Kydland and Prescott (1980) and Chang

(1998), we designate the value of money as a pseudo-state variable to track.6 Let µt+1(st+1)

denote the equilibrium value of money at t+ 1 after history st+1,

µt+1

(
st+1

)
≡ u′(f(xt+1

(
st+1

)
, st+1)(ht+1

(
st+1

)
mt+1

(
st+1

)
). (13)

We can view µt+1(st+1) as the “promised” (adjusted) marginal utility of money after st+1.

The second ingredient needed to compute the expected value of money at t+ 1 is house-

holds’ beliefs about st+1. As shown in Hansen and Sargent (2007), households want to guard

themselves against a worst-case scenario by twisting the approximating probability model in

accordance to distortions dt+1(st+1). Therefore, the future paths of ht+1(st+1) and mt+1(st+1)

influence today’s choice of real money balances mt, not only through their effect on µt+1(st+1)

but also through the impact they have on the degree of distortion in the beliefs of the repre-

sentative household, as given by (9).

These probability distortions in equilibrium turn out to be a function of households’ contin-

uation values. Therefore, to construct a recursive representation of the competitive equilibria

with model uncertainty we need to compute households’ utility values V H(st+1), in addition

to µt+1(st+1). Together, these can be thought of as device used to ensure that we account for

the effects of future policies on agents’ behavior in earlier periods.

Let <2 be the space of all the subsets of R2. Moreover, let Ω : S → <2 be the value

correspondence such that

Ω (s = s0) =
{(
µs, V

H
s

)
∈ R× R| µs ≡ u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)] and

V H
s = u (f(x (s0) , s0) + v (m (s0))− βθ log

∑
s1

π (s1|s0) exp
(
−V H1 (s1)

θ

)
with s0 = s and for some (m,x,h,d,VH) ∈ CEs

}
.

For each initial state realization s, the set Ω(s) is formed by all current (adjusted) marginal

6To solve for the Ramsey plan in a dynamic economy with capital accumulation, Marcet and Marimon

(2009) instead use the Lagrange multiplier associated with the Euler equations as a pseudo-state variable to

guarantee that they are satisfied at every point of time.
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utilities and households’ values that can be delivered in a competitive equilibrium. Through

these two variables, future policies and allocations (m,x,h,d,VH) influence the choice of m0

for s0 = s. It is straightforward to check that Ω(s) is nonempty and compact.

Define

Ψ
(
s, µs, V

H
s

)
=
{(

m,x,h,d,VH
)
∈ CEs|µs = u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)] and

V H
s = u (f(x (s0) , s0) + v (m (s0))− βθ log

∑
s1

π (s1|s0) exp
(
−V H

1 (s1) /θ
)}
.

Ψ
(
s, µs, V

H
s

)
delivers the competitive equilibrium sequences

(
m,x,h,d,VH

)
associated with

an initial marginal utility µs and an initial lifetime utility for the households V H
s for initial

s0 = s. If we know sets Ω(s) and Ψ
(
s, µs, V

H
s

)
, we could solve the Ramsey problem for

our paternalistic government in (12) for s0 = s in two steps as follows. First, we solve the

Ramsey problem when the time zero shock realization is s and the initial marginal utility and

households’ value are µs and V H
s , respectively,

V G∗(s, µs, V
H
s ) = max

(m,x,h,d,VH)

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]
. (14)

s.t.
(
m,x,h,d,VH

)
∈ Ψ

(
s, µs, V

H
s

)
Let µ = [µ1, µ2, ..., µS ] and V H =

[
V H

1 , V H
2 , ..., V H

S

]
be the vectors of state-contingent

marginal utilities and households’ utilities, respectively. Notice that µs ∈ [0, µs] for some

µs, ∀s ∈ S. Also, given that the period payoffs are bounded, it follows that V H
s ∈

[
V H
s , V

H
s

]
,

for some bounds V H
s , V

H
s . The primes are used to denote next-period values.

The next proposition formulates the Ramsey problem (14) with a recursive structure that

can be solved using dynamic programming techniques.

Proposition 4.1. V G∗ (s, µs, V H
s

)
satisfies the following Bellman equation

V G
(
s, µs, V

H
s

)
= max

(m,x,h,µ′,V H′)
[u (f (x, s)) + v(m)] + β

∑
s′

π(s′|s)ws′
(
s′, µ′s′ , V

H′
s′
)

(15)

(m,x, h) ∈M× X×Π and
(
µ′s′ , V

H′
s′
)
∈ Ω (s′) for all s′

µs = u′ [f(x, s)] [x+m] (16)

V Hs = u (f(x, s)) + v (m)− βθ log
∑
s′

π (s′|s) exp

(
−V H′s′

θ

)
(17)

−x = m [1− h] (18)

m {u′(f(x, s))− v′(m)} = β
∑
s′

π(s′|s)
exp

(
−V

H′
s′
θ

)
∑
s′ π(s′|s) exp

(
−V

H′
s′
θ

)µ′s′ , ≤ if m = m. (19)

Conversely, if a bounded function V G : S × Ω(s) → R satisfies the above Bellman equation,

then it is solution of (14).

13



Proof. Based on the Bellman principle of optimality, this is a straightforward extension of

Chang (1998), p. 457, and is left to the reader.

In the recursive Ramsey problem given by (15) it is clear to see how when maximizing

its utility in any period t > 0 the government is bounded by its previous-period promises

of marginal utility and households’ value (µ, V H). From the households’ perspective, these

promises were key when choosing real balances at t − 1. To maximize their utility, the time

t − 1 Euler equation has to hold. Under commitment, these promises must be delivered

at t thereby conditioning government’s choice in that period. In this way, the government

guarantees that households’ Euler equation is satisfied in every period. Through the dynamics

of the promised marginal utility and households’ value, which the government has to manage

to deliver in equilibrium, the Ramsey plan exhibits history dependence. Once we have solved

the recursive Ramsey problem, the following step has to be undertaken

V G∗ (s) = max
(µs,V Hs )∈Ω(s)

V G∗ (s, µs, V H
s

)
. (20)

In contrast with the other periods, there is no promised (µs, V
H
s ) to be delivered in the first

period. Hence, the government is free to choose the initial vector
(
µs, V

H
s

)
.7

To solve the recursive problem stated in Proposition 4.1, it is necessary to know in advance

the value correspondence Ω. In what follows we provide a procedure for the computation of Ω

as the largest fixed point of a specific value correspondence operator, as proposed by Kydland

and Prescott (1980).

Let G be the space of all the correspondences Ω, and let Q live in it. Let the operator

B : G → G be defined as follows,

B (Q) (s) =
{(
µs, V

H
s

)
∈ R× R| ∃

(
m,x, h, µ′, V H′) ∈M× X×Π×Q such that

(16)-(19) hold} .

By picking vectors of continuation marginal utilities and households’ values (µ′, V H′) from

Q, the operator B computes the set of current marginal utilities and households’ values

(µs, V
H
s ) for each shock realization s that are consistent with the competitive equilibrium

conditions. The operator B is a monotone operator in the sense that Q(s) ⊆ Q′(s) implies

B(Q)(s) ⊆ B(Q′)(s).

The next proposition states that the set in question, Ω(s), is the largest fixed point of the

operator B. Moreover, it states that Ω(s) can be computed by iterating on the operator B

until convergence, given that we start from an initial set Q0(s) that is sufficiently large.

7The fact that
(
µs, V

H
s

)
can be set by the government at time 0 explains why we refer to it as pseudo-state

variables.
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Let Q0(s) = [0, µs] ×
[
V H
s , V

H
s

]
. Clearly, it satisfies B(Q0)(s) ⊆ Q0(s). Given the

monotonicity property, by applying successively the operator B, we can construct a decreasing

sequence {Qn(s)}∞t=0 for each s ∈ S, where Qn(s) = B (Qn−1) (s). The limiting sets are given

by Q∞(s) = ∩∞n=0Qn(s) for n = 1, 2, ....

Proposition 4.2.

(i) Q(s) ⊆ B (Q) (s)⇒ B (Q) (s) ⊆ Ω(s)

(ii) Ω(s) = B (Ω) (s)

(iii) Ω(s) = limn→∞B
∞(Q0)(s).

Proof. Simple extension of the argument in Chang (1998).

Once we have computed Ω, we can solve the recursive Ramsey problem stated in Propo-

sition (4.1) which clearly yields a Ramsey plan with a recursive representation. The resulting

Ramsey plan consists of an initial vector (µs, V
H
s ), given by the solution to (20), and a five-

tuple of functions (h, x,m, µ, V H) mapping (s, µs, V
H
s ) into current period’s (h, x,m), and

next period’s state-contingent (µ, V H), respectively,

ht = h
(
st, µt(st), V

H
t (st)

)
xt = x

(
st, µt(st), V

H
t (st)

)
mt = m

(
st, µt(st), V

H
t (st)

)
µt+1 = ψ

(
st, µt(st), V

H
t (st)

)
V H
t+1 = $

(
st, µt(st), V

H
t (st)

)
.

As it turns out, the solution to the Ramsey problem is time-inconsistent. In this envi-

ronment, the government would implement a transitory deflationary process along with a

contracting money supply {Mt(s
t)}∞t=0 so as to increase the real money holdings towards its

satiation level, m. To achieve this, it would have to collect tax revenues to satisfy its balanced

budget constraint (7), which at the same time would entail tax distortions in the form of out-

put costs. At the beginning of time zero, taking prices {qt(st)}∞t=0 and taxes {xt(st)}∞t=0 as

given, the household chooses once and for all her sequence of real balances {mt(s
t)}∞t=0. If the

government was allowed to revisit its policy at time T > 0, after history st, given households’

choice {mt(s
t)}∞t=0, the government would find it optimal not to adhere to what the original

plan prescribes from then on, {Mt(s
t|sT )}∞t=T , but to deviate to an alternative {M̃t(s

t|sT )}∞t=T
by reducing the money supply more gradually. These incentives arise from the fact that tax

distortions are an increasing and convex function of tax collections, as indicated in assumption

[A6].
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5 Sustainable Plans with Model Uncertainty

From now on, we proceed under the assumption that the government cannot commit to its

announced sequence of money supply growth rates. Instead, it will be choosing its policy

actions sequentially in each state.8

As originally studied by Calvo (1978) and explained in section 4, in this case the govern-

ment faces a credibility problem. To study the optimal credible policies in this context, we

make use of the notion of sustainable plans, developed by Chari and Kehoe (1990). The notion

of a sustainable plan inherits sequential rationality on the government’s side, combined with

the fact that households are restricted to choose from competitive equilibrium allocations.9

In this section, we extend the notion of sustainable plans of Chari and Kehoe (1990) to

incorporate model uncertainty.

Let ht = (h0, h1, ..., ht) be the history of the (inverse) money growth rates in all the periods

up to t. A strategy for the government can be defined as σG ≡ {σGt }∞t=0, with σG0 : S → Π

and σGt : St × Πt−1 → Π for all t > 0. We restrict the government to choose a strategy σG

from the set CEΠ
s , where CEΠ

s is defined as

CEΠ
s =

{
h ∈ Π∞| there is some

(
m,x,d,VH

)
such that

(
m,x,h,d,VH

)
∈ CEs

}
.

CEΠ
s is the set of sequences of money growth rates consistent with the existence of competitive

equilibria, given s0 = s. It is straightforward to establish that this set is nonempty and

compact.

The restriction above is equivalent to forcing the government to choose after any history

ht−1, st a period t money supply growth rate from CEΠ,0
st , where CEΠ,0

s is given by

CEΠ,0
s = {h ∈ Π : there is h ∈ CEΠ

s with h(0) = h}.

An allocation rule can be defined as α ≡ {αt}∞t=0 such that αt : St × Πt → M × D × X
for all t ≥ 0. The allocation rule α assigns an action vector αt(s

t, ht) = (mt, xt, dt)(s
t, ht) for

current real balances, tax collections, and distortions to households’ beliefs about the next

state st+1.

8We can think instead of this environment as having a sequence of government “administrations” with the

time t, history st administration choosing only at time t, history st government action given its forecasts of how

future administrations will act. The time t, history st administration intends to maximize the government’s

lifetime utility only in that particular node.
9From a game theoretical perspective, the notion of a sustainable plan entails subgame perfection in a

game between a large player (government) and a continuum of atomistic players (households), who cannot

coordinate, and are, thus, price-takers.
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Definition 5.1. A government strategy, σG, and an allocation rule α, are said to constitute

a sustainable plan with model uncertainty (SP) if after any history st and ht−1

(i) (σG, α) induce a competitive equilibrium sequence;

(ii) given σH , it is optimal for the government to follow the continuation of σG , i.e. the

sequence of continuation future induced by σG maximizes

∞∑
j=t

βj−t
∑
sj |st

πj(s
j |st)

[
u
(
cj
(
sj
))

+ v(mj

(
sj
)
)
]

over the set CEΠ
s .

Condition (i) states that after any history st, ht, even if at some point in the past the gov-

ernment has disappointed households’ expectations about money growth rates, all economic

agents choose actions consistent with a competitive equilibrium. Condition (ii) guarantees

that the government attains weakly higher lifetime utility after any history by adhering to

σG.

Any sustainable plan with model uncertainty (σG, α) can be factorized after any history

into a current period action profile, a, and a vector (V G′(h), V H′(h), µ′(h)) of state-contingent

continuation values for the government, and for the representative household, and promised

marginal utilities, as a function of money growth rate h. The action profile a in our context

is given by a = (ĥ,m(h), x(h), d′(h)). That is,the action profile a assigns:

(i) an (inverse) money growth rate ĥ that the government is instructed to follow

(ii) a reaction function m : Π→ [0,m] for the real money holdings chosen by households. If

the government adheres to the plan and executes recommended ĥ, households respond by

acquiringm(ĥ) real balances. Otherwise, if the government deviates from the sustainable

plan and select any h 6= ĥ, households react by selecting m(h).

(iii) a tax allocation rule x : Π → X. Taxes revenues are determined in equilibrium as

a residual of money growth and money holdings in order to satisfy the government’s

budget constraint (6).

(iv) a reaction function d : Π→ D for the beliefs’ distortions set by the evil alter ego.

The vector (V G′(h), V H′(h), µ′(h)) reflects how continuation outcomes are affected by the

current choice h of the government through the effect it has on households’ expectations and

thereby on future prices. Given the timing protocol within the period, households’ response

or punishment to a government deviation h 6= ĥ consists of an action m(h), typically dif-

ferent from m(ĥ), in the same period, followed by subsequent actions and associated future

equilibrium prices, the impact of which is captured by (V G′(h), V H′(h), µ′(h)).
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In our context, the sustainable plans combine two sources of history dependence. In

addition to the one embedded in the dynamics of the marginal utilities, as in the Ramsey

plan, there is a new source of history dependence arising from the restrictions that a system

of households’ expectations impose on the government’s policy actions. As the government

after any history is allowed to revisit its announced policy and reset it, households expect

that the government will adhere to the original plan only if it is in its own interest to do so.

Let A(s) be given by

A(s) =
{(

m,x,h,d,VH
)
∈ CEs| there is a SP whose outcome is

(
m,x,h,d,VH

)}
.

Let <3 be the space of all the subsets of R3. We define the value correspondence Λ : S −→ R3

as

Λ(s) =
{(
V G
s , V

H
s , µs

)
| there is a

(
m,x,h,d,VH

)
∈ A(s) with

V G
s =

∞∑
t=0

βt
∑
st

πt(s
t)
[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]
,

V H
s =

∞∑
t=0

βt
∑
st

πt(s
t)Dt(s

t)
{[
u
(
ct
(
st
))

+ v(mt

(
st
)
)
]

+θβ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)
}
,

µs = u′ [f(x0 (s0) , s0)] [x0 (s0) +m0 (s0)]
}
.

For each s ∈ S, Λ(s) constitutes the set of vectors of equilibrium values for the government

and the household, and the promised marginal utilities given state s that can be delivered by

a sustainable plan. We denote as Ĝ the space of all such correspondences.

Definition 5.2. For any correspondence Z ⊂ Ĝ, (a, V G′(·), V H′(·), µ′(·)) is said to be admis-

sible with respect to Z at state s if

(i) a = (ĥ,m(h), x(h), d′(h)) ∈ Π× [0,m]Π ×XΠ × RΠ;

(ii) (V G′
s′ (h), V H′

s′ (h), µ′s′(h)) ∈ Z(s′) ∀ h ∈ CEΠ,0
s , s′ ∈ S;

(iii) (18)-(19) are satisfied;

(iv) u(f(x(ĥ), s)) + v(m(ĥ)) + β
∑

s′∈S π(s′|s)V G′
s′ (ĥ) ≥

u(f(x(h), s)) + v(m(h)) + β
∑

s′∈S π(s′|s)V G′
s′ (h) ∀h ∈ CEΠ,0

s .

Condition (i) ensures that a belongs to the appropriate action space. Condition (ii) guar-

antees that for any h that the government contemplates the vector of continuation values
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and promised marginal utility for next period’s shock s′ belongs to the corresponding set

Z(s′). Condition (iii) imposes the competitive equilibrium conditions in the current period.

Finally, condition (iv) describes the incentive constraint for the government in the current

period. This incentive constraint deters the government from taking one-period deviations

when contemplating money growth rates h other than prescribed ĥ. If condition (iv) holds,

it follows from the “one-period deviation principle” that there are no profitable deviations at

all. A plan is credible if the government finds it is in its own interest to confirm households’

expectations about its policy action ĥ. Condition (iv) guarantees that this is the case.

In what follows we explain how to compute the equilibrium value sets Λ(s). Let Z ⊂ Ĝ.

In the spirit of Abreu, Pearce, and Stacchetti (1990) we construct the operator B̂ : Ĝ −→ Ĝ
as follows

B̂(Z)(s) = co
{

(V G
s , V

H
s , µs)|∃ admissible (a, V G′(·), V H′(·), µ′(·)) with respect to Z at s:

a = (ĥ,m(h), x(h), d′(h))

V G
s = u(f(x(ĥ), s)) + v(m(ĥ)) + β

∑
s′∈S

π(s′|s)V G′
s′ (ĥ)

V H
s = u(f(x(ĥ), s)) + v(m(ĥ))− βθ log

∑
s′∈S

π(s′|s) exp

{
−
V H′
s′ (ĥ)

θ

}
µs = u(f(x(ĥ), s))(x(ĥ) +m(ĥ))

}
.

For each s ∈ S, B̂(Z)(s) is the convex hull of the set of vectors (V G
s , V

H
s , µs) that can

be sustained by some admissible action profile a and vectors (V G′
s , V H′

s , µ′s) of continuation

values and marginal utilities in Z(s′) for each state s′ next period.

We assume that there exists a public randomization device. In particular, we assume that

every period an exogenous, serially uncorrelated public signal X̃t is drawn from a [0, 1] uniform

distribution. Depending on current actions, this signal will determine which equilibrium will

be played next period.

The following propositions are simple adaptations of Abreu, Pearce, and Stacchetti (1990)

for repeated games and establish some useful properties of the operator. Together, these

properties guarantee that the equilibrium value correspondence Λ is its largest fixed point

and can be found by iterating on this operator.

Proposition 5.1. Monotonicity: Z ⊆ Z ′ implies B(Z) ⊆ B(Z ′).

Proof. The proof is a simple extension of that in Chang (1998).

Proposition 5.2. Self-Generation: If Z(s) is bounded and Z(s) ⊆ B(Z)(s), then B(Z)(s) ⊆
Λ(s).
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Proof. We need to construct a subgame perfect strategy profile (σG, σH) such that

(i) for each s ∈ S it delivers a lifetime utility value V G
s to the government, V H

s to a

representative household with an associated marginal promised utility µs,

(ii) the associated outcome of the SP satisfies (18)-(19)

(iii) government’s incentive constraint holds for every history (st, ht−1).

To do so, fix an initial state s and consider any (V G
s , V

H
s , µs) ∈ B(Z) (s) . Let (V G

0 , V H
0 , µ0) =

(V G
s , V

H
s , µs) and define (σG, σH) recursively as follows.

Let (V G
t (ht−1, st−1, st), V

H
t (ht−1, st−1, st), µt(h

t−1, st−1, st)) ∈ Z(st) be the vector of values

and marginal utilities after an arbitrary history (ht−1, st−1, st). Since Z ⊂ B(Z), for each s ∈ S
there exists an admissible vector (ĥ,m(h), x(h), d′(h), V G′(h), V H′(h), µ′(h)) with respect to Z

at s. Define σGt (ht−1, (st−1, st)) = ĥ and m̂ = m(h). Let αt(h
t−1, (st−1, st)) = (m(h),m(h)(h−

1), d′(h)) if h ∈ CEΠ,0
st and = (0, 0, d′NM otherwise, where d′NM are the probability distortions

corresponding to the nonmonetary equilibrium.10

Also, define (V G
t+1(ht, st, st+1), V H

t+1(ht, st, st+1), µt+1(ht, st, st+1)) = (V G′
st+1

(h), V H′
st+1

(h),

µ′st+1
(h)) if h ∈ CEΠ,0

st+1 ; (V G
t+1(ht, st, st+1), V H

t+1(ht, st, st+1), µt+1(ht, st, st+1)) = (V GNM
st+1

, V HNM
st+1

,

µNMst+1
) otherwise. Clearly, (V G

t+1(ht, st, st+1), V H
t+1(ht, st, st+1), µt+1(ht, st, st+1)) ∈ Z(st+1). By

admissibility, (σG, α) is unimprovable and, thus, is subgame perfect. Since Z(s) is bounded

for every s ∈ S, it is straightforward to show that (σG, α) delivers (V G
s , V

H
s , µs). Also, ad-

missibility of vectors (ĥ,m(h), x(h), d′(h), V G′(h), V H′(h), µ(h)) ensures that the equilibrium

conditions are satisfied along the equilibrium path.

Proposition 5.3. Factorization: Λ = B(Λ).

Proof. By the previous proposition, it is sufficient to show that Λ(s) is bounded and that

Λ(s) ⊂ B(Λ)(s). The result follows from the fact that the continuation of a sustainable

plan is also a sustainable plan. The boundness of Λ(s) follows from (i) the fact that any

lifetime utility for the government is the expected discounted sum of one-period bounded

payoffs; (ii) any lifetime utility for the household can be bounded by discounted sums of

non-stochastic extremal one-period payoffs, and (iii) marginal utilities are determined by

continuous functions f, u′ over compact sets.

Proposition 5.4. If Z(s) is compact for each s ∈ S, then so is B(Z)(s).

10Even though the continuation outcome in case the government selects h not belonging to CEΠ,0
st is irrelevant

for the solution (since it cannot occur by assumption), to be rigorous we need to specify the moves after any

history. If the government executes h not in CE0
st we assume that the economy switches to the nonmonetary

equilibrium.
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Proof. Let us show first that B(Z)(s) is bounded. Let Z be a value correspondence in Ĝ.
Define the operators Υi,s : Ĝ −→ R for i = 1, 2, where < is the space of subsets in R,

Υ1,s(Z) =
{
V G
s : ∃(V G

s , V
H
s , µs) ∈ Z(s)

}
Υ2,s(Z) =

{
V H
s : ∃(V G

s , V
H
s , µs) ∈ Z(s)

}
.

Boundness of B(Z)(s) follows from having

Υ1,s(B(Z)) ⊂ U0
s + β

∑
s′

π(s′|s)Υ1,s′(Z)

Υ2,s(B(Z)) ⊂ U0
s − βθ log

∑
s′

π(s′|s) exp
(
−Υ2,s′(Z)/θ

)
,

where the sets of one-period payoffs U0
s (for current state s), and Υi,s′(Z) for i = 1, 2 are

bounded.

Let us show now that B(Z)(s) is closed. Consider any sequence
{

(V Gn, V Hn, µn)
}+∞
n=1

such that (V Gn
t (st−1, st), V

Hn
t (st−1, st), µ

n
t (st−1, st)) ∈ B(Z)(st) ∀st−1 ∈ St−1, st ∈ S that

converges to some (V G∗, V H∗, µ∗). Fix an arbitrary sequence of states {st}+∞t=0 . We need to

show that

(V G∗(st−1, st), V
H∗(st−1, st), µ

∗(st−1, st)) ∈ B(Z)(st) ∀st−1 ∈ St, st ∈ S.

For each (V Gn
t (st−1, st), V

Hn
t (st−1, st), µ

n
t (st−1, st)), there exists an admissible vector (ĥn,

mn(h), xn(h), d′n(h), V Gn′(h), V Hn′(h), µn′(h)) with respect to Z at s. This vector should be

indexed by histories of shocks st. In particular, ĥnt (st) = ĥn. Since {st}+∞t=0 is fixed, we

slightly abuse the notation and refer to ĥnt (st) as just ĥnt . Without loss of generality, we

assume that ĥnt converges to some ĥ∗t ∈ CEΠ,0
st . In a similar way, for each h ∈ CEΠ,0

st ,

(mn(h), xn(h), d′n(h), V Gn′(h), V Hn′(h), µn′(h)) −→ (m∗(h), x∗(h), d′∗(h), V G′(h)∗, V H′(h)∗,

µ′(h)∗) where (m∗(h), x∗(h), d′∗(h)) ∈ [0,m]× X× D and (V G′
s′ (h)∗, V H′

s′ (h)∗, µ′s′(h)∗) ∈ Z(s′)

∀s′ ∈ S, by compactness of [0,m]× X× D and Z(s′) ∀s′ ∈ S. By the continuity of functions

u, v, f, u′, v′, it is straightforward to check that (m∗(h), x∗(h), d′∗(h), V G′(h)∗, V H′(h)∗, µ′(h)∗)

satisfies conditions (18)-(19). It follows then that (V G∗(st−1, st), V
H∗(st−1, st), µ

∗(st−1, st)) ∈
B(Z)(st).

6 Computational Algorithm

In this section we describe how to implement the operator B̂ on the computer in order to

compute the equilibrium value correspondence Λ. Our computational algorithm is based on
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an outer approximation of the value sets and is a straightforward adaptation of the approach

developed by Judd, Yeltekin, and Conklin (2003).

Several techniques have been applied to find the equilibrium value sets in different envi-

ronments. Chang (1998) uses an approach based on the discretization of both the space of

actions and the space of continuation values and promised marginal utilities. This technique

in our case suffers from a severe curse of dimensionality. Instead, the method proposed by

Judd, Yeltekin, and Conklin (2003) discretizes only the action space and by solving optimiza-

tion problems approximates the value sets in question using hyperplanes.11 In contrast with

the other approach, in our case it is necessary to introduce a public randomization device to

convexify the value sets.

6.1 Monotone Outer Hyperplane Approximation

We start by discretizing the action space. Let mgrid = [m1, ...,mNm ] be the grid for real

balances with Nm gridpoints, such that m1 = 0 and mNm = m. Also, we define hgrid =

[h1, ..., hNh ], as the grid for money growth rates with Nh gridpoints such that h1 = π and

hNh = π.

Consider then a set of D hyperplanes. Each hyperplane is represented by a subgradient

gi = (gl,1, gl,2, gl,3) ∈ R3, and a hyperplane level cl,s ∈ R for l = 1, ..., D. Let G = {g1, ..., gD}
be the vector of subgradients and let Cs = (c1,s, ..., cD,s) be the vector of hyperplane levels for

state s. For simplicity, we will use the same set of subgradients G in all our approximations.

The vector of hyperplane levels, Cs, however, will be state-specific and will be updated after

each approximation. The outer approximation of any W (s) ⊂ R3 is given by the smallest

convex polytope Ŵ (s), generated by a set of hyperplanes, that contains W (s). The convex

polytope Ŵ (s) is determined as the intersection of half-spaces defined by these hyperplanes,

i.e.

Ŵ (s) = ∩l=Dl=1

{
w ∈ R3|gl · w ≤ cl,s

}
. (21)

Table 1 displays the algorithm we use to perform the outer approximation.

To initialize the algorithm it is necessary to find a candidate correspondence Z0 such that

for all s, Z0(s) contains the equilibrium value set Λ(s) and B(Z0)(s) ⊆ Z0(s). Our candidate

11See Fernández-Villaverde and Tsyvinski (2002) for an adaptation of this procedure to characterize the

value sets in a dynamic capital taxation model without commitment.
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Z0 is given by the hypercube [V G
s , V

G
s ]× [V H

s , V
H
s ]× [µ

s
, µs], where

V G
s = u(f(x, s)) + v(0) + β

∑
s′

π(s′|s)V G
s′

V
G
s = u(f(0, s)) + v(m) + β

∑
s′

π(s′|s)V G
s′

V H
s = u(f(x, s)) + v(0)− βθ log

∑
s′

π(s′|s) exp
(
−V H

s′ /θ
)

V
H
s = u(f(0, s)) + v(m)− βθ log

∑
s′

π(s′|s) exp
(
−V H

s′ /θ
)

µ
s

= 0

µs = u′(f(x, s))mπ.

Using the hyperplanes, in Step 0 we compute the initial vector of hyperplane levels C0
s

corresponding to the outer approximation of each set Z0(s), denoted by Z̃0(s), and input these

in the algorithm. Each of these Z0(s) will be the set from which the first vectors (V G
s′ , V

H
s′ , µs′)

of continuation values and promised marginal utilities are selected.

In Step 1, in iteration k we compute the convex polytope Z̃k(s) by updating the vector

of hyperplane levels Cks . To do so, we employ the value correspondence Z̃k−1 as input,

for s = 1, ..., S. The set Z̃k(s) is given by the convex hull of the set of vectors of current

values (V G
s , V

H
s , µs) that can be sustained by some admissible action profile and continuation

values (V G′, V H′, µ′) such that (V G′
s′ , V

H′
s′ , µ

′
s′) belongs to Z̃k−1(s′). For the government’s

incentive constraint we do not need to consider all possible one-period deviations, but only

the best one. Moreover, we impose the harshest punishment for the government following

any deviation from the previously announced policy. The punishment may not be trivial and

has to be determined endogenously, as shown in Step 1, part (a).12 To compute the worst

punishment for each s we undertake a two-step procedure. First, we fix the government’s

choice of the money growth rate, h, and choose m to minimize the government’s value such

that the competitive equilibrium conditions are satisfied and the vector of continuation values

and promised marginal utilities is picked from Z̃k−1(s′) for each next period’s s′. Second, we

select the maximal value from this vector of government’s values as function of h and denote

it by V G
s . This value will be associated with the best deviation for the government for state

s. Once we have formulated the government’s incentive constraint, we proceed to compute

Z̃k(s) for s = 1, ..., S.

12If we knew the worst value in advance, we would be able to specify the right-hand side of the government’s

incentive constraint before solving the problem. Having an ex ante formulation of the incentive constraint would

let us apply techniques in Marcet and Marimon (2009) and solve for the SP associated with the government’s

highest equilibrium value by deriving the corresponding recursive saddle point functional equation.
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We repeat this step until the polytopes, or equivalently the updated vectors of hyperplane

levels Cs, attain convergence.

Table 1: Monotone Outer Hyperplane Approximation

Step 0: Approximate each Z0(s) ⊃ Λ(s).

For each s = 1, ..., S, and gl ∈ G, l = 1, ..., D, compute

c0l,s = max gl,1V
G
s + gl,2V

H
s + gl,3µs, such that

(V Gs , V
H
s , µs) ∈ Z0(s).

Let C0
s = {c01,s, ..., c0D,s} for s = 1, ..., S.

Step 1: Given Cks for s = 1, ..., S, update Ck+1
s .

For each s = 1, ..., S, and gl ∈ G, l = 1, ..., D,

(a) For each pair (m,h), solve

P ks (m,h) = min(V G′,V H′ ,µ′) u[f(x, s)] + v(m) + β
∑
s′∈S π(s′|s)V G′s′ ,

such that m[u′(f(x, s))− v′(m)] = β
∑
s′∈S π(s′|s)d′s′µ′s′ with ≤ if m = m

x = m(h− 1)

gl · (V G′s′ , V H
′

s′ , µ
′
s′) ≤ ckl,s′ for s′ = 1, ..., S, l = 1, ..., D.

Let P ks (m,h) = +∞ if no (V G′, V H′, µ′) satisfies the constraints.

Let Rks (h) = minm P
k
s (m,h). Let V Gs = maxh∈ΠR

k
s (h).

(b) For each pair (m,h), solve

ck+1
l,s (m,h) = max(V G′,V H′ ,µ′) gl,1V

G
s + gl,2V

H
s + gl,3µs, (P1)

such that V Gs = u[f(x, s)] + v(m) + β
∑
s′∈S π(s′|s)V G′s′

V Hs = u[f(x, s)] + v(m)− βθ log
∑
s′∈S π(s′|s) exp

{
−V H′s′ /θ

}
µs = u′[f(x, s)] (m+ x)

m[u′(f(x, s))− v′(m)] = β
∑
s′∈S π(s′|s)d′s′µ′s′ with ≤ if m = m

x = m(h− 1)

d′s′ = exp
{
−V H′s′ /θ

}
/
∑
s′∈S π(s′|s) exp

{
−V H′s′ /θ

}
V Gs ≥ V

G
s

gl · (V G′s′ , V H
′

s′ , µ
′
s′) ≤ ckl,s′ for s′ = 1, ..., S, l = 1, ..., D.

where ck+1
l,s (m,h) = −∞ if no (V G′, V H′, µ′) satisfies the constraints.

Let (V G′, V H
′
, µ′)l,s(m,h) ∈ RS×3 be the solution to (P1).

(c) For each s = 1, ...S, and l = 1, ..., D, define

ck+1
l,s = max(m,h) c

k+1
l,s (m,h)

(m
∗
, h∗)l,s= arg max(m,h) c

k+1
l,s (m,h)

Update Ck+1
s as Ck+1

s = {ck+1
1,s , ..., c

k+1
D,s } for s = 1, ..., S

Step 2: Stop if maxl,s |ck+1
l,s − ckl,s| < 10−6; otherwise go to Step 1.
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6.2 Numerical Results

In this section we present a numerical example. Assume that S = 2, Nm = 31, Nh = 8. We

assume the following functional forms and parameter values:

m = mf = 30

π = 0.75, π = 2.1

u(c) = log c

v(m) = 1
500(mm− 0.5m2)0.5

f(x, s) = (0.8 + 0.2s)(180− (0.4x)2)

π(s′ = 1|s = 1) = π(s′ = 2|s = 2) = 0.75

To implement the computational algorithm we use D = 116 hyperplanes, with equally

spaced subgradients. We assume a discount factor β = 0.3.13 Assuming such a high degree

of impatience on the part of the government and households lets us observe some intriguing

features regarding the sustainability of equilibrium outcomes. It is worth noticing that each

equilibrium value can be supported by multiple equilibrium strategies. The characterization of

the equilibrium value sets, however, will shed some light on how severe the time-inconsistency

issue is with and without uncertainty aversion.

Figure 1: Government’s and Households’ Equilibrium Values for θ = +∞ for s = 1 (left

panel) and s = 2 (right panel) with Commitment (light grey area) and without Commitment

(dark grey area)
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13For this numerical example we violate assumption [A5] with respect to having 1
β
< π. We present this

example only for illustrative purposes.
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We first plot the equilibrium value set for each state s for θ = +∞ (i.e. households

trust the approximating model), both for the case when the government can commit to its

announced policies and when it cannot. Figure 1 presents the combinations of government

and households’ equilibrium values, for s = 1 (left panel) and s = 2 (right panel), with and

without commitment. As expected, these equilibrium values are perfectly aligned along the

45-degree line. In figure 2 we plot the projection of the equilibrium value sets for each s onto

the government’s value and marginal utilities. The value of the Ramsey plan is marked with

an R. Notice that the equilibrium value set without commitment strictly contains the set

of values when the government is unable to commit. Without model misspecification, the

Ramsey outcome is not sustainable when the government is allowed to choose sequentially.

In other words, the Ramsey plan, entailing a gradual deflationary process to bring the real

money holdings to their satiation level, is time-inconsistent when θ = +∞.

Figure 2: Government’s Equilibrium Values and Marginal Utilities for θ = +∞ for s = 1 (left

panel) and s = 2 (right panel) with Commitment (light grey area) and without Commitment

(dark grey area)
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Notice also that there is a large range of values, associated with a particularly low utility

for the government, that can be delivered only under commitment. These values are associated

with monetary policies that involve both alternating monetary contractions and expansions,

which end up leaving the money supply practically unaltered, generating negative welfare

implications for the households due to the tax distortions incurred along the way.

We then compute the equilibrium value sets for θ = 0.05, which, in this context, implies

a fairly high degree of model uncertainty. As observed in figure 3, the government and

households’ values do not typically coincide anymore. Indeed, the set of vectors of equilibrium

values is on the semi-hyperplane below the 45-degree line, as the government’s values are
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higher than the households’ values.

Figure 3: Government’s and Households’ Equilibrium Values for θ = 0.05 for s = 1 (left

panel) and s = 2 (right panel) with Commitment (light grey area) and without Commitment

(dark grey area)
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The most striking feature of the equilibrium results is observed in figure 4. Notice that the

set of values without commitment overlaps with the one with commitment to the right for high

government values. In contrast with the case without model uncertainty, here the Ramsey plan

is credible. While the highest government’s values delivered by a SP with model uncertainty

are 7.4699 and 7.6892, for s = 1, 2, respectively, the corresponding values with expected utility

are 7.4675 and 7.6844. In this sense, uncertainty aversion on the households’ side has positive

welfare implications for the government. The forces that are driving these results are not

triggered by the government’s incentive constraints and its worst punishment values, which

coincide in both economies, but by the dynamics intrinsic to competitive equilibria. With

model uncertainty, for the same allocations the households’ Euler equations are typically

more relaxed (in the sense that their associated Lagrange multiplier is weakly smaller) than

with standard expected utility. This follows from the fact that the evil alter ego twists the

probability distribution of next period’s shock realization by taking away probability mass

from those states associated with high utility to the households, and placing it into the

low utility states, which are associated with lower current consumption and, hence, higher

marginal utility. This way, the right-hand side of the Euler equation becomes larger with

model uncertainty. Thereby, lower values of (inverse) money growth rates h ≥ 0 are consistent

with a competitive equilibrium in this environment, which allows for more gradual monetary

contractions and deflationary processes.
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Figure 4: Government’s Equilibrium Values and Marginal Utilities for θ = 0.05 for s = 1 (left

panel) and s = 2 (right panel) with Commitment (light grey area) and without Commitment

(dark grey area)
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As explained in section 4, the source of time-inconsistency in the Ramsey plan comes from

the government’s incentives to possibly make the deflationary process even more gradual in

order to reduce the tax distortions that come along. Then it is clear to see how, through more

gradual deflationary processes, the optimal monetary policies with model uncertainty become

credible.

7 Conclusions

In this paper we examine how the optimal monetary policies should be designed when the

monetary authority faces households who cannot form a unique probability model for the

underlying state of the economy.

Future monetary policies influence households’ choice of real balances in the current period

by affecting the expected value of money in the coming periods. When households exhibit

doubts about model misspecification, the effect of the government’s policies on the expected

value of money is two-fold. Besides their impact on the value of money for every possible

future state of the economy, future policies directly influence the households’ beliefs about

the evolution of exogenous variables, as households base their decisions on the evaluations of

worst-case scenarios. It then becomes key for the government to exploit the management of

households’ expectations when designing monetary policies.

We study the optimal policies when the monetary authority has the ability to commit to

its announced policies and when it does not. Given the high complexity of the environment in
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consideration, we are not able to derive analytical solutions for the optimal credible policies.

We provide, however, a full characterization of the sets of all equilibrium outcomes, both with

and without commitment on the government’s side. To compute these sets, we implement a

computational algorithm based on outer hyperplane approximation techniques proposed by

Judd, Yeltekin, and Conklin (2003).

The characterization of the set of all sustainable payoffs may shed some light on how severe

the time-inconsistency issue is for the Ramsey plan. As illustrated in our numerical example,

the fact that households may have doubts about model misspecification can help mitigate the

time-inconsistency of the Ramsey plan.
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A Appendix

A.1 Characterization of the competitive equilibrium sequence

A.1.1 Solving a representative household’s maximization problem

Given prices
{
qt(s

t)
}

, government policies
{
ht(s

t), xt(s
t)
}

and belief distortions{
Dt+1

(
st+1

)
, dt+1

(
st+1

)}∞
t=0

, the households’ optimization problem consists of choosing{
ct
(
st
)
,Mt

(
st
)}∞

t=0
and

{
λt
(
st
)
, µt
(
st
)}∞

t=0
to maximize and minimize, respectively, the

Lagrangian

LH =
∞∑
t=0

βt
∑
st

π(st)Dt(s
t)
{[
u
(
ct
(
st
))

+ v(qt
(
st
)
Mt

(
st
)
)
]

+

−λt
(
st
) [
qt
(
st
)
Mt

(
st
)
− yt

(
st
)

+ xt
(
st
)

+ ct
(
st
)
− qt

(
st
)
Mt−1

(
st−1

)]
+

− µt
(
st
) [
qt
(
st
)
Mt

(
st
)
−m

]}
.

Taking FOCs we obtain

u′(ct
(
st
)
) = λt

(
st
)

(22)

Dt(s
t)
[
v′(mt

(
st
)
)qt
(
st
)
− λt

(
st
)
qt
(
st
)]

+

β
∑
st+1

π(st+1|st)λt+1

(
st+1

)
Dt+1(st+1)qt+1

(
st+1

)
−Dt(s

t)µt
(
st
)
qt
(
st
)

= 0. (23)

Substitute equation (22) into (23), use (2) and note that
qt+1(st+1)
qt(st)

=
mt+1(st+1)ht+1(st+1)

mt(st)

v′(mt

(
st
)
)− u′(ct

(
st
)
) + β

∑
st+1

π(st+1|st)
Dt+1(st+1)

Dt(st)
u′(ct+1

(
st+1

)
)
qt+1

(
st+1

)
qt (st)

≥ 0,

= 0 if mt

(
st
)
< m

mt

(
st
) [
u′(ct

(
st
)
)− v′(mt

(
st
)
)
]

−β
∑
st+1

π(st+1|st)dt+1

(
st+1|st

)
u′(ct+1

(
st+1

)
)mt+1

(
st+1

)
ht+1

(
st+1

)
≤ 0,

= 0 if mt

(
st
)
< m.

The above expression is our equilibrium condition, equation (8).

A.1.2 Solving alter ego’s minimization problem

Given ct(s
t),mt(s

t), the evil alter ego’s optimization problem consists of choosing{
Dt

(
st
)
, dt+1(st+1|st)

}
and

{
φt+1

(
st+1

)
, ϕt

(
st
)}

to minimize and maximize, respectively,
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the Lagrangian

LAE =

∞∑
t=0

βt
∑
st

πt(s
t)Dt(s

t){[u(ct) + v(mt)] +

+βθ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)}+

−β
∑
st+1

π(st+1|st)φt+1

(
st+1

) [
Dt+1(st+1)− dt+1(st+1|st)Dt(s

t)
]

+

−ϕt
(
st
)∑

st+1

π(st+1|st)dt+1(st+1|st)− 1

 .
The FOCs for dt+1(st+1|st) and Dt(s

t) are respectively given by

βθDt(s
t) [log dt+1(st+1|st) + 1] + βφt+1

(
st+1

)
Dt(s

t) = ϕt
(
st
)

(24)

[u(ct) + v(mt)] + βθ
∑
st+1

π(st+1|st)dt+1(st+1|st) log dt+1(st+1|st)+

+β
∑
st+1

π(st+1|st)φt+1

(
st+1

)
dt+1(st+1|st) = φt

(
st
)
. (25)

Rearranging (24) leads to

log dt+1(st+1|st) = −1 +
ϕt
(
st
)

βθDt(st)
−
φt+1

(
st+1

)
θ

dt+1(st+1|st) = exp

(
−1 +

ϕt
(
st
)

βθDt(st)

)
exp

(
−
φt+1

(
st+1

)
θ

)
. (26)

By condition (3) it has to be the case that

exp

(
−1 +

ϕt
(
st
)

βθDt(st)

)∑
st+1

π(st+1|st) exp

(
−
φt+1

(
st+1

)
θ

)
= 1

exp

(
−1 +

ϕt
(
st
)

βθDt(st)

)
=

1∑
st+1

π(st+1|st) exp
(
−φt+1(st+1)

θ

) . (27)

Substituting equation (27) back into (26) yields

dt+1(st+1|st) =

exp

(
−φt+1(st+1)

θ

)
∑

st+1
π(st+1|st) exp

(
−φt+1(st+1)

θ

) . (28)

Now we use (24) and impose a respective transversality condition,

lim
t→∞

βt
∑
st+1

π(st+1|st)φt+1

(
st+1

)
dt+1(st+1|st) = 0. (29)
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It follows that

φt
(
st
)

= V H
t

(
st
)
. (30)

Using the above result in equation (28) delivers our equilibrium condition (9)

dt+1(st+1|st) =

exp

(
−V Ht+1(st+1)

θ

)
∑

st+1
π(st+1|st) exp

(
−V Ht+1(st+1)

θ

) .
A.1.3 On the transversality condition

We will show that the transversality condition,

βt
∑

st+1
π(st+1|st)dt+1(st+1|st)u′

[
(f(xt

(
st
)
, st)

]
mt

(
st
)
ht
(
st
)
→ 0 as t → ∞ for all t and

all st, is satisfied if (m,x,h,d,VH) ∈ E∞.

Since E is compact, for any
(
xt
(
st
)
,mt

(
st
)
, ht
(
st
)
, dt+1(st+1|st)

)
∈ E, it must be that∑

st+1
π(st+1|st)dt+1(st+1|st)u′

[
(f(xt

(
st
)
, st)

]
mt

(
st
)
ht
(
st
)

belongs to a compact interval

(due to continuity of u′ and f) for every t. Hence, it has to be that∑
st+1

π(st+1|st)dt+1(st+1|st)u′
[
(f(xt

(
st
)
, st)

]
mt

(
st
)
ht
(
st
)

is a bounded sequence, and the

required sequence indeed converges to zero.

A.2 Example of competitive equilibrium sequences

Assume that st = H,L and that the production function is such that f(0, H) = f(0, L). Set

(m,x,h) = {m∗, 0, 1}∞t=0 where m∗ satisfies the following condition for all t and all st

u′ (f(0, st)) (1− β) = v′ (m∗) .

Then (m,x,h) ∈ CEs.

A.3 Proof of Corollary 3.

CEs for all s ∈ S is compact.

Proof. Fix s0 ∈ S. Let
(
mn,xn,hn,dn,VHn)

be the sequence from CEs=s0 converging to

some sequence
(
m,x,h,d,VH

)
. We need to show that this limiting sequence belongs to

CEs=s0 .

CEs=s0 is a nonempty subset of a compact set E∞. Since E∞ is compact, it is closed, and,

hence,
(
m,x,h,d,VH

)
∈ E∞.

The fact that
(
mn,xn,hn,dn,VHn) ∈ CEs=s0 implies that equations (8) - (11) are satis-

fied for each n. Consequently, by continuity of u, v, u′, v′ and f ,
(
m,x,h,d,VH

)
satisfy these
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same equations. It follows then from Proposition 3.1 that
(
m,x,h,d,VH

)
∈ CEs=s0 , which

means that CEs=s0 is a closed subset of the compact set. Hence, it is compact.
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