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1 Introduction

The global financial crisis of 2007–2008 highlighted the crucial role of interbank lending markets,

both in the financial system and the real economy. In particular, after Lehman Brothers collapsed in

September 2008, increased uncertainty in the banking system led to severe distress in unsecured

interbank lending markets. As a result, monetary policy implementation was hampered and credit

supply to the nonfinancial sector declined substantially, with adverse consequences for both the

financial sector and the real economy. In order to mitigate these adverse effects, central banks

intervened by injecting additional liquidity into the banking sector and by adjusting their monetary

policy instruments. As a consequence, central banks became the primary intermediaries for large

parts of the money market during the crisis.1

But should central banks also serve as a central counterparty for money markets during normal

times? Generally, having a central counterparty for an unsecured interbank market reduces contagion

effects through bilateral credit exposures (see Allen and Gale 2000). Likewise, search frictions

resulting from asymmetric information about the liquidity positions of other banks are mitigated.

On the other hand, with a central counterparty, private information that banks have about the

credit risk posed by other banks is no longer reflected in the price at which banks can obtain funds,

a situation that impairs market discipline. Moreover, the incentives for banks to acquire and process

such information are largely eliminated. Indeed, as Rochet and Tirole (1996) argue, the operation of

a decentralized interbank lending market must be motivated by the benefits of peer monitoring.2

Consequently, in order to assess the benefits of a decentralized unsecured interbank market, one

has to gauge the extent to which credit-risk uncertainty and peer monitoring affect the liquidity

allocation among banks.

Our paper contributes to this debate by introducing and estimating a dynamic network model to

1See Cœuré (2013) and Heijmans, Heuver, Levallois, and van Lelyveld (2014), video 3 for evidence of the Dutch
central bank’s role.

2The European Central Bank (ECB) highlights the role of peer monitoring and private information as well:
“Specifically, in the unsecured money markets, where loans are uncollateralised, interbank lenders are directly exposed
to losses if the interbank loan is not repaid. This gives lenders incentives to collect information about borrowers and
to monitor them over the lifetime of the interbank loan .... Therefore, unsecured money markets play a key peer
monitoring role.” See the speech by Benoît Cœuré, Member of the Executive Board of the ECB, at the Morgan
Stanley 16th Annual Global Investment seminar, Tourrettes, Provence, June 16, 2012. http://www.ecb.europa.eu/
press/key/date/2012/html/sp120616.en.html, retrieved October 10, 2013.
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analyze the role of peer monitoring in the unsecured interbank lending market. The key economic

drivers of the model’s outcomes are asymmetric information about counterparty risk and liquidity

conditions elsewhere in the market. In particular, our model focuses on the role that peer monitoring

plays in reducing bank-to-bank credit-risk uncertainty and that endogenous counterparty selection

(directed counterparty search) plays in mitigating search frictions resulting from the over-the-counter

market structure. We estimate the network model with an indirect inference estimator (Gourieroux,

Monfort, and Renault 1993) using auxiliary statistics that characterize the structure of the trading

relationships and the distribution of loan conditions, as observed from transaction-level data on

unsecured overnight loans made among the 50 largest Dutch banks between mid-February 2008

through April 2011.3 Using the estimated model, we then analyze how peer monitoring affects the

liquidity allocation across bank pairs, how the allocation changes in response to shocks to credit-risk

uncertainty, and how monetary policy can affect banks’ peer monitoring incentives.

Our estimation results show that banks’ monitoring efforts significantly reduce the bank-to-bank

credit-risk uncertainty that prevails in the market. In particular, we find that peer monitoring aligned

with endogenous counterparty selection generates an amplification mechanism that lies at the core of

our estimated model: Lending banks invest in monitoring those borrowers whom they expect to be

profitable, either because of large loan volumes, high expected returns on granted loans, or because

of a high frequency of borrowing contacts. Borrowing banks obtain part of the surplus generated by

peer monitoring, which strengthens their relationship with the lending bank. As a consequence of

this monitoring, uncertainty about credit risk is reduced, more loans are granted, and lender banks

further increase their monitoring efforts in expectation of greater profits. Thus, monitoring efforts

have a multiplier effect that has important implications for the endogenous network structure as

well as for the amplification of shocks to credit-risk uncertainty and changes in monetary policy.

First, we find that peer monitoring, search frictions, and uncertainty about counterparty risk

assume significant roles when matching the observed trading network’s topology—notably, its high

3Specifically, our indirect inference estimator is based on an auxiliary vector that contains network statistics (for
example, density, reciprocity, and centrality) that have become popular in characterizing the topological structure of
interbank markets (see, for instance, Bech and Atalay 2010). We further complement these network statistics with
moment statistics of bilateral interest rates and volumes, and measures of bilateral lending relationships as in Furfine
(1999) and Cocco, Gomes, and Martins (2009). Our indirect inference estimator is then obtained as the parameter
that minimizes the distance between the auxiliary vectors obtained from observed data and from data simulated from
the model.

2



sparsity, low reciprocity, and skewed degree distribution. In particular, the estimated model implies

a tiered network structure characterized by the presence of a few highly interconnected core banks

that intermediate in the market and the presence of many sparsely connected peripheral banks

that almost exclusively trade with the core banks. Banks in the core typically have a structural

liquidity deficit (investment opportunity) but large variances in liquidity shocks. On the other hand,

peripheral banks typically have a structural funding surplus and experience small-scale shocks. Part

of the network’s tiered structure can be explained by banks’ heterogeneous liquidity shocks. However,

comparing the estimated model with a calibrated model that omits monitoring (but holds everything

else equal) and with a restricted estimation shows that credit-risk uncertainty and peer monitoring

are crucial in reinforcing the network’s core-periphery structure: large money center banks are more

intensively monitored by their lenders, and they in turn closely monitor their borrowers, leading to

both lower bid and offer rates, as well as fueling their role as market intermediaries.

Second, the core-periphery structure of both the estimated and the observed lending network is

stable across time. In particular, we find that bank pairs form long-term trading relationships that

are associated with lower interest rates and improved credit availability. Problems pertaining to

bank-to-bank uncertainty are small, as these relationship pairs engage in repeated peer monitoring

and counterparty search that crucially depend on banks’ persistent expectations about bilateral

credit availability and conditions. In this respect, the findings indicate that bank-specific differences

in funding and investment opportunities, as reflected in heterogeneous liquidity shock distributions,

determine the bilateral trading opportunities among bank pairs and these, in turn, affect lending

relationships in the interbank market. Specifically, on average banks with complementary shocks or

a large variance of liquidity shocks profit from forming a bilateral lending relationship. However,

our analysis shows that the multiplier effect that results from monitoring is necessary to generate

bilateral stability and to replicate, by a magnitude similar to that observed in the data, the impact

that relationship lending has on interest rates.

Third, our dynamic analysis reveals that adverse shocks to credit-risk uncertainty can suppress

market activity for extended periods of time. The lending network shrinks because bilateral interest

rates increase as a response to the higher perceived counterparty risk. Hence, interbank lending

becomes less profitable relative to using the outside options (the central bank’s lending and deposit
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facilities), and recourse to the standing facilities replaces a number of trades. Moreover, in response

to the shock and in expectation of higher uncertainty in the future, associated with lower profitability,

banks invest less in peer monitoring. Negative feedback loops between lower levels of peer monitoring

and search amplify this reduction, thereby preventing a faster market recovery. We also find that after

the adverse shock, the lending network becomes less interconnected and more concentrated among a

few banks (larger reciprocity and more skewed degree distribution) as those banks with extensive

trading relationships stay in the market. In particular, bank pairs that face low bank-to-bank

credit-risk uncertainty (due to private information acquired through previous monitoring) continue to

lend to each other and, as a consequence, the average interest rate spread of granted loans decreases

during the crisis period.

Fourth, the analysis of the estimated model shows that the central bank’s interest rate corridor

(the interest rate spread between its lending and deposit facilities) is a crucial determinant of

interbank lending activity. In particular, we find that by increasing the corridor width, the central

bank fosters interbank lending by directly reducing the attractiveness of the outside options, thereby

increasing the potential surplus obtainable from bilateral interbank lending. However, we also

document an indirect multiplier effect: since the increased expected surplus from interbank trading

intensifies banks’ monitoring and search efforts, these in turn act to further improve credit conditions

and credit availability in the market, leading to more liquidity and a more efficient market usage.

Moreover, we find that in response to an increase in the central bank’s corridor width, the interbank

lending network destabilizes as more loans are settled outside of established relationships (spot

lending increases). Finally, under the new policy regime, loans associated with higher bank-to-bank

uncertainty are settled and, as a consequence, both the market’s interest rate spread (relative to the

corridor center) and the cross-sectional variation of spreads increase.

The paper is structured as follows. Section 2 discusses the related literature. Section 3 introduces

the economic model. Section 4 provides details on the estimation procedure, discusses the model’s

parameter estimates, and analyzes the relative fit in terms of various criteria. Section 5 analyzes the

estimated model and studies policy implications, while Section 6 concludes.

4



2 Stylized Facts and Related Literature

Interbank lending networks exhibit two stylized facts. First, interbank markets exhibit a sparse

core-periphery structure whereby a few highly interconnected core banks account for most of the

observed trades. Peripheral banks have a low number of counterparties and almost exclusively trade

with core banks.4 Second, interbank lending is based on stable bilateral trading relationships that

facilitate access to credit and offer better loan conditions.5 By explaining these two stylized facts

using a model based on credit-risk uncertainty and peer monitoring, our paper is related to several

strands of the literature.

First, the basic economic forces driving the proposed interbank lending model are credit-risk

uncertainty, peer monitoring, and search frictions. Thereby, our paper is related to recent work by

Afonso and Lagos (2015), who propose a search model to explain intraday trading dynamics in the

spirit of over-the-counter models such as Duffie, Garleanu, and Pedersen (2005). Like these authors,

we also build our dynamic model on bilateral bargaining and search frictions. However, Afonso and

Lagos (2015) abstract from the role of bank default that was introduced by Bech and Monnet (2013).

Neither model accounts for credit-risk uncertainty nor focuses on explaining the network structure

of interbank markets and the endogenous formation of trading relationships. Moreover, since these

models assume a continuum of atomistic agents where the probability of two banks being matched

repeatedly is zero, there is no role for the emergence of long-term trading relationships.

On the other hand, building on the classical banking model of Diamond and Dybvig (1983),

Freixas and Holthausen (2005), Freixas and Jorge (2008), and Heider, Hoerova, and Holthausen

(2015) have focused on the role that asymmetric information about counterparty risk plays in the

allocation of liquidity. In particular, Heider, Hoerova, and Holthausen (2015) show that informational

frictions can lead to adverse selection and a market freeze with liquidity hoarding. In these models,

4For empirical evidence on the topological structure of interbank markets see, for instance, Soramäki, Bech, Arnold,
Glass, and Beyeler (2007), May, Levin, and Sugihara (2008), and Bech and Atalay (2010) for the United States; Boss,
Elsinger, Summer, and Thurner (2004) for Austria; Iori, Masi, Precup, Gabbi, and Caldarelli (2008) and Lux and
Fricke (2012) for Italy; Becher, Millard, and Soramäki (2008) for the United Kingdom; Craig and von Peter (2014) for
Germany; and van Lelyveld and in ’t Veld (2014) for the Netherlands.

5The existence of interbank relationship lending has been documented by, among others, Furfine (1999), Furfine
(2001), Ashcraft and Duffie (2007), and Afonso, Kovner, and Schoar (2013) for the United States; Iori, Masi, Precup,
Gabbi, and Caldarelli (2008), Affinito (2012) for Italy; Cocco, Gomes, and Martins (2009) for Portugal; and Bräuning
and Fecht (2012) for Germany.
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however, interbank markets are anonymous and competitive, and hence the models abstract from

the actual over-the-counter (OTC) structure where deals are negotiated on a bilateral basis and the

realized credit conditions depend on heterogeneous expectations both about counterparty risk and

credit conditions. The role of peer monitoring and private information that we consider a key driver

of interbank lending has been highlighted by Broecker (1990), Rochet and Tirole (1996), and Furfine

(2001). The literature, however, lacks a model of peer monitoring at the bank-to-bank level in an

OTC market.6

Second, our paper is related to the growing literature on how financial networks are formed (see,

for example, Gale and Kariv 2007; Babus 2013; in ’t Veld, van der Leij, and Hommes 2014; Vuillemey

and Breton 2014; and Farboodi 2014).7 In particular, Babus (2013) shows that when agents trade

risky assets over-the-counter, asymmetric information and costly link formation can endogenously

lead to an undirected star network with just one intermediary. Farboodi (2014) develops a model that

generates a core-periphery structure in which banks try to capture intermediation rents. Crucially,

her model relies on the assumption that there are differences in investment opportunities (see also

in ’t Veld, van der Leij, and Hommes 2014). Our model confirms the importance of this type of

bank heterogeneity for the emergence of a core-periphery structure, but credit-risk uncertainty and

peer monitoring are the key drivers of persistent bilateral lending relationships that reinforce the

core-periphery structure. In contrast to these studies that are concerned with the emergence of a

static network, our paper also analyzes the lending network’s dynamic behavior and focuses on the

econometric analysis of structural network models (in particular, parameter estimation).8

Third, our findings are related to empirical studies analyzing the functioning of interbank markets

during the 2007–2008 financial crisis. For the U.S. overnight interbank market, Afonso, Kovner,

and Schoar (2011) provide evidence that concerns about counterparty risk play a larger role than

6Babus and Kondor (2013) consider information aggregation in OTC markets for a given network structure, where
agents infer the asset’s value based on observed bilateral prices and quantities from other transactions. In contrast, in
our model of bank-to-bank uncertainty, banks engage in bilateral monitoring and do not learn about a counterparty’s
riskiness from other bilateral prices.

7The effects of the network structure on financial contagion has been studied, for instance, by Georg (2013); Gai,
Haldane, and Kapadia (2011); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); and Gofman (2014). We do not focus
on contagion effects in this paper.

8Most of the literature on the estimation of network models discusses the estimation of statistical, reduced-form
models. A recent attempt to calibrate a network model is presented by Gofman (2014), who matches the density, the
maximum degree, and the number of intermediaries with those of the federal funds market, as reported by Bech and
Atalay (2010).
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liquidity hoarding (Acharya and Merrouche 2013) in explaining the disruption of interbank lending

around the time of the Lehman Brothers’ bankruptcy. The dynamics of our estimated model confirm

that shocks to counterparty-risk uncertainty can reduce lending activity for extended periods of time

that are also accompanied by a more concentrated lending network. In this latter respect, Gabrieli

and Georg (2014) provide empirical evidence on the network shrinkage in the euro money market

during the 2007–2008 financial crisis.

Fourth, our paper is related to the literature on monetary policy. Theoretical contributions

on implementing monetary policy in a corridor system with standing facilities in the context of

competitive markets include Poole (1968), Whitesell (2006), and Berentsen and Monnet (2008).

Kahn (2010) provides a nontechnical overview and evidence for monetary policy regimes in several

countries. Our paper extends this literature by analyzing the effects of changes in the interest rate

corridor on the structure of the lending network and the cross-sectional distribution of interest rates.

In particular, our model suggests that increasing the corridor width incentivizes peer monitoring

and private interbank lending. However, absent a view on the central bank’s preferences, we cannot

make statements about the optimal corridor width (cf. Bindseil and Jabłecki 2011; Berentsen and

Monnet 2008).

3 The Interbank Network Model

We model the interbank lending market as a network consisting of N nodes with a time-varying

number of directed links between them. Each node represents a bank and each link represents an

unsecured interbank loan that is characterized by a loan amount and an interest rate. Time periods

are indexed by t ∈ N. Banks are indexed by i or j, with i, j ∈ {1, ..., N}.

Each period, banks are subject to positive or negative liquidity shocks that affect the daily

operations of their payment accounts (for example, clients that want to make payments). Banks

wish to smooth these shocks by borrowing and lending unsecured funds from each other using an

OTC market. An option outside the interbank lending market exists, as banks have unlimited access
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to the central bank’s standing facilities with deposit rate r and lending rate r with r ≥ r.9

Banks enter the interbank market with the objective of lending and borrowing funds to maximize

expected discounted profits by: (i) choosing which banks to approach for bilateral Nash bargaining

about interest rates, and (ii) setting bilateral monitoring expenditures to mitigate uncertainty about

counterparty credit risk.

In the following subsections, we discuss the model’s structure, solve for banks’ optimal dynamic

monitoring and search decisions, and specify an adaptive expectation mechanism to derive the

model’s reduced form.

3.1 Counterparty-Risk Uncertainty

Borrowing banks may default on interbank loans and—due to the unsecured nature of interbank

lending—impose losses on lenders. Bank j’s true probability of default at time t is denoted by Pj,t

and is derived as the tail probability of a random variable zj,t that measures the true financial

distress of bank j,

Pj,t := P(zj,t > ε).

In particular, zj,t is constructed so that bank j is forced into default whenever zj,t takes values above

some common time-invariant threshold ε > 0. This threshold can be interpreted as either a minimum

regulatory requirement or a level that seems sufficient to operate in the market. We focus on the

case when zj,t is identically and independently distributed (iid) for each bank j with E(zj,t) = 0

and σ2 = Var(zj,t), such that there is no cross-section or time heterogeneity in banks’ true default

probability.

Asymmetric information about counterparty risk (the riskiness and liquidity of a borrower’s

assets) is seen as a major characteristic of financial crises that leads to inefficient allocations in

9This paper focuses on banks’ liquidity management and does not consider asset-liability allocation problems other
than those associated with interbank lending and resorting to the central bank’s facility.
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money markets (see Heider, Hoerova, and Holthausen 2015).10 Our focus is on the uncertainty

about counterparty credit risk that underpins the interbank lending network structure and drives its

dynamics. Asymmetric information problems arise because counterparty risk assessment is not based

on the true default risk but merely on the perceived probability of default that bank i attributes to

bank j at time t. This probability is denoted by Pi,j,t and is obtained as the tail probability of a

random variable zi,j,t that measures bank i’s perceived financial distress of bank j. The perceived

financial distress zi,j,t is based on the true financial distress zj,t but contains an added component of

bank-to-bank uncertainty that is modeled by the addition of an independent perception error ei,j,t

so that

zi,j,t = zj,t + ei,j,t,

where ei,j,t is a random variable distributed according to some density, with E(ei,j,t) = 0 and

Var(ei,j,t) = σ̃2
i,j,t. The perception error introduces bank-to-bank-specific assessments about the

counterparty credit risk posed by the same borrower, bank j. That is, different banks may form

different risk perceptions about the same borrower.

Since the exact distribution of the perception error ei,j,t is unknown to bank i, every bank is

assumed to approximate the tail probability of the extreme event of default by the conservative

bound provided by Chebyshev’s one-tailed inequality,11

P(zi,j,t > ε) ≤
σ2
i,j,t

σ2
i,j,t + ε2

=
σ2 + σ̃2

i,j,t

σ2 + σ̃2
i,j,t + ε2

=: Pi,j,t.

Hence, both the bank’s true risk profile and the additional uncertainty resulting from the perception

error increase the perceived probability of default, which lender banks use to make their credit-risk

assessment. The asymmetric information problem (characterized by a strictly positive perception-

error variance σ2
i,j,t) drives a wedge between the perceived probability of default and the true

probability of default, even under the assumption that the perception error has a mean of zero.

10In this respect, William Dudley, President and CEO of the Federal Reserve Bank of New York, remarked: “So
what happens in a financial crisis? First, the probability distribution [representing a creditor’s assessment of the value
of a financial firm] shifts to the left as the financial environment deteriorates .... Second, and even more importantly,
the dispersion of the probability distribution widens—lenders become more uncertain about the value of the firm. ...
A lack of transparency in the underlying assets will exacerbate this increase in dispersion.” (“More Lessons from the
Crisis”, November 13, 2009), see http://www.bis.org/review/r091117a.pdf.

11Instead of the Chebyshev bound, one can assume that the banks use a certain distribution to compute this
probability. In this case, we just have to use the respective cumulative distribution function.
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The evolution of the perception-error variance σ̃2
i,j,t is determined by the knowledge that bank i

has about bank j’s default risk. This knowledge depends on factors such as the pair’s past trading

history and, in particular, the monitoring expenditure that bank i allocates to learning about bank

j’s financial situation (the monitoring is discussed in more detail in the following section). Specifically,

we assume that the bank-to-bank uncertainty σ̃2
i,j,t evolves over time according to autoregressive

dynamics given by

log σ̃2
i,j,t+1 = ασ + γσ log σ̃2

i,j,t + βσφi,j,t + δσui,j,t, (1)

where ασ ∈ R, γσ ∈ (0, 1), βσ ≥ 0, and δσ > are parameters; φi,j,t is a function of past bilateral

trading intensity and the monitoring cost that measures the amount of new information that

bank i collects about the financial situation of bank j in period t; ui,j,t ∼ N (0, 1) is an iid

shock to the counterparty-risk uncertainty. Moreover, we impose the restriction that βσ ≤ 0,

and hence the added information gathered through monitoring and past interaction (weakly)

reduces the perception-error variance. Due to the log specification, σ̃2
i,j,t follows a nonlinear process

σ̃2
i,j,t+1 = ξi,j,t(φi,j,t, σ̃

2
i,j,t) = ξ(φi,j,t, σ̃

2
i,j,t, ui,j,t). Further, we can derive ∂ξi,j,t

∂φi,j,t
< 0 and ∂2ξi,j,t

∂φ2i,j,t
> 0,

and hence our model dictates that there are decreasing returns to scale in information gathering.

Equation 1 is at the core of our model, as it determines the time-variation and cross-sectional

heterogeneity in the bank-to-bank-specific perceived probabilities of default Pi,j,t. Conditional on

these bank-to-bank perceived probabilities of defaults, banks negotiate the loan conditions.

3.2 Bargaining and Equilibrium Interest Rates

In the OTC interbank market, bank pairs bilaterally negotiate the specific loan terms. In the

following description of the bargaining process, without loss of generality, let bank i be the potential

lender bank that has a liquidity surplus and bank j be the potential borrower bank that has a

liquidity deficit. From the viewpoint of bank i, lending funds to bank j at time t at a given bilateral

equilibrium interest rate ri,j,t is a risky investment with a stochastic return,
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Ri,j,t =


ri,j,t with probability 1− Pi,j,t

−1 with probability Pi,j,t,

where we assume that given a default, the loss is 100 percent. We further assume that bank i is risk

neutral and maximizes its expected lending profit conditional on the perceived probability of default

Pi,j,t. The expected profit per euro is given by

R̄i,j,t := EtRi,j,t = (1− Pi,j,t)ri,j,t − Pi,j,t,

where Et denotes the expected value with respect to the perceived default probabilities. The expected

surplus that lender bank i obtains from lending to borrower j is based on the difference between

R̄i,j,t and r, the outside option for lenders (the interest rate for depositing funds at the central bank’s

standing facilities), but takes into account that this difference only goes to lender bank i if it is not

in default. If it is in default (with true probability Pi,t) any cash flow is transferred to the liquidator.

Hence, the expected surplus of lender i when lending to borrower j is given by (1− Pi,t)(R̄i,j,t − r).

For the borrower bank j, the cost per euro when borrowing from lender bank i is simply given

by the equilibrium interest rate ri,j,t. The expected surplus relative to r, the outside option for

borrowing from the central bank’s lending facility, takes into account the true probability that bank

j will default and is given by (1 − Pj,t)(r − ri,j,t).12 Note that we implicitly assume that when

lender bank i defaults, a solvent borrower j will still have to repay the principal and interest to the

liquidator.

We follow the standard approach and assume that banks negotiate interest rates bilaterally and

agree on the generalized Nash bargaining solution (see, for instance, Bech and Klee 2011 and Afonso

and Lagos 2015 for similar applications to interbank markets). Written in terms of surplus relative

to the outside option, the bilateral equilibrium interest rate between lender i and borrower j at time

12In the model, all banks have unlimited recourse to the central bank’s standing facilities (specifically to the marginal
lending facility) at any point in time. Thereby, we implicitly assume that all banks have sufficient collateral to back
these operations (the euro area’s national central banks provide liquidity under the marginal lending facility either
as overnight repurchase agreements or as overnight collateralized loans). Moreover, holding the required collateral
imposes a zero cost for all agents. At the margin, the central bank does not price banks’ borrowing, as it assesses
banks’ riskiness as a sunk cost.
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t then satisfies

ri,j,t ∈ arg max
r̃

(
(1− Pi,t)

(
(1− Pi,j,t)r̃ − Pi,j,t − r

))θ(
(1− Pj,t) (r − r̃)

)1−θ
,

where the outside options for lenders (r) and borrowers (r) satisfy r ≥ r. The parameter θ ∈ [0, 1]

denotes the bargaining power of lender i relative to borrower j. As the exchange of funds is voluntary,

the bilateral Nash bargaining problem is subject to the participation constraints ri,j,t ≤ r and

R̄i,j,t ≥ r, and hence the central bank’s interest rate corridor sets the upper and lower bounds for

the interbank lending rates.13

Normalizing r = 0 and denoting r = r, as well as ignoring the multiplicative factors, the

corresponding bilateral equilibrium interest rate satisfies equivalently ri,j,t ∈ arg maxr̃
(
(1−Pi,j,t)r̃−

Pi,j,t
)θ(

(1− Pj,t) (r − r̃)
)1−θ, which we solve to obtain

ri,j,t = θr + (1− θ) Pi,j,t
1− Pi,j,t

, (2)

where the last term is a risk premium depending on the perceived default probability, Pi,j,t, that

reflects the potential principal loss. The minimum interest rate that lender i is willing to accept is

rmini,j,t = Pi,j,t/(1− Pi,j,t), which is obtained from setting EtRi,j,t equal to the return of the outside

option. Similarly, the borrower will not accept rates higher than rmaxi,j,t = r. Importantly, when the

perceived default probability is sufficiently high, it is possible that the rate at which a bank is willing

to lend is higher than the rate that the central bank charges for using its lending facility. In such

circumstances, banks will not trade with each other, and borrowers will turn to the central bank

instead of using the interbank market. In fact, it is possible that the interbank market disappears if

lending is perceived to be too risky.

13In contrast to search models such as Afonso and Lagos (2015), our bilateral bargaining solution is derived under
the assumption that the outside option for each loan is always the central bank’s standing facilities. In contrast, in
search models where two agents from a continuous population are randomly paired and allowed to bargain the terms
of trade, each agent’s outside options are determined by the expected future trading opportunities that may arise in
the market. For our purpose of estimating a structural network model with endogenous counterparty selection, this
approach is computationally infeasible, as the costs of obtaining the outside options (computing the value function)
for our high dimensional problem are prohibitive in our simulation-based estimation procedure. In contrast to Afonso
and Lagos (2015), our bilateral bargaining problem also incorporates an expected return, as the borrower may default
on the loan and be unable to repay the principal amount to the lender; see also the bargaining problem in Bech and
Monnet (2013).

12



Using the definition of the perceived probability Pi,j,t, we can rewrite the bilateral equilibrium

interest rate as a function of the default threshold, the true financial distress variance, and the

variance of the perception error as

ri,j,t = θr + (1− θ)
σ2 + σ̃2

i,j,t

ε2
.

Taking the partial derivatives of this function gives ∂ri,j,t
∂σ = (1−θ)2σ

ε2
> 0 and ∂2ri,j,t

∂σ2 = 2(1−θ)
ε2

> 0,

and similarly ∂ri,j,t
∂σ̃i,j,t

=
(1−θ)2σ̃i,j,t

ε2
> 0 and ∂2ri,j,t

∂σ̃2
i,j,t

= 2(1−θ)
ε2

> 0. Thus, the equilibrium interest rate

increases with the uncertainty about counterparty risk. Note also that the second derivative is the

same, so that the bilateral interest rate exhibits the same curvature in both dimensions.

The partial derivative of the expected return with respect to the perception-error variance is
∂R̄i,j,t
∂σ̃2
i,j,t

= −∂Pi,j,t
∂σ̃2
i,j,t

+
∂1−Pi,j,t
∂σ̃2
i,j,t

ri,j,t + (1 − Pi,j,t) ∂ri,j,t∂σ̃2
i,j,t

= − ε(1+r)θ
(ε2+σ2+σ̃2

i,j,t)
2 < 0. These terms show the

channels through which increasing uncertainty about counterparty risk affects the expected return.

First, increasing uncertainty about counterparty risk decreases R̄i,j,t as
∂Pi,j,t
∂σ̃2
i,j,t

> 0; hence loss due to

default becomes more likely. Second, increasing uncertainty about counterparty risk increases the

risk premium that is obtained if the borrower survives. However, the net effect is negative and thus

the expected return decreases for a larger perception-error variance.

The preceding analysis reveals that the bilateral equilibrium interest rate under the asymmetric

information problem, here parametrized by the perception-error variance, is not Pareto efficient.

Indeed, we can compute the interest rate and expected return for the perfect information case where

σ̃2
i,j,t = 0 (denoted by rPIi,j,t and R̄

PI
i,j,t, where the superscript PI stands for the perfect information

case) and compare it with the asymmetric information case,

ri,j,t − rPIi,j,t =
(1− θ)σ̃2

i,j,t

ε2
> 0 and R̄PIi,j,t − R̄i,j,t =

ε2(1 + r)θσ̃2
i,j,t

(ε2 + σ2)(ε2 + σ2 + σ̃2
i,j,t)

> 0,

which gives the total reduction in (expected) surplus per euro of the loan due to the asymmetric

information problem. This loss of surplus depends positively on the perception-error variance σ̃2
i,j,t,

which may be reduced by banks’ peer monitoring efforts, as discussed in the next subsection.
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3.3 Monitoring, Counterparty Selection and Transaction Volumes

Banks can engage in costly peer monitoring targeted at mitigating asymmetric information problems

about counterparty risk. Therefore, let mi,j,t ∈ R+
0 denote the expenditure that bank i incurs in

period t for monitoring bank j. The added information that bank i acquires about bank j in period

t is a linear function of the monitoring expenditure in period t and a loan, li,j,t ∈ {0, 1}, from bank i

to bank j, enacted during trading session t,

φi,j,t = φ(mi,j,t, li,j,t) = βφ + β1,φmi,j,t + β2,φli,j,t. (3)

The added information affects the perception-error variance in future periods (see Equation 1).

By allowing φi,j,t to be a function of both the loan indicator li,j,t and monitoring efforts mi,j,t, we

distinguish between (costly) active information acquisition, such as creditworthiness checks, and

freely obtained information, such as trust, built through repeated interactions. Monitoring efforts

only affect the information about borrower risk, which influences the uncertainty about counterparty

risk (the asymmetric information problem).14

Due to the OTC structure of interbank markets, bilateral Nash bargaining between any banks i

and j in the market occurs only if these two banks have established contact. Therefore, we introduce

a binary variable Bi,j,t that indicates if bank i and j are connected at time t, so that bargaining as

described in the previous subsection is possible. Specifically, we model Bi,j,t as a Bernoulli random

variable with success probability λi,j,t that can be influenced by the search efforts of bank j directed

toward lender i,

Bi,j,t ∼ Bernoulli(λi,j,t) with λi,j,t =
1

1 + exp(−βλ(sj,i,t − αλ))
, (4)

where sj,i,t ∈ R+
0 captures the search cost incurred by bank j (which has a liquidity deficit) when

approaching lender i in period t. Hence, we assume loans are borrower-initiated in the sense that

banks with a liquidity deficit approach potential lender banks for bargaining. Moreover, we impose

14Because we are interested in the role of monitoring on credit-risk uncertainty as the main driving force behind
the observed interbank network structure and its dynamics, we deliberately focus only on this channel of monitoring
and abstract from endogenous feedback effects between monitoring and risk-taking that also affect the true default
probability (which is exogenously given in our model).
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the conditions that βλ > 0 and αλ > 0. For βλ →∞ this function converges to a step function that

corresponds to a deterministic link formation at fixed cost αλ. For sj,i,t = 0, we still have λi,j,t > 0,

so even with no search costs there is still a positive probability that contact occurs, allowing for

bargaining and a transfer of funds from bank i to bank j.

Once two banks establish contact and bilateral Nash bargaining about the interest rate is

successful, interbank lending takes place. The amount of the granted loan yi,j,t is exogenously given

by a nonlinear transformation of two random variables that follow a lender-bank and borrower-bank-

specific distribution,

yi,j,t = min{ζii,j,t,−ζ
j
i,j,t}I(ζ

i
i,j,t > 0)I(ζji,j,t < 0), (5)

where the random variable ζii,j,t ∈ R can be interpreted as bank i’s liquidity shock (superscript i)

realized at the time the transaction occurs between bank i and j. The transaction-specific liquidity

shocks cannot be used for transactions with other banks in the same (or subsequent) period but

must be smoothed instantaneously with the central bank or the respective counterparty at hand.15

We allow for bank-level heterogeneity of liquidity shocks and assume that ζii,j,t is independently

and normally distributed with the bank-specific mean µζi and variance σ2
ζi

parameters such that

ζii,j,t|µζi , σ2
ζi
iid∼ N (µζi , σ

2
ζi), where µζi ∼ N (µµ, σ

2
µ) and log σζi ∼ N (µσ, σ

2
σ),

and we allow for correlation between µζi and σ2
ζi

through the parameter ρζ := Corr(µζi , σζi). For

convenience, we assume (conditional) independence and normality of liquidity shocks, as this allows

us to analytically compute part of the model’s solution. This simple type of heterogeneity in the

distribution of banks’ liquidity shocks allows us to model size effects related to the scale of banks’

15This modeling choice follows the idea that upon contact each (ordered) pair of banks can exchange a stochastic
pair-specific amount of funds which is exogenously determined by a (transaction-specific) realization from their
(bank-specific) liquidity shock distributions. As a consequence of this modeling choice, a lender bank i may have several
loans with different counterparties during the same time period (

∑
j li,j,t > 1). Moreover, lender bank i may also be

borrowing during the same time period (
∑
j li,j,t > 0 and

∑
k lk,i,t > 0) such that intermediation may arise where

some banks act as both borrower and lender in the market (see Craig and von Peter 2014). Furthermore, reciprocal
lending relationships within one period may occur (li,j,t = lj,i,t = 1). In a previous version of the paper, we assumed a
different sampling scheme similarly to Babus (2013) and Vuillemey and Breton (2014) where at each instance each
bank is paired with at most one counterparty (for example, pairing two banks randomly at each instance). For a given
observed data frequency (in our daily analysis), we then aggregate the simulated data to a lower frequency to allow
for nodes with multiple links. The sampling scheme we employ can be seen as a computationally less costly shortcut
to sampling at a higher frequency.
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businesses through larger variances that are drawn from a log-normal distribution. Moreover, this

assumption allows us to account for structural liquidity provision or demand by some banks through

a nonzero mean µζi,t . The parameter ρζ allows both effects to be correlated; for instance, some banks

on average might supply small amounts of liquidity to the market (for example deposit-collecting

institutions).

To keep track of all the loans in the interbank network, we formally define the binary link variable

li,j,t that indicates if an interbank loan between lending bank i and borrowing bank j at time t is

granted (the extensive margin of credit) as

li,j,t =


1 if Bi,j,t = 1 ∧ ri,j,t ≤ r ∧ yi,j,t > 0

0 otherwise.
(6)

Hence, an established contact is only a necessary condition for a successful interbank loan to take

place: upon a contact being made, funds are transferred if and only if the bargaining process is

successful.16

Finally, since the volume of a granted loan yi,j,t is exogenously determined, matching is only

affected by bank j’s search efforts, while for a sufficiently good risk assessment, the interest rate bank

i offers is only directly affected by its monitoring efforts. Thus, we abstract from credit rationing on

the intensive margin of credit (that is, lender banks reduce the amount of loans that they grant in

response to an increase in perceived counterparty risk).

3.4 Profit Maximization, Optimal Monitoring, and Search

Each bank i ∈ {1, ..., N} faces the dynamic problem of allocating resources to monitor its counter-

parties and to choose which bank to transact with in order to maximize the expected discounted

payoffs from interbank lending and borrowing net of search and monitoring costs. Formally, the

16The bargaining process fails if two banks are in contact but the bilateral equilibrium interest rate does not satisfy
the participation constraints or if both banks are on the same side of the market, that is, both have positive or negative
liquidity shocks.
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infinite-horizon dynamic optimization problem of each bank is given by

max
{mi,j,t,si,j,t}

Et
∞∑
s=t

( 1

1 + rd

)s−t N∑
j=1

(
li,j,tR̄i,j,tyi,j,t︸ ︷︷ ︸

lending

+ lj,i,t(r − rj,i,t)yj,i,t︸ ︷︷ ︸
borrowing

−mi,j,t − si,j,t
)
, (7)

where the expected discounted payoff is expressed in terms of the expected surplus compared to the

outside options provided by the central bank, and the maximization is subject to the restrictions

imposed by the structure laid down in subsections 3.1–3.3. The interest rate rd is used for discounting

future cash flows; in our model, the interest rate banks can earn when depositing funds at the central

bank. The intertemporal optimization problem is operationalized by conditioning on the bilateral

equilibrium interest rates, ri,j,t, characterized in subsection 3.2. Hence, in this subsection these

interest rates appear as a restriction on the optimization problem instead of one of the objective

function’s arguments.17

To solve the optimization problem using the calculus of variation, we impose appropriate

smoothness conditions on the objective function and linearize part of the analytically intractable

Euler equation for monitoring; see Appendix A for the details and derivations. We then obtain the

optimal linearized bank-to-bank monitoring choice as the affine function,

mi,j,t = am + bmσ̃
2
i,j,t + cmEtσ̃2

i,j,t+1 + dmEtBi,j,t+1 + emEtyi,j,t+1, (8)

where the intercept and coefficients are functions of the structural parameters. The policy rule shows

that bank i’s optimal monitoring expenditures directed toward bank j depend on the current state

of bank-to-bank credit-risk uncertainty, the expected future uncertainty, the expected volume of the

loan, and on the expected probability of being contacted by bank j.18

We obtain an analytical solution for the optimal level of bank-to-bank search. The solution

17Note that actual default does not enter banks’ objective functions (R̄i,j,tyi,j,t not Ri,j,tyi,j,t) nor their constraint
functions. What matters in the model is only the (perceived) probability of default that enters the pricing of interbank
loans, as in Equation (2). We do not incorporate actual bank default into the model because in the sample that we
use for the parameter estimation, we do not observe any bank defaults. Moreover, actual bank default is not essential
for understanding the basic mechanisms of peer monitoring, credit-risk uncertainty, and counterparty search that
drive the observed market structure and its dynamics. Clearly, because there is no actual default event in the model,
there is also no contagion through mutual credit exposure.

18Note that in our model we focus on bilateral interbank lending and the recourse to central bank facilities. Hence,
the optimal monitoring decisions are based on interbank lending only, and do not reflect any other bilateral exposure
between banks.
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depends on bank j’s expected surplus ∆i,j,t := Et[yj,i,t(r − rj,i,t)Ij,i,t] when borrowing from bank i:

si,j,t =


s(∆i,j,t) for ∆i,j,tλ(s(∆i,j,t))− s(∆i,j,t) ≥ 0

0 for ∆i,j,tλ(s(∆i,j,t))− s(∆i,j,t) < 0.

(9)

Here, the interior solution with positive search levels is obtained from the analytical solution to the

first-order condition (see Appendix A) as

s(∆i,j,t) := 1/βλ log

(
0.5(

√
∆i,j,tβλ(∆i,j,tβλ − 4) + ∆i,j,tβλ − 2)eαλβλ)

)
, (10)

for ∆i,j,tβλ(∆i,j,tβλ − 4) ≥ 0. The optimal search strategy hence shows that for a positive expected

return net of search cost, the solution satisfies Equation (10), with s(·)′ ≥ 0. Thus, search efforts

increase in the expected surplus. Note that λ(0) > 0, so even without undertaking search efforts,

two banks will eventually connect with each other and bargain about potential loan outcomes.

It is important to highlight that lender i’s monitoring level with respect to borrower j depends

on the expectation of being contacted for a loan. Similarly, borrower j’s search effort with respect to

lender i depends on the expected surplus that can be obtained from borrowing from bank i. This

connection between monitoring and counterparty selection, linked by banks’ profit expectations,

generates an amplification mechanism that lies at the core of this model.

3.4.1 Adaptive Expectations

The optimal monitoring and search levels in Equations (8) and (9) depend on expectations about

bilateral credit availability and conditions. We assume that in the interbank market each bank

forms bank-specific adaptive expectations about the credit conditions at other banks.19 Following

Chow (1989, 2011), the adaptive expectation of bank i concerning variable xi,j,t, denoted by

19The adoption of adaptive expectations is justified in the first place by the fact that in many settings, there exists
very strong econometric evidence supporting the adaptive expectations hypothesis against the rational expectations
hypothesis (see, for example, Chow 1989, 2011). Specifically, Evans and Honkapohja (2001) show that in many ways
adaptive expectations are the most rational forecasting method to use when the true data-generating process is
unknown. This argument seems especially relevant for modeling decisions in a highly complex system such as an OTC
trading network. Second, adaptive expectations are much easier to handle. Indeed, it is impossible to use the model’s
deterministic steady-state as an approximation point for perturbation methods (see Appendix A). This renders the
rational expectations solution computationally impractical. On the contrary, since adaptive expectations are solely
dependent on past observations, the numerical nature of the equilibrium point does not present extra difficulties.
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x∗i,j,t := Etxi,j,t+1, follows an exponentially weighted moving average (EWMA),

x∗i,j,t = (1− λx)x∗i,j,t−1 + λxxi,j,t, (11)

where all variables are in deviation from the mean steady-state values. Banks use this forecasting

rule for variables that are always observed by bank i (σ̃i,j,t+1 and Bi,j,t+1). The parameter λx ∈ (0, 1)

determines the weight of the new observations at time t relative to the previous expectation.

However, a crucial implication of the opaque OTC structure of the interbank market is that

a bank learns about credit conditions (that is, volumes yi,j,t+1 and rates ri,j,t+1) at other banks

only when contact is made (information about credit availability and conditions at other banks is

not publicly available). Our model incorporates this feature of decentralized interbank markets by

assuming that bank i uses the following forecasting rule,

x∗i,j,t = (1− λx)x∗i,j,t−1 + λxBi,j,txi,j,t. (12)

Recall that Bi,j,t(sj,i,t) = 1 denotes an “open” connection. Hence, new information about a counter-

party is added to the expectation only if the banks have established contact in period t; otherwise,

the last forecast is not maintained but discounted by a factor (1− λx). Thus, if banks i and j are

not in contact for many periods, their expectations converge to the mean steady-state values.

The formulation of the expectation mechanism completes the description of the model. Figure

1 summarizes the sequence of events taking place within one period. From the structural model,

we obtain a reduced form that allows simulations from the parametric model under some given

parameter vector; details on the reduced-form representation and stability conditions are provided

in Appendix B.

4 Parameter Estimation

We now turn to the estimation of the structural model’s parameters using loan-level data from the

Dutch overnight interbank lending market. To estimate the parameters of the complex dynamic

network model (nonlinearity and nonstandard distributions), we propose a simulation-based indirect
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inference estimator that builds on an appropriate set of auxiliary statistics.

4.1 Auxiliary Statistics and Indirect Inference Estimator

Following the principle of indirect inference introduced in Gourieroux, Monfort, and Renault (1993),

we estimate the vector of parameters θT by minimizing the quadratic distance between the auxiliary

statistics β̂T obtained from the observed data X1, ..., XT , and the average of the auxiliary statis-

tics β̃TS(θ) := (1/S)
∑S

s=1 β̃T,s(θ) obtained from S simulated datasets {X̃1,s(θ), ..., X̃T,s(θ)}Ss=1

generated under θ ∈ Θ. Formally, the indirect inference estimator is thus given as

θ̂T := arg max
θ∈Θ

[
β̂T −

1

S

S∑
s=1

β̃T,s(θ)
]′
WT

[
β̂T −

1

S

S∑
s=1

β̃T,s(θ)
]
,

where Θ denotes the parameter space of θ and WT is a weight matrix. Under appropriate regularity

conditions, this estimator is consistent and asymptotically normal. In particular, consistency holds

as long as, for given S ∈ N, the auxiliary statistics converge in probability to singleton limits

β̃T,s
p→ β(θ) ∀θ and β̂T

p→ β(θ0) as T → ∞, where θ0 denotes the model parametrization that

has generated the data, while the so-called binding function β : Θ→ B that maps the structural

parameters into the auxiliary statistics is injective. Convergence in probability is precisely ensured

through the application of the law of large numbers for strictly stationary and ergodic data (see

White 2001). Similarly, asymptotic normality of the estimator is obtained if the auxiliary statistics

β̂T and β̃T,s are asymptotically normal (see Gourieroux, Monfort, and Renault 1993). By application

of a central limit theorem (see, for example, White 2001), the asymptotic normality of the auxiliary

statistics can again be obtained by appealing to the strict stationarity and ergodicity of both the

observed and simulated data.

The injective nature of the binding function is the fundamental identification condition which

ensures that the structural parameters are appropriately described by the auxiliary statistics. This

condition cannot be verified algebraically since the binding function is analytically intractable.

However, identification will be ensured as long as the set of auxiliary statistics adequately describes

both observed and simulated data. Hence, we select auxiliary statistics that provide a comprehensive

characterization of the interbank market represented by the network of bilateral loans and the
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associated loan volumes and interest rates. Specifically, in line with the estimation of dynamic

models (see, for example DeJong and Dave 2006 and Ruge-Murcia 2007), we use the auto-covariance

structure as well as higher-order moments, such as measures of skewness and kurtosis that are

justified by the model’s nonlinearity.

In addition to these standard auxiliary statistics, we base the indirect inference estimator on

auxiliary statistics that specifically characterize the topological structure of the interbank lending

network. In particular, since our model focuses on explaining the economic mechanisms behind

the observed patterns of relationship lending and the sparse core-periphery structure, we include

statistics that measure these characteristics. Therefore, we follow the large empirical literature

on the structure of interbank lending networks and use key network statistics that are common

in empirical analysis (see, for example, Jackson 2008; Bech and Atalay 2010). Moreover, we only

include network statistics that are easy to compute, due to the large number of simulated networks

in the estimation procedure.

First, we consider global network statistics. In particular, the density, defined as the ratio of the

actual to the potential number of links, is a standard measure of a network’s connectivity. A low

density characterizes a sparse network with few links. Reciprocity measures the fraction of reciprocal

links in a directed network. For the interbank market, this relates to the degree of mutual lending

between banks. The stability of a sequence of networks refers to the fraction of links that do not

change between two adjacent periods. Note that all three statistics are bounded between zero and

one.

Second, we include bank-level (node-level) network statistics. The (unweighted) in-degree of a

bank is defined as the number of lenders it is borrowing from, and the (unweighted) out-degree as

the number of borrowers to which it is lending. We summarize this bank-level information using the

mean and standard deviation of the (in-/out-) degree distribution as well as its skewness. The (local)

clustering coefficient of a node quantifies how close its neighbors are to being a clique (complete

graph). In the interbank network, this coefficient measures how many of a bank’s counterparties have

mutual credit exposures. We compute the clustering coefficients for directed networks as proposed

by Fagiolo (2007) and consider the average clustering coefficient as an auxiliary statistic.

Third, we focus on simple bilateral network statistics that measure the intensity of a bilateral
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trading relationship based on past lending activity during a rolling window. Similar to Furfine (1999)

and Cocco, Gomes, and Martins (2009), we compute the number of loans bank i granted to bank

j during the previous week and denote this variable by lrwi,j,t. We then compute a cross-sectional

correlation between these relationship variables and loan outcomes at time t (the decision to grant a

loan and interest rate). The first variable Corr(li,j,t, lrwi,j,t−1) is a measure of the bilateral stability of

lending relations, while Corr(ri,j,t, lrwi,j,t−1) is a proxy for the effects of relationship lending on interest

rates.

We compute all the described network statistics for each lending network within the sequence

of networks such that we obtain a sequence of network statistics associated with the sequence

of networks. We then obtain the unconditional means, variance, and/or autocorrelation of these

sequences as auxiliary statistics and base the parameter estimations only on the values of the auxiliary

statistics. In Appendix C, we provide the formulae of the described network statistics.

Our estimator is based on a quadratic objective function with a diagonal weight matrix WT , as

we refrain from using an asymptotically efficient weight matrix. This is because the inverse of the

covariance matrix is only optimal under an axiom of correct specification. In addition, even under

the correct specification, the (asymptotically) optimal weight matrix can lead to a larger variance of

the estimator in finite samples. Moreover, for theoretical economic reasons, there are a number of

auxiliary statistics that we wish to approximate better than others. As such, we adopt a matrix

WT corresponding to an identity matrix, but the weight of the average degree (scaled density) and

Corr(li,j,t, lrwi,j,t−1) are set to 10 and the weight of Corr(ri,j,t, lrwi,j,t−1) is set to 50 because we want to

match these characteristics particularly well. However, our results are qualitatively similar if we use

an identity matrix as the weight matrix.

In all the estimations, we use S = 24 simulated network paths, each with a length of 4,000

periods, with the initial 1,000 periods burned to minimize dependence on the initial values (the

effective sample size is 3,000 periods).20 In the estimation, some of the structural parameters are

calibrated as these are not identified by the data. For example, it is clear that several combinations

of βσ, β1,φ, and β2,φ imply the same distribution for the data, and hence, also for the auxiliary

20Our choice is motivated by computational considerations, as we parallelize the simulation of paths on a computer
cluster.
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statistics. The same implication applies for ε and σ. Further, we fix the common default threshold ε

and the common true variance of the financial distress σ2 to obtain an upper bound on the true

probability of default of 0.01. We calibrate the corridor width to the average value of 1.5 percentage

points observed in our sample period and set the discount rate to 1.75 percent per annum. The

scaling parameter of the logistic function that approximates the step function when solving the

model is set to 200.

4.2 Data Description

The original raw data that we use in the estimation procedure comprise the daily bilateral lending

volumes and interest rates realized in the overnight unsecured lending market among all Dutch

banks. In particular, our empirical analysis is based on a confidential transaction-level dataset of

interbank loans compiled by central bank authorities, based on payment records in the European

large-value payment system TARGET2. This panel of Dutch interbank loans has been inferred by

using a modified and improved version of the algorithm proposed by Furfine (1999) for the U.S.

Fedwire system; for details on the dataset and methodology, see Heijmans, Heuver, and Walraven

(2011) and Arciero et al. (2013).21

Our interbank loan-level dataset contains observations on daily bilateral volumes (yi,j,t) and

interest spreads (ri,j,t) for the sample from February 19, 2008, through April 28, 2011 (T = 810

trading days). From these data, we construct the loan indicator li,j,t that equals one if a loan from

lender i to borrower j at day t is observed, and is zero otherwise. For computational reasons, we

focus on overnight interbank lending among the 50 largest Dutch banks based on the frequency of

their overnight trading (as both borrower and lender) throughout the entire sample period.22 As a

21The idea of Furfine-type algorithms is to match payment lags between bank pairs and identify interbank loans
depending on the size of the initial payment, and size and date of candidate repayments. Compared to interbank
lending data derived from the U.S. Fedwire data and payment systems of other countries, our dataset has three major
advantages. First, TARGET2 payments have a flag for transactions related to interbank credit payments, which
restricts the universe of all payments searched by the algorithm. Second, information about the actual sender and
receiver bank is available. Unlike settlement banks, sender and receiver banks are the ultimate economic agents
involved in the contract. In particular, the sender bank is exposed to the inherent counterparty credit risk that is
at the core of our model. Third, and most important, euro-area interbank lending data derived from Furfine-type
algorithms have been cross-validated with official Spanish and Italian interbank transaction-level data yielding type
I errors of less than 1 percent. That is, less than 1 percent of all payments are incorrectly paired and classified as
interbank loans (see Arciero et al. 2013 and Frutos et al. 2014).

22The banks are consolidated at the bank holding company level, so intra-group traffic is ignored and dropped from
the sample.
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result, the data from which the auxiliary statistics are obtained consist of three 50× 50× 810 arrays

with elements li,j,t, yi,j,t, and ri,j,t. The arrays for yi,j,t and ri,j,t contain missing values if and only if

li,j,t = 0.23

Table 1 shows the key summary statistics of the data used in the analysis, with more detailed

summary statistics provided in Appendix E. Note that: (i) the moments of bilateral volumes of

granted loans are for values stated in (logarithm of) EUR millions; (ii) the moments of bilateral

interest rates of granted loans are reported in percentage points per annum above the ECB deposit

facility rate (the interest rate corridor’s lower bound); (iii) the daily interbank network is very sparse,

with a mean density of 0.02 (on average, 1.04 lenders and borrowers) and low clustering; (iv) the

distribution of interest rates, volumes, degree centrality, and clustering are highly skewed. It is

also important to emphasize that the high autocorrelation of the density, the high stability of the

network, and the positive expected correlation between current period lending and past lending

activity can be seen as evidence of “trust” relations between banks, thus showing that past trades

affect future trading opportunities. Similarly, the negative expected correlation between past lending

activity and current interest rates provides evidence of lower perceived default risk that may result

from monitoring efforts postulated by the proposed structural model.

Figure 2 presents the evolution of the daily network density, stability, average (log) volume, total

volume, and the mean and standard deviation of the daily spreads over time during the sample

period. From the plots, we see that the network density and total trading volume declined after

Lehman’s failure on September 15, 2008 (indicated by the vertical red line). In economic terms, the

total trading volume declines from about EUR 20 billion to EUR 10 billion. At the same time, the

network stability and the daily cross-sectional standard deviation of interest rate spreads more than

tripled. Moreover, the mean interest rate spreads of granted loans are close to the deposit facility as

of October 2008, when the ECB introduced its fixed-rate full allotment policy. Further, the plots

reveal that the data exhibit well documented end-of-maintenance period effects that we clean out

in the construction of the auxiliary statistics by regressing each sequence of network statistics on

end-of-maintenance period dummies before computing auxiliary statistics.

23The dataset contains only loans of at least 1 million euros in volume, as typically banks with liquidity shocks
below that amount do not go to the interbank market. Therefore, Equation (5) for the volumes of granted loans
changes accordingly to yi,j,t = min{ζii,j,t,−ζji,j,t}I(ζ

i
i,j,t ≥ c)I(ζji,j,t ≤ c), with c = 1 EUR millions.
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4.3 Estimation Results

We now turn to the estimation results for the interbank network model. Table 2 shows the point

estimates θ̂T and standard errors of the structural parameters using the auxiliary statistics reported

in Table 4. Naturally, standard errors are not provided for calibrated parameters. For comparison

with the indirect inference estimates, we also present θr, an alternative calibrated parameter vector,

which equals θ̂T but restricts the effects of monitoring to zero (βφ,1 = 0). By changing only one

parameter of θ̂T , we analyze the role of peer monitoring with a ceteris paribus argument. Table 2

also depicts the estimated parameter vector θ̂
r

T of the restricted model (βφ,1 = 0) to analyze the fit

of the model without monitoring when the other parameters are re-estimated and fully determined

by the data.

The parameter estimates θ̂T reported in Table 2 are interesting in several respects. First,

the autoregressive log-variance process’s relatively large and significant intercept can be seen as

evidence for high levels of prevailing bank-to-bank uncertainty. Also, the autoregressive parameter

γσ is estimated to be 0.66, indicating that in the absence of new information, there is a positive

autocorrelation in bilateral credit-risk uncertainty. The estimate of the scaling parameter δσ is

positive and significant, indicating that shocks to credit-risk uncertainty are important drivers of

bank-to-bank uncertainty. Moreover, βφ,1, the estimated coefficient that determines the effect that

peer monitoring has on the additional information about credit risk, is positive and statistically

significant. Hence, we find evidence that monitoring is a significant factor in reducing the prevailing

bank-to-bank uncertainty regarding counterparty risk. On the other hand, the estimated coefficient

that determines a transaction’s effect is close to zero and statistically insignificant. This result

suggests that credit-risk uncertainty is not mitigated by repeated transactions, but depends on

monitoring efforts.24

Second, the positive estimates for αλ and βλ show that counterparty search is a crucial feature

in the formation of interbank networks. In particular, the large and significant estimate for βλ is

73, which suggests that links are not randomly formed, but rather are strongly influenced by banks’

24The restricted model’s estimation results show that without monitoring, the effects of past transactions on the
reduction of bank-to-bank uncertainty is stronger. Hence, the restricted model attributes part of the effects of
monitoring to the mere existence of past trading activity.
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search for preferred counterparties. With such large scaling, the logistic function mimics a step

function quite well. The significant role of endogenous counterparty selection also highlights the effect

of expected profitability (expected loan volumes and interest rates) on the search decisions. In this

respect, the positive point estimate of 0.85 for λy indicates persistent expectations about available

bilateral loan volumes. Similarly, the estimated value of 0.93 for λB indicates a strong persistence in

the expectation of being contacted by a specific borrower. These persistent expectations eventually

contribute to the high persistence of bilateral trading relationships. The estimated value for λr is

considerably lower (0.40), suggesting that new information about bilateral interest rates is more

heavily weighted in the expectation formation process, compared to expectations about volumes

and contacts which are relatively more persistent. On the other hand, the changes in bank-to-bank

credit-risk uncertainty immediately feed into expectations, as the 0.03 estimate for λσ̃ indicates.

Clearly, the model without monitoring does not include the parameters λB and λσ̃, which affect the

monitoring decisions only through the optimal monitoring policy rule.

Third, the distribution’s estimated values of the hyper-parameters of the distribution that

characterize banks’ individual liquidity shock distributions point toward significant heterogeneity.

The estimated log normal distribution implies that there are a few banks with very large liquidity

shock variances that are very active market players. Moreover, the notion that some banks structurally

provide or demand liquidity is supported by the positive estimate of the mean’s variance parameter.

Note also the estimated negative correlation parameter, which indicates that banks with a small

liquidity shock variance typically have a positive mean.25 We discuss the role of bank heterogeneity

in more detail in Section 5.

In Table 3, we report the coefficients of the linear policy rule for the optimal monitoring levels as

implied by the estimated parameters (monitoring is expressed in deviations from steady-state values).

It is particularly noteworthy that the optimal monitoring level toward a particular bank depends

positively on the expected probability of being approached by this bank to borrow funds during

future trading sessions, EtBi,j,t+1. Indeed, this positive coefficient and the significantly positive

effect of search on link formation (endogenous counterparty selection) create the connection between

25Interestingly, the estimation results of the restricted model without monitoring do not exhibit this negative
correlation; instead, there is a larger variance in banks’ mean and standard deviation parameters.
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monitoring and search as the source of persistent trading relationships. Moreover, the current state

of credit-risk uncertainty positively affects monitoring during the current period. Higher expected

future uncertainty, however, reduces these efforts as the expected profitability of interbank lending

declines. The positive coefficient on the amount of granted loans shows that banks prefer to monitor

those counterparties with whom they expect to trade larger volumes. This finding is intuitive, since

the surplus that can be generated by reducing credit-risk uncertainty is larger. Hence, monitoring

reacts positively to expectations of increased profits in the future, similar to banks’ optimal search

decision.

The estimated policy rules for peer monitoring and search imply that shocks to interbank trading

profitability lead to an endogenous multiplier effect that works as follows. Suppose there is a positive

shock to the bilateral loan (or similarly a positive shock to the link, or a negative shock to the

credit-risk uncertainty). In response, banks’ expected profitability increases, and banks increase their

monitoring and search efforts. As a consequence, more loans are granted and interest rates decrease.

These developments feed into banks’ expectations about spreads and bilateral link probabilities,

which further promotes monitoring and search. As a consequence, the multiplier effect of monitoring

and endogenous counterparty selection further drives up the link probability and reduces interest

rates. Thus, the initial shock to interbank profitability is reinforced by the interrelationship between

control variables, outcomes, and state variables. This basic amplification mechanism is at the core of

our model and can explain several features of the observed interbank network that we discuss next.

5 Model Analysis

In this section, we use the estimated structural model to study the effects of key frictions on the

network structure. Our analysis focuses on assessing the role of private information, gathered through

peer monitoring and repeated interactions, in shaping the network of bilateral lending relationships

and associated interest rates and volumes. Moreover, we use the model to analyze the effect that

changes in the central bank’s discount window have on the interbank lending structure.
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5.1 Comparison of Auxiliary Statistics

We first analyze the model’s fit, along with the observed and simulated values of the auxiliary

statistics under the estimated structural parameter θ̂T . We benchmark our estimated model against

an alternative model parametrization θr, where the effects of monitoring on the perception-error

variance are restricted to zero (βφ,1 = 0). By focusing on the monitoring channel. but keeping all

other things equal (in particular, the parameters related to banks’ liquidity shock distribution and

search technology), we evaluate the role of peer monitoring on the network structure and associated

bilateral credit conditions from a ceteris paribus perspective. Moreover, we compare the fit of the

full model to the restricted but re-estimated model without monitoring (βφ,1 = 0), where all the

other parameter values are determined by the data (parameter vector θ̂
r

T ).

Table 4 shows how the estimated structural parameter vector θ̂T produces an accurate description

of the data when compared to the alternative calibrated parameter vector θr without monitoring.

First, note the remarkable improvement in model fit compared to the calibrated example. This is

brought about by the indirect inference estimation, as judged by (i) the value of the (log) criterion

function that is about 54 times smaller for the estimated model, and (ii) the comparison between

auxiliary statistics obtained from the observed data, data simulated at the calibrated parameter,

and data simulated at the estimated parameters. For instance, the Euclidean norm and the sup

norm of the difference between observed and simulated auxiliary statistics are about 3.5 and 5

times larger, respectively, under the calibration without monitoring. Also, when compared with the

restricted estimated model without monitoring (parameter vector θ̂
r
T ), we find that the overall fit of

the estimated model with monitoring provides a better description of the observed data, with the

objective function value being only 0.62 as large and the Euclidean and sup norm of the distance

between the observed and simulated auxiliary statistics being only 0.83 and 0.59 times as large,

respectively.

A closer look at the individual auxiliary statistics confirms the importance of the peer monitoring

channel for replicating the network structure and reveals several interesting features of the estimated

model.26 First, it is important to highlight the significant improvement in the fit of the density

26In the following, we refer to the estimated model as the unrestricted model characterized by θ̂T (that is, the
estimated model with monitoring).
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compared to the calibrated example. In fact, with a density of about 0.02, the estimated model

matches the sparsity of the Dutch interbank network very well. Hence, only a few bank pairs trade

in the market on a daily basis. Likewise, the proposed structural model provides a very accurate

description of the network’s high stability, with a value of 0.98. Similarly, with a small value of 0.03,

the average clustering coefficient matches the data very well and is a considerable improvement over

the calibrated model. Moreover, the estimated model implies that about 6.3 percent of all links are

reciprocal, compared to 8.2 percent in the observed data.

Second, a comparison of the observed and simulated auxiliary statistics shows that the model

well replicates the first three moments of the observed degree distribution.27 In particular, the

estimated model generates a high positive skewness of both the in-degree and out-degree distribution

(compare the respective simulated skewness of 2.4 and 2.3 with the observed skewness of 2.8 and 2.4,

respectively). Similarly, the standard deviation of both degree distributions are quite accurate, with

respective values of 1.7 and 1.7 compared with the observed counterparts of 1.8 and 1.6. Figure 3

plots the simulated (marginal) in-degree and out-degree distributions under the estimated model

parameters. The figure is the result of a Monte Carlo (MC) analysis based on 5,000 different

networks, each with T = 25. About 65 percent of all banks have no (zero) trading partners on a

daily basis (isolated vertexes); that is, they do not lend or borrow in the market. Moreover, about

60 percent of active banks have at most two borrowers and two lenders. At the same time, both

degree distributions have a very long right tail indicating that there are few banks that borrow and

lend from many other banks. Yet it is very rare for banks to have more than 10 counterparties on a

daily basis—the relative frequency is below 1 percent.

To illustrate the basic network topology, Figure 4 depicts the observed interbank network along

with a network simulated from the estimated model with monitoring. The figure shows the sparse

and concentrated market structure—a few banks at the center of the network trade large volumes

on either side of the market (the scale of the nodes relates to lending and borrowing volume). The

visualization also highlights the skewed degree distribution of the observed and simulated network

that is one key stylized fact of interbank markets. In particular, large banks in the core have multiple

27The density is just a rescaled version of the average degree centrality; we did not include the density in the
estimation but show it for convenience in Table 4.
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counterparties, while small banks typically have few trading partners and are typically connected

with banks in the center of the network.

Comparing the estimated auxiliary statistics with those obtained from the calibrated model θr

without monitoring shows that monitoring is an important factor in explaining the basic topology of

the observed lending network. In contrast to the estimated model with monitoring, the calibrated

model fails to specifically match the network’s skewed out- and in-degree distributions, with simulated

values of 0.45 and 0.33, respectively (note that banks’ liquidity shock distributions and all other

parameters are held constant). In fact, the estimated model parameterization without monitoring θ̂
r
T

also fails to generate a skewed degree distribution close to the observed one, with out- and in-degree

skewness of 1.36 and 1.40, respectively, although all parameters are fully determined by the data.

Indeed, as we discuss in detail in the next section, the amplification mechanism of peer monitoring

and counterparty selection reinforces the tiered market structure and generates a highly skewed

degree distribution.

Third, and key to our analysis, the estimated structural model is able to generate patterns of

relationship lending where banks repeatedly interact with each other and trade at lower interest rates.

In particular, the positive correlation of 0.60 between past and current bilateral lending activity,

that is, the measure of the stability of bilateral lending relationships, matches the observed value of

0.64 very well. Moreover, the model generates a negative correlation of –0.12 between interest rates

and past trading (compared with –0.07 for the observed data). As reported in Table 3, monitoring

efforts positively depend on the expectation of being approached by a specific borrower. Once a

contact between two banks is established, banks positively adjust their expectations and increase

monitoring. This greater monitoring effort has a dampening effect on the bilateral interest rate level

and thereby makes borrowing more attractive, leading to increased expectations about a contact.

The role of bank-to-bank peer monitoring as the crucial driver behind the observed dynamic

structure of the interbank market is also confirmed by comparing the fit of the auxiliary statistics

simulated under the calibrated parameter with those of the estimated parameter. Clearly, in the

calibrated example where there is no role for monitoring, the stability of bilateral trading relations

is low (0.23), and past trading has no effect on current prices, as the effect of trading activity in

reducing uncertainty (βφ,2) is small and insignificant. In contrast, the estimated model without

30



monitoring generates some relationship lending (–0.16), as the estimated value of βφ,2 is larger than

in the calibration without monitoring. However, in the calibrated model, the simulated values for

the stability of bilateral trading relationships are smaller (0.43), compared with the observed and

simulated values of the full model (0.64 and 0.60, respectively), highlighting the importance of the

monitoring channel for the persistence of bilateral trading relationships in the market.

Moreover, our estimated model with monitoring—similarly to the estimation results for the

restricted model—replicates rather well the mean and skewness of the distribution of (log) volumes

of granted loans. Also, the standard deviation points toward heterogeneity in bilateral loan amounts,

although the simulated value is not as large as the observed value. The distribution of the potential

bilateral volumes depends on the bank-specific liquidity shocks in Equation (5). However, the

decision to lend is endogenous, and hence the distribution of granted loans also depends on other

model parameters. Note also that the estimated model does a worse job in explaining the observed

average interest rate level, while it nicely captures the cross-sectional standard deviation of spreads

that in our model is related to heterogeneous counterparty risk perceptions. Further, the skewness of

the cross-sectional interest rate distribution has the correct sign but is twice as large as the observed

value.28

Finally, we find that our estimated model is able to generate some autocorrelation in the density

(0.25) and the average interest rate of granted loans (0.24), in contrast to the average volume of

granted loans. Clearly, the estimated values are not as high as the observed values (0.81 and 0.97,

respectively). However, there are no common factors in the model, and all shocks are iid. The only

persistent processes are at the bank-to-bank level: credit-risk uncertainty and the bank-to-bank-

specific expectations. Hence, the generated autocorrelation in these aggregate figures results from

the same banks trading with each other in subsequent periods. Similarly, the model also generates a

negative correlation between the density and the stability, and a positive correlation between density

and average spreads. Thus, when there are fewer loans granted, the average interest-rate spread of

these loans decreases. In our model, this happens because when counterparty-risk uncertainty is

high, only bank pairs with low uncertainty (and hence low spreads) continue to trade.

28Recall that the model abstracts from any bank heterogeneity beyond differences in liquidity shocks; in particular,
differences in balance sheet strength or heterogeneous outside options. Moreover, in the current model there is no
room for excess liquidity that might affect the level of interest rates.
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In Appendix D, we document the network structure’s comparative statics to further analyze the

role of several structural parameters related to credit-risk uncertainty and monitoring.

5.2 Bank Heterogeneity and Lending Relationships

In our model, heterogeneous liquidity shock distributions are the only source of bank heterogeneity.

Yet these shocks are important in determining the exogenous volumes of granted loans. As banks’

monitoring and search efforts depend on expected loan volumes, the heterogeneous liquidity shock

distributions determine the distribution of the multiplier effects from monitoring that are crucial

in matching the basic network structure of the interbank market, such as the high skewness of the

degree distribution as described in the previous subsection. In our model, the distribution of liquidity

shocks in the banking system is characterized by the probabilistic structure described in Section 3.

Figure 5 plots the joint distribution of the bank-specific mean µζi and the standard deviation

σζi of the liquidity shocks, as implied by the estimated structural parameters µ̂µ = 0, σ̂µ = 1.99,

µ̂σ = 1.94, σ̂σ = 1.98, and ρ̂ζ = −0.78. First, most probability mass is located around µζi = 0

and at small values of σζi . Hence, the median bank has small liquidity shocks that on average are

about zero. Second, the distribution of µζi is more dispersed for low values of σζi . Thus, for banks

with a small variance parameter of the liquidity shock distribution (small banks), there is higher

heterogeneity with respect to their mean parameter µζi . Third, the contour plot reveals that the

distribution has a a parabolic form. In particular, small banks with very small-scale liquidity shocks

typically tend to have a liquidity surplus, while banks with very large-scale shocks typically have a

negative mean, indicating a liquidity deficit. This relationship is driven by the correlation parameter

ρζ that we estimate to be −0.78. Finally, the long tail in the dimension of σζi shows that just a few

banks have very large liquidity shock variances.

The estimated bank heterogeneity has important consequences for pairwise credit availability and

conditions, as well as for search and monitoring expenses. In Figure 6, we show the interbank activity

during one five-day business week for 50 randomly drawn liquidity shock parameters (associated

with 50 banks). Each bank is indicated by a black dot, and its position in the µζ-σζ plane is given

by the values of the bank-specific mean and standard deviation parameters (µζi , σζi). The figure

reveals that small banks (small liquidity-shock variance) typically provide liquidity to the interbank
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market, particularly to big banks (those that on average have a positive demand for liquidity) or

small banks with complementary liquidity shocks.29 Market intermediation emerges as big banks

(money-center banks) simultaneously act as lenders and borrowers. For small banks, it is most

efficient to trade with big banks that have large liquidity shocks than with banks with small liquidity

shocks. Moreover, big banks form a tightly interconnected core where each member of the core

has reciprocal lending relationships (solid blue lines) with other core banks (see the core-periphery

analyses by Craig and von Peter 2014 and van Lelyveld and in ’t Veld 2014). Clearly, on average big

banks trade larger loan volumes than small banks as a result of their larger-scale liquidity shocks.

We next present more rigorous Monte Carlo (MC) evidence to analyze the role of bank het-

erogeneity as the fundamental source of persistent trading opportunities. For this purpose, we

simulate 5,000 network paths and for each draw sort the lender banks in increasing order according

to their variance parameter σζi and sort the borrower banks according to their mean parameter µζi

in increasing order. Hence, we compute the order statistics of both parameters. We then simulate for

each draw 25 periods and compute the mean link probability, mean volume, and spreads of granted

loans as well as the mean search and monitoring efforts between the lender’s order statistics and the

borrower’s order statistics of all possible bank pairs.

Figure 7 shows the results of the MC analysis. Panel (a) depicts the mean granted-loan volumes

for different bank pairs. In particular, we see that banks with a structural liquidity deficit (on the left

of the horizontal axis) are borrowing larger amounts than banks with a structural liquidity surplus

(on the right of the horizontal axis). Both types of banks borrow larger volumes from big banks with

a large variance parameter (on the top of the vertical axis). Due to the negative correlation parameter

ρζ , banks with a low-order statistic µζ(i) are typically big banks, and thus borrowing volumes with

other big banks (with large σζ(i)) are high. Similarly, the mean traded-volumes are low for banks

with a structural liquidity surplus and lender banks with a small-scale variance parameter—see the

blue region in Panel (a).

As exogenously determined by the distribution of liquidity shocks, the distribution of loan

volumes affects the monitoring decisions that eventually affect the prices at which bank pairs trade

29This result is in line with similar empirical findings by Furfine (1999) and Bräuning and Fecht (2012), among
others, that small banks are net lenders in the interbank market.
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liquidity (see Panels (c) and (e)). Those bank pairs that can exchange large loan amounts (either

because they have a large liquidity shock variance or because on average they have complementary

shocks) engage in more monitoring activity and trade at lower spreads (see the parabolic-shaped

contour plots). Again, we see that the very large banks engage in high monitoring efforts and

trade with each other at very low interest rates (up to 40 basis points lower than high-spread

pairs). Hence, these core banks are not only highly interconnected, but the credit-risk uncertainty

among these banks is very low (Panel (f)). Due to the interrelationship between monitoring and

search, low-interest regions in the figures correspond to bank pairs where search levels are high,

leading to high probabilities of successful linkages (see Panel (b)). Moreover, borrowers with a

structural liquidity deficit obtain larger loan volumes at lower prices when borrowing from large

banks compared with small banks. This discrepancy further highlights the role that intermediation

plays in the estimated model. Intermediaries have less credit-risk uncertainty about their borrowers

due to higher monitoring intensities, and in turn borrowers have lower credit-risk uncertainty about

intermediary banks because lenders direct monitoring efforts toward those borrower banks. Hence,

this behavior gives rise to the network’s tiered structure, which results from differences in liquidity

shocks, reinforced by the presence of credit-risk uncertainty and peer monitoring, leading to different

interest rates.30

5.3 Dynamic Responses to Credit Risk Uncertainty Shocks

In this section, we analyze how the dynamics of the estimated network model are affected by shocks

to the perception-error variance. To account for the uncertainty about the precise latent liquidity

shock distributions, we perform a simulation study by first drawing the properties of each bank (as

described by the parameters µζi and σζi) and then calculating a set of key network statistics for

25 time periods. This procedure is then repeated in a Monte Carlo setting with 5,000 replications.

In all the simulated structures, we impose a large positive shock to the perception-error variance

in period t = 4 (thus affecting the perception-error variance in t = 5) to investigate how our key

network statistics react to increases in credit-risk uncertainty.

30Fecht, Nyborg, and Rocholl (2011) document that the price that banks pay for liquidity depends on the distribution
of liquidity across banks.
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The solid lines in Figure 8 depict the mean responses across all network structures to an extreme

10 standard deviation shock in credit-risk uncertainty; that is, we impose ui,j,4 = 10 ∀i, j. In this

figure, the interquartile range (dotted lines) essentially reflects the uncertainty about the exact

network structure as described by the unobserved liquidity shock distributions. For instance, the

interquartile range of the mean network density is between 0.014 and 0.023, and the mean is about

0.019, depending on the precise network structure.31 In the top panel, we show that at the time of

the shock to the credit-risk uncertainty, the network density drops by more than 75 percent. Both

the density and total volume remain at low levels, and 20 trading days after the shock they still

remain at only 50 percent of their pre-crisis values. Moreover, the log of total transaction volume

plummets by more than 50 percent as a result of reduced trading activity. At the same time, we

observe an increase in the average (log) volume of granted loans compared with pre-shock loan levels

and an increase in the network stability one period after the shock. Similarly, both in-degree and

out-degree distributions become more positively skewed, and there is over a two-fold increase in

reciprocity.32 Hence, the network shrinks and trading becomes more concentrated among the highly

interconnected core banks.

These changes are driven by the fact that in the aftermath of the shock, some bank pairs that

had been actively trading cease this activity amid deteriorating risk assessments of borrowers. As

the implied interest rate spreads explode, lending in the interbank market becomes unattractive for

some pairs compared with the outside option. These loans are substituted by increased recourse to

the central bank’s standing facilities (not shown), which moves inversely to the density and total

transaction volume in the interbank market. In fact, the increased average loan volume shows that

for t = 5, a large fraction of trading bank pairs exchange larger volumes (due to their size and/or

complementarity of liquidity shocks). As discussed in the previous section, these are bank pairs

where monitoring is particularly profitable and bank-to-bank uncertainty is low, rendering interbank

lending more attractive than the outside option, even after the shock. Yet, those trades that do

occur also are associated with increased spreads due to higher uncertainty; the average spread of

granted volumes increases by about 6 basis points right after the shock. Thus, the compositional

31For any fixed structure of liquidity shocks, the interquartile range is much tighter around the mean response.
32The lower bound remains at zero because for some network structures interbank lending breaks down completely,

leading to zero reciprocity.
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effects do not immediately outweigh the uncertainty-induced increases in interest rates. However,

about two periods after the shock, the average spread of the interbank trades that do occur return

to the initial pre-shock levels, and a further decrease can be observed until about period 10 when

the average rate of traded loans is below the pre-shock level. A similar pattern can be observed for

the cross-sectional standard deviation of interest rates. While it falls to 0.11 as the shock hits, it

decreases to about 0.09 in period 10 when the mean spreads are lowest, and then for an extended

period of time rises to a value higher than pre-shock levels.

Figure 9 depicts how the impulse responses for the banks’ expectations and control variables act

as crucial drivers for the changes in the observable network statistics. Again, the solid line refers to

the mean and the dotted lines refer to the interquartile ranges that represent the uncertainty about

the latent network structure. The top left panel shows how the mean credit-risk uncertainty induced

by the shock peaks in period five. Clearly, the increase in the mean credit-risk uncertainty translates

into an increase in the mean expectations about future credit-risk uncertainty that displays similar

behavior, although at lower values. As a consequence of the higher expected uncertainty after the

shock (that directly translates into higher bilateral equilibrium rates), the expected profitability of

interbank borrowing decreases as the spread that can be earned in the interbank market compared

to discount window borrowing declines. This lower degree of profitability leads borrower banks to

invest less in counterparty search, further bringing down trading in the interbank market. The

impaired funding conditions due to higher credit-risk uncertainty only feed gradually into borrowers’

expectations about interbank profitability, as borrowing banks only update their expectations once

they are in contact with a lender. Therefore, the mean search effort by borrowers gradually declines

until it reaches a minimum in period 10. Moreover, this reduced search effort is reflected in lenders’

expectations about future contacting probabilities, which gradually decline from period 5 onward

until the end of the plotted sample (although the decrease in the mean expectation is arguably

small).

Moreover, as a response to the increased perception-error variance, banks adjust their monitoring

expenditures from about 4,500 euros on average (per bank-pair) downward to 2,000 euros. This

decrease, which contributes to the prolonged period of interbank trading inactivity that prevents a

fast market recovery, is driven by several channels. First, from the estimated linear policy rules, we
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find that banks increase monitoring as a response to higher credit-risk uncertainty. However, at the

same time, they decrease peer monitoring to adjust to future expected uncertainty. Because the

estimated exponentially weighted moving average (EMWA) parameter is low, these expectations

closely follow the actual credit-risk uncertainty that has quite persistent dynamics. In sum, the

negative effect of future uncertainty dominates such that the overall mean effect of this large 10

standard deviation shock is negative. Second, due to lower search efforts, the gradual decrease in

the probability of expected future contact further dampens banks’ monitoring expenditures and

prevents the interbank market from making a faster recovery. In Figure 9, we plot the mean values

of bank-to-bank-specific expectations and control variables.33

5.4 Monetary Policy Analysis: The Interest Rate Corridor

A key parameter of the model is the central bank’s interest rate corridor, as it determines the price

of the outside options to interbank lending. We next analyze how changes in the corridor’s width

affect the interbank lending network and associated credit conditions.

Figure 10 shows how changes in the width of the corridor produce significant changes in the

structure of the interbank lending network that are driven by changes in banks’ monitoring and

search efforts. Again, the uncertainty captured by the interquartile range largely captures the

uncertainty about the precise latent distribution of liquidity shocks in the banking system. The most

striking feature in Figure 10 is that an increase of roughly 100 percent in the width of the central

bank’s interest rate corridor (from 1 to 2 percentage points) produces over a three-fold increase in

the mean network density (the average number of daily trades), going from a roughly 1 percent

density to one that is over 3 percent. Furthermore, at a corridor width of 2 percentage points, the

lower bound of the interquartile range across all network structures is larger than the upper bound

on the interquartile range across network structures at a corridor width of 1 percentage point. This

analysis shows that these effects on credit conditions are highly significant and that the interest rate

corridor width plays an important role in the intensity of interbank activity.

Figure 10 illustrates a second important feature of the model—due to its nonlinear nature, the

33Of course, other moments change as well in response to the shock. In particular, the distribution of monitoring
and search efforts becomes more skewed.
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multiplier’s value is not constant over the range of corridor widths. In particular, Figure 10 shows

that the multiplier’s value decreases with the corridor width. Indeed, a 10 basis point increase of the

bound has a much larger relative effect on the network density for lower corridor widths compared

to larger ones. For instance, increasing the bound from 1.0 to 1.25 percentage points leads to a

relative increase of about 45 percent in density, while an increase from 1.75 to 2.0 percentage points

leads to a relative increase in density of about 28 percent. The presence of this multiplier, as well

as its nonlinearity, are both explained by the role that monitoring and search efforts play in the

interbank market. Similar to the Keynesian spending multiplier, the effects of a change in the width

of the interest rate bounds can also be decomposed into (i) an immediate short-run effect, and (ii) a

long-run effect that results from feedback loops between the effect of monitoring and search on loan

outcomes, and expectations about credit conditions.

Consider a decrease in the width of the interest rate corridor. In response to this shock, the

interbank market immediately shrinks, as a fraction of potential loans are no longer profitable given

the tighter new bounds. The immediate mechanical effect is that part of the interbank market

switches to lending and borrowing from the central bank, which now plays a more important role

in credit markets. This immediate short-run effect, however, only constitutes a fraction of the

total long-run multiplier effect. Indeed, given that the possibilities of interbank trading are now

smaller, expected future profits are reduced, and the incentive to search for and monitor partners

is diminished. This reduction in search and monitoring (depicted in Figure 10) will further reduce

the mean density and mean traded-volumes in the interbank market. In turn, these reductions

force banks to revise downward the expected profitability of monitoring and search efforts, further

lowering these mean variables. This spiraling negative effect that defines the multiplier eventually

will bring the market to a new operating level that may be orders of magnitude lower than the

observed values prior to the imposition of the tighter interest rate bounds.

Similarly, an increase in the size of the interest rate corridor leads to wider participation in the

interbank market, again fostered by banks’ increased levels of monitoring. Moreover, from Figure 10

we find that with a wider interest rate corridor, both the mean spread of granted loans (relative

to the center of the corridor) as well as the cross-sectional standard deviation increase, while the

average (log) volume traded decreases. The changes in these market outcomes are driven by bank
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pairs that did not trade under the narrower interest rate corridor but instead preferred to deposit

funds at the central bank. Although interest rates remain high after the corridor is widened, trading

becomes profitable for those bank pairs, driving up the average rate and the standard deviation of

granted loans. Similarly, the trading network’s reciprocity and stability decrease because with a

wider corridor, trading becomes more attractive for those smaller banks that only occasionally seek

to access the interbank market.

Hence, if the central bank wishes to get tighter control over the traded interbank rates by

narrowing the interest rate corridor, it has to expect further adverse effects on interbank lending

activity triggered by a reduction of counterparty search and monitoring. On the other hand, if the

central bank wants to foster an active decentralized interbank lending market as a means to explore

the benefits obtainable from peer monitoring, it is essential to consider policies that increase the

rate differential between the interbank market and the standing facilities for depositing and lending

funds. Only then is the interbank market profitable enough to encourage intense peer monitoring

and search among banks. Regardless of whether the central bank wants to encourage or discourage

using the interbank market, the multiplier effect should be taken into account when considering

policy changes.

6 Conclusion

In this paper, we propose and develop a structural micro-founded network model for the unsecured

OTC interbank market where banks can lend and borrow funds to smooth liquidity shocks or resort

to using the central bank’s standing facilities. Banks choose which counterparties to approach for

bilateral Nash bargaining about interest rates and set their monitoring efforts to mitigate asymmetric

information problems about counterparty risk. We estimate the structural model’s parameters

using network statistics for the Dutch unsecured overnight interbank lending market running from

mid-February 2008 through April 2011.

Our model-based analysis shows that the prevailing bank-to-bank uncertainty and peer monitoring

levels interact with counterparty search to generate an amplification mechanism that can replicate

the key characteristics of interbank markets. First, banks form long-term lending relationships
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that are associated with improved credit conditions. Second, the lending network exhibits a sparse

core-periphery structure. Moreover, our dynamic analysis shows that shocks to credit-risk uncertainty

can diminish lending activity for extended periods of time.

Based on our estimation results, we discuss the implications for monetary policy. In particular,

we show that in order to foster trading activity in unsecured interbank markets and exploit the

benefits from peer monitoring, an effective policy measure is to widen the bounds of the interest rate

corridor. The full effects of a wider corridor are due to both a direct effect and a nonlinear indirect

multiplier effect triggered by increased monitoring and search activity among banks.

For future research, we believe that our framework could be used to study several interesting

extensions. First, in this paper we do not study the effects of liquidity hoarding and excess liquidity

on market participation nor the bilateral bargaining problem and monitoring decisions.34 Second,

this paper leaves open the question of the optimal corridor size, which requires making assumptions

about the central bank’s preferences. Third, an interesting analysis would ask how the failure of an

interbank relationship lender, an event that destroys private information, tightens credit conditions

for its respective borrowers, thereby engendering the possibility that contagion may arise from the

asset side.

34For instance, in this paper we do not address the effects of the long-term refinancing operations as of the end of
2011.
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Figures

Figure 1: Timeline Illustrating the Sequence of Events in Period t

• Banks set monitoring mi,j,t

and search levels si,j,t
• Link variables Bi,j,t realize

• Loan volumes yi,j,t realize

• Shocks to perception-error
variance ui,j,t realize

• Banks update expectations
based on current period vari-
ables

• Credit conditions at other banks
only observed if Bi,j,t = 1

Period t

Figure 2: Daily Network Time Series Plots: February 18, 2008, to April 28, 2011
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Notes: Time series plots of daily network density, stability, total traded volume (in EUR billions), and mean loan
volume (in log EUR millions), mean spread (to deposit rate), and standard deviation of granted loans from February
18, 2008, to April 28, 2011. Vertical red line corresponds to Lehman’s failure on September 15, 2008.
Source: Authors’ calculations.
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Figure 3: Degree Distribution Under the Estimated Parameter Vector θ̂T
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(a) Out-degree Distribution
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(b) In-degree Distribution

Notes: Marginal in- and out-degree distributions computed based on 5,000 simulated network paths of size T = 25
under the estimated parameter vector θ̂T .
Source: Authors’ calculations.

Figure 4: Interbank Network Market Structure for One Trading Week

(a) Observed Network (b) Simulated Network (under θ̂T )

Notes: Nodes are scaled according to total trading volume. The observed network corresponds to first week in April
2008; simulated network under estimated parameter θ̂T is randomly picked realization. Isolated nodes are not shown.
Source: Authors’ calculations.
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Figure 5: Liquidity Shock Distribution under Estimated Model Parameter
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(b) Contour Plot

Notes: Joint distribution of mean (µζi) and standard deviation (σζi) of banks’ liquidity shock distributions and
contour plots as implied by the estimated model parameters.
Source: Authors’ calculations.
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Figure 6: Simulated Interbank Activity for One Trading Week
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shading relates to average log loan volume per bank (right scale). For each node, incoming links are shown as dashed
red lines coming from the right; outgoing links leave nodes from the left (counterclockwise). Solid blue lines represent
reciprocal links.
Source: Authors’ calculations.
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Figure 7: Bank Heterogeneity and Trading Relationships
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Notes: The order statistics for the lender variance parameters σζ(i) are depicted on the vertical axis, while the order
statistics for the borrower mean parameters µζ(i) are depicted on the horizontal axis, that is, lender banks are ordered
by variance parameter σζi such that σζ50 > σζ49 > ... > σζ1 , and borrower banks are ordered by mean parameter
such that µζ50 > µζ49 > ... > µζ1 . The results are based on 10, 000 MC repetitions, each of length T = 100.
Source: Authors’ calculations.
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Figure 8: Impulse Responses to a Shock in Credit-Risk Uncertainty

5 10 15 20 25
0.000

0.006

0.012

0.019

0.025

Density

5 10 15 20 25
0.39

1.93

3.47

5.02

6.56

Total volume

5 10 15 20 25
3.65

4.10

4.55

5.01

5.46

Mean log volume

5 10 15 20 25
0.973

0.979

0.986

0.992

0.998

Stability

5 10 15 20 25

0.00

0.05

0.11

0.16

0.21

Reciprocity

5 10 15 20 25
1.75

2.47

3.19

3.91

4.63

Skewness outdegree

5 10 15 20 25
1.40

2.18

2.96

3.74

4.52

Skewness indegree

5 10 15 20 25
1.06

1.11

1.15

1.19

1.24

Mean spread

5 10 15 20 25
0.05

0.07

0.10

0.12

0.15

Stdev spread

Notes: Simulated impulse responses to a common 10 standard deviations shock in credit-risk uncertainty in period
four. Results are based on 5,000 MC repetitions. The solid line is the mean impulse response, and the dotted lines
refer to the interquartile range across all network structures. Total volume is in billions, and mean volume is the mean
log volume (in millions) of granted loans.
Source: Authors’ calculations.

Figure 9: Impulse Responses to a Shock in Credit-Risk Uncertainty
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Results are based on 5,000 MC repetitions. The solid line is the mean impulse response, and the dotted lines refer
to the interquartile range across all network structures. Expectations are in deviations from steady-state values.
Monitoring and search expenditures are in thousands of euros.
Source: Authors’ calculations.

52



Figure 10: Changes in the Central Bank’s Interest Rate Corridor Width
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0.394

0.479

0.564
Mean spread 

1 1.25 1.5 1.75 2
0.050

0.079

0.109

0.139

0.169
Std spread

1 1.25 1.5 1.75 2
1.770

2.978

4.186

5.395

6.603
Mean monitoring

1 1.25 1.5 1.75 2
0.320

0.859

1.399

1.938

2.478
Mean search

1 1.25 1.5 1.75 2
0.961

0.969

0.977

0.985

0.993
Stability

Notes: Simulated mean and interquartile range of key network statistics and mean monitoring and mean search per
bank over alternative interest corridor width. Total volume is in billion euros. The Monte Carlo results are based on
5, 000 networks each with T = 25.
Source: Authors’ calculations.
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Tables

Table 1: Descriptive Statistics

Statistic Mean Std Autocorr

Density 0.0212 0.0068 0.8174
Reciprocity 0.0819 0.0495 0.2573
Stability 0.9818 0.0065 0.8309
Mean Out-/In-degree 1.0380 0.3323 0.8174
Mean Clustering 0.0308 0.0225 0.4149
Corr(ri,j,t, lrwi,j,t−1) –0.0716 0.1573 0.4066
Corr(li,j,t, lrwi,j,t−1) 0.6439 0.0755 0.4287
Mean Log Volume 4.1173 0.2818 0.4926
Mean Spread 0.2860 0.3741 0.9655

Notes: The table reports moment statistics for different sequences of network statistics and cross-sectional correlations
that characterize the sequence of observed Dutch unsecured interbank lending networks. The statistics are computed
on a sample of daily frequency from February 18, 2008, to April 28 , 2011.
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Table 2: Estimated Structural Parameter Values

Calibrated Estimated Estimated
Without Monitoring Without Monitoring With Monitoring

Structural Parameter θr θ̂
r

T ste(θ̂
r

T ) θ̂T ste(θ̂T )

Added Information αφ –1.5000 –1.5000 - –1.5000 -
βφ,1 0.0000 0.0000 - 9.6631 0.0006
βφ,2 0.0001 0.1386 0.0069 0.0001 0.0445

Perception Error variance ασ 1.2890 1.2449 0.0151 1.2890 0.0028
βσ –2.0000 –2.0000 - –2.0000 -
γσ 0.6648 0.6351 0.0063 0.6648 0.0183
δσ 0.3383 1.7214 0.0069 0.3383 0.0451

Search Technology αλ 0.0001 0.0208 0.0566 0.0001 0.1159
βλ 72.833 102.82 0.0009 72.833 0.0006

Liquidity Shocks µµ 0.0000 0.0000 - 0.0000 -
σ∗µ 1.9903 3.6563 0.0024 1.9903 0.0228
µσ 1.9492 0.6120 0.0033 1.9492 0.0218
σσ 1.9810 4.5002 0.0051 1.9810 0.0213
ρζ –0.7826 –0.0170 0.0064 –0.7826 0.0423

Expectations λy 0.8472 0.8809 0.0226 0.8472 0.0443
λB - - - 0.9278 0.0470
λr 0.4008 0.0180 0.0271 0.4008 0.0466
λσ̃ - - - 0.0318 0.0414

Bargaining Power Lender θ 0.6897 0.0054 0.0226 0.6896 0.0441
Interest Rate Corridor Width r 1.5000 1.5000 - 1.5000 -
Default Threshold ε 3.0000 3.0000 - 3.0000 -
Financial Distress Std. σ 0.1000 0.1000 - 0.1000 -
Discount Rate rd 1.7500 1.7500 - 1.7500 -

Notes: This table reports the estimated structural parameters of the unrestricted model θ̂T and corresponding
standard errors. For comparison, this table also reports the estimated parameter θ̂

r

T of the restricted model without
monitoring (βφ,1=0), as well as the calibrated parameter θa that equals θ̂T but sets the effect of monitoring to zero
(βφ,1=0). For calibrated parameters, no standard errors are reported. The indirect inference estimator is based on
S = 24 simulated network paths, each of length 3,000 periods, and the auxiliary statistics reported in Table 4. The
parameters λB and λσ̃ are not part of the restricted model without monitoring. Note also that σ∗µ = log(σµ).

Table 3: Coefficients of the Linear Policy Rule for Optimal Monitoring as Implied by θ̂T

Variable σ̃i,j,t Etσ̃i,j,t+1 EtBi,j,t+1 Etyi,j,t+1

Coefficient 0.0024 –0.0043 0.0348 0.0019

55



Table 4: Auxiliary Network Statistics

Simulated Values Observed Values

Calibrated
Without

Monitoring

Estimated
Without

Monitoring

Estimated
With

Monitoring
Auxiliary Statistic β̃TS(θr) β̃TS(θ̂

r

T ) β̃TS(θ̂T ) β̂T ste(β̂T )

Density (Mean) 0.1121 0.0201 0.0193 0.0212 0.0026
Reciprocity (Mean) 0.0453 0.0005 0.0627 0.0819 0.0029
Stability (Mean) 0.8247 0.9837 0.9795 0.9818 0.0025
Avg Clustering (Mean) 0.1097 0.0042 0.0347 0.0308 0.0027
Avg Degree (Mean) 5.4948 0.9870 0.9441 1.0380 0.1291
Std Outdegree (Mean) 3.2901 1.3501 1.6547 1.8406 0.0918
Skew Out-degree (Mean) 0.4512 1.3604 2.3649 2.8821 0.3537
Std In-degree (Mean) 4.7450 1.3833 1.6950 1.6001 0.0995
Skew In-degree (Mean) 0.3300 1.3971 2.2801 2.4030 0.3143
Corr(ri,j,t, lrwi,j,t−1) (Mean) 0.0000 –0.1578 –0.1231 –0.0716 0.0113
Corr(li,j,t, lrwi,j,t−1) (Mean) 0.2345 0.4259 0.6001 0.6439 0.0107
Avg Log Volume (Mean) 2.8298 4.1064 3.9422 4.1173 0.0516
Std Log Volume (Mean) 1.0547 1.0196 1.0865 1.6896 0.0200
Skew Log Volume (Mean) –0.1187 –0.2958 –0.1357 –0.3563 0.0317
Avg Spread (Mean) 1.0348 0.4604 1.1353 0.2860 0.1331
Std Spread (Mean) 0.0000 0.4046 0.1004 0.1066 0.0142
Skew Spread (Mean) 0.0251 0.8658 1.6010 0.6978 0.5295
Corr(Density,Stability) –0.4688 –0.4253 –0.3837 –0.7981 0.0275
Corr(Density,Avg Spread) 0.0296 –0.0003 0.0896 0.7960 0.0229
Autocorr(Density) 0.0034 0.5697 0.2455 0.8174 0.0243
Autocorr(Avg Volume) 0.0014 0.3875 0.0760 0.4926 0.0555
Autocorr(Avg Spread) 0.9991 0.1624 0.2425 0.9655 0.0031

Objective Function Value 227.3328 6.5852 4.2407
Euclidean Norm ‖β̂T − β̃TS‖ 6.8563 2.4022 2.0035
Sup Norm ‖β̂T − β̃TS‖∞ 4.4568 1.5217 0.9032

Notes: The table reports the values of the observed auxiliary statistics β̂T used in the indirect inference estimation
along with the HAC robust standard errors, as well as the simulated average of the auxiliary statistics for different
model parameterizations: (i) for the estimated parameter vector of the unrestricted model θ̂T ; (ii) for the calibrated
vector θr that equals θ̂T but sets the effect of monitoring to zero (βφ,1=0); and (iii) for the estimated parameter vector
of the restricted model without monitoring θ̂

r

T (with the restriction βφ,1=0). The observed statistics are computed on
a sample of daily frequency from February 18, 2008, to April 28, 2011, of size T = 810. The objective function is a
quadratic form with diagonal weight matrix using S = 24 simulated network paths, each of length 3,000 periods (see
Equation 4.1). For the different structural parameter vectors, see Table 2. Density is not included in the vector of
auxiliary statistics as the density is proportional to average degree.
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Appendix A Model Solution

The variable li,j,t = Bi,j,t · I(ri,j,t ≤ r) · I(yi,j,t > 0) introduces a discontinuity that prevents us from

obtaining analytic optimality conditions of the original optimization problem stated in Equation 7.

Although numerical solutions are theoretically possible, these would make simulation and estimation

prohibitively time-consuming given the high dimensional problem.

We therefore consider an approximate smooth problem where we replace the original prob-

lem’s step functions (I(ri,j,t ≤ r)) by a continuously differentiable logistic function I(ri,j,t) =

1
1+exp(−βI(r−ri,j,t)) =: Ii,j,t. Note that for a growing scale parameter, the logistic transformation

approximates the step function arbitrarily well. Without changing the notation, we redefine

li,j,t = Bi,j,tIi,j,t, where we dropped the factor I(yi,j,t > 0) without changing the optimization

problem, as by the construction of yi,j,t, funds are exchanged only if i has a surplus and j a deficit.

We can solve this approximate optimization problem using the well-understood calculus of varia-

tions, the most widely applied method to solve constrained dynamic stochastic optimization problems

in structural economics (see, for example, Judd 1998 and DeJong and Dave 2006). Substituting

out all definitions in the objective function, except for the law of motion for σ̃2
i,j,t, we can write the

Lagrange function of the optimization problem with multiplier µi,j,t given by

L = Et
∞∑
s=t

( 1

1 + rd

)s−t N∑
j=1

πi,j,t(mi,j,t, sj,i,t, σ̃
2
i,j,t) + µi,j,t(ξ(mi,j,t, σ̃

2
i,j,t)− σ̃2

i,j,t+1),

where we make explicit the arguments that can be influenced by bank i’s decision. The Euler

equations that establish the first-order-conditions to the infinite-horizon nonlinear dynamic stochastic

optimization problem can then be obtained by optimizing the Lagrange function with respect to the

control variables and the dynamic constraints (see, for example, Heer and Maußner 2005).

Under usual regularity conditions, the integration and differentiation steps can be interchanged,
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and we obtain

∂L
∂mi,j,t

= 0 ⇔ Et
[ ∂πi,j,t
∂mi,j,t

+ µi,j,t
∂ξi,j,t
∂mi,j,t

]
= 0

∂L
∂σ̃2

i,j,t+1

= 0 ⇔ Et
[
− µi,j,t +

1

1 + rd

(
∂πi,j,t+1

∂σ̃2
i,j,t+1

+ µi,j,t+1
∂ξi,j,t+1

∂σ̃2
i,j,t+1

)]
= 0

∂L
∂si,j,t

= 0 ⇔ Et
[∂πi,j,t
∂si,j,t

]
= 0

∂L
∂µi,j,t

= 0 ⇔ Et
[
σ̃2
i,j,t+1 − ξ(φi,j,t, σ̃2

i,j,t)
]

= 0,

for all counterparties j 6= i and all t. Substituting out the Lagrange multipliers and taking fixed

values at time t out of the expectation gives the Euler equation for the optimal monitoring path

that equates marginal cost and discounted expected future marginal benefits of monitoring,

1

1 + rd
∂ξi,j,t
∂mi,j,t

Et

 ∂ξi,j,t+1

∂σ̃2
i,j,t+1

∂ξi,j,t+1

∂mi,j,t+1

+
∂πi,j,t+1

∂σ̃2
i,j,t+1

 = 1. (13)

Unlike monitoring expenditures, search becomes effective in the same period it is exerted and does

not directly alter future matching probabilities via a dynamic constraint. Thus, the first-order

condition for the optimal search path is given by

∂

∂si,j,t
Et
[
(r − rj,i,t)yj,i,tlj,i,t

]
= 1, (14)

leading to the usual condition that the expected marginal benefit equals the marginal cost in each

period without any discounting. Since the first-order conditions hold for all j 6= i and the marginal

cost of monitoring and search is the same across all j, the conditions also imply that (discounted)

expected marginal profits of monitoring and search must be the same across different banks j.

The transversality condition for the dynamic problem is obtained as the limit to the endpoint

condition from the corresponding finite horizon problem and requires that

lim
T→∞

Et

[(
1

1 + rd

)T−2 ∂πi,j,T−1

∂mi,j,T−1
−
(

1

1 + rd

)T−1 ∂πi,j,T
∂σ̃2

i,j,T

∂ξi,j,T−1

∂mi,j,T−1

]
= 0.

Thus, in the limit the expected marginal cost of investing in monitoring must be equal to the
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expected marginal return.

Equations (13) and (14) constitute the first-order conditions to banks’ approximate optimization

problem. From the first-order condition for the optimal search expenditure in Equation (14) we get

∂

∂si,j,t
Et
[
(r − rj,i,t)yj,i,tlj,i,t

]
= 1

⇔ ∂

∂si,j,t
Et
[
(r − rj,i,t)yj,i,tIj,i,tBj,i,t

]
= 1

⇔ Et
[
(r − rj,i,t)yj,i,tIj,i,t

] βλ exp(−βλ(si,j,t − αλ))

(1 + exp(−βλ(si,j,t − αλ)))2 = 1

where the first step uses the definition of lj,i,t, and the second step uses the independence of Bj,i,t.

The above equation can be solved analytically for si,j,t leading to Equation (10).

The first-order condition for monitoring in Equations (13) is

1 =
1

1 + rd
∂ξi,j,t
∂mi,j,t

Et

 ∂ξi,j,t+1

∂σ̃2
i,j,t+1

∂ξi,j,t+1

∂mi,j,t+1

− ∂πi,j,t+1

∂σ̃2
i,j,t+1

 .

Using the product rule, we get ∂πi,j,t
∂σ̃2
i,j,t

=
∂R̄i,j,t
∂σ̃2
i,j,t

yi,j,tli,j,t + R̄i,j,tyi,j,tBi,j,t
∂Ii,j,t
∂σ̃2
i,j,t

, which we can further

unfold using the following partial derivatives

∂φi,j,t
∂mi,j,t

= βφ,
∂Pi,j,t
∂σ̃2

i,j,t

=
ε2

(σ2 + σ̃2
i,j,t + ε2)2

,
∂ri,j,t
∂σ̃2

i,j,t

= 0.5/ε2

∂ξi,j,t
∂φi,j,t

= exp(ασ + γσ log σ̃2
i,j,t + βσφi,j,t + δσui,j,t)βσ,

∂ξi,j,t
∂σ̃2

i,j,t

= exp(ασ + γσ log σ̃2
i,j,t + βσφi,j,t + δσui,j,t)/σ̃

2
i,j,t,

∂R̃i,j,t
∂σ̃2

i,j,t

= −∂Pi,j,t
∂σ̃2

i,j,t

+
∂1− Pi,j,t
∂σ̃2

i,j,t

ri,j,t + (1− Pi,j,t)
∂ri,j,t
∂σ̃2

i,j,t

∂Ii,j,t
∂σ̃2

i,j,t

=
βI exp(−βI(r − ri,j,t))
1 + exp(−βI(r − ri,j,t))

(− ∂ri,j,t
∂σ̃2

i,j,t

).

Equation (13) is highly nonlinear and does not have an analytical solution. We therefore follow

the standard practice to compute an approximate solution based on a Taylor expansion. To this end,
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write the Euler equation more compactly as

Etf(mi,j,t, σ̃
2
i,j,t, σ̃

2
i,j,t+1, Bi,j,t+1, yi,j,t+1) = 0.

The local Taylor approximation of f requires an expansion point. The usual steady state

(resulting from the absence of any shocks to the system) proves inappropriate in our setting, as

steady state volumes would be zero and, as a consequence, the steady state corresponds to a critical

point where all derivatives of f are zero. We therefore linearize the function f around the stable

point (m̃i,j , ˜̃σ
2
i,j ,

˜̃σ2
i,j , λ̃i,j , ỹi,j). This expansion point is obtained as the steady state of the system

when yi,j,t+1 is fixed at the expected loan volumes for two banks characterized by a liquidity shock

distribution with mean parameter E(µζi) = µµ and variance parameter E(σ2
ζi

) = exp(µσ + σ2
σ/2)

(two “average” banks).35 As a result the expansion point is the same for each bank pair (i, j).36

In the following expansion we write hx := ∂h(x,y)
∂x and use x̂ := x− x̃ to denote a deviation from

the expansion point. Applying the first-order Taylor expansion gives

f ≈f̃ + fmi,j,tm̂i,j,t + fσ̃2
i,j,t

ˆ̃σ2
i,j,t + fσ̃2

i,j,t+1

ˆ̃σ2
i,j,t+1 + fBi,j,t+1B̂i,j,t+1 + fyi,j,t+1 ŷi,j,t+1

where f̃ := f(m̃i,j , ˜̃σ
2
i,j ,

˜̃σ2
i,j , λ̃i,j , ỹi,j) and all derivatives are evaluated at the expansion point. Note

that f̃ = 0 by construction.

We then obtain the approximate Euler equation for monitoring as

Et
[
fmi,j,tm̂i,j,t + fσ2

i,j,t

ˆ̃σ2
i,j,t + fσ̃2

i,j,t+1

ˆ̃σ2
i,j,t+1 + fBi,j,t+1B̂i,j,t+1 + fyi,j,t+1 ŷi,j,t+1

]
= 0,

which we rearrange to get the linear policy function,

mi,j,t = am + bmσ̃
2
i,j,t + cmEtσ̃i,j,t+1 + dmEtBi,j,t+1 + emEtyi,j,t+1,

35Due to the normality assumption for the liquidity shocks we can compute ỹi,j := E(yi,j,t) analytically. Given ỹi,j
we solve for the steady state values of m̃i,j , ˜̃σ

2
i,j , λ̃i,j under the absence of shocks to σ̃2

i,j .
36Computationally it is infeasible to compute N(N − 1) different expansion points depending on banks’ liquidity

distribution.
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that constitutes an approximate solution to the problem. Note that the intercept and the coefficients

of the linear policy function are functions of the structural parameters.

Appendix B Reduced Form, Stationarity, and Ergodicity

Substituting the adaptive expectation mechanism in equations (11) and (12) into the Euler equation

for monitoring in (8) and the optimal search strategy in equation (9) allows us to re-write the full

system in reduced form. The reduced form can be written as a nonlinear Markov autoregressive

process,

Xt = Gθ(Xt−1, et),

where Gθ is a parametric vector function that depends on the structural model parameter θ, and Xt

is the vector of all state-variables and control variables (observed or unobserved), and et is the vector

of shocks driving the system. These shocks are the liquidity shocks {ζii,j,t}, the bank-to-bank-specific

shocks to the perception-error variance {ui,j,t}, and the shocks that determine if a link between

any two banks is open and trade is possible {Bi,j,t}. Obtaining the reduced-form representation is

crucial as it allows us to simulate network paths for both state and control variables under a given

structural parameter vector. Furthermore, this model formulation allows us to describe conditions

for the strict stationarity and ergodicity of the model that are essential for the estimation theory

that is outlined in Section 4.

In particular, following Bougerol (1993), we find that under appropriate regularity conditions,

the process {Xt} is strictly stationary and ergodic (SE).

Lemma 1. For every θ ∈ Θ, let {et}t∈Z be an SE sequence and assume there exists a (nonrandom)

x such that E log+ ‖Gθ(x, et)− x‖ <∞ and suppose that the following contraction condition holds

E ln sup
x′ 6=x′′

‖Gθ(x′, et)−Gθ(x′′, et)‖
‖x′ − x′′‖

< 0. (15)

Then the process {Xt(x1)}t∈N, initialized at x1 and defined as

X1 = x1 , Xt = Gθ(Xt−1, et) ∀ t ∈ N,
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converges everywhere almost surely to a unique SE solution {Xt}t∈Z for every x1, that is ‖Xt(x1)−

Xt‖
e.a.s.→ 0 as t→∞.37

The condition that E log+ ‖Gθ(x, et)− x‖ <∞ can be easily verified for any given distribution

for the innovations et and any given shape function Gθ. The contraction condition in equation (15)

is, however, much harder to verify analytically.

Fortunately, the contraction condition can be re-written as

E log sup
x
‖∇Gθ(x, et)‖ < 0 (16)

where ∇Gθ denotes the Jacobian of Gθ and ‖ · ‖ is a norm. By verifying numerically that this

inequality holds at every step θ ∈ Θ of the estimation algorithm, one can ensure that the simulation-

based estimation procedure has the appropriate stochastic properties.

The contraction condition of Bougerol (1993) in equation (16) essentially states that the maximal

Lyapunov exponent must be negative uniformly in x.

Definition 1. The maximal Lyapunov exponent is given by limt→∞
1
t log maxi Λi,t = E log maxi Λi,t

where Λi,t’s are eigenvalues of the Jacobian matrix ∇Gθ(xt, et).

A negative Lyapunov exponent ensures the stability of the network paths. Appendix Table 1

uses the Jacobian of the structural dynamic system Gθ(x, et) to report numerical calculations of the

maximal Lyapunov exponent of our dynamic stochastic network model at the parameters θ0 and θ̂T

described in Table 2 of Section 4.3. These points in the parameter space correspond to the starting

point for the estimation procedure described in Section 4 and the final estimated point.

Appendix Table 1: Lyapunov Stability of the Dynamic Network Model

Parameter Vector θ0 θ̂T

Lyapunov Exponent –0.6451 –0.2462

Despite the higher degree of persistence at θ̂T compared to θ0 (a higher Lyapunov exponent),

the contraction condition is satisfied in both cases as the maximal Lyapunov exponent is negative.

37A stochastic sequence {ξt} is said to satisfy ‖ξt‖
e.a.s.→ 0 if ∃ γ > 1 such that γt‖xt‖

a.s.→ 0.
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This ensures that both θ0 and θ̂T generate stable network paths.

Appendix C Network Auxiliary Statistics

In this section, we provide formulæ for the non-standard auxiliary statistics that characterize

specifically the (dynamic) structure of the interbank lending network. First, the global network

statistics that relate to the sparsity, reciprocity and stability are given as

densityt =
1

N(N − 1)

∑
i,j

li,j,t, reciprocityt =

∑
i,j li,j,tlj,i,t∑
i,j li,j,t

,

stabilityt =

∑
i,j (li,j,tli,j,t−1 + (1− li,j,t)(1− li,j,t−1))

N(N − 1)
.

Further, we maintain information about the degree distribution. In the interbank market, the degree

centrality of a bank counts the number of different trading partners. For directed networks the out-

and in-degree of node i are given by

douti,t =
∑
j

li,j,t and dini,t =
∑
j

lj,i,t.

Instead of considering all 2N variables individually, we consider the mean, variance and skewness of

the out-degree and in-degree distribution. The mean of degree distribution is proportional to the

density. In the estimation procedure we include therefore only the average degree.

The (local) clustering coefficient of node i in a binary unweighted network is given by

ci,t =
1/2

∑
j

∑
h(li,j,t + lj,i,t)(li,h,t + lh,i,t)(lj,h,t + lh,j,t)

dtoti,t (dtoti,t − 1)− 2d↔i,t
,

where dtoti,t = dini,t + douti,t is the total degree and d↔i,t =
∑

j 6=i li,j,tlj,i,t (see Fagiolo 2007). We consider

the average clustering coefficient, defined as the mean of the local clustering coefficients.

Second, we compute simple bilateral local network statistics that measure the intensity of a

bilateral trading relationship based on a rolling window of size Trw = 5 (one five-day business week).

As a simple measure of bilateral relationships, we compute the number of loans given from bank i to
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bank j during periods t′ = {t− Trw + 1, ..., t} and denote this variable by

lrwi,j,t =
∑
t′

li,j,t′ ,

where the sum runs over t′ = {t−Trw + 1, ..., t}. We then consider for each t the correlation between

current access and past trading intensity, and between current interest spreads (for granted) loans

and past trading intensity,

Corr(li,j,t, lrwi,j,t) and Corr(ri,j,t, lrwi,j,t).

All described network statistics are computed for the network of interbank lending at each time period

t such that we obtain a sequence of network statistics. We then obtain the unconditional means,

variance and/or autocorrelation of these sequences as auxiliary statistics and base the parameter

estimations on the values of the auxiliary statistics only.

Appendix D Comparative Statics of Network Structures

In this section, we vary the structural parameters and analyze how the network structure responds as

characterized by the auxiliary statistics. Appendix Figure 1 shows how the mean density, reciprocity,

skewness of out-degree and in-degree distribution, mean monitoring and mean search respond to

changes in structural parameters by +/– 10 percent from their estimated values θ̂T . Specifically, we

focus on varying the coefficient of monitoring (βφ,1) in Equation (3), the autoregressive coefficient

of the log perception-error variance (γσ) in Equation (1) and the parameter that determines the

location of the logistic link probability function (αλ), while holding constant all other parameters at

the estimated values.

In the left panel, we see that an increase in the persistence of the log perception-error variance

leads to a lower network density and a higher fraction of reciprocal lending relationships. Moreover,

for the plotted range of values of γσ, both the in- and out-degree skewness exhibit a hump shaped

form. For a low persistence in credit-risk uncertainty, an initial increase in γσ leads to higher

skewness of the degree distributions, in particular the in-degree becomes more asymmetrically

distributed. Economically, as the persistence of credit-risk uncertainty increases, some banks lose
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Appendix Figure 1: Comparative Statics of Network Statistics
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Notes: Simulated mean of network statistics as a function of key structural parameters related to credit-risk uncertainty
(γσ), efficacy of peer monitoring (βφ,1), and search frictions (αλ). Parameters range from +/–10 percent around
estimated values, holding fixed all other parameters. Each figure is based on 5,000 MC repetitions, each with T = 500.
Left (right) axes correspond to solid (dashed) lines.
Source: Authors’ calculations.

trading partners—which potentially cuts off their access to the interbank market—while few highly

connected banks can still maintain sufficiently many lending relations (these money center banks are

intensively monitored, as they are frequent large-volume borrowers). As the uncertainty increases

further, however, lender banks will also occasionally refrain from providing credit to money center

banks, and the skewness decreases again. In addition, more persistent uncertainty leads to higher

spreads of granted loans and decreases monitoring efforts due to lower profitability.

The network shows a qualitatively similar response to a local increase in the marginal effect of

monitoring on the added information; specifically, the density decreases and lending becomes more

reciprocal (center panel). At the same time, the average spread of granted loans increases and banks

on average reduce peer monitoring efforts (bottom plot). The decline in monitoring occurs because
∂πi,t

∂mi,j,t∂βφ,1
|θ=θ̂ < 0 for sufficiently large mi,j,t, in particular at the expansion point of the first order

conditions. Intuitively, banks’ steady-state monitoring levels are such that uncertainty is already

relatively low, and an increase in βφ,1 further reduces the marginal benefits from monitoring. To
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maintain the equality between the (constant) marginal cost and benefit, it is necessary to reduce

monitoring efforts. The results confirm our findings where we compare the results for the estimated

model with those for a model without monitoring (βφ,1 = 0).

The right panel reveals that if banks need to invest more to maintain the same link probability, less

trading occurs and lending becomes less reciprocal because some banks will not find it profitable to

maintain some of their trading relationships. However, as the large increase in the in-degree skewness

suggests, at the borrower level, the reduction in lending partners is again asymmetrically distributed.

In particular, as the cost of link formation increases, borrowing becomes more concentrated toward

few highly connected core banks. At the same time, the reduction in out-degree skewness reflects

that highly connected lenders lose some of their borrowers that don’t find it profitable anymore

to incur the search cost, thereby reducing the asymmetry of the degree distribution. Moreover,

while the average monitoring expenditures decrease as a reaction to the higher cost of linking, the

mean spread of granted loans decreases because those bank pairs that continue trading have lower

uncertainty about their counterparts.
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Appendix E Summary Statistics

Appendix Table 2: Descriptive Statistics of Dutch Interbank Network

Statistic Mean Std Autocorr Skew Kurtosis

Density 0.0212 0.0068 0.8174 0.8667 3.1983
Reciprocity 0.0819 0.0495 0.2573 0.2903 2.8022
Stability 0.9818 0.0065 0.8309 –0.8590 3.0503
Mean Out-/In-degree 1.0380 0.3323 0.8174 0.8667 3.1983
Std Out-degree 1.8406 0.4418 0.6882 0.0553 2.4326
Skew Out-degree 2.8821 1.0346 0.7035 0.6074 2.4572
Mean In-degree 1.0380 0.3323 0.8174 0.8667 3.1983
Std In-degree 1.6001 0.4140 0.6880 0.6997 3.4529
Skew In-degree 2.4030 0.8787 0.6576 0.6714 2.7434
Mean Clustering 0.0308 0.0225 0.4149 0.7900 3.2473
Std Clustering 0.0880 0.0490 0.3587 0.1561 2.7280
Skew Clustering 3.7367 1.5454 0.1213 –0.2213 3.1281
Avg Log Volume 4.1173 0.2818 0.4926 –0.2820 2.8220
Std Log Volume 1.6896 0.1685 0.3623 0.1541 3.4546
Skew Log Volume –0.3563 0.2818 0.2970 –0.0669 3.2151
Avg Spread 0.2860 0.3741 0.9655 1.1044 2.6965
Std Spread 0.1066 0.0632 0.7865 1.6668 6.8848
Skew Spread 0.6978 1.6399 0.5492 0.6832 2.9469
Corr(ri,j,t,lrwi,j,t) –0.0716 0.1573 0.4066 0.0817 2.8539
Corr(li,j,t,lrwi,j,t) 0.6439 0.0755 0.4287 –0.7653 4.2833

Notes: The table shows moment statistics for different sequences of network statistics and cross-sectional correlations
that characterize the sequence of observed Dutch unsecured interbank lending networks. The statistics are computed
on a sample of daily frequency from February 18, 2008, to April 28, 2011.

67


