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1. Introduction

The renaissance of growth theory in economics in the last decade has been

accompanied by a host of empirical papers using cross-country data to attempt m
analyze the factors that cause economic growth. These papers have looked at a
variety of factors. A partial list would include alternative measures of human
capital, fiscal policy, the level and composition of public and private investment,
monetary policy and inflation, as well as a host of political and demographic
factors. The December 1993 special issue of the Journal of Monetary Economics,

based on a World Bank conference, provides a representative collection of papers
illustrating this diversity.

The large number of papers on the causes of economic growth, however, is
also a signal that there is little substantive agreement. As an example, in a series
of papers, DeLong and Summers (1991. 1992, 1993) argue that equipment
investment is a key determinant of economic growth and the social returns from
equipment investment exceed its private returns. Auerbach, Hassett, and Oliner
(1994) vigorously dispute both etaims. Virtually all other studies do not even
include the composition of private investment as a variable.

Faced with a bewildering and indecisive literature, one natural temptation is
to deny that anything serious can be learned from cross-sectiona! studies of
economic growth. According to this view, unobserved differences or
heterogeneity across countries, vast differences in the sizes of countries, spillover
effects across countries, poor data for less developed countries, and a relatively
small number of observations, collectively pose insurmountable problems for
empirical work in this area. Inferences in this statistical environment will
necessarily be "fragile."

While these statistical problems are real and possibly important, we do not
believe that the existing literature has taken the most profitable statistical
framework to investigate these issues. Two clear deficiencies are present in much
work in this area. First, there is typically a proliferation of variables purporting to
measure the same underlying factors. For example, several different proxies for



human capital may be used. even in the same study. Second, insufficient attention
is given to questions of causality. Single-equation models are the norm in cross-
section growth investigations. The ?tependent variable is always the growth rate
and all the other variables are taken as independent causal determinants of
economic growth.

Ttie In:stproblem - the proliferation of proxies for the same underlying

factors - can be addressed by using models with latent variables. In a latent

variable framework, proxies can be used as noisy indicators of underlying,

unobserved latent variables. Using latent variables helps to avoid the collinearity

and errors-in-variables problems that occur when several proxies are used as

explanatory variables, and it provides a parsimonious representation of statistical

relationships. Bollen (1989) provides a comprehensive discussion of latent variabIe

models that connects directly to traditional econometric approacheS.

The second problem - causality - is more vexing. We agree with DeLong
and Smnmers (1994. pp. 806-807") that inferences may be fragile because "the
direction of causation and the isolation of other possible influences is extremely
difficult." Both DeLong and Summers (1991) and Easterly and Rebelo (1993)
provide some discussion of causal issues in their papers.1 Yet, few attempts have
been made to examine a richer set of model specifications, including alternative
specifications of causal structures.

Schooled in the Cowles Commission simultaneous equations tradition,
economists tend to believe that causal and structural issues must be dealt with a
priori through identification assumptions. However, there are at least two broad,
generic approaches to inferring causal strueture from the data themselves with
limited a priori information. These are the "invariance approach" and a method
recently devel.oped by philosophers and computer scientists which we call the
"instrumental variable approach."

The invariance approach is b~sed on the idea that external interventions
will have differen~ effects on marginal or conditional distributions, depending on
the underlying caus~ structure. For example, suppose that taxes were a cause of



government spending but government spending did not cause taxes. In this case, a

major shock to the process for government spending (such as a war) woutd not
have an effect on the marginal distribution for taxes. Hoover (1991) and Hoover
and Sheffrin (1992) outline and apply this method for determining causal structure.
However, only the broad direction of causa! influence (e.g., does A cause B or B
cause A) and not precise details of causal structure can be determined through these
methods.

In principle, we can learn more details about causality and structure through
the "instrumental variables" approach. Economists are familiar with instrumental
variables as an econometric tool. The idea behind instrumental variables is that the
identification and estimability of parameters can be changed with the addition of
further variables. Spirtes, Glymour, and Scheines (SGS) (1993) show that this
same principle can be used, within well-defined limits, to identify causal structure.
Their work builds on the ideas of statisticians and computer scientists developed
during the 1980s, especially Pearl (1988) and his colleagues. While it is
impossible to infer causal structure from the mere correlation between two
variables A and B, statements abOut the causal relationship between A and B can
sometimes be made with the addition of other variables°

S-GS provide a series of algorithms and search procedures to aid inferences
about causal gtructure both with and without latent variables. In our work we use

these algorithms to suggest several possible models that are consistent with the
data. We then estimate these models, using latent variables, and test several
alternatives as well.

Section 2 presents the statistical theory behind the SOS approach that we
use in our work. The results from the search procedure applied to a standard
cross-sectional data set are presented in Section 3. The search procedure results in
strong claims about the underlying causal structure. We explain carefully the
nature and logic of these claims. In Section 4 we estimate our preferred models
and compare them to reasonable alternatives. Finally, we conclude with some
thoughts on the applicability of our methods in economic contexts.



2. Inferring Causal Structure From Data

In order to make inferences about the nature of Causal s~ructure from the
data. there need to be connections between the properties of causal models and
probability structures in the data. The SGS approach that we use in -our work links
the structure 0t~ causal models to conditional independence relations among the
variables in the mode!. The essential idea is that tests for independence and
conditional independence among the variables in a model can be informative about

the structure of models.

Although the underlying theory is more general, we will present it for the
case of linear, recursive models with multivariate normal variables. If the
underlying models are simultaneous, the methods that we use will be uninformative
as to causal direction. While the recursive case is somewhat limiting, as we
illustrate in our work below, the outcome from these procedures can be a starting
point for investigating simultaneous structures as well~

Any linear, recursive simultaneous model can be represented by a directed,
acyclical graph denoted < V, E > where V is the set of vertices of the graph and E
is the set of directed edges. The vertices represent variables and the directed edges
represent causal linkages. Figure. 1 presents an example of such a graph. Directed
edges or arrows represent causal direction, for example, x1 causes x3; x2 causes x3
and x4; and x3 and x4 cause xs. All variables that have a directed edge into them
also have associated with them an independent, normal error term, although these
are not shown in the graphs. A graph is acyclical if no causal chains come back to
the same variable - this rules Out simultaneous structures. The graph in Figure 1
represents the three-equation linear model:

x3 = axl + bx2 + sl

x~ = dx3 + ex4 ± ~



where a, b, c. d and e are coefficients and the three error terms are independent
and normally distributed. In this framework, variables that do not have arrows
into them, such as xl and x:, are assumed to be normally distributed and
uncorrelated.

To develop the thec)ry, we need some terminology from graph theory. The
parents of a variable are its direct causes. For example, xl and x2 are parents of

x3. If a variable q can be reached on a causal chain from another variable p, then
q is a descendant of p. In Figure 1, x3 and x5 are descendants of xl. Two
variables, p and q, are adjacent if either p is a direct cause of q or q is a direct
cause of p. For example, xl and x3 are adjacent but x~ and x4 are not adjacent.
Finally, if p and q both cause r but p and q are not adjacent, then r is an
unshielded collider. In Figure 1, xs is an unshielded collider because it is directly
caused by two non-adjacent variables, x3 and x4.

In analyzing the causal relationships in a data set, a crucial question is
whether or not the set of measured variables is causally sufficient. A set of
variables that includes all common causes for the variables within the set is
causally sufficient; otherwise, it is causally insufficient. It is not difficult to see
why this distinction is important. In a causally sufficient set of two variables,
correlation between the two would imply causation from one variable to the other.
If the set is not causally sufficient, the two variables could have a common cause.

Two axioms, the Markov Condition and Faithfulness, provide the finks
between causal models and conditional independence of a probability structure.
The Markov Condition spells out the independence relations among a set of
causally sufficient variables that we expect to hold in a causal structure:

Markov Condition: Let v be an element of a causally sufficient set of
variables V, and P be a probability distribution over V. Then v is independent of
every set of variables that does not contain its descendants, conditional on its
parents (v is independent of all variables in the set V\[Descendants(v) w
Parents(v)] given the Parents(v)).



We illustrate the Markov condition in Figure 2o For example, applying the
Markov condition to the variable v, we-see that v is independent of x3 conditional
on x~ and x2 or, in symbols, v _c x~[ {xt, X2}o Similarly, the Markov condition
also implies that x3 _ {x:, x4, xs, v} i xi . It is important to note that these
independence relations hold for all values of the coefficients (the parameters) in
our representation.

The Markov condition is based on the following common sense principles:
(1) an effect is independent of its indirect causes, conditional on its direct causes,
and (2) variables are independent conditional on their common causes. While
these are very intuitive principles, there has been extensive discussion of this
axiom. Spirtes, Gtymour, Scheines (1993, pp. 57-70) provide an extensive review
of ~he debate. While the Markov condition will hold for a broad class of data-
generating mechanisms, examples of situations where the Markov condition does
not hold include: (1) the existence of causal relations between different members of
the population (which would be especially common in time series analysis), and (2)
a mixture of members in a population in which causal paths go in conflicting
directions.

In recursive, linear models, the Markov condition, and independence
relations that can be derived from them, characterize virtually all the conditional
independence relations. However, for particular configurations of the parameters
it is possible that there could be additional independence relations among the
variables. For example, in Figure 1, x2 will in general be correlated with xs.
However, the coefficients along the two paths leading from x2 to xs could be such

that they exactly cancel each other. In linear, recursive models this can only occur
on a set of measure zero. Nonetheless, we want to rule this possibility out and
require that al! independence relations among the variables correspond to directed
edges in the underlying graph. We say that a graph G is faithful to a probability
distribution P if and only if all of the independence relations in P are implied by
the Markov condition applied to G,
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Under the Markov condition and Faithfulness, the conditional independence
relations among a set of variables are implied by the graph of the causal model. In
general, more than one model will imply the same conditional independence
relations. How large is the class of graphs that imply a given set of conditional

independence relations? Pearl (1988) provided the answer to this question. He
discovered a convenient, graphical characterization of all of the independence
relations implied by the Markov conditions called d-separation. Using this idea, it
is possible to describe the equivalence class of models that imply the same
independence relations. Following Spirtes, Scheines, Meek, and Glymour (1994),
we call this the Markov Equivalence Theorem.3

Markov Equivalence Theorem: Two faithful, acyclic graphs over the same

variables entail the same conditional independence relations if and only if (a) they

have the same adjacencies and (b) the same unshielded colliders.

Figure 3 illustrates this theorem. Graphs (a) and (b) are Markov equivalent
because they both have x3 as an unshielded collider and the same adjacencies.
Note, however, that they do differ in causal directions among xl, xa, and x4.
Graph (c) is not Markov equivalent to (a) because it lacks an unshielded collider.
Graph (d) is also not Markov equivalent to (a) because it lacks an adjacency.

One_ implication of this theorem is that definitive statements about the
causal direction between any two variables require that the independence relations
produce unshielded colliders somewhere within the graph. Suppose ~here are only
three variables in our universe, x~, x2, and x~. We are interested in finding the
causal direction between xt and x~., which we know are causally connected.
Suppose we find that x3 is independent of xa but correlated with x2. We now show
that this pattern of correlations leads to a situation in which xz is an unshielded
collider. Since x~ and x~ are uncorrelated, they cannot be adjacent, so x2 must
lie between them as in Figure 4. Of all the four possible configurations, only (d)
preserves the independence between x3 and xl. Thus, x2 is an unshielded collider.

This means that x~ must cause xz.

We can give an instrumental variables interpretation to this chain of
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reasoning. We can roughly think of x~ as being an instrument for x2 m a
regression of the form y - a x: + xl for some variable y. While we could not
consistently estimate the coefficient "a" by Ordinary least squares since the error
term (xl) is correlated with the right-hand-side variable, we could estimate this
equation with x3 as an instrument. From a causal modeling point of view, this
means that it is possible to change ~:he value for x2 without changing the value of
xl. That could not be possible if x2 was a cause of xl. Since the variables are
causally connected, it must be the case that xl causes x2.

SGS construct algorithms to move from empirical, conditional

independence relations in the data to Markov equivalent classes of models. Users

of the algorithms need to specify whether or not a set of variables is causally

sufficient. Naturally, stronger inferences can be drawn when the set is assumed to

be causally sufficient. As explained in the next section, we always assume that the

set of variables is causally insufficient. The algorithm for the causally sufficient

case is the easiest to understand. It operates in three stages. First, applying the

Markov Condition. it uses tests for conditional independence to remove adjacencies

from a complete totally undirected graph. An adjacency is removed between two

variables if they are independent conditional on any other variables in the set.

Second, it looks at the set of potentially unshielded Colliders x, y, and z such that x

and z are not adjacem but x and y and y and z are adjacent. Let S be a set such.

that x and z are independent conditional on S. From the theory of d-

separation, y is a collider on the path from x to z if and only if y is not a member

of any such set S. Therefore, we can determine whether y is a collider.by testing

for this condition. The third and final step is to determine if any additional edges

can be oriented based on the knowledge that some orientations would create

unshielded Colliders when they are not, in fact, unshielded colliders. This

algorithm and the more complex algorithm that does not assume causal sufficiency

are discussed in detail in SGS (1993).

In implementing these algorithms, statistical decisions must be made about
conditional independence. Under the assumption of multivariate normality, tests
for partial correlation are also tests for conditional independence. The partial
correlation is the correlation coefficient conditional on a set of variables. As



Whittaker (1990) also emphasizes, the off-diagonal elements of the standardized
inverse of the correlation matrix for a set of variables are the negatives of the
partial correlations between the corresponding variables, conditional on the
remaining Variables. For a specified significance level, the algorithms test for a

zero partial correlation using Fisher’s z.

In linear models, in the presence of unmeasured or latent variables there
may be additional constraints on the correlation matrix of a set of variables implied
by a directed, acyclical graph. An important subset of these constraints involve

four distinct co,elation coefficients and are known as tetrads or tetrad differences.
For example, suppose we observe four variables (xl, x2, x3, and x4) which have all

been caused by a single unmeasured variable° Also suppose no other causal
connections exist between the variables. In this case, every pair of observed
variables is dependent conditional on all other variables. Yet, constraints are
nonetheless imposed by the model. Letting p~.,~ denote the correlation between

variables xi and xa, then there are three tetrad constraints:

1::)I2 t::)34 - P]4 P23 = 0

P13 P24 - P12 1334 = 0

The tetrad constraints can be used to check for causal sufficiency for a set
of variables. For example, if the first tetrad constraint holds, then in the graph

either (1) P~3 or ~24 = 0 and ~D14 or P23 -~- 0 or (2) there must exist a set of
variables Q such that all the partial correlations Pi3 I Q = 0. If our set of variables
originally included only x~, x2, x3, and x4, and the simple correlations were not
equal to zero, then we would be able to infer the existence of a latent variable.

Tests for the existence of latent variables as well as related specification tests for
these additional constraints are contained in the TETRAD II program developed by
SGS.

In using the algorithms, it is important to remember that it performs a
series of tests and the significance level for the overall result will not equal the
significance level for the individual tests. Since the procedure works by

9



eliminating adjacencies unless the partial correlations are high enough, there are.
naturally possibilities for Type l~ errors. To ensure that are results our robust, we
re-run the algorithms at higher significance levels to see if any other causal
information emerges. Finally, it is possible to input a priori information about
c~usal structure into the algorithms.

3. Applying the Search Procedures to Cross-Sectional Growth Data

The flu-st stage of our empirical analysis is to study the pattern of

correlations and partial correlations in a cross-country data set of growth related
variables. This allows us, using the algorithm developed by SGS, to reject the
existence of causal paths connecting some of the variables. Our data come from 68
countries, and include information on growth rates, equipment and non-equipment
invest~nent, openness of the economy~ political stability, and human capital.
Summary statistics and variabIe definitions are shown in Table 1. The data are
generally drawn from recent papers on. economic growth; details concerning-our

data soarces and data set construction are available from the authors.

In applying the SGS methodology, we do not assume that our set of
variables is causally sufficient. Recall that in order to be causally sufficient a set
of variables must contain all common causes of all of the variables in the set. In
our context, an example would be that there could not exist any factors not
included in our data" set which cause both equipment investment and economic
growth. This seems likely to be a false assumption, since we do not have measures
in our data set of such factors as how well developed capital markets are or of the
level Qf entrepreneurship. Such factors would plausibly have a direct causal
influence on both equipment investment and economic growth. Scanning the list
of variables in Table 1, it is easy to think of other examples that might result in
causal insuffi: iency.

In applying the SGS algorithm, one must select a significance level to use
in testing the hypotheses that the various-correlations and partial correlations are
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equal to zero. As the significance level increases, the critical values for failing to
reject the. hypothesis that a given correlation is equal to zero decrease in
magnitude, and we will generally fail to reject the null hypothesis (that the
correlation is equal to zero) in a larger number ot~ cases. Thus, the number of
causal paths that are rejected will generally decrease as the significance level rises.
The causal paths that cannot be ruled out when specifying a 0.05 significance level
for the correlation hypothesis tests are shown in Figure 5, while Figure 6 displays
the causal paths which cannot be rejected when the significance level is set at 0.20.
The graphs in Figures 5 and 6 are examples of what SGS call partially oriented
inducing path graphs (POIPG). The edges Should be interpreted as follows: (i) a
single-headed arrow pointing from xI to x2 is a cause (either direct or indirect) of
xz but xz does not cause xt; (ii) a double,headed arrow connecting x1 and x~ means
that there is a latent (unmeasured in our data set) common cause of xl and X2; (iii)
a single-headed arrow with a circle at its base pointing t~rom x1 to xa (o---->)
indicates either that x~ is a cause of x2 or that there is a common latent cause of x1
and x,. or both: (iv) an edge between xl and x: with circles at both ends (o---o)
indicates that one or more of the following conditions holds: xI causes x~_, x2
causes x~, or there is a common latent cause of x~ and x2.

The most notable, and surprising, finding in this analysis concerns the
causal relationship between economic growth and equipment investment. Growth
may cause equipment investment or there may be a common unmeasured (in our
data) cause of growth and equipment investment, but we can rule out the
possibility that equipment investment causes growth. Given the ~importance of this
relationship, and the fact that previous work has assumed that equipment
investment does cause growth, it is worth exploring in some detail how we are able
to reject the possibility that causation runs in this direction.

The correlation between the growth and openness variables is insignificant
at both the 0.05 and 0.20 levels, but the correlation between growth and equipment
investment and the correlation between equipment investment and openness are
significant at both levels.5 Any Causal ordering of growth and equipment

investment must be consistent with this pattern of correlations. Figure 7 .shows
two graphs that would lead to growth and openness being correlated. In the top
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graph, openness causes equipment investment and equipment investment causes
growth. This causal ordering would induce a non-zero correlation between growth

and openness and is therefore inconsistent with our data. In the bottom graph,
growth causes equipment investment and equipment investment causes openness.
This would also induce a correlation between growth and openness and is
inconsistent with the data.

Figure 8 shows some causal structures that are consistent with the observed
pattern of correlations. In the top graph, growth and openness both cause
equipment investment. The next graph shows a causal structure where growth
causes equipment investment and where a latent variable (T) causes both equipment
investment and openness. In this case, the correlation between equipment
investment and growth is not due to a causal relationship between the two, but
instead due to some unmeasured common causal factor (for example, how
developed the C0untrv’s financi!l markets are)° The bottom two graphs also
involve latent variables. Note that none of the possible causal structures show
equipment investment causing growth° A Causa! link running in this direction will
always induce a non-zero correlation between growth and openness and will be
inconsistent with the data. In terms of the terminology developed in section 2,
equipment investment is an unshielded collider in all of the graphs that are
consistent with the observed correlation pattern.

The role of openness deserves further comment. Harrison (1991) surveys a
fairly extensive empirical literature that posits that openness directly affects the rate
of economic growth. She f’mds that direct links between openness and growth are
sensitive to measures of openness. Our results suggest that this direct causal
mechanism may not be operative, although that may be partly due to the particular
measure of openness which we employ.

Aside from the causal relationship between equipment investment, growth,
and openness, the other causal orderings shown in Figure 5 are not too surprising.
The initial level of development (as measured by Y/L) causes schooling (or has a
Iatent cause in common with schooling). Secondary schooling and equipment
investment have a common latent cause. This might be due to the secondary school
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enrollment rate being a noisy indicator of human capital per worker, and human
capital being a cause of equipment investment. Assassinations, war casualties, and
coups are linked together but are not connected to the other variables. It makes
sense that these variables are grouped together, but, unlike Barro (1991), we did
not f’md that growth was positively related to political Stability in our sample.
Government consumption and investment spending are linked together (perhaps
both caused by a latent variable capturing attitudes toward public spending) but are
unrelated to other variables.

Some of the causal links shown in Figure 6 (where the significance level is
0.20~ seem unlikely. In particular, it seems implausible that equipment investment
and S~condary school enrollment rates actually cause the initial level of
development (Y!L). To circumvent this problem, we reapplied the SGS algorithm
after specifying that the initial level of development is determined prior to the other
variables and cannot be caused by them. The POIPG produced by this
modification is shown in Figure 9. The implausible links have now disappeared,
and the resulting graph is very similar to that produced when the significance level
was much lower (in Figure 5). It is noteworthy that the direction of causality
between equipment investment and growth does not seem very sensitive to the
significance level or to whether Y!L is specified as being predetermined.

The search procedure described above provides information that can guide
us in specifying an econometric model of economic growth, but it does not dictate
exactly what the specification is. The search results suggest that equipment
investment does not cause economic growth, but they also tell us that it is possible
that either growth causes equipment investment or that a common latent cause of
both variables exists. Judgment must be used in deciding how this information
should be used in specifying a model.

Some of the specifications suggested by the search may be subjected to
further analysis to test their plausibility. The initial empirical analysis suggests
primary and secondary schooling may be jointly caused by a latent variable. This
suggests the hypothesis that both of these variables are noisy indicators of a latent
unmeasured variable we might call "human capital."

13



primaryi = kl human capitati ÷ ali
secondaryi = Z,2 human capitali + a2i

where i is an index of observations (countries) and the a’s are independent
normally distributed errors. In practice, one of the ~,’s must be set equal to a fLxed
value (usually one) in order for the model to be identified. The advantage of a
latent variable specification is that it allows one to cleanly incorporate hard-to-
measure conceptual variables, such as human capital, into an econometric
specification without having to directly include multiple "proxy" variables in the
structural equations. In similar fashion, we can construct a latent variable for
"political instability" for which assassinations, war casualties, and coups and
revolutions are noisy indicators.6

As outlined in section 2, measurement models for latent variables generally
imply that certain tetrad equations must hold. and it is possible to test whether this
is true. We jointly tested all of the tetrad equations implied by the latent variable
structure for "human capital" and "politica! instability," and found that we failed to
reject the hypothesis that all six of the tetrad equations implied by this
measurement structure hold at the 0.75 significance tevei.7 Since the data are
largel y supportive of our hypothesized measurement model for the human capital
and political instability latent variables, we adopted this specification in estimating
the growth models described in the next section.

Jones (1994) found that equipment prices (rather than quantities) were
related to growth. We re-ran the algorithms using equipment and non-equipment
prices in place of the quantities. The causal output of our algorithms was quite
similar: In no case did equipment prices cause growth. Either growth causes
equipment prices or there is a joint cause. If prices and quantities were both
entered into the algorithm, no causal conclusions were possible. 9
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4. Estimating Causal Models of Economic Growth

Using the results of our search procedure as a guide, we estimated several
specifications for causal models of economic growth. Our strategy is to start with
simple specifications and then augment the model. Figure 10 illustrates our
structure. Our f’n-st specification is a bare bones recursive model suggested by the
POIPG displayed in Figure 9. Equipment investment is modeled as a function of
growth, the human capital latent variable, and openness. Non-equipment
investment is modeled as a function of growth. Finally, the human capital latent
variable is assumed to be a linear function of the initial development level.
Coefficients for these regression equations were estimated jointly with the factor
loadings (the ?~ parameters) for the measurement models for the political stability
and human capital latent variables by maximum likelihood under the assumption
that the measured variables were drawn from a multivariate normal distribution. ~_0
Parameter estimates are shown in Table 2.

The results are as expected. Growth, openness, and human capital all have
a positive impact on equipment investment. Growth has a positive effect on non-
equipment investment, and the initial development level has a positive impact on
human capital. The factor loading on the secondary school enrollment rate
variable is c!ose to one, suggesting that primary and secondary school enrollment
are capturing largely the same human capita! effects. The factor loadings for the
political instability latent variable are all positive, providing some support for the
view that the assassinations, coups, and war casualties variables are appropriate
indicators. Since our search procedure did not provide strong support for
including the political instability latent variable in the structural equations, we
omitted it in our initial specification.

While the results of our search procedure and the estimation results reported
in Table 2 provide strong support that growth does affect equipment investment,
they are unlikely to convince a skeptic who has a strongly held prior belief that
equipment investment has a strong effect on growth. To address this concern, we
next augment the model with an equation in which growth is the dependent
variable, thus moving to a simultaneous equation framework with latent variables.
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Our causal search procedure was predicated on the assumption that the underlying
data-generating process is recursive, so the results displayed in the POIPGs are less
helpful in model specification once we entertain the possibility of bi-directional
causality.

We specify growth to be a linear function of equipment investment, Y/L,
and human capital. The system is identified through the exclusion of Y/L in the

equipment investment equation and openness in the growth equation. The
exclusion of openness from the growth equation is supported by the results of our
search procedure (although, as mentioned above, this assumed the model was
recursive). The search procedure does not support including the initial
development level (Y/L) in either equation, but economic theory suggests that Y!L
should have an effect on growth rates. One additional change to the specification

is the inclusion of the political instability latent variable in the growth and
investment equations.

The estimates of the extended model are reported in Table 3. The results
provide strong support for our prior causality search. The key fmding is that
equipment investment has a very small and statistically insignificant effect on
growth. As expected, growth rates decrease with the initial level of development
and increase with the level of human capital. The political instability latent
variable has negative coefficients in the growth and both investment equations, but
all three coefficients are insignificant. Somewhat surprisingly, the growth
coefficient in the non-equipment investment equation, which was positive and
significant in the initial specification, now is negative and insignificant. The other
coefficients are very close to those presented in Table 2.

We are able to explain why the initial development level was significant in
the econometric model but was not uncovered through the search algorithm. In
theory, if two variables in a grapti are adjacent, they should be dependent
conditional on all sets of other variables (including the null set) in the model. To
avoid an exponential search, the algorithm eliminates adjacencies ff it finds
independence for any set of variables. In this case, the simple correlation between
growth and initial development level is virtually zero., and the algorithm eliminated



an adjacency between these variables in the first round of its search. However,

the correlation conditional on other variables is actualty negative and significant.
The algorithm incorrectly eliminated the adjacency in its search procedure. 1~

We estimated additional models in order to test the sensitivity of our
results. Tables 4 and 5 present the results of two variants of the specification
reported in Table 3. Government consumption and public investment are added to
the growth and investment equations in the specification reported in Table 4.
Public investment is estimated to have a positive impact on growth and non~
equipment investment, although it has no discernible effect on equipment
investment This suggests that the complementarities between infrastructure
investment and private non-equipment investment are greater than those between
infrastructure and private equipment investment. However, we need to emphasize
that we have not yet investigated the consequences of treating public investment as
endogenous. As with private equipment investment, it may be the case that
causality instead runs largely from growth to investment.

Strikingly. in the specification reported in Table 4 we again find that
growth has a positive and statistically significant effect on equipment investment,
while equipment investment has no discernible effect on growth. This result holds
up over all of the specifications we investigated and appears to be quite robust.

Ii1 Table 5. we report results from a specification with different identifying
assumptions. We now let the openness variable enter the growth equation, but
omit political instability. This does not change our basic finding that growth has a
significant effect on equipment investment and, as before, we fail to reject the
hypothesis that equipment investment has no effect on growth (the point estimate Of
the equipment investment coefficient is negative in the growth equation, with a
standard error larger than the coefficient). The openness variable has a positive
estimated coefficient in the growth equation, but has a standard error larger that the
coefficient. The other coefficients are very similar to those in Table 4. Overal!,
our results do not appear to be very sensitive to changes in the specification of the
model.
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5. Conclusion

Our results are indirectly foreshadowed in DeLong and Summers (1993).
They report the results of instrumental variables regressions in Table 5 of their
paper. Using savings or equipment prices as instruments for equipment investment
did not change the OLS results. But when a measure of tariff and non-tariff
barriers is used as an instrument, the effect of equipment investment on growth
becomes close to zero and statistically insignificant.12 Tariff and non-tariff

barriers, of course, are closely tied to the openness variable that we highlight.

Our method effectively uncovered the instruments that rendered the

coefficient on equipment investment in the growth equation to be zero and
insignificant. To put it another way, our work indicates that given the cross-
sectional data set. the DeLong and Summers equation with equipment investment
as exogenous in a growth equation cannot be viewed as a structural equation in a
recursive model of economic growth. The models we estimate are consistent with
the full set of correlations in the data. They are broadly consistent with growth
models augmented for human capital as in Mankiw et al. (1992).

This approach inevitably points to considering models of economic growth
within a complete structural model rather than with single equations. The approacl~
taken in this paper cannot deliver a fully identified simultaneous equation model a
priori - no method can - but it can narrow down the classes of models that should
be seriously considered. In actual practice, model specification in economics
moves back and forth between theory and measurement. The methods in this
paper bring some additiona! discipline to this process from the measurement side.
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Endnotes

~DeLong and Summers argue that the negative correlation of equipment prices and
quantities suggest thin growth cannot cause equipment because changes in demand
would cause a positive correlation (along a supply curve) of prices and quantities.
We discuss this point below but note that the negative correlation may be due to
measurement error. Easterly and Rebelo argue that the causal direction runs from
public investment to growth because only some types of public investment are
correlated with growth. However, there is no a priori reason why different types
of public investment mav not respond differentially to growth.

2Blomstrom (1993) et al. use Granger causality tests on five year averages of data
to look at the causality of fbxed investment and growth. For a discussion of
limitations of Granger causality, see Hoover and Sheffrin (1992).

3This result was originally developed by Verma and Pearl (1990) and Frydenberg
(1989).

~ See Anderson (1984) or Spirtes, Scheines, Meek and G1ymour (1994) for an
exposition of Fisher’s z.

5The sample correlation between growth and openness is 0.12. Assuming these
variables are drawn from a bivariate norma! distribution, there is a 0.35 probability
of observing a sample correlation that large under the null hypothesis that the
population correlation equals zero. Although the discussion in the text focuses on
openness, growth causes equipment investment without the openness variable as
long as both measures of schooling are included in the data.

6 The data suggest that a latent variable may also exisl for which government

consumption and public investment are noisy indicators.

"The test is due to Bollen (1990) and uses the Bonferroni adjustment to "correct"
the single equation critical values for the fact that multiple tetrad equations are
being simultaneously tested.

8To maintain a reasonable sample size, we omitted the public investment variable
from our search. The sample size was 58. Chad Jones kindly Supplied the relative
price data.

9In our sample, there was a strong negative correlation of -0.74 between
equipment prices and quantities, suggesting they carry very similar information. In
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our view. this strong negative correlation may be due to measurement error; given
nominal values, errors in deflators will produce a negative correlation between
prices and real quantities.

1°The estimator of the coefficients is consistent under more general conditions; see
Bollen (1989) for a general discussion. The estimates were obtained using the
procedure CAMS in SAS.

11 Simple regressions reveal this pattern. A regression of growth on the initial

development level alone will not lead to a significant coefficient. But in a
multivariate regression, the coefficient on the initial development level is negative
and significant. The algorithm can make mistakes because of correlation patterns
of this sort in the data. As long as the faithfulness property holds, this problem
would eventually disappear as the sample size increases.

~-Similar. although less dramatic results from instrumental variables estimation are
reported in Jones (1994).
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Figure 1

An Acyclical Directed Graph
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Figure 2
The Markov Condition
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Figure 3
The Markov Equivalence Theorem
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Graphs (a) and (b) are Markov equivalent. Graph (c) is not equivalent to (a)
because it lacks an unshielded collider. Graph (d) is not equivalent to (a) because
it lacks an adjacency.



Figure 4
Instrum~nta! Variables Interpretation
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Only in graph (d] will X 1 and X3 both be correlated
with X2 but not correlated with each other.



Figure 5.
POIPG, 0.05 significance level
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Figure 6.
POIPG, 0.20 significance level
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Figure 7.
Rejected Causal Orderings
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Figure 8.
Possible Causal Orderings
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Figure 9.
POIPG, 9.20 significance level with
Y/L specified as predetermined.
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Figure 10
Empirical Models

Initial
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Base Model in solid arrows.
Initial Sim~ultaneous Model adds dotted arrows.



Table 1

Descriptive Statistics

Standard
Variable Name Description - all variables scaled Mean Deviation

Y/L In (1960 Y/L) relative to the U.S. -1.938 0.868

Growth Y/L growth 1960-85 O.O20 0.016

Non-equipment investmentnon-equipment investment (fraction of GDP) 0.131 0.059"

Equipment investment equipment investment (.fraction of GDP) 0.041 0.033

Assassination assassinations 0.038 0.112

Casualties war casualties 0.106 0.336

Government Consumption government consumption (fraction of GDP) 0.184 0.069

Coups revolution and coups 0.222 0.292

Openness imports and exports (fraction of GDP) 0.246 0.195

Public investment total public investment (fraction of GDP) 0.084 0.051

Primary school primary school gross enrollment rate 0.801 0.294

3econdary school secondary school gross enrollment rate 0.274 0.233



Growth

Openness

Y/L

Human Capital

Primary School Enrollment

Secondary School Enrollment

Table 2

Basic Model Parameter Estimates
(standard errors in [parentheses)

Structural Equations

Equipment
Investment

0.866
(0.174)

0.055
(0.015)

0.033
(0~0.14

Non-Equipment
Investment

1.333
(0.378)

Measurement Models

Human Capital

1.000

0.850
(0.109)

Human Capital

0.240
(0.029)

Assassination

Coups

War Casualties

Political Instability

1.000

2.927
(1.254)

4.091
(1.909)



Table 3

Simultaneous Model
(standard errors in parentheses)

Structural Equations

Growth

Equipment Investment

Non-equipment Investment

Openness

Y/L

Human Capital

Political Instability

Growth

-0~036
(0.121)

0.149
(0.164)

-0.014
(0.006)

0~039
(0.034)

-0.041
(0.068)

Equipment
Investment

0.80’8
(0.299)

0.057
(0~015)

0.027
(0.014)

-0.119
(0.086)

Non-Equipment
Investment

-0.326
(1.396)

0.018
(0.030)

0~135
(0.030)

-0.309
(0.200)

Human Capital

0.243
(0.028)

Primary School Enrollment

Secondary School Enrollment

Measurement

Human Capital

1.000

0.831
(O.lOO)

Models

Assasslnatldns

Coups

War Casualties

Political lnstal)fllty

1.000

3.049
(1.246)

4.389
(1.815)



Growth

Equipment Investment

Non-equipment hlvestment

Y/L

Gover~zment Consumption

Public Investment

Human Capital

Political Instability

Table 4

Specification Including Public. Consumption and Investment
(standard errors in parentheses)

Growth

-0.134
(0.195)

-0.055
(0.166).

-0.023
(0,012)

-0.042
(0.033)

0.154
(0.083)

0.103
(0.068)

-0.070
(0.074)

Structural Equations

Fxluipment Investment

1.005
(0.354)

0.050
(0.015)

0.060
(0.0451

-0.017
(0.072)

0.032
(0.014)

-0,094
(0.079)

Non-Equipment
Investment

0.868
(0.820)

-0.013
(0.026)

-0.013
(0.080)

0,262
(0,1’39)

0,136
(0.026)

-0.123
(0.131)

Human Capital

0.240
(0.028)

Primary S~hool Enrollment

Secondary School Erumllment

Measurement Models

Hunmn Capital

1.000

0.849
{0.1031

Assassinations

CoUF s

Wax Casualties

Political Instability

1.000

3.134
(1.316)

4.262
(1~855|



Gro~h

Equipment Investment

Non-equipment Investment

Opelmess

Y/L

Government Cor~sumptlon

Public Investment

Hunlan Capital

Political Instability

Table 5

Specification with Altenlative Identifying Assumptions
(standard errors in parentheses)

Glowth

-0.293
[0.309)

0.036
(0.129)

0.01~
(0.020)

-0.026
(0.013)

-0.041
(0.0361

0.149
(0.080)

0. 108
(0.069)

Structural Equations

Equipment Investment

1.288
(0.456)

0.048
(0.016)

0.072
[0.049}

-0.036
(0.083)

0.032
(0.014)

-0.063
(0.073)

Non-Equipment
Investmeut

0.466
(0.670)

-0.007
(0.026)

-0.034
(0.080)

0.296
(0.131)

0.136
(0.026)

-0, 129
(0.124)

Human Capital

0.239
(0.029)

Prlllma-y S~hool Enrollment

Secondary School Erwolllnent

Measurement Models

Human Capital

1.000

0.858
(0,104)

Assassinations

Coups

War Casualties

Political Instability

1.000

2.897
(1.218)

3.953
(1.744)


