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1 Introduction

In recent years, economists have become increasingly interested in analyzing social and economic

networks; an overview of the early literature is provided by Jackson (2008). These networks arise

naturally in many fields of economics. Key examples are the input-output matrix of an economy,

international trade relationships, and interbank lending networks. The relevance of studying

such networks is evident, since the interactions of economic agents, such as firms, households,

and governments, are generally at the core of economic activity. However, the econometric tools

necessary for the empirical analysis of data that reflect pairwise interactions between economic

agents, which we refer to as network data, are still in their infancy. In particular, most existing

statistical methods focus on static networks and do not address models of the dynamic behavior

of time-varying networks; see also the discussions in Kolaczyk (2009).

In this study, we develop a dynamic modeling framework for analyzing network data. In

particular, we propose a dynamic factor network model to analyze time-varying heterogeneity

in a binary link formation. Our model formulation for the binary observation density is based

on a signal that separates the cross-section from the time dimension. We incorporate dynamics

into the model using a dynamic factor approach with a parametric law of motion for the

latent factors that we cast into state space form. We take into account the network structure

by modeling the link-specific factor loadings as random vectors that arise from a stochastic

blockmodel structure based on latent node-level variables. The associated link probabilities of

the network are modeled as functions of latent dynamic stochastic variables. Our proposed

modeling framework is flexible, but also parsimonious, and it allows for the analysis of various

features in network data, such as the potential for clustering, the tendency of link formation

among similar nodes (homophily notion), and the phenomenon that similar nodes may relate

to other nodes in the same way (equivalence notion).

While our proposed dynamic factor model is straightforward and transparent by nature,

parameter estimation, signal extraction of the dynamic factors and the stochastic loadings, and

the econometric analysis generally are intricate tasks for which simulation-based methods are

needed. We show that our model formulation allows for efficient simulated maximum likelihood

estimation, using importance sampling procedures to integrate out all random effects—in the
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time, node, and link dimension—from the joint distribution of the observed variables. For

this purpose, we propose an importance sampler that disentangles the integration in the cross-

section (nodes and links) and time dimension. In particular, we adopt an importance sampler

for which an approximating linear, Gaussian, state space model is used to draw samples of the

latent factors. For integration of the latent node- and link-specific random variables that arise

from the stochastic block structure of the factor loadings, we devise an importance sampler

based on a variational approximation to the correct conditional distribution.

The method of importance sampling is detailed in Ripley (1987) and is explored for non-

Gaussian, nonlinear, state space models by Shephard and Pitt (1997) and Durbin and Koopman

(1997). Modifications, further developments, and applications in the context of state space time

series models are presented by Richard and Zhang (2007), Jung, Liesenfeld, and Richard (2011),

and Koopman, Lucas, and Scharth (2014). In these contributions, the main focus is on uni-

variate and multivariate time series applications. For cross-section models with non-Gaussian

and nonlinear features, importance sampling methods have been developed by Hajivassiliou

(1990), Geweke (1991), Keane (1994), and Hajivassiliou, McFadden, and Ruud (1996). The

simultaneous treatment of both cross-section and time series dimensions by importance sam-

pling methods has been treated by Liesenfeld and Richard (2010) and Mesters and Koopman

(2014). Our method is closely linked with this branch of literature, but we adopt and modify

these simulation-based methods in the novel context of network blockmodels combined with

dynamic factor structures.

The treatment of our dynamic network model requires the handling of high-dimensional

integrals, and we therefore must rely on computationally efficient importance sampling methods.

For this purpose, we show that our dynamic binary network data can be collapsed into a low-

dimensional binomial vector series, which is used to sample the time-varying effects from the

importance densities. In particular, we collapse the cross-sectional dimension of the network

data without compromising any information that is needed to sample the time-varying effects.

Such transformations have been introduced by Jungbacker and Koopman (2015) and are used

to simulate random effects in ordinary panel data models by Mesters and Koopman (2014) in

order to achieve large computational savings when evaluating the Monte Carlo likelihood. Due
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to our specific model structure, we are able to improve upon these methods considerably by

collapsing the cross-sectional dimension using transformations that do not involve any costly

matrix inversion or decomposition method. Indeed, even for networks with a small number of

nodes, the number of bilateral relationships that define the cross-sectional dimension is large.

In such cases, the collapsing method of Jungbacker and Koopman (2015) is prohibitively costly.

Our proposed dynamic factor network model is embedded in a rich literature on block-

models, random effects, and mixture models. The blockmodel can be regarded as the current

workhorse in the statistical analysis of time-invariant networks; see, among others, Wasserman

and Faust (1994) and Nowicki and Snijders (2001). For more recent developments on block-

models, we refer to Xing, Fu, and Song (2008) and Airoldi, Blei, Fienberg, and Xing (2008).

The core-periphery models are special, non-stochastic versions of blockmodels, and they have

gained interest in the financial literature. For example, the structure of the German interbank

lending market has been described as blocks of core and peripheral banks by Craig and von

Peter (2014). Similar studies have been carried out for Italian and Dutch data by Fricke and

Lux (2015) and van Lelyveld and in ’t Veld (2014), respectively. We contribute to this lit-

erature by introducing a time-varying link density in a stochastic blockmodel using dynamic

latent factors. However, we do not base the challenging task of parameter estimation on an

approximate model, which is the common approach to inference for stochastic blockmodels.

Instead, we develop importance sampling methods to perform maximum likelihood parameter

estimation based on the true model. Related inference procedures for (static) network models

with random effects include Bayesian parameter estimation procedures as discussed in Hoff,

Raftery, and Handcock (2002). Our model belongs to this class of models since it is assumed

that the link probabilities are generated as functions of latent node-specific random vectors.

For example, the function can rely on an arbitrary distance in a similar way, as it is used for

random cross-section effects in panel models. Since our model relies on discrete factor loadings,

it is also related to models of grouped patterns of heterogeneity in panel data; see, for example,

Bonhomme and Manresa (2015). More broadly, we can relate our model with its challenges in

parameter estimation to the literature on mixture state space models; see Frühwirth-Schnatter

(2006) for a textbook treatment.
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A Monte Carlo study is carried out to investigate the finite sample properties of our novel

importance sampling procedure. The results suggest that the estimators are well centered

around their associated true parameter values, even for networks with a small number of nodes.

The results also suggest that the efficiency of the estimator increases in both the time and

cross-section dimensions. Finally, the results show large computational gains of our proposed

binomial collapsing, with computational gains growing fast with the size of the network. For

example, for a moderate network with 100 nodes and 250 time periods, the construction of

the importance sample with our proposed methods is 10 times faster than using the collapsing

method of Jungbacker and Koopman (2015).

In the empirical study, we analyze credit-risk spillovers between 61 main financial firms

throughout the world from 2007 through 2015. To construct the credit-risk spillover networks,

we follow Billio, Getmansky, Lo, and Pelizzon (2012) to compute all significant positive Granger

causalities from all pairwise bivariate VAR models of the daily changes of the CDS spreads of

these 61 financial firms. To measure the time evolution, we estimate these Granger-causalities

for 115 monthly subsamples and analyze the time evolution using the proposed dynamic factor

network model. Our key findings are as follows. The estimated latent block structure suggests

that we can partition the nodes into two groups. The first group is associated with large

U.S. banks (such as Bank of America and Goldman Sachs) and large European banks (such

as Deutsche Bank or Credit Agricole). The second group consists of the remaining (mostly)

European banks, which supposedly have a smaller global scope. The estimated latent factors

suggest a strong increase in spillovers within and between all groups during the 2008 financial

crisis and the sovereign debt crisis. The heterogeneous effects show that spillovers from global to

local banks are most sizeable, while spillovers from local to global banks are generally smaller.

Moreover, spillovers among local European banks became elevated during the European debt

crisis and again from 2014 until the end of our sample period.

The remainder of the paper is structured as follows. Section 2 formally describes the dy-

namic factor network model in detail. In Section 3, we develop our simulated maximum likeli-

hood method for parameter estimation. Section 4 evaluates the performance of our estimation

method in a simulation study. In Section 5 we apply our model to measure time-varying credit-
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risk spillovers in the financial industry, and Section 6 concludes.

2 Model Specification

A dynamic network is described by a set of nodes N that are connected by a potentially time-

varying set of links Lt.1 The existence of a link between nodes i and j, i, j ∈ N = {1, 2, ..., N},

where N is the number of nodes, at discrete time periods t = 1, ..., T is denoted by the binary

variable yi,j,t ∈ {0, 1} that equals one if the link exists, and zero otherwise. In general, networks

may be directed or undirected. For directed networks, a link from (sender) node i to (receiver)

node j at time t does not imply a reciprocal link from node j to node i at time t, that is

yi,j,t 6= yj,i,t. For undirected networks, the direction of the relationship does not matter and

we have yi,j,t = yj,i,t.2 The dynamic network can be represented by a sequence of adjacency

matrices {Yt}Tt=1, where each N × N adjacency matrix Yt collects the link variables yi,j,t; it

has its (i, j) element equal to yi,j,t and has zeros on the main diagonal. The adjacency matrix

Yt provides a full representation of the network at time t. In our analysis, we focus on a

vectorization of the adjacency matrix Yt and define yt = vec(Yt), where vec(·) is the vectorization

operator that stacks the N × 1 columns of Yt on top of one another. The dimension of yt is

then N2 × 1.

We are mainly concerned with the treatment of directed networks, although our framework

easily accommodates undirected networks; see the discussion in Appendix A. We model each

link between any two nodes i and j in the network at time t by the binary random variable

yi,j,t ∼ B(φi,j,t), (1)

where B(·) is the Bernoulli distribution and the probability of success φi,j,t ∈ (0, 1) is formulated
1In graph theory, nodes are also referred to as vertexes, and links are referred to as edges. Our

exposition is based on dynamic networks with a constant number of nodes, but in Appendix A we show
that our framework also allows for time-varying network sizes.

2In our treatment, the first index relates to the sender node, the second to the receiver node. This
distinction is only relevant for directed links. For notational convenience, but without loss of generality,
we abstract from self-loops in this paper and we set yi,i,t = 0∀i ∈ N .
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in terms of the logistic transformation of the signal θi,j,t ∈ R, that is

φi,j,t = exp(θi,j,t)
1 + exp(θi,j,t)

. (2)

A key part of our model is the specification for the time-varying link-specific signal θi,j,t that

takes the multiplicative form given by

θi,j,t = z′i,jft, (3)

where ft ∈ RM is a vector of common dynamic factors and zi,j is a pair-specific factor loading

with zi,j ∈ ZM := {{0, 1}M :
∑M
m=1 zi,j,m = 1} with dimension M ≥ 1, where zi,j,k is the kth

element of column vector zi,j for k = 1, . . . ,M . Hence, zi,j selects an element of ft. The signal

specification given in Equation (3) separates the cross-section and the time series features of

our model by means of the M × 1 vectors zi,j and ft, respectively. Both vectors are assumed

to be independent random vectors that come from certain parametric distributions.

2.1 Cross-Sectional Features of Model

We incorporate the cross-sectional network dependencies by means of the pair-specific loading

vector zi,j and by adapting a stochastic blockmodel structure that has become popular in

sociological and statistical network analysis; see, for example, Wasserman and Faust (1994)

and Nowicki and Snijders (2001). In particular, we assume that zi,j is a multinomial random

vector that can be written as a Kronecker tensor product,

zi,j = zi→j ⊗ zj←i, (4)

where the K × 1 vector zi→j ∈ ZK := {{0, 1}K :
∑K
k=1 zi→j,k = 1} is an indicator vector that

determines the latent group membership of sender node i in the directional interaction with

receiver node j, where zi→j,k is the kth element of zi→j , for k = 1, . . . ,K. Similarly, the K × 1

vector zj←i ∈ ZK := {{0, 1}K :
∑K
k=1 zj←i,k = 1} is an indicator vector that determines the

latent group membership of receiver node j in the directional interaction with sender node i,
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where zj←i,k is the kth element of zj←i, for k = 1, . . . ,K.3 We model the link-specific loadings

as a function of two node-specific vectors. In particular, for each node i in the network, the

latent pair-specific group membership vectors are modeled by the hierarchical structure

zi→j , zi←j
iid∼ MN (πi) for all j, πi = exp(γi)∑K

k=1 exp(γi,k)
, γi

iid∼ N (µ,Σγ), (5)

where MN (·) indicates the multinomial distribution with multinomial probability vector πi

that is specified as an element-wise logistic transformation of the K×1 vector γi, with γi being

drawn from a multivariate Gaussian distribution. The K × 1 mean vector µ and the K × K

variance matrix Σγ are unknown.4 The model structure in terms of Equation (4) can be directly

expressed as zi,j ∼MN (δi,j) with probability vector δi,j = πi ⊗ πj .

2.2 Time Series Features of Model

To incorporate time-varying link probabilities into the model, we use a dynamic latent factor

approach. We assume that the M × 1 vector of common factors ft that governs the dynamics

of the link probabilities evolves according to a standard linear Gaussian state transition

ft+1 = Φft + ξt, ξt
iid∼ N (0,Σξ), (6)

where Φ is theM×M autoregressive coefficient matrix and ξt is treated as anM×1 independent

Gaussian innovation vector with mean zero and variance matrix Σξ. The initial distribution

for f1 is also assumed to be a Gaussian vector with mean zero and variance matrix V , where

V is the stationary solution for the matrix equation V = ΦV Φ′+ Σξ (for a discussion on initial

conditions, see Durbin and Koopman 2012). The dynamic process for ft is effectively a vector

autoregressive process of order 1, that is, a VAR(1), but it can be extended toward any linear

dynamic system that relies on Gaussian innovations including higher-order vector autoregressive

moving average processes.
3Since each node can be in one of the K groups, each pair of nodes can be in M = K2 groups.

Moreover, since we are modeling directional interactions, we have zj←i 6= zi←j and zi←k 6= zi←l.
4More precisely, we only have K − 1 degrees of freedom because the logistic transformation is not

identified otherwise. In the exposition we abstract from making this explicit for ease of notation.
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2.3 Discussion of Model

The specification of the vectors zi,j and ft completes the description of the dynamic factor

network model. The resulting model is effectively a mixture dynamic factor model, where

the random vector zi,j selects the factors in ft that are assigned to observation pair (i, j). The

time-invariant component weights δi,j capture the relational structure inherent in network data,

where links involving the same node i are likely to be correlated. The blockmodel formulation

for the factor loadings is flexible enough to represent stylized facts in network data, such as

core-periphery structures, potential clustering, homophily, and stochastic equivalence; see the

discussion, for example, in Wasserman and Faust (1994), Kolaczyk (2009) and Jackson (2008).

In particular, our model allows for clustering, which is not accommodated by other latent

factor network models, as described in Hoff, Raftery, and Handcock (2002). In our modeling

framework, two pairs of nodes, say (i, j) and (k, l), are stochastically equivalent when zi,j = zk,l

because they share the same link probability by construction.

Our model is related to Koopman and Mesters (2014), who propose a stochastic dynamic

factor model that treat the factor loadings as a composite of Gaussian random vectors. Here,

we also model the time-varying heterogeneity by a dynamic factor model with both stochastic

loadings and factors. However, in our model we propose discrete random factor loadings gener-

ated by a stochastic block structure that are different from stochastic Gaussian factor models,

to account for the network-specific modeling challenges. Moreover, our model is specific for the

analysis of binary data, which prevents an analytical solution to the filtering and smoothing

problem.

Overall, the modeling choice introduces a powerful, yet parsimonious and stylized modeling

framework for the time-varying, cross-sectional dependency in network data. It allows us to

construct a computationally efficient importance sampling procedure for maximum likelihood

parameter estimation. In particular, from an econometric inference point of view, our goal is to

estimate the parameters of the model and to obtain conditional distributions of the latent link-

and node-specific group memberships as well as the latent dynamic factors. In the analysis, we

will make use of many of the well-established tools in modern state space analysis. It is therefore

insightful to write the model using matrix notation. In particular, we can write the signal for
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all link variables at time t in compact form as θt = Zft, where the N2 ×K2 selection matrix

Z stacks the row vectors z′i,j below one another, i.e., Z = [z′1,1, ..., z′i,j−1, z
′
i,j , ..., z

′
i,N , z

′
i+1,1, ...].

We then obtain yt ∼ p(yt|θt), which resembles the close relationship of the observation density

of a nonlinear non-Gaussian state space model as discussed in Durbin and Koopman (2012).

3 Maximum Likelihood Estimation

In this section, we discuss the estimation of the parameter vector ψ that collects the elements of

the vector and matrices µ, Σγ , Φ, and Σξ from model Equations (5) and (6) by the method of

maximum likelihood. The likelihood function is defined as L(ψ) = p(y;ψ), where p(y;ψ) is the

joint density of all observations y = {yt}Tt=1 obtained from integrating out the latent variables

from the complete data likelihood

L(ψ) =
∫∫∫

p(y, f, z, γ) dfdzdγ,

with the latent variable sets given by f = {ft}Tt=1, z = {zi,j}Ni,j=1, and γ = {γi}Ni=1. Consider

the contribution of observation yi,j,t to the complete data likelihood conditional on the vector

of common factors ft, which is given by

p(yi,j,t, zi,j , γi, γj |ft) =
M∑
m=1

p(yi,j,t|ft, zi,j,m = 1)δi,j,mp(γi)p(γj),

where δi,j,m = (πi ⊗ πj)m = Pr(zi,j,m = 1|γi, γj) equals the probability that the observation

(i, j) is in the m-th group. We have used Bayes’ rule and the independence assumptions of the

model, while we have integrated out z analytically to obtain the expression above.

Given the model structure, we can further factorize the complete data likelihood in a product

of conditional densities across pairs and time periods. We then have the likelihood function as

L(ψ) =
∫∫ T∏

t=1
p(ft|ft−1)

N∏
i=1

N∏
j=1

[
M∑
m=1

δi,j,mp(yi,j,t|ft, zi,j,t,m = 1)
]
p(γi)p(γj) dfdγ,
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which we can write more compactly by writing the sums as integrals as

L(ψ) =
∫∫∫

p(y|f, z)p(f)p(z|γ)p(γ) dfdzdγ = Ep(y|f, z), (7)

where the expectation is with respect to p(f, z, γ) = p(f)p(z|γ)p(γ). Equation (7) shows that

the likelihood function can be interpreted as an expectation of p(y|f, z). However, the evaluation

of the likelihood function involves a high-dimensional integral, which does not have a closed-

form solution. In particular, integration with respect to the cross-sectional latent variable γ

gives rise to various problems and is analytically intractable.

We propose to evaluate the likelihood function by Monte Carlo integration, which replaces

the integration with an average of conditional densities that relies on draws from sampling

distributions. A simple frequency-based estimator of the likelihood function is given by

L̄(ψ) = 1
S

S∑
s=1

p(y|f (s), z(s)),

where z(s) and f (s), for i = 1, . . . , S, denote samples that are jointly drawn from the density

p(f)p(z|γ)p(γ). To draw a sample for f (s), we first require a sample for γ(s). This estimator is

consistent but can be highly inefficient and might require a very large number of draws before

convergence is achieved. It is numerically more efficient to adopt the method of importance

sampling, which relies on generating draws that are more often in high probability regions

of the latent variables; see Ripley (1987) for a general discussion. The importance sampling

representation of the likelihood function is given by

L(ψ) =
∫∫∫

p(y|f, z, γ) p(f, z, γ)
g(f, z, γ|y)g(f, z, γ|y) dfdzdγ,

where g(f, z, γ|y) denotes the importance density function. The likelihood function then reduces

to an expectation with respect to the importance density, Eg[p(y|f, z) p(f, z, γ)/g(f, z, γ|y)],

which can be numerically evaluated via Monte Carlo integration. Hence, we sample f (s), z(s)
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and γ(s) from the importance density g(·|y) and estimate the likelihood as

L̂(ψ) = 1
S

M∑
s=1

p(y|f (s), z(s)) p(f (s), z(s), γ(s))
g(f (s), z(s), γ(s)|y)

.

This estimator is consistent, and conditions under which the central limit theorem applies are

discussed by Geweke (1989) and can be empirically tested as discussed by Monahan (1993) and

Koopman, Shephard, and Creal (2009); see also the discussion in Appendix C. We can then

use L̂(ψ) to obtain the simulated maximum likelihood estimator ψ̂ as

ψ̂ = arg max
ψ

L̂(ψ; y), (8)

where the maximization with respect to the parameter vector ψ is done numerically. To let

the simulated estimator L̂(ψ; y) be a smooth function of ψ, we use the same initial random

seed value when generating the necessary samples, for each likelihood evaluation. In practice,

the logarithm (log) of the likelihood function is maximized for numerical purposes. The log

of L̂(ψ; y) is a biased estimator of logL(ψ; y) but a standard bias correction based on a first-

order Taylor expansion can be adopted for this purpose; see Durbin and Koopman (2012) for a

discussion on such matters.

Next we discuss the construction of a computationally fast importance sampler from which

it is easy to sample. The computational speed and convenience are important given the high

dimensions that we are faced with, even for moderate networks, as the number of links grows

quadratically in the number of nodes. We construct two importance samplers simultaneously:

one for the cross-sectional latent variables, and one for the dynamic factors in the time di-

mension. Using the independence assumption from the model, it is justified to separate the

treatments for (z, γ) and f . Therefore, we propose to sample (z, γ) from g(z, γ|y) and f from

g(f |y). However, g(z, γ|y) and g(f |y) still depend on f and (z, γ), respectively, by means of

the data y. For this purpose, we fix the random variables to their conditional modal values f̂

and (ẑ, γ̂) for obtaining the respective samplers g(z, γ|y, f̂) and g(f |y, ẑ, γ̂).
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3.1 The Cross-Sectional Importance Sampler

For constructing the cross-sectional importance sampler g(z, γ|y, f̂), with f̂ being the modal

value, we propose to use the generalized mean field method as a variational approximation to the

true conditional distribution p(z, γ|y, f̂). Variational approximation methods are deterministic

techniques for making approximate inference in statistical models by maximizing a lower bound

of the log-likelihood. In particular, these methods rely on choosing a family of variational

distributions and then selecting a particular distribution from this family by minimizing the

Kullback-Leibler divergence between the true conditional p and the approximate conditional g

with respect to the variational parameters.5

In our context, we use a generalized mean field approximation, where we approximate the

intractable conditional density p(z, γ|y, f̂) by a product of simpler marginals from which it is

easy to sample. We therefore factorize the approximate conditional density into clusters for (γi

and zi→j , zj←i) as

g(γ, z|y, f̂) =
N∏
i=1

gγ(γi)
N∏
i=1

N∏
j=1

gz(zi→j , zj←i),

where gγ(·) and gz(·) are the variational marginal distribution for each cluster. We thereby

follow Xing, Jordan, and Russell (2003), who show that under the generalized mean field ap-

proximation the optimal solution of each cluster’s marginal distribution is isomorphic to the

true conditional distribution of the cluster given its expected Markov blanket.6 Formally, this

factorization gives the two equations

gγ(γi) = p(γi|〈zi→·〉gz , 〈zi←·〉gz) (9)

gz(zi→j , zj←i) = p(zi→j , zj←i|yi,j,t, f, 〈γi〉gγ , 〈γj〉gγ ), (10)

where 〈·〉f denotes the expected Markov blanket, that is, all children, parents, and co-parents

5Variational approximation methods are by now widely employed in computer science; compare, for
example, Jordan, Ghahramani, Jaakkola, and Saul (1999) and Xing, Jordan, and Russell (2003) in the
context of blockmodels. Variational approximation methods recently also started to attract attention
in statistics and econometrics, see Ormerod and Wand (2010). In Appendix B, we present a brief
introduction for the unfamiliar reader.

6In directed graphical models, the Markov blanket is the set of parents, children and co-parents of a
given node (co-parents are nodes that have a child in common with the given node). In the undirected
case, the Markov blanket is simply the set of neighbors of a given node.
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of the cluster, under a variational distribution f . The two equations define a fixed point for

gγ(·) and gz(·). The solution to the fixed-point problem is obtained by sequentially updating

the parameters of the marginal distribution of one cluster, while fixing the parameters of the

marginals of all other clusters.

The updating formula for the cluster marginal for zi→j , zj←i given 〈γi〉gγ , 〈γj〉gγ is obtained

as a multinomial distribution with K2 possible outcomes

gzi,j (zi→j , zj←i) ∝ p(zi→j |〈γi〉gγ )p(zj←i|〈γj〉gγ )
T∏
t=1

p(yi,j,t|zi,j , ft), (11)

with the (uv)-th element of the K2 × 1 multinomial probability vector δ̃i,j given by

δ̃i,j,uv = 1
c

exp(〈γi,u〉gγ + 〈γj,v〉gγ )
T∏
t=1

(
exp(ft,uv)

1 + exp(ft,uv)

)yi,j,t ( 1
1 + exp(ft,uv)

)1−yi,j,t
,

where c is a normalizing constant that ensures that the probabilities sum up to one, that is,∑K
u=1

∑K
v=1 δ̃i,j,uv = 1. Here, we have introduced an injective mapping between the double-

digit index (uv), with u, v = 1, . . . ,K and the single-digit index m = 1, . . . ,M = K2, that is

determined by the Kronecker product δi,j = πi ⊗ πj .

We can also compute the expectation of the group indicators zi→j and zj→i under the

variational approximation as

〈zi→j,u〉gz =
K∑
v=1

δ̃i,j,uv, and 〈zj←i,v〉gz =
K∑
u=1

δ̃i,j,uv,

where zi→j,u is the u-th element of zi→j,u, and, similarly, zj←i,v is the v-th element of zj←i,v.

Moreover, for the updating formula of γi we have

gγi(γi) ∝ p(γi|µ,Σγ)p(〈zi→·〉gz , 〈zi←·〉gz |γi)

= N (γi;µ,Σγ) exp(〈mi〉′gzγi − (2N − 2)C(γi)),

where the k-th element of 〈mi〉gz is given as 〈mi,k〉gz =
∑
j 6=i(〈zi→j,k〉gz + 〈zi←j,k〉gz), and

C(γi) = log(
∑K
k=1 exp(γi,k)) is the normalization constant that prevents a close-form solution

for the integration of gγi(γi). We approximate C(γi) by a second-order Taylor expansion around
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γ̂i, given by C(γi) ≈ C(γ̂i) + g′(γi − γ̂i) + 1/2(γi − γ̂i)′H(γi − γ̂i), where g denotes the gradient

vector and H is the Hessian matrix. Using this approximation and some basic algebra, we

derive at the approximating variational density gγi(γi) = N (γ̃i, Σ̃γi) with mean

γ̃i = µ+ Σ̃γi (〈mi〉gz − (2N − 2)[g −H(γ̂i − µ)]) ,

and variance matrix

Σ̃γi = (Σ−1
γ + (2N − 2)H)−1.

The parameter updating continues until convergence. This algorithm guarantees convergence

to a local optimum; see the discussion in Xing, Fu, and Song (2008).

3.2 The Time Series Importance Sampler

To sample the latent dynamic factors, we specify g(f |y, ẑ, γ̂) as the conditional density obtained

from a linear Gaussian approximating model that we derive conditional on the modal values

ẑ, γ̂. Conditional on a value of z, such as the mode, we can write the model as a partial nonlinear

non-Gaussian state space model given by

yt ∼ p(yt|θt), θt = Zft, ft+1 = Φft + ξt, ξt ∼ N (0,Σξ),

where the matrix Z is fixed for any given value of z, such as the mode. The construction

of an importance density for θt conditional on all observations y, and on (ẑ, γ̂), relies on an

approximating linear Gaussian state space model for which the standard Kalman filtering and

smoothing recursions can be applied. Specifically, we consider here an approximation method

based on the equalization of the conditional mode and the variance matrix of the smoothing

densities p(θ|y) and g(θ|y), where g(θ|y) refers to the smoothed approximating Gaussian density;

see Shephard and Pitt (1997) and Durbin and Koopman (1997). On the basis of this method,

we maintain the VAR(1) specification for ft, but use a linear Gaussian observation equation

yi,j,t = ci,j,t + ẑ′i,jft + ui,j,t,
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where ui,j,t
iid∼ N (0, σ2

ui,j,t) and ci,j,t is the intercept. The unknown values are the intercept ci,j,t

and the variance σ2
ui,j,t , and both are treated as parameters in solving the set of equations

∂ log p(yi,j,t|θi,j,t)
∂θi,j,t

= ∂ log g(yi,j,t|θi,j,t)
∂θi,j,t

,
∂2 log p(yi,j,t|θi,j,t)

∂θi,j,t∂θi,j,t
= ∂2 log g(yi,j,t|θi,j,t)

∂θi,j,t∂θi,j,t
.

The solutions can be obtained using an iterative process, and during this process the variables

ci,j,t and σ2
ui,j,t become functions of the conditional mean (and mode) f̂ . The iterations continue

until a level of convergence with respect to f̂ ; for more details we refer to the discussion in

Durbin and Koopman (2012). After convergence of this iterative procedure, we adopt the

resulting linear Gaussian state space model and use it for simulating samples for f from the

importance sampler. These draws are obtained from the computationally efficient simulation

smoother as developed by Durbin and Koopman (2002).

A particular challenge in network analysis is that the dimension of the observation vector yt

grows quadratically in the number of nodes N , since all N2 bilateral relationships in directed

networks are modeled. This makes a direct computation of the approximating linear model

computationally infeasible even for a small number of nodes N , as the Kalman filter and

smoother requires inversion of a full N2 × N2 matrix for each time index t. We therefore

collapse the large observation vector into a low-dimensional vector such that the observation

equation of the associated state space model changes. However, the collapse is done in a way

that maintains the information needed to compute the conditional density of the latent factors,

and it does not alter the dynamic equation for ft. The Kalman filter and smoother computations

only consider the low-dimensional collapsed system of equations.

In the context of dynamic factor models, Jungbacker and Koopman (2015) have proposed to

collapse the observation vector by pre-multiplying it with an appropriate non-singular matrix.

Since, for a given fixed value of z, our linearized dynamic factor network model corresponds to

a linear Gaussian state space model, we can apply this collapse method. For example, for a

panel data model with random effects in cross-section and time, the Jungbacker and Koopman

(2015) method has been successfully used by Mesters and Koopman (2014) to achieve significant

computational savings in the simulation-based estimation. However, in our case, this collapse
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method is computationally demanding.

3.3 A More-Efficient Time Series Importance Sampler

For our dynamic factor network model, for which the rows of the matrix Z are multinomially

distributed, it is possible to develop a computationally more-efficient collapse method that is

solely based on addition operators and does not involve any matrix multiplication, including

inversions and decompositions. We develop the method next. To obtain the smoothed estimate

of the M × 1 latent vector ft and its corresponding variance matrix, we can represent the high-

dimensional observation vector yt by a low-dimensional vector of dimensionM×1, without loss

of any information. Given the modal value ẑ of z, we construct the vector y∗t = (y∗1,t, . . . , y∗M,t)′

with elements y∗m,t =
∑
i,j yi,j,tẑi,j,m, where ẑi,j,m denotes the m-th element of the vector ẑi,j ,

with m = 1, ...,M . It follows that y∗m,t is binomially distributed with
∑
i,j ẑi,j,m number of trials

and probability of success exp(fm,t)/(1 + exp(fm,t)) in each trial. This follows immediately, as

conditional on the mode of z (the most likely group memberships), we can identify to which

component a particular observation yi,j,t belongs (with highest probability) and then count the

number of successes in each of the M components. The importance sampler is then obtained

from a linearization of the collapsed binomial model with observation equation

y∗m,t = c∗m,t + fm,t + u∗m,t, u∗m,t
iid∼ N (0, σ2

u∗
m,t

), (12)

where intercept c∗m,t and variance σ2
um,t are treated as unknown parameters. The dynamic

equation for ft remains as in Equation (6). The procedure for computing the mode f̂ is similar

to the description in the previous section, but is now computed directly in terms of ft rather

than θt = Zft. Further details of computing the mode are provided by Durbin and Koopman

(2012). The linearization based on the the collapsed model given here reduces the dimension

of the observation vector in the state space model from N2 to M = K2 without losing any

relevant information needed to extract the conditional density of the latent factors ft that govern

the group-specific link probability dynamics. Hence, our modification significantly reduces

the computations for the Kalman filter and smoother recursions, as in typical applications
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Figure 1: Algorithm to Construct the Importance Sampler, with ψ given

Initialize f̂ and γ̂ at random values;
while not converged do

Obtain variational approximation of p(z, γ|y, f̂);
while not converged do

Compute marginal distribution gzi,j(zi→j, zj←i) ∀i, j;
Compute marginal distribution gγi(γi) ∀i;

end
Obtain approximation of p(f |y, ẑ, γ̂);
Collapse observation vector yt to low-dimensional multinomial vector y∗t ;
while not converged do

Compute approximating linear-Gaussian state space model for y∗t ,
conditional on current mode f̂ ;
Apply Kalman filter and smoother to approximating model to update value
for mode f̂ ;

end
end

K2 << N2. In practice, and even for moderate values of N , the standard Kalman filter

implementation will be computationally too demanding. Moreover, our methods allow us to

avoid the large computational costs of matrix multiplications, inversions, and decomposition

that are needed in the method proposed by Jungbacker and Koopman (2015).

3.4 The Algorithm

The procedure for constructing the importance sampler for the dynamic factor network model

can be viewed as an algorithm that incorporates both the cross-section and time series dimen-

sions. The cross-sectional part is represented by the variational density gz(zi→j , zj←i) that still

depends on the dynamic factors ft; we fix this part at its current estimate of the mode. The

time series part is represented by the approximating linear Gaussian density g(f |y, z), where

we set z at its current estimate of the mode. This procedure iterates until convergence, where

in each step of the Newton-type algorithm, a new variational approximating model and a new

Gaussian approximating model are computed. The algorithm presented in Figure 1 summarizes

these steps for the construction of the importance sample.
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4 Monte Carlo Study

We conducted a simulation study to analyze the finite sample behavior of our proposed max-

imum likelihood estimation procedure for the dynamic factor network model. In this Monte

Carlo study, we consider a dynamic factor network model as a data generation process that

includes features resembling those from our empirical application, which we discuss in Section

5.

In particular, we consider a model for a directed network with K = 2 latent groups for the

nodes so that each pair of nodes may be assigned to four different clusters (M = K2 = 4), and

the vector of dynamic factors ft has dimension 4 × 1. The dynamic factors are generated as

four independent random walk processes. Hence, we have Φ = I4×4 and a diagonal variance

matrix Σξ, which we set as Σξ = diag(σ2
ξ,1, σ

2
ξ,2, σ

2
ξ,3, σ

2
ξ,4) = diag(0.5, 0.1, 0.03, 0.25) where

diag() represents a diagonal matrix with its values given by the arguments. The parameter

values for the normal distribution of γi are given by µ = −0.5 and Σγ = σ2
γ = 1.3. We only

need to specify a (K − 1)-dimensional normal distribution, as it is justified to fix one element

of γi to an arbitrary value (we set it to zero). We perform our simulation study for different

network sizes N = 25, 50, 100 and, for each network size, time series lengths of T = 50, 100, 250.

For computational purposes, each simulation exercise consists of 500 Monte Carlo repetitions.

The log likelihood function is computed using 500 simulated importance samples.

In Figure 2, we present the kernel density estimate for each parameter of the model. The

density estimate is based on the 500 maximum likelihood estimates from a simulation exercise,

with specific values for N and T . For all six parameters, the finite sample distribution of the

estimates are centred around the true parameter values (as indicated by a vertical line in the

graph) that we have adopted in our Monte Carlo study. Moreover, for an increasing network

size N and time series dimension T , the density becomes more concentrated around the true

parameter value. A particular finding is that for a small network of size N = 10 (which is

indicated by a dotted line in each graph), the sample distribution of the parameter estimates

has a large variance for all three time series dimensions.

Table 1 presents more-detailed results of the Monte Carlo study. In particular, it depicts

the root mean square error (RMSE) and the mean absolute error (MAE) for each of the six
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Figure 2: Finite Sample Distribution of ML Estimator
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We present the kernel density estimates for the simulated maximum likelihood estimators in finite sam-
ples, using our importance sampling procedure with S = 500 importance samples; see discussion in
Section 3. Simulation results are based on 500 Monte Carlo replications.
Source: Authors’ calculations.
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Table 1: Monte Carlo Results for Maximum Likelihood Estimation

T = 50 T = 100 T = 250

N = 25 N = 50 N = 100 N = 25 N = 50 N = 100 N = 25 N = 50 N = 100

σ2
ξ,1 RMSE 0.0171 0.0246 0.0096 0.0164 0.0105 0.0078 0.0097 0.0070 0.0043

MAE 0.0111 0.0071 0.0059 0.0118 0.0080 0.0058 0.0078 0.0056 0.0035
σ2
ξ,2 RMSE 0.0187 0.0132 0.0102 0.0199 0.0144 0.0104 0.0122 0.0088 0.0060

MAE 0.0135 0.0090 0.0070 0.0159 0.0102 0.0079 0.0098 0.0070 0.0047
σ2
ξ,3 RMSE 0.0429 0.0292 0.0216 0.0426 0.0308 0.0265 0.0296 0.0199 0.0172

MAE 0.0300 0.0182 0.0126 0.0304 0.0212 0.0183 0.0221 0.0152 0.0133
σ2
ξ,4 RMSE 0.0333 0.0260 0.0200 0.0319 0.0231 0.0206 0.0229 0.0171 0.0138

MAE 0.0241 0.0162 0.0113 0.0245 0.0173 0.0148 0.0181 0.0132 0.0108
µ RMSE 0.1131 0.0629 0.0377 0.1800 0.1265 0.0755 0.2529 0.1744 0.1191

MAE 0.0653 0.0299 0.0185 0.1179 0.0769 0.0467 0.1994 0.1353 0.0922
σ2
γ RMSE 0.0836 0.0401 0.0328 0.1412 0.0882 0.0542 0.1944 0.1267 0.0892

MAE 0.0448 0.0198 0.0135 0.0881 0.0542 0.0328 0.1479 0.0983 0.0686

The table shows the root mean square errors (RMSE) and the mean absolute errors (MAE) between the
true parameter values and the estimated parameter values using the ML importance sampling estimator
with S = 500 importance weights as outlined in Section 3. The simulation results are based on 500
Monte Carlo replications.

parameters, relative to their true values in the simulation study. The results for the four

variance parameters of the random walk processes, σ2
ξ,i, for i = 1, 2, 3, 4, show that, for a given

network size N , a larger time series dimension T reduces both the RMSE and the MAE, in

most cases. In particular, comparing the results for T = 250 with T = 50, we encounter a clear

reduction in the RMSEs. Similarly, for a given time series dimension T , the RMSE and MAE

of the variance parameter strictly decrease as the network size becomes larger. The results for

the parameters µ and σ2
γ , which, govern the cross-sectional dependence, reveal that, for a given

time series dimension T , an increasing network size N leads to RMSE and MAE reductions in

all cases. Interestingly, however, when we hold the network size N constant and increase the

time series dimension T , we do not find these reductions, but instead we find increases in the

RMSE and MAE. This phenomenon may indicate that the importance sampler may need to

account for possible heterogeneity when the dimension becomes larger.

Table 2 analyzes the fit of the approximating conditional densities for the latent variables ft,

γi, and zi,j . This table presents the RMSE and MAE values as measures of divergence between

the estimated mode of each of the approximating distributions relative to its true value that

20



Table 2: Monte Carlo Results for Latent Variable Estimation

T = 50 T = 100 T = 250

N = 25 N = 50 N = 100 N = 25 N = 50 N = 100 N = 25 N = 50 N = 100

ft RMSE 0.0743 0.0514 0.0403 0.0811 0.0498 0.0338 0.1165 0.0723 0.0525
MAE 0.1164 0.0809 0.0582 0.1094 0.0703 0.0439 0.1283 0.0822 0.0530

γi RMSE 0.0723 0.0675 0.0911 0.0556 0.0289 0.0147 0.0536 0.0272 0.0136
MAE 0.1635 0.1219 0.0908 0.1441 0.1050 0.0740 0.1400 0.0999 0.0716

zi,j RMSE 0.0223 0.0208 0.0230 0.0144 0.0082 0.0066 0.0113 0.0055 0.0028
MAE 0.0863 0.0837 0.0792 0.0357 0.0304 0.0276 0.0120 0.0070 0.0048

We present the root mean square error (RMSE) and the mean absolute error (MAE) between the
estimated mode of the latent variables f , z, and γ as implied by the approximating importance sampling
distribution with S = 500 importance weights and the true realized values in each simulation. The
simulation results are based on 500 Monte Carlo replications.

was used for simulating data. The results indicate that for the latent factor f , we obtain

smaller RMSE and MAE values when we increase the network size N and keep the time series

dimension T constant. However, when we keep N constant and increase T , we do not have

monotonically decreasing RMSE and MAE values. For the cross-sectional latent variables γi

and zi,j we have that increasing N and/or T reduces the RMSE and MAE clearly (except with

a very small T = 50 and when increasing N does not monotonically decrease the RMSE, but

does decrease the MAE). We can conclude that for all three latent variables, when increasing

both N and T , we obtain more precise estimates in terms of RMSE and MAE.

Table 3 compares the computational cost of constructing the importance sampler for the

latent dynamic factor by showing the ratio of the computing times between the importance

samplers, based on the collapsed observational model of Jungbacker and Koopman (2015) and

based on our newly approximating binomial model. Further results on computing times are

presented in Appendix D. As discussed, our proposed collapsing method transforms the binary

observation vector into a binomial observation vector. Therefore, it does not rely on any matrix

inversions and related decompositions. As a result, our method is computationally faster and

the evidence is given in Table 3. The computational gains become specifically large when the

number of nodes N gets larger because the number of potential links in the network grows

quadratically in N . The computations for the existing collapsing method rely on N2 × N2

matrices; this is the main reason for its slow speed.
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Table 3: Relative Computational Time of Different Importance Samplers

T = 50 T = 100 T = 250

N = 25 0.3884 0.3599 0.3458
N = 50 0.2480 0.2223 0.1871
N = 100 0.1531 0.1435 0.1073

We present the relative computing times for constructing the importance sampling distribution of the
dynamic factors with S = 500 importance weights. The ratio is expressed as the computing time for
the collapsing method based on the binomial distribution in the numerator and the Jungbacker and
Koopman (2015) collapsing method in the denominator.

5 A Study into Global Credit-Risk Spillovers Networks

For our empirical study on global credit-risk spillovers, we consider the dynamic factor network

model to analyze credit-risk spillovers in the global financial industry. We are interested in the

characteristics of networks of financial institutions, in particular banks, and how these charac-

teristics have evolved over time, in particular during the recent financial crisis and sovereign

debt crisis. We study the credit-risk spillovers using time series data on credit default swaps

(CDS) and financial instruments that allow the buyer of the contract to insure against default

risk of an underlying reference entity by paying an insurance premium. It is referred to as the

CDS spread to the seller of the contract.

5.1 Data Description

We used the database Markit to collect daily CDS spreads for contracts written on five-year

senior unsecured debt for the period from January 1, 2006, to September 30, 2015. The cross-

section of firms we consider is restricted by consistent data availability throughout our sample

period. In total, our final data cover N = 61 global financial institutions, of which 12 have their

headquarters in the United States and 49 in Europe, including commercial banks, investment

banks, insurance companies, and investment funds. For simplicity, we refer to these institutions

as banks or firms. As an illustration of two CDS spreads, Figure 3 presents the CDS spreads

for Deutsche Bank and Bank of America within our sample period. The graphs show strong

comovements between the two series. In particular, we clearly observe an increased cost of in-

22



Figure 3: Examples of Credit Default Swap (CDS) Spreads
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The graphs depict the 5-year CDS spread (in basis points) of Bank of America and Deutsche Bank,
respectively, during the sample period from January 1, 2006, to September 30, 2015.
Source: Markit.

suring against default during the 2008/09 financial crisis and during the height of the European

sovereign debt crisis in mid 2011.

From these daily CDS data we constructed a monthly sequence of binary, directed networks

that capture all significant credit-risk spillovers among the considered firms. More specifically,

we measure credit-risk spillovers by means of directional Granger causality tests between all

two pairs of changes in CDS spreads that are statistically significant in our sample. The

dependent variable takes the value yi,j,t = 1 if there is a Granger-causal positive spillover from

increases in the CDS spread of firm i to the CDS spread of firm j as measured in month t, and

yi,j,t = 0 otherwise. In this way of constructing credit-risk spillover networks, we follow Billio,

Getmansky, Lo, and Pelizzon (2012), who also study network relations among financial firms

using covariance decompositions. In Appendix E, we provide a more detailed discussion on how

we construct the sequence of binary networks.

As an example of our network structure based on directional Granger causality tests, Figure

4 depicts the inferred credit-risk spillover network as defined by the observations yi,j,t in March

2006. The individual nodes are scaled according to their total degree. These nodes correspond
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Figure 4: Credit-Risk Spillover Network as Measured in March 2006
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We present an example of a credit-risk spillover network for 61 financial institutions. The directional
Granger causality tests are computed based on changes in daily CDS spreads during the period from
January 1, 2006, through March 31, 2006. Each directed link represents a significant credit-risk spillover
from the sender node to the receiver node. Nodes are scaled by the number of significant spillovers they
receive from or contribute to other nodes in the network. This graph is created with the Gephi software;
the positioning and coloring of the nodes are based on Gephi preset values.
Source: Authors’ calculations.
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to banks, which either induce or receive spillover effects from relatively many other banks

(arrows indicate the direction of the spillover). While such a static network visualization helps

to understand the structure of the relationships in the credit-risk spillover network at a given

point in time, there are clear limitations to this approach, due to the number of potential links.

For example, when we present a similar network graph during the 2007/08 financial crisis when

spillovers increased, all nodes would have been cluttered, making visual inspection very hard.

Moreover, a static network visualization is by nature only able to describe the network structure

at a given point in time. It does not address the dynamic changes in the observed relationships.

We therefore analyze the credit-risk spillovers by using our proposed dynamic factor network

model that provides a dimension reduction by clustering banks and by modeling between- and

within-cluster credit-risk spillover dynamics.

5.2 Parameter Estimation Results

We first report and discuss the parameter estimation results for the dynamic factor network

model that we adopt for analyzing our data of credit-risk spillovers. We used the maximum

likelihood importance sampling procedure as outlined in Section 3 for parameter estimation.

In this empirical study, we set the number of clusters to K = 2 so that we allow for four pair-

specific groups. Further we model the dynamic factors as independent random walks. Hence,

we set Φ equal to the identity matrix, and the variance matrix of the innovations Σξ is set to

a diagonal matrix. For the maximum likelihood estimation of the 6 × 1 parameter vector, we

adopt M = 5000 importance samples to estimate the likelihood function via simulation. Table

4 presents the parameter estimates, together with the standard errors, which are based on the

White sandwich estimate of the asymptotic variance matrix of ψ.

The estimation results show a negative estimate for µ and a large estimate for the variance

parameter σ2
γ , which we take as an indication that the distribution of the individual γi’s is

shifted to the left and is highly dispersed. However, neither estimate is significant at the 5

percent level. The variance parameters for the innovations of the four random walk processes

are estimated to be relatively small, but they appear to be significantly different from zero.

These estimates imply that the dynamic factors are slowly varying over time, but that they
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Table 4: Model Parameter Estimates

Parameter Estimate Std. Error
µ –1.2702 1.2527
σγ 6.1398 4.7817
σξ,1 0.5454 0.0486
σξ,2 0.6407 0.3005
σξ,3 0.8407 0.3684
σξ,4 0.7969 0.0730
Avg. Log-Likelihood –0.2961
K (# Groups) 2
N (# Nodes) 61
T (# Periods) 115
Total Number of Observations 427,915
Hill Test Statistic (with κ = 2S1/3) = 3.7724 ; Critα=0.05 = 1.645

We present the model parameter estimates with standard errors. The estimates are obtained from the
maximum-likelihood importance sampling procedure outlined in Section 3, with S = 5000 importance
samples. The Hill Estimator tests the null hypothesis that the importance weights have infinite variance,
and is based on the κ = 2S1/3 largest weights. The sample includes 61 financial institutions and spans
the period from March 2006 to September 2015, at a monthly frequency.

cannot be treated as being constant over time. The average log-likelihood value is maximized at

a value of −0.2961. The Hill statistic is a test for the null hypothesis of an infinite variance for

the importance sampling weights; the null is indicative that the importance sampling method

is not valid. The details of the Hill statistic are presented in Appendix C. The value of the Hill

statistic is reported in Table 4, together with its 5 percent critical value. We can conclude that

the null hypothesis can be rejected. This finding supports the validity of our simulation-based

estimation procedure as it requires the importance weights to have finite variance.

5.3 Network Estimation Results

The conditional distributions of all latent factors in our model provide us with insights into

the bank- and pair-specific roles and with information about the model-implied latent group

memberships of individual banks. Also, from the conditional distribution we can compute the

smoothed between- and within-group link probabilities. In Figure 5, we present for each of the

61 banks in our sample the estimated probability of being in either the first or the second latent
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group. For instance, the smoothed estimates indicate a probability of about 10 percent that

Bank of America (row 12) belongs to group 1 (dark/red bar), and a probability of about 90

percent that Bank of America belongs to group 2 (light/yellow bar). The estimated structure

implied by the model appears to allocate a high probability of group 2 membership to other

large U.S. banks, including Goldman Sachs and J.P. Morgan. However, not all U.S. banks

are associated with group 2. For instance, U.S. Bancorp has a high estimated probability of

belonging to group 1. Furthermore, some larger European banks, including Deutsche Bank

and Credit Agricole, have a high probability of belonging to group 2 as well. Many other

European banks—in particular, the domestically focused and public banks such as the German

Landesbanks or the Spanish saving banks (cajas)—have a very high probability of belonging

to group 1. In many cases, banks are equally linked with both groups of banks. Overall,

and without much subtlety, we may label group 1 as “local banks” and group 2 as “global or

international banks.”

In terms of credit-risk spillovers, an increase in the CDS spread of Bank of America may

affect the CDS spread of J.P. Morgan differently than the way this increase may affect the

CDS spread of HSH Nordbank, a German public bank. Hence, credit-risk spillovers and their

dynamics are pair specific. This key feature of network spillovers is incorporated in our proposed

dynamic factor network model through the multiplicative interaction (δi,j = πi ⊗ πj) of the

bank-specific stochastic group memberships πi. In Figure 6, we present for each bank-pair in

the sample the modal value (the highest estimated probability) of the group-membership vector

at the pair level, zi,j . In this figure, the sender banks (who initiate the spillover) are on the

horizontal axis, while the receiver banks (who are the targets of the spillover) are on the vertical

axis. For example, when Bank of America’s CDS spread increases and we are interested in its

impact on the J.P. Morgan’s CDS spread, the model and the parameter estimates assign the

highest probability that Bank of America belongs to group 1 and J.P. Morgan belongs to group

1 in this interaction. On the other, hand when we trace the impact on DZ Bank, our empirical

model assigns the highest probability that both Bank of America and DZ Bank belong to group

2 in this interaction. However, when we consider the impact of a shock to the CDS spread of

HSH Nordbank on DZ Bank, DZ Bank can be characterized as being a member of group 1.
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Figure 5: Estimated Mean of Group-Membership Vectors at the Bank Level
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first group (the first element of πi). The light yellow bar corresponds to the probability that bank i is
allocated to the second group (the second element of πi).
Source: Authors’ calculations.
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Figure 6: Estimated Mode of Group Membership at the Pair Level
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We may conclude from Figure 6 that the pair-specific estimated modal group memberships

imply a block structure for the credit-risk spillover network, where large U.S. banks as a shock

sender and most European banks as a shock receiver tend to behave in a structurally similar

way (the mostly dark red block). But also, the large U.S. and European banks (global banks)

behave structurally similarly to shocks in most European bank CDS spreads (the predominately

orange blocks). Within each of the diagonal blocks there is, however, substantial heterogeneity

in the modal group membership. This can be concluded from the less-uniformly coloured cells

among both U.S. bank pairs and European bank pairs. For instance, the results from our

empirical model appear to suggest that the CDS spread of Credit Agricole, Deutsche Bank,

or Barclay’s reacts more similarly to increases of most European CDS spreads, than the way

that CDS spreads of most U.S. banks react to other European banks (when in color, these are

the orange elements in the matrix). Nevertheless, the larger European banks, including Credit

Agricole, Deutsche Bank, and Barclay’s, react differently to increases in CDS spreads of U.S.

banks than other main U.S. banks do.

5.4 Dynamic Factor Estimation Results

The dynamic factors are associated with the probabilities of spillovers in credit-risk between

and within groups, at each time point t. It is of interest to investigate how these factors

have changed over time during our sample period. In Figure 7 we present the estimated mean

link probabilities and their 95 percent confidence intervals, over time and for each of the four

pair-specific group combinations. The time series graphs show how likely a significant credit-

risk spillover is for each group and how these probabilities evolve over time within our sample

period. The first panel presents the within-group link probabilities of banks from group 1 to

other banks from group 1, corresponding to the bank pairs colored blue in Figure 6. This

link probability is generally low (about 0.05 to 0.3), but it shows a clear increase during the

beginning of the 2007/08 financial crisis and—after a decrease in 2009—during a second period

of elevated spillovers in 2010. The second period corresponds to the beginning of the European

sovereign debt crisis. The second panel depicts the across-group link probability from banks of

group 1 to banks of group 2, corresponding to bank pairs colored green in Figure 6. The link
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probability for spillovers from group 1 to group 2 increases with the 2007/09 financial crisis but

shows a stronger and persistent increase during the European sovereign debt crisis. This is an

intuitive finding, since the bank pairs, which are grouped in this cluster, are typically European

institutions. It is also interesting that the second panel reveals a steady increase in spillovers

from 2014 toward the end of the sample.

The third panel presents the dynamics for spillovers from group 2 to group 1, corresponding

to bank pairs coloured in orange in Figure 6. The smoothed link probability exhibits only

three distinct spikes during the summer of 2007, the autumn of 2008, and the beginning 2010;

each of these short periods is associated with strong market turbulence. Overall, this panel

reveals a very low link probability, in particular after 2010. Given the decomposition in Figure

6, this finding suggests that, in the second half of our sample, most American banks and some

European banks, including Deutsche Bank and Credit Agricole, were relatively isolated from

increases in CDS spreads of many other European banks. The fourth panel corresponds to the

link probabilities between banks of group 2, corresponding to bank pairs colored in dark red in

Figure 6. The link probabilities for these bank pairs, which are mostly comprised of a global

sender and a local receiver bank, are generally high; in some periods it reaches values of more

than 0.8. However, this time series graph also shows large fluctuations.

6 Conclusion

We have developed a dynamic factor network model that is sufficiently general and flexible for

all practical purposes. On the other hand, the parametric structure is parsimonious, since many

features of the model are treated by stochastic variables. For the cross-section dimension of the

model, we adopted the stochastic blockmodel structure that is widely used for analyzing network

data. For the time series dimension of the model, we adopted the dynamic factor model. The

nodes of the network are linked as functions of the dynamic latent factors. The typically small

number of parameters can be estimated by our proposed computationally efficient simulation-

based maximum likelihood method. The simulations are directed toward integrating out the

latent node- and link-specific vectors and the dynamic factors, simultaneously. The method

of importance sampling is key in our procedure, and we have proposed a key modification in
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Figure 7: Smoothed Credit-Risk Spillover Probabilities
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We present the smoothed mean and 95 percent confidence intervals of the within- and between-group link
probabilities, where a link indicates a significant credit-risk spillover as measured by Granger-causality
in CDS spread changes.
Source: Authors’ calculations.
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collapsing the high-dimensional observational vectors to achieve a feasible estimation procedure

without losing any information. In a Monte Carlo study we show that the small-sample proper-

ties of our proposed estimation procedure are favorable, from both an estimation accuracy and

a computational efficiency perspective. In the empirical study we analyze credit-risk spillovers

between 61 main financial firms from the United States and Europe, from 2007 through 2015.

In partitioning the nodes into two groups, we found that the first group is associated with large

U.S. and European banks, while the second group consists of more local banks with a less global

scope. The latent factors show a strong increase in spillovers during the 2008 financial crisis

and the sovereign debt crisis. The spillovers from global to local banks were most sizeable,

while the spillovers from local to global banks were larger during the European debt crisis and

from 2014 onward. Further extensions and more precision in our network structure need to be

considered to observe links at the country level and within common bank characteristics. Such

developments would be of special interest to financial regulators and supervisors.
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APPENDICES

A Model Extensions

A.1 Missing Data and Time-Varying Network Size

The proposed model easily accommodates missing data values and networks of time-varying

size. Networks of time-varying size are present if the set of nodes in the network changes over

time such that we have a time-varying set of nodes Nt, with |Nt| = Nt number of nodes at time

t. Missing data of pairwise measurements are present when for one or more periods we do not

observe the value of yi,j,t for at least one pair (i, j). These missing observations do not enter the

likelihood function and are simply omitted in the computation of the simulated likelihood given

in Equation 13. For the construction of the importance sampler, similar changes are necessary.

First, for construction of the time series sampler we have to adjust the number of obser-

vations in each group. Let mi,j,t = 1 if yi,j,t is missing, and zero otherwise, that is, when it is

observed. We then have y∗k,t =
∑
i,j(1 −mi,j,t)yi,j,tẑki,j , which is again binomially distributed,

but due to the missing data with
∑
i,j(1−mi,j,t)ẑki,j number of trials for each group k at time

t. The probability of success in each trial remains exp(fk,t)/(1 + exp(fk,t)), similar to the case

when all yi,j,t are observed. Second, for construction of the cross-sectional sampler using the

variational approximation, we simply omit the missing data point from the product in Equation

11, by writing
∏T
t=1(1−mi,j,t)p(yi,j,t|zi,j , ft). No further adjustment is needed.

The treatment of networks with a time-varying number of nodes is a problem of particular

relevance in empirical analysis. In fact, however, time-varying networks are simply a special

case of missing data problems, as we observe no relation to any other node for a node that is

not part of the network. Formally, we can define the set N = ∪Tt=1Nt to contain all nodes that

have ever been part of any network Nt. Then, we simply work with a network between the

nodes in N , and if node i is not part of the network at time t, we have a missing observations

for any bilateral relation involving node i, that is, mi,j,t = mj,i,t = 1 ∀j ∈ Nt. Importantly, we

must distinguish between a node that is not part of the network and a node that is part of the

network but not linked to other nodes.
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A.2 Undirected Networks

It is straightforward to use our model to analyze undirected networks where li,j,t = lj,i,t by

definition. Modeling an undirected network effectively reduces the dimension of the observation

vector yt to N(N − 1)/2. A minor adjustment must be made for the factor loading Z and the

dynamic factors ft. For the construction of each row zi,j recall the hierarchical structure given

in Equation 4. Due to the reciprocal nature of links, our model requires that, for node i in

group k and node j in group k′, the pair must have the same link probability as for node i in

group k′ and node j in group k. Therefore, at the pair level, each observation loads effectively

on one out of K(K+1)/2 dynamic factors as compared with K2 factors in the directed network

model. We can easily incorporate this feature by maintaining the hierarchical structure for z,

letting ft denote a K(K + 1)/2 vector of dynamic factors, and introducing the selection matrix

T that maps the K2 vector zi,j to a K(K + 1)/2 vector that selects one of the K(K + 1)/2

dynamic factors.

Consider an example of a model with K = 2 groups. Then, the second element being one,

zi,j,2 = 1, refers to the situation that node i is in group 1 and node j is in group 2. The third

element being one, zi,j,3 = 1, refers to the situation that node i is in group 2 and node j is in

group 1. In the undirected network model both link probabilities must be the same, and hence

we can write the signal for observation yi,j,t as

θi,j,t = zi,jTft with T =



1 0 0

0 1 0

0 1 0

0 0 1


.
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B The Variational Approximation

The variational approximation method is based on an approximation of the likelihood p(y). Let

α denote the vector that collects the elements of the cross-sectional state variables z and π. We

then can rewrite the log likelihood for any arbitrary density g(·) indexed by some parameter

θ ∈ Θ as

log p(y) = log p(y)
∫
g(α)dα =

∫
g(α) log p(y)dα

=
∫
g(α) log p(y, α)/g(α)

p(α|y)/g(α) dα

=
∫
g(α) log p(y, α)

g(α) dα+
∫
g(α) log g(α)

p(α|y)dα.

The term
∫
g(α) log g(α)

p(α|y)dα ≥ 0 is the Kullback-Leibler divergence between g(·) and p(·|y)

denoted by, D(g(·)||p(·|y)). The inequality is binding if and only if g(·) = p(·|y) almost every-

where. The variational density g(·) is then obtained by minimizing D(g(·)||p(·|y)) over the class

of densities with respect to the variational parameters θ.

From the above derivation we can also rewrite the minimization problem as a maximization

problem of the lower bound on the likelihood as

p(y) ≥ exp
∫
g(α) log p(y, α)

g(α) dα,

which shows that the accuracy of the approximation depends on the tightness of the bound.

Note that we could have obtained the lower bound on the log-likelihood directly by applying

Jensen’s inequality.

The variational density g(·) is typically chosen such that it belongs to a tractable class of

densities. The most common restriction that we also apply in this paper is that g(·) factors

according to a graph

g(α) =
C∏
c=1

gc(αc)

for components αc. Variational approximations using the factorization restriction are also

known as mean field methods, or variational Bayes, compare Ormerod and Wand (2010).
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The factorization restriction allows one to obtain solutions for each product density in

terms of the others, which leads to an iterative solution scheme for the variational parameters.

Specifically it can easily be shown from the upper bound of the likelihood that the updating

equations of the mean field method are

g1(α1)← exp(E−α1 log p(y, α))∫
exp(E−α1 log p(y, α))dα1

...

gC(αC)← exp(E−αC log p(y, α))∫
exp(E−αC log p(y, α))dα1

where the expectations are with respect to all variational densities except gc(·). The iteration

is initialized by some starting values and repeated until convergence to a local optimum. The

procedure is repeated several times with random starting values.

C Importance Sampling Diagnostics

Using the specific importance sampling distributions derived in the last subsections, we can

rewrite the simulated likelihood function as

L̂(ψ) = g(y|ẑ) 1
M

S∑
s=1

p(y|f (s), z(s)) p(z(s)|γ(s))p(γ(s))
g(y|f (s), ẑ)g(z(s), γ(s)|f̂ , y)

, (13)

where we made use of Bayes’ rule and the fact that the marginals p(f) and g(f) are the same.

We can rewrite the estimated likelihood equivalently as

L̂(ψ) = g(y|ẑ) 1
S

S∑
s=1

ws, (14)

where the importance sampling weights ws are given as

ws = p(y|f (s), z(s))p(z(s)|γ(s))p(γ(s))
g(y|f (s), ẑ)g(z(s), γ(s)|f̂ , y)

. (15)

An important assumption that allows consistent and asymptotically normal importance

sampling maximum likelihood estimation requires that the first two moments of the importance
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weights exist, see Geweke (1989). In particular, failure of the existence of the variance of the

importance weights can lead to unstable and slow convergence as the central limit theorem fails

to hold.

To assess the existence of the variance of the importance sampling weights in our empirical

application, we use several formal and informal diagnostics checks. Specifically, we use the

test proposed by Monahan (1993) (see also Monahan 2001) based on the tail behavior of the

distribution of the weights, which is modeled as 1− F (w) = Cw−1/ξ(1 +Dw−1 + o(w−1)), for

w > 0 and constant parameters C,D. The variance of the importance weights exists if ξ ≤ 1/2.

Monahan (1993) then uses the Hill estimator of the parameter ξ to test the null hypothesis

H0 : ξ ≥ 1/2 against the alternative hypothesis H1 : ξ < 1/2. We outline here the key steps of

the testing procedure:

1. For a given sample of importance weights {ws}Ss=1, compute the order statistics w(1) ≤

w(2) ≤ ... ≤ w(S).

2. Choose the tuning parameter κ that determines how many order statistics are used to

compute the hill estimator; typical choices are κ = 2S1/3 and κ = 4S1/3.

3. Compute the Hill estimator ξHill = 1
κ

∑κ
j=1 logw(S−j+1) − logw(S−κ) .

4. Compute the test statistic
√
κ/ξ2(ξ̂Hill − ξ) d−→ N (0, 1).

5. For given significance level α, reject H0 if the test statistic exceeds the critical value.

In our empirical application, we investigate the importance sampling weights at our final pa-

rameter estimate to ensure that the maximum likelihood estimator is well behaved.
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D More Results for Collapsed Importance Sampler

Table 5: Monte Carlo Results for Jungbacker and Koopman (2015) collapsing
T = 50 T = 100 T = 250

N = 25 N = 50 N = 100 N = 25 N = 50 N = 100 N = 25 N = 50 N = 100

µ RMSE 0.1494 0.0931 0.0780 0.1985 0.1517 0.1311 0.2582 0.1800 0.1693
MAE 0.1318 0.0772 0.0670 0.1417 0.1108 0.0876 0.2042 0.1492 0.1244

σ2
γ RMSE 0.1878 0.0150 0.0410 0.0221 0.0180 0.0141 0.0216 0.0177 0.0162

MAE 0.4696 0.0225 1.3510 0.0432 0.0342 0.0296 0.1851 0.0373 0.0341
σ2
ξ,1 RMSE 2.4618 0.6361 0.2530 2.1173 0.8701 0.4001 1.4542 0.9215 0.5709

MAE 0.5970 0.7714 0.0547 1.3727 0.5910 0.4851 0.8926 0.5688 0.3422
σ2
ξ,2 RMSE 0.6662 0.2692 0.3075 0.6492 0.2960 0.1913 0.5027 0.3124 0.2095

MAE 0.0862 0.0494 0.0415 0.1345 0.1068 0.0898 0.1687 0.1342 0.1183
σ2
ξ,3 RMSE 0.0683 0.0364 0.0301 0.0991 0.0745 0.0615 0.1286 0.1038 0.0835

MAE 0.0229 0.0101 0.0116 0.0175 0.0141 0.0113 0.0174 0.0155 0.0142
σ2
ξ,4 RMSE 0.0445 0.0154 0.0809 0.0341 0.0282 0.0230 0.0569 0.0336 0.0302

MAE 0.5684 0.1171 0.0520 0.7840 0.2868 0.1225 0.8263 0.4560 0.2639

ft RMSE 0.1198 0.0845 0.0658 0.1477 0.1099 0.0782 0.2853 0.2279 0.1831
MAE 0.1508 0.1054 0.0727 0.1592 0.1088 0.0700 0.2406 0.1615 0.1187

γi RMSE 0.0964 0.0956 0.1152 0.0575 0.0315 0.0168 0.0508 0.0270 0.0139
MAE 0.1696 0.1262 0.0945 0.1437 0.1053 0.0741 0.1398 0.1002 0.0715

zi,j RMSE 0.0270 0.0273 0.0274 0.0158 0.0097 0.0075 0.0114 0.0057 0.0028
MAE 0.0930 0.0845 0.0831 0.0402 0.0321 0.0281 0.0126 0.0075 0.0047

We present root mean square errors (RMSE) and mean absolute errors (MAE) between the estimated
mode of the latent variables f , z, and γ as implied by the approximating importance sampling distri-
bution with S = 500 importance weights and the true realized values in each simulation. Simulation
results are based on 500 Monte Carlo repetitions.

E Construction of Dynamic Correlation Network

We compute the Granger causality-based correlation networks from the daily changes in CDS

spreads of N = 61 firms for the period from January 1, 2006, to September 30, 2015 (T̃ = 2548

observations). We thereby follow Billio, Getmansky, Lo, and Pelizzon (2012) and first estimate

for each bank pair (i, j), with i, j = 1, ..., N , the following regression

∆ logCDSi,τ = αi,j +
p∑
l=1

βli,j∆ logCDSi,τ−l +
p∑
l=1

ρli,j∆ logCDSj,τ−l + εi,j,τ , (16)

where εi,j,τ ∼ N(0, σ2
i,j,τ ) and the parameters are indexed by (i, j) to highlight that they are

pair specific. Clearly, this is one equation of a bivariate vector autoregressive (VAR) model
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with lag order p for the pair of banks (i, j). Billio, Getmansky, Lo, and Pelizzon (2012) are

interested in the parameters ρli,j that determine the influence of a change in the CDS of firm j

at lag l on the change in firm i after controlling for changes in its own CDS spreads. Suppose we

consider a VAR(p) with lag length one, that is, p = 1. Then a statistically significant positive

estimate ρ̂1
i,j is evidence of Granger causality from firm j to firm i, and we would conclude that

there are significant spillovers from increases in the riskiness of firm j to the riskiness of firm

i. To determine the statistical significance of the estimate, Billio, Getmansky, Lo, and Pelizzon

(2012) compute the t-statistic tρ̂1
i,j

and test the hypothesis H0 : ρ1
i,j ≤ 0 against the alternative

H1 : ρ1
i,j > 0 by comparing tρ̂1

i,j
with the critical value cα at given significance level α.

In our analysis, we do not impose a lag length of one, but select the lag length based on

the Bayesian information criterion (BIC) for each bivariate VAR model that we run for each of

the bank pairs in the sample. For a VAR(p) with more than one lag, we could use an F-test for

Granger causality by testing the null hypothesis H0 : ρ1
i,j = ... = ρli,j = ... = ρpi,j = 0 against

the alternative that at least one coefficient is not equal to zero (Billio, Getmansky, Lo, and

Pelizzon (2012)). However, in our analysis of credit-risk spillovers we are specifically interested

in the direction of Granger causality, information that is not revealed by the F-test. Therefore,

to determine whether there are significant positive spillovers from shocks to one CDS spread

to the other, we analyze for each bivariate VAR(p) the sign and significance of the implied

impulse response functions, which allows us to determine the sign of the spillover at various

lags. To compute the impulse responses, we follow the standard procedure and orthonormalize

the shocks by a Choleski decomposition of the estimated covariance matrix in a way that the

unit shock we are interested in has no contemporaneous effect on the the other variable in the

bivariate system. We then compute the lower and upper bounds of the confidence bound of the

impulse response function for a given significance level α, denoted by IR(i,j)
lb,α (k) and IR(i,j)

ub,α(k),

where k = 1, ..., 10 denotes the periods after the shock; that is, we analyze spillovers up to two

weeks following the shock. Based on this impulse response function, we define a significant

positive credit-risk spillover from firm i to firm j if the lower bound of the impulse responses is

in at least one period above zero, that is, max0<k<11{IR
(i,j)
lb,α (k)} > 0, and the upper bound is

always above zero, that is min0<k<11{IR
(i,j)
lb,α (k)} > 0.
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Unlike the static analysis of credit-risk spillovers by Billio, Getmansky, Lo, and Pelizzon

(2012), a major focus of this paper is to estimate the proposed dynamic factor model to analyze

the time-varying heterogeneity of credit-risk spillovers in the global financial industry. To

allow for time variation in the correlation structure of the CDS spreads, we therefore estimate

Equation (16) using the daily CDS data on different subsamples indexed by t = 1, ..., T . This

results in a sequence of estimated impulse responses that capture the dynamic changes in

spillover effects among financial firms. In our choice of the length of the subsamples, we face

a tradeoff between the number of observations in each subsample and the number of estimated

parameters {ρ̂li,j,t} that we can estimate given our overall sample length. In particular, we want

sufficient observations in each subsample to conduct a meaningful inference, but, on the other

hand, we do not want to make each subsample too long, as we want to capture changes in the

dynamics and to have a sufficient number of estimates of the cross-correlation parameters ρi,j .

We therefore choose to estimate Equation (16) for a window of three months and move the three-

month window forward in time by one month. To construct the credit-risk spillover networks,

we then compute the binary link variable that indicates a significant credit-risk spillover from

firm i to firm j at monthly frequency as

yi,j,t =


1 if max0<k<11{IR

(i,j,t)
lb,α (k)} > 0 and min0<k<11{IR

(i,j,t)
ub,α (k)} > 0

0 otherwise,

where we added the index t to IR(i,j,t)
lb,α and IR

(i,j,t)
ub,α to highlight that the impulse response is

estimated from subsample t. Moreover, we define yi,j,t = 0 such that self loops are excluded.7

The link variable yi,j,t hence indicates if during the three months that define period t the VAR

analysis estimates a significant positive spillover in CDS spread changes from bank i to bank

j. The time index for yi,j,t then runs from t = 1, ..., T = 115; where T = 115 corresponds to

the number of periods in our sample (March 2006 to September 2015, at a monthly frequency).

We use these binary data to estimate our dynamic factor network model.

7Observations yi,i,t do not enter the likelihood function for all i = 1, ..., N .
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