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Abstract

In this paper, I conduct a structural change test that casts doubt on the validity of exogenous

growth assumptions.  Cross-sectional empirical support for non-stochastic convergence in the

neoclassical growth model is the reason that the literature rejects endogenous growth.  But, in a

stochastic world, both neoclassical and endogenous growth models exhibit disequilibrium

adjustment dynamics, thus convergence is not sufficient to reject endogenous growth.  After testing

for cointegration in regional per-capita incomes, I extract a single common trend to control for non-

stationarity in regressions including both linear and stochastic trends.  Structural change tests

demonstrate that the data contain segmented linear trends, which is inconsistent with an exogenous

growth assumption, but is consistent with endogenous growth.
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I.  Introduction

Solow (1956, 1957,1988,1994) developed the neoclassical growth model to show that long-

run steady-state growth was both feasible and dynamically stable.  In the neoclassical model,

disequilibrium adjustment is a temporary phenomena.  Once disequilibrium dynamics are played

out, stable long-run growth is driven by technological change, deemed by Solow to be any factor

causing the production function to shift.  Focusing on dynamic stability, Solow assumed that

technological change was exogenously determined outside of the model.  This assumption was

maintained in subsequent extensions (Cass (1965), Koopmans (1965), Brock & Mirman (1972)).

However, maintaining the exogenous growth assumption hampered growth theory because

of the inability to explain long-run growth.  Recently, a series of authors (Lucas (1988), Romer

(1986, 1990), Jones & Mannueli (1990), Grossman & Helpman (1991), Rebelo (1991), Aghion &

Howitt (1992), Jones (1995)) have remedied this shortcoming by endogenizing the technological

growth rate.  It is unfortunate for this “new” growth theory that recent empirical tests have failed to

confirm endogenous growth.  In contrast to the existing empirical literature, I conduct structural

change tests that call into question the validity of the exogenous growth assumption which has been

traditionally maintained in the neoclassical growth model.

Most of the empirical work, such as Barro (1991), Barro and Sala-i-Martin (1991,1992,

1995), Mankiew, Romer, and Weil (1992), employs cross-sectional data to test the disequilibrium

dynamics of the neoclassical growth model in contrast to the no-convergence implication of non-

stochastic versions of the AK endogenous growth model (Rebelo (1991)).  However, it should be

emphasized that convergence is consistent with the endogenized technological growth rate model of

Romer (1990) as well as with a stochastic version of the AK endogenous growth model.  Therefore,

tests of convergence do not constitute a sufficient rejection of endogenous growth.
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In comparison to the convergence literature, there are few time-series tests of endogenous

growth (Kremer (1993), Jones (1995), Evans (1997), Lau and Sin (1997a, 1997b), Karras (1999),

and Kocherlakota and Yi (1996, 1997), Yip (1999)).  These studies assess whether certain variables

– investment, private capital, tax rates, public capital, or public spending – have lagged permanent

effects on productivity growth rates, with most rejecting endogenous growth.  But, this conclusion

is subject to the caveats of both endogenous variable bias and omitted variable bias. In fact,

Kocherlakota and Yi (1997), demonstrate that omitted variable bias is a serious problem.

Ultimately, how well the exogenous growth assumption serves the theory depends upon the

question of parameter constancy.  If the technological growth rate rarely changes, then it is

unnecessary to complicate growth models by adding an endogenous process that determines this

growth rate.  On the other hand, if technological growth rates change with greater frequency, then

the simplicity provided by an exogeneity assumption is less attractive.  In this case, an endogenous

process must be added not only to explain how the growth rate is determined, but also to explain

how the growth rate changes over time.

The growth rate expressions in the neoclassical, the AK endogenous growth, and the

endogenized growth rate models are composed of deep parameters that describe preferences,

technology, and policy – one deep parameter is exogenously specified in the neoclassical model and

an algebraic expression combines the deep parameters in the two endogenous growth models.

Suppose that these deep parameters are constant for all time.  In a stochastic world, the three growth

models are observationally equivalent.  Thus, an endogenous process may determine the growth

rate, but because of parameter constancy, this growth rate can be exogenously specified.

Now suppose that the deep parameters change over time.  In the two endogenous growth

models, altering the values of the deeper parameters changes the growth rate.  In the neoclassical
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model, there can be no explanation for changes in the single growth rate parameter without

endogenizing it.  In other words, the justification for maintaining exogenous growth must be an

underlying assumption of parameter constancy.  It is this distinction that is exploited in using

structural change econometric techniques to answer the question of whether productivity growth

rates should be modeled as endogenously determined or can be exogenously specified.

Quarterly time series data is employed in this study – per-capita incomes for the eight census

regions of the United States, spanning the time period from 1948 through 1998.  The empirical

results are threefold.  First, per-capita incomes are non-stationary.  Under the hypothesis of

convergence across regions a single trend would be common to all regions.  Thus, I test the

hypothesis of a single common trend.  After taking into account parameter instability in the

cointegrating vectors, the test is consistent with a single common stochastic trend, which I interpret

as a common growth shock.  After extracting the common trend, the growth shock is used to control

for non-stationarity in regressions that also include a linear trend – called a structural time-series.

Third, I test for parameter instability in the structural time-series, and find that per-capita incomes

contain segmented linear trends – evidence demonstrating that growth rates change frequently over

time.  This casts doubt on the validity of the exogenous growth rate assumption and suggests that

technological growth rates require an endogenous specification.  The question of which particular

endogenous specification is left to future research.

The plan for the remainder of this paper is as follows.  In section two, I present the time

paths of productivity for the three classes of stochastic growth models.  In section three, I briefly

present the empirical model.  Statistical results are presented in section four, and the conclusions in

section five.  The optimization problems and the data are discussed in separate appendices.
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II. A Tale of Three Stochastic Growth Models 
 
2.1  The Time Path of Productivity 
 
 Given constant parameters over time, the time paths of labor productivity in the 

neoclassical growth model, the endogenized growth rate model, and the AK growth model are 

observationally equivalent.  The stochastic time path of observed labor productivity, or 

equivalently per-capita income, is given by the following four equations (in appendix 2, we 

derive these laws of motion for the three stochastic growth models, employing a representative, 

optimizing consumer that resides in a small open economy with imperfect capital mobility): 
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y ≡ : denotes labor productivity observed in period t.. 

 ty : denotes the steady-state labor productivity in period t. 

 tY : denotes the level of income observed in period t.. 

 tL : denotes the labor input observed in period t. 

 νε, : are gaussian stochastic disturbances with variances of 22 , νε σσ . 

 The time path of labor productivity is presented in equation (1).  Growth in observed 

labor productivity, is driven by long-run growth in the steady-state.  Equation (1) also shows that 

short-run movements in observed productivity levels are stochastic – equation (2) gives the 

general law of motion for this stationary process – which also describes the stochastic 

convergence dynamics for the three growth models.  Our derivation in appendix 2 demonstrates 
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that the AK growth model exhibits convergence dynamics in a stochastic setting, which is a very 

different result than that obtained from the non-stochastic model.  Because the data are stochastic 

by their very nature, tests based upon the presence of convergence dynamics are not sufficient to 

reject endogenous growth. 

 The law of motion for the steady-state is presented in equation (3).  As this equation 

shows, the time path of the steady-state is also stochastic, with equation (4) giving the dynamics 

of the steady-state shock.  Because numerous authors find the data to be non-stationary, we 

present this steady-state growth shock as a difference stationary process.  The productivity 

growth rate – γ  , the linear trend slope in equation (3) – represents the upward drift of this non-

stationary process.  The growth rate is specified exogenously in the neoclassical growth model, 

and determined endogenously in both the endogenized growth rate and AK growth models.  The 

determination of γ  for these two different classes of growth models is given by: 

 The neoclassical growth model 

(5) γ=γ : is an exogenously specified constant. 

The endogenous growth models 
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α  : is capital’s share of income from the output sector. 
A~ : is an output scaling factor in the output technology. 

:φ is capital’s share of the income from knowledge accumulation. 
Φ : is a technological index in the knowledge accumulation technology. 
 
The remaining parameters contained in equation (6) are: 

β : the consumer’s discount rate, with  
ζ+

=β
1

1  where: )( η−ρ=ζ . 

ρ : the consumer’s rate of time preference. 
η : the exogenously specified growth rate of the labor force. 
θ : the consumer’s elasticity of intertemporal substitution. 
δ : the rate of depreciation. 
m : is an exogenously specified debt/wealth ratio.  It is institutionally 
 determined because of capital market imperfections limiting the 
 mobility of capital. 
r :  the real world interest rate. 

 

2.2   The Productivity Growth Rate and Structural Change 

 Equations (5) and (6) suggest an important difference in the nature and composition of 

the drift terms in the respective random walk representations of each growth model.  The 

technological growth rate in the neoclassical model – equation (5) – is an exogenously specified 

constant.  It should be emphasized that if the “deep” parameters in equations (5) and (6) remain 

constant for all time, then, for all practical purposes, equation (6) is identical to equation (5) – a 

growth rate that is constant for all time can be specified exogenously – and the three growth 

models are observationally equivalent.  In this case, the only effect of an endogenous growth 

model is to explain how this constant growth rate is determined. 

 Furthermore, while there is no reason that an exogenously specified growth rate cannot 

vary over time, any such structural change cannot be explained without endogenizing the growth 

rate using an endogenous growth model.  But, an endogenous process adds an extra (and 

unnecessary) layer of analysis when the technological growth rate is constant for all time.  Thus, 
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the reason for suppressing this endogeneity and specifying the growth rate exogenously must be 

an assumption that structural changes occur rarely, if they occur at all.  However, if the growth 

rate changes frequently, then an endogenous process must be used to explain this variation, 

which results in the two similar expressions specified in equation (6).  

 We endogenize the growth rate of equation (5), γ , via the addition of a constant-returns-

to-scale knowledge accumulation technology – a generalized version of the Lucas (1988) 

endogenous growth model.  This growth model incorporates the second specification listed for 

the parameter, B, into the expression in equation (6), which contains the production technology 

parameters of both the output and knowledge accumulation sectors.  In contrast, the AK growth 

model endogenizes the growth rate, γ , through the elimination of diminishing returns to capital.  

The expression for the growth rate of the AK growth model is also given by equation (6), but it 

incorporates the first specification listed for the parameter B – the technology index, A, of the 

output sector in the model.  Equation (6) also contains "deep" parameters common to both 

endogenous growth models.   

 However, unlike the growth rate, γ , in the neoclassical model, we argue that these 

“deeper” parameters can change over time for a variety of reasons, and that this will induce 

corresponding changes in the productivity growth rate.  Therefore, regardless of which approach 

is used to endogenize the growth rate, γ , it should be apparent that evidence of structural changes 

in γ  implies endogenous growth.  It is this distinction that is exploited in testing for endogenous 

growth.  Lau (1997) first suggested this conjecture, which is essentially correct. 

 The growth rate expressions for the two types of endogenous growth models contain 

many deep parameters emanating from the production technology as well as from preferences.  
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Let’s discuss how these parameters could change.  The technological parameters contain: the 

technology indexes, Φ,~, AA , which may themselves be functions of other endogenous variables 

and parameters (such as energy, materials, and public capital); the capital share parameters, φα, ; 

and the depreciation rate, δ, which can be affected by technological improvements in capital as 

well as in the substitution among different forms of capital that result from tax changes.  In 

addition, endogenous changes in the industrial composition of aggregate output will induce 

parameter shifts in all of the aggregate technology parameters. 

 The preference parameters are the intertemporal substitution elasticity, θ; the rate of time 

preference, ρ;  and the labor force growth rate, η.  In an aggregate model, these preference 

parameters can all be influenced by disaggregated changes in population demographics.  In an 

open-economy model,  the growth rate expressions contain two additional parameters: m , which 

represents the institutional constraint on the debt/wealth ratio that stems from capital market 

imperfections; and, r, which represents the national (or international) interest rate.  Thus, 

institutional and other external changes to world credit markets lead to the possibility of 

additional regime shifts. 

 In order to discriminate between the neoclassical and the endogenous growth models, I 

conduct statistical tests for structural changes in a deterministic linear trend, while at the same 

time modeling the stochastic growth process as a random walk. 

III.  The Empirical Model 

The empirical model is presented in equations (7) through (9) below, which are 

multivariate extensions of equations (1), (3) and (4), respectively (detail is suppressed on the 

convergence process, i
tµ , because the parameters of the ARMA processes are not estimated).  
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These equations encompass a structural time-series system:   
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 321 ,, MMM : represent the number of breaks in cba ,, , respectively. 

 TTT M == +10 ,0 . 

 i
tµ : a stationary stochastic “convergence” process. 

 tε : a common growth shock. 

However, equations (7) through (9) also include four additional wrinkles.  First, along 

with the multivariate nature of the steady-state in equation (8), the coefficients of the linear trend 

are allowed to vary discretely over time – this wrinkle allows structural changes to be estimated 

in the deterministic part of the growth process.  Second, regional scaling coefficients on the 

“common” non-stationary stochastic trend, tξ , are included.  Third, these scaling coefficients are 

allowed to vary discretely over time.  These two wrinkles enable the stochastic trends to vary 

across regions, but in a systematic way.   

Fourth, using cointegration techniques, we separately estimate and extract the “common” 

non-stationary stochastic trend represented in equation (9).  The reason for using cointegration 
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techniques is that if we were to estimate equations (7) through (9) as a univariate system for each 

region, we would have an identification problem caused by the difficulty in separating out the 

influence of two stochastic shocks with only one data series.  Employing a dynamic factor 

analysis (i.e., with cointegration techniques) using many productivity indicators across regions 

avoids this problem, and enables the identification and estimation of the stochastic trend (i.e., the 

growth shock) separately from the stochastic convergence process. 

IV.  The Empirical Test for Endogenous Growth 

4.1   Unit-Root Tests 

The statistical tests employ quarterly per-capita personal income for each of the eight 

census regions, spanning the time period from 1948:1 to 1998:3.  In appendix 3, I provide a more 

complete description of this data set.  The first test is for unit roots, using Dickey-Fuller (DF) and 

Augmented Dickey-Fuller (ADF) tests.  The test results are presented in Table 1.  The results for 

per-capita income levels indicate that the unit-root null cannot be rejected, while the results for 

the first differences indicate that the unit-root null is strongly rejected.  The conclusion is that 

regional per-capita incomes are generated from a stochastic process that is integrated of order one 

(i.e., is non-stationary). 

The test for endogenous growth entails a search for regime shifts in the deterministic part 

of the growth process.  As discussed in section 2, multiple changes in the trend growth rate, γ , 

are consistent with endogenous growth.  However, since the data are non-stationary there is an 

identification problem in implementing this test in a univariate framework – the problem occurs 

because it is difficult to identify two stochastic shocks (a stationary productivity shock and a non-
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stationary growth shock) with a single data series.2  In a univariate context, this problem can be 

solved only with prior knowledge of at least one of the stochastic error variances, or with their 

ratio.  However, in a multivariate context, the identification problem can be solved if one of the 

shocks is common to all regions.  In this case, there are multiple indicators with which to conduct 

a dynamic factor analysis to extract the common factor, or the common shock. 

4.2  Dynamic Factor Analysis 

Dynamic factor analysis and Stock’s (1988) concept of a common stochastic trend (i.e., 

cointegration) are synonymous.  Therefore, I test for cointegration and, if possible, attempt to 

extract a single common trend.  Barro and Sala-i-Martin’s (1992) assumption of unconditional 

convergence across states directly implies the hypothesis of a single common trend.  Table 2 

summarizes the results from a Johansen cointegration test.  While the data are cointegrated, the 

results show that a large number of unit-roots exist across regions.  However, structural changes 

in growth model parameters – the basis for our endogenous growth test – suggests that the 

cointegrating vectors would contain structural breaks, contaminating the Johansen test results. 

To examine the possibility of parameter instability, the Stock and Watson (1993) DOLS 

procedure is used to estimate the seven cointegrating vectors, with the West Coast series as the 

single driving process.  Because the DOLS estimator is linear, the Bai (1997) and Bai and Perron 

(1998) procedure is used to endogenously search for multiple breaks (one at a time) in each of 

the estimated cointegrating vectors.  This procedure is described in appendix 4.  Not surprisingly, 

                                                 
2 There are a number of trend break tests for univariate series.  However, these tests have been designed mainly to show that 
trend breaks may be the cause of a unit root.  Thus, this type of test is an adjunct to the unit root tests.  Second, the reason that we 
do not use these additional unit root tests is that they have been designed to search for one break, rather than the multiple breaks 
that we expect to find.  Third, while both trend stationary data and non-stationary data are consistent with the stochastic 
neoclassical and endogenized growth rate models, the stochastic AK model is consistent only with non-stationary data.  Thus, 
incorporating all three growth models under one hypothesis test for endogenous growth requires non-stationary data – and a 
solution to the identification problem. 
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I find multiple breaks in all three parameters of the cointegrating vectors – intercepts, linear trend 

slopes, and cointegrating coefficients.  Table A4.1 in appendix 4 presents the break-dates that the 

procedure found, along with the associated Sup-F statistics for each of the cointegrating vectors. 

 Next, DF and ADF tests are performed on the cointegrating residuals as an alternative test 

for cointegration in the presence of structural breaks, the results of which are presented in Table 

3.  These results show that the non-stationary null-hypothesis is rejected for all seven equilibrium 

relationships.  Therefore, I conclude that, after adjusting for regime shifts, the data contain a 

single common stochastic trend.  However, since each of the estimated cointegrating vectors 

contains a statistically significant trend term, I also conclude that unconditional convergence 

does not occur.3  Thus, the common trend represents a common growth shock. 

 A dynamic factor analysis is performed to extract the common growth shock.  I follow 

Johansen (1995) in forming the common trend via a linear combination of the integrated 

residuals obtained from a Johansen vector error-correction mechanism (VECM), which is 

estimated using data that are adjusted for the regime shifts.  The resulting drift-less series is the 

common growth shock, tξ , in equation (9).  Chart 1 plots a an upward drifting version of this 

growth shock – the drift is an average estimated across regions with panel data methods.  The 

graph suggests that along with the drift, the growth shock is characterized by two different 

cyclical movements – the business cycle, and a longer-run technological cycle.  These two 

stochastic movements appear to account for the non-stationarity in per-capita incomes.  

4.3   The Test for Endogenous Growth 

 With the identification problem solved, I proceed to estimate the structural time-series 

                                                 
3 We perform a formal test of unconditional convergence in another paper. 
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system of equations (7) through (9).  If equation (8) is substituted into equation (7) for i

ty , then 

there is a nine equation system: eight regional versions of the expanded equation (7) and the 

common growth shock of equation (9), which was estimated using a dynamic factor analysis.  

Employing the original data series as dependent variables, a constant, linear trend, the drift-less 

common growth shock, and two leads and lags of the first differences of the growth shock are 

included as the regressors in each of the eight DOLS estimations.  The Bai and Perron (1998) 

procedure is used to endogenously search for multiple breaks (one at a time) in three coefficients 

(constant, trend growth rate, and the scaling coefficients on the growth shock) in each of these 

eight regressions.  Table 4 lists the regimes and the Sup-F statistics found by the procedure, while 

Table 5 lists the coefficient estimates for the growth rates in each regime.   

 There are many regime shifts in the trend growth rate.  But, some changes are of 

relatively short duration, suggesting that these may be picking up cyclical movement.  To explore 

this possibility, I compare regime dates to NBER business cycle dates, graph the regional growth 

shocks along with the original series in Chart 2, and graph the segmented trends along with the 

original series in Chart 3.  After examining these comparisons, it appears that only four trend 

breaks (highlighted in yellow in Table 4) may be picking up cyclical movement.  These four are 

incorporated into the regional growth shocks depicted in Chart 2, and eliminated from Chart 3 

and Table 5.  Chart 2 demonstrates that the growth shocks pick up most of the cyclical 

movement.
4
  Similarly, Chart 3 shows that while some trend breaks originate during a business 

cycle movement, these breaks are capturing long-lived changes in growth rates.  According to 

                                                 
4 The plotted growth shocks are trended, with the trend growth rate being the average growth rate over the complete time span 
for each region.  The regional growth shock is the common growth shock scaled by its estimated regional coefficient from 
equation (7), and incorporates the regime shifts in these regional scaling coefficients along with the regional level shifts, that is 
the regime shifts in the regional intercepts. 
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Chart 3, the remaining short-duration trend breaks represent a gradual ratcheting upward, or 

downward in the long-run trend growth rate. 

 Tables 4 and 5 along with Chart 3 demonstrate that there is strong evidence that regional 

growth rates change frequently over time.5  This is consistent with frequent changes in the “deep” 

parameters of a regional specific endogenous growth model, inducing changes in the 

corresponding productivity growth rate.  Therefore, I conclude that the process of regional 

growth must emanate from an endogenous growth process, although we cannot determine which 

particular endogenous process (i.e., an AK growth model, or an endogenized growth rate model), 

nor which particular deep parameter(s) caused these changes.  We leave this for future work.  

However, this study does provide empirical evidence consistent with endogenous growth. 

V.  Conclusions 

 The main contribution of this paper is to provide empirical evidence supporting 

endogenous growth.  This stands in contrast to most of the literature, both cross-sectional and 

time-series, that finds against endogenous growth.  The cross-sectional literature reaches this 

conclusion on the basis of empirical evidence of convergence – which seems to confirm this 

implication of the neoclassical model as opposed to the no-convergence implication of a non-

stochastic AK endogenous growth model.  But, convergence is also consistent with the 

endogenized growth rate model of Romer (1990) as well as with a stochastic AK endogenous 

growth model, so that convergence, in and of itself, is not sufficient to reject endogenous growth. 

 The time-series literature reaches its conclusion on the basis that there is limited 

empirical evidence of certain determinants having lagged permanent effects on productivity 

                                                 
5 The break-point dates may be sensitive to changes in a common trend that is not unique.  However, this does not invalidate my 
conclusions because while the break dates may vary with changes to the common trend, the ability to find multiple regime shifts 
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growth rates.  However, the conclusions of this literature are subject to both omitted variable bias 

and endogenous variable bias.  In the only time-series study that shows support for endogenous 

growth, Kocherlakota and Yi (1997) demonstrated that omitted variable bias is indeed a serious 

problem in these studies.  However, the government policy (as well as investment) variables that 

predominate on the right-hand-side in these studies are endogenous variables (see Yip (1999) for 

one study that tests the exogeneity assumption).  Therefore, this vein of the empirical literature 

also suffers from the equally serious problem of endogenous variable bias, such that their 

conclusions should be highly suspect. 

 In comparison, the structural change test employed in this paper provides powerful 

evidence that productivity growth rates change frequently over time.  This evidence is sufficient 

to reject the parameter constancy assumption that is the basis for exogenously specifying the 

technological growth rate in the neoclassical model.  Such frequent changes cannot be explained 

unless the productivity growth rate is endogenized with an endogenous growth model.  Thus, the 

results in this paper provide evidence consistent with the hypothesis that regional economic 

growth in the U.S. emanates from an endogenous process. 

                                                                                                                                                             
in the linear trends will not change. 
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Table 1 a,b

Unit Root Tests of Regional Per-Capita Incomes
Levels First Differences

Region DF  t-test ADF  t-test DF  t-test ADF  t-test
New England 1.04 0.14 -9.65** -5.51**

Middle Atlantic 0.73 0.10 -11.61** -6.33**
Great Lakes 0.55 -0.05 -10.63** -6.07**

Plains 0.68 0.11 -12.06** -6.75**
Southeast -0.78 -1.02 -10.33** -5.65**
Southwest -0.30 -0.58 -12.49** -6.28**
Mountains 1.08 0.78 -14.12** -6.76**
West Coast 0.40 -0.38 -10.42** -5.87**

a.  Regional per-capita incomes are quarterly series running from 1948:1 to 1998:3.
      Critical Value for the DF and ADF t-test of levels at a 5% significance level: 1.96.
      Critical Value for the DF and ADF t-test of first differences at a 5% significance level: -2.88.
b.  ADF test based on a regression containing 2 lags of first differences
** Denotes significance at the 5% level.
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Table 2
Eight Census Region Johansen Cointegration Tests

Cointegrating Equations Contain a Constant Contain a Linear Trend
VARS Contain a Drift Contain a Drift

Number of Trends Number of Trends Trace 5% C.V. Max Eigenvalue 5% C.V. Trace 5% C.V. Max Eigenvalue 5% C.V.
0

 >=1 1 vs 0 0.056 3.76 0.056 3.76 2.930 12.25 2.930 12.25
>=2 2 vs 1 9.380 15.41 9.324 14.07 14.680 25.32 11.750 18.96
>=3 3 vs 2 21.336 29.68 11.956 20.97 28.098 42.44 13.418 25.54
>=4 4 vs 3 35.352 47.21 13.996 27.07 52.466 62.99 24.368 31.46
>=5 5 vs 4 63.598 68.52 28.266 33.46 83.958 87.31 31.492 37.52
>=6 6 vs 5 95.512** 94.15 31.914 39.37 123.33** 114.90 39.372 43.97
>=7 7 vs 6 146.776** 124.24 51.264** 45.28 178.858** 146.76 55.528** 49.42
>=8 8 vs 7 216.606** 156.00 69.83** 51.42 252.89** 182.82 74.032** 55.50

** Significant at the 5% level.



 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 a,b

Alternative Cointegration Test:
Unit Root Test of Cointegrating Residuals

(After adjustment for parameter instability in cointegrating equations)
Residual C.E. Adjusted with Leads and Lags

Region DF  t-test ADF  t-test DF  t-test ADF  t-test
New England -7.430** -6.038** -7.821** -6.042**

Middle Atlantic -8.244** -7.551** -8.681** -7.654**
Great Lakes -7.606** -6.619** -7.656** -7.062**

Plains -6.896** -7.452** -7.010** -7.307**
Southeast -7.159** -6.786** -7.948** -6.978**
Southwest -7.609** -7.253** -8.216** -6.861**
Mountains -6.311** -5.274** -6.290** -5.255**

a.  Sample runs from 1949:4 to 1998:1.
     Cointegrating Residual from Stock and Watson DOLS estimator using the West Coast region as the non-stationary series.
     Critical Value for the DF and ADF t-test at a 5% significance level: 2.88.
b.  ADF test based on a regression containing 2 lags of first differences
** Denotes significance at the 5% level.
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Table 4 (a)
Structural Time-Series Equation -- Regime Change Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Sup-F Statistics

New England
Constant

1949:4 1953:3
1953:4 1973:4 16.9784
1974:1 1985:4 641.1672
1986:1 1986:4 101.3854
1987:1 1990:1 21.1025
1990:2 1998:1 94.5061

Trend
1949:4 1955:2
1955:3 1982:4 38.7780
1983:1 1985:4 117.9593
1986:1 1989:2 1,247.3549
1989:3 1991:1 23.8490
1991:2 1998:1 37.4178

Growth shock
1949:4 1961:2
1961:3 1963:2 42.4051
1963:3 1972:4 19.8266
1973:1 1998:1 26.5019

Middle Atlantic
Constant

1949:4 1974:2
1974:3 1986:4 1,065.4879
1987:1 1998:1 291.7386

Trend
1949:4 1951:3
1951:4 1955:3 50.6973
1955:4 1973:4 33.6032
1974:1 1976:3 29.4929
1976:4 1983:2 164.6536
1983:3 1987:3 30.2907
1987:4 1998:1 22.4695

Great Lakes
Constant

1949:4 1972:3
1972:4 1980:1 27.2375
1980:2 1993:1 454.8053
1993:2 1998:1 154.9867

Trend
1949:4 1961:4
1962:1 1970:4 50.6116
1971:1 1978:2 246.3882
1978:3 1998:1 113.1922

a.  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992



 23 

 

 
 

Table 4 (Continued)
Structural Time-Series Equation -- Regime Change Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Sup-F Statistics

Great Plains
Constant

1949:4 1953:2
1953:3 1954:3 78.3484
1954:4 1969:2 59.0218
1969:3 1972:3 424.1866
1972:4 1975:4 37.7396
1976:1 1988:2 60.4358
1988:3 1990:3 176.6094
1990:4 1998:1 32.6311

Trend
1949:4 1961:4
1962:1 1964:4 27.0468
1965:1 1993:3 140.7396
1993:4 1998:1 41.9053

Growth shock
1949:4 1956:3
1956:4 1958:4 18.2346
1959:1 1998:1 17.8547

Southeast
Constant

1949:4 1957:3
1957:4 1959:2 19.9026
1959:3 1968:1 33.3376
1968:2 1970:4 2,296.5020
1971:1 1975:4 168.8359
1976:1 1998:1 25.4800

Trend
1949:4 1953:3
1953:4 1955:2 23.2708
1955:3 1975:4 34.9683
1976:1 1977:3 57.9971
1977:4 1990:4 327.2663
1991:1 1995:1 583.4392
1995:2 1998:1 41.4929

Growth shock
1949:4 1978:3
1978:4 1998:1 26.9264

Southwest
Constant

1949:4 1970:1
1970:2 1980:3 45.6678
1980:4 1986:2 92.4129
1986:3 1990:4 1,409.4865
1991:1 1998:1 24.5535

Trend
1949:4 1966:3
1966:4 1968:1 73.2759
1968:2 1983:4 638.4706
1984:1 1985:3 80.2725
1985:4 1993:3 20.3197
1993:4 1998:1 30.1693

a.  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992
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Table 4 (Continued)
Structural Time-Series Equation -- Regime Change Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Sup-F Statistics

Mountain
Constant

1949:4 1953:2
1953:3 1986:2 257.9041
1986:3 1990:3 135.9453
1990:4 1998:1 28.8684

Trend
1949:4 1969:2
1969:3 1994:1 341.2107
1994:2 1998:1 49.6590

West Coast
Constant

1949:4 1969:4
1970:1 1991:1 22.1223
1991:2 1998:1 24.4311

Trend
1949:4 1993:1
1993:2 1998:1 29.6081

Growth shock
1949:4 1953:3
1953:4 1998:1 24.1592

a.  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992
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Table 5 (a)
Structural Time-Series Equations -- Growth Rate Coefficients

Regime Dates Coefficients
Region Beginning Date Ending Date Annual Growth Rate Quarterly Growth Coeff Coeff Differences

New England
1949:4 1955:2 1.54% 0.003820

(13.95541)
1955:3 1985:4 2.19% 0.005439 0.001619

(6.813603)
1986:1 1989:2 3.87% 0.009533 0.005713

(11.92012)
1989:3 1991:1 3.76% 0.009265 0.005445

(11.6451)
1991:2 1998:1 3.64% 0.008990 0.005170

(12.11349)

Middle Atlantic
1949:4 1955:4 1.89% 0.004701

(15.41910)
1955:4 1973:4 2.31% 0.005736 0.001035

(3.864387)
1974:1 1976:3 2.13% 0.005289 0.000588

(2.077411)
1976:4 1987:3 1.96% 0.004866 0.000165

(0.584857)
1987:4 1998:1 2.11% 0.005236 0.000535

(1.860474)

Great Lakes
1949:4 1961:4 1.43% 0.003547

(18.83315)
1962:1 1970:4 1.68% 0.004167 0.000620

(5.308937)
1971:1 1978:2 1.86% 0.004610 0.001063

(8.444407)
1978:3 1998:1 1.72% 0.004271 0.000724

(4.269166)

a.  Statistics in parentheses are t-statistics, which are computed using Newey-West Heteroscedasticity and Autocorrelation adjusted standard errors.
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Table 5 (Continued)
Structural Time-Series Equations -- Growth Rate Coefficients

Regime Dates Coefficients (a)
Region Beginning Date Ending Date Annual Growth Rate Quarterly Growth Coeff Coeff Differences

Great Plains
1949:4 1961:4 1.64% 0.004078

(17.26690)
1962:1 1964:4 1.86% 0.004622 0.000544

(5.115076)
1965:1 1993:3 1.98% 0.004924 0.000846

(5.790380)
1993:4 1998:1 2.06% 0.005107 0.001029

(6.761185)

Southeast
1949:4 1955:2 3.49% 0.008617

(31.49769)
1955:3 1975:4 3.27% 0.008077 -0.000540

(-3.427646)
1976:1 1977:3 2.64% 0.006536 -0.002081

(-6.179580)
1977:4 1990:4 2.55% 0.006323 -0.002294

(-7.398140)
1991:1 1995:1 2.46% 0.006088 -0.002529

(-8.268224)
1995:2 1998:1 2.42% 0.005986 -0.002631

(-8.681164)

Southwest
1949:4 1966:3 1.78% 0.004422

(35.159000)
1966:4 1968:1 2.03% 0.005034 0.000612

(5.487312)
1968:2 1983:4 2.18% 0.005399 0.000977

(9.057914)
1984:1 1985:3 2.11% 0.005233 0.000811

(6.978622)
1985:4 1993:3 2.02% 0.005005 0.000583

(4.903233)
1993:4 1998:1 2.09% 0.005185 0.000763

(6.481533)

a.  Statistics in parentheses are t-statistics, which are computed using Newey-West Heteroscedasticity and Autocorrelation adjusted standard errors.
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Table 5 (Continued)
Structural Time-Series Equations -- Growth Rate Coefficients

Regime Dates Coefficients (a)
Region Beginning Date Ending Date Annual Growth Rate Quarterly Growth Coeff Coeff Differences

Mountain
1949:4 1969:2 2.00% 0.004961

(33.885034)
1969:3 1994:1 2.17% 0.005371 0.000410

(4.325418)
1994:2 1998:1 2.26% 0.005599 0.000638

(6.200793)

West Coast
1949:4 1993:1 1.84% 0.004562

(87.34277)
1993:2 1998:1 1.88% 0.004666 0.000104

(4.223410)

a.  Statistics in parentheses are t-statistics, which are computed using Newey-West Heteroscedasticity and Autocorrelation adjusted standard errors.
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 Appendix 1 
 Variable Glossary 
 

 L : denotes labor input.  
L
L∆≡η : denotes the labor force growth rate. 

 Y: denotes aggregate output.  
L
Yy ≡ : is observed labor productivity. 

 K:  denotes aggregate capital stock.  
L
Kk ≡ : is the observed capital-labor ratio. 

 C denotes aggregate consumption.  
L
Cc ≡ : is observed per-capita consumption. 

 d : denotes per-capita external debt: kmd =  
 m : denotes a constant debt-capital ratio.  δ : is the depreciation rate. 
 v : is a productivity shock.  r : denotes the real world interest rate. 

 β : denotes the discount rate: 
ζ+

=β
1

1 , and η−ρ=ζ . 

 θ : the intertemporal rate of substitution: 
)(
)(

cU
ccU

′
′′

−=θ . 

 ρ : denotes the rate of time preference. 
 
 Differences Across Growth Models 

The Neoclassical Growth Model  

 hLL =~  : is efficiency labor.  
ζ+

=β
1

1 , and η−γ−ρ=ζ . 

 h : is a Harrod-neutral technology index: 
h
h∆≡γ : denotes its exogenous growth rate. 

 
L
Yy ~~ ≡ : is labor productivity:  α≡φ= kAeky v ~)~(~ ln . 

 
L
Kk ~

~ ≡ : is the capital-labor ratio. 
L
Cc ~~ ≡ : is per-capita consumption. 

 d~ : per-capita debt (in efficiency units): kmd ~~ = . 
 
The Endogenized Growth Model 

 H : denotes efficiency labor (knowledge): hLH = . 

 
L
Hh ≡ : denotes per-capita knowledge: ( ) ( ) )1()1()1(),( φ−φ −−Φ≡=∆ hwkuhkgh hh . 
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L
Yy ≡ : is observed labor productivity:  ( ) ( ) )1(ln),( α−α≡= whukAehkfy v

yy . 

 u : share of capital used in output sector . w : share of knowledge used in output sector. 
 )( ttt hkmd += . m : denotes a constant debt-wealth ratio. 
 kδ , hδ : are the depreciation rates on capital and knowledge. 
 
The AK Endogenous Growth Model 

 
L
Yy ≡ : is observed labor productivity: kAeky vln)( ≡φ= . 

 

 Appendix 2 
 Derivation of the law of motion for productivity 
 

The Neoclassical Model 

The problem of the representative consumer is to: 

 
( )[ ][ ]tttt

t
t

t

c

krmmck
m

kts

cUMax
~)()1(~)~(

)1(
1~..

)~(
0~

δ++δ+γ+η−−−φ
−

=∆

β∑
∞

=  

   
 To solve this problem, we set up a Lagrangian and take derivatives with respect to the 

control variable, tc~ , the state variable, 1
~

+tk , and the co-state variable, tλ .  These derivatives form 

the first-order necessary conditions, which can be reduced to the following two equations: 

(A2.1) [ ] 0)())(1(~
~

~
)~(

)1(
1

~
~

=







δ++δ+γ+η−−−φ

−
=∆ rmm

k
c

k
k

mk
k  

(A2.2) [ ][ ] 0)())(1()~(
)1(~

~
=δ++ζ+δ+γ+η−−φ′

θ−
β=∆ rmmk
mc

c . 

 
 Assuming perfect certainty, the expression inside the brackets of equation (A2.2) is 

solved for the steady-state, tyy ,~ , which is given by: 
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(A2.3) tt hyy ~≡  

 where: [ ]
)1(

)1(
1

)())(1(
~ α−

α

α−








δ++ζ+δ+γ+η−

α=
rmm

Ay  

  tt
t ehh ξ+γ= 0 . 

 
 Equations (A2.1) and (A2.2) also imply the following two conditions in the steady-state: 

(A2.4) [ ])())(1(
~ln~lnln~ln)1( δ++δ+γ+η−=− −+α−− rmmeAe kcvk  

(A2.5) [ ])())(1(ln~ln)1( δ++ζ+δ+γ+η−=α +α−− rmmAe vk . 

 We take a first-order Taylor series expansion of equations (A2.1) and (A2.2), evaluated at 

the steady-state conditions in equations (A2.4) and (A2.5).  The resulting simultaneous system of 

log-linear, stochastic difference equations are solved for the choice rule of 1
~

+tk .  The production 

function is rearranged and substituted into this rule, giving the time path for productivity: 

(A2.6) 
[ ]

tttttt vvyyyy ln)(ln
)1(

)ln(ln)ln(ln 111
2

22
111 ϑ−αψ+

ω−ϑ
ω−ϑαψ+

+−ϑ=− +++ . 

 where: 21,ψψ : are complicated functions of all the parameters in the model. 

  1ϑ : is the stable eigenvalue of the equation system and corresponds to the speed of 
   convergence in the deterministic beta-convergence model. 
  2ϑ : is the unstable eigenvalue of the equation system. 
  ω: is an AR(1) coefficient governing the expectation of future shocks: jtv + . 
 
 Adding 1ln +ty to both sides of equation (A2.6) yields equations (1) and (2) in the text: 

 (A2.7) 111 lnln +++ µ+= ttt yy  

 (A2.8) 
[ ]

tttttt vvyy ln)(ln
)1(

)ln(ln 111
2

22
1111 ϑ−αψ+

ω−ϑ
ω−ϑαψ+

+µϑ=−≡µ ++++ . 

 Equation (A2.8) is a restricted form of equation (2) in the text, where 1== qp , 11 ϑ=a , 

[ ]
ω−ϑ

ω−ϑαψ+
=

2

22
0

)1(b , )( 111 ϑ−αψ=b .  The steady-state time path is obtained by taking the 
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natural logarithm of equation (A2.3), with )~ln(ln 00 yhy = .  Finally, the restriction of equation 

(2) to an ARMA(1,1) should not be taken too seriously – the length of this lag specification 

actually depends on the empirical validity of the log-linear approximation.   

The Endogenized Growth Rate Model 
 
 The problem of the representative consumer is to: 

 ( )[ ][ ]

[ ][ ]thhttttt

tkktttttt

t
t

t

c

hrmmhwkug
m

h

krmmchwkuf
m

kts

cUMax

)())(1())1(,)1((
)1(

1

)()1(),(
)1(

1..

)(
0

δ++δ+η−−−−
−

=∆

δ++δ+η−−−
−

=∆

β∑
∞

=

 

To solve this problem, we set up a Lagrangian and take derivatives with respect to the 

three control variables, ttt wuc ,, ; two state variables, 11, ++ tt hk ; and two co-state variables, tt Λλ , . 

 These derivatives form the first-order necessary conditions, which are reduced to the following 

five equations: 

(A2.9) 
h

k

h

k

g
g

f
f

=  

(A2.10) hhkk gf δ−=δ−  

(A2.11) [ ][ ])())(1(
)1( kkk rmmf

mc
c δ++ζ+δ+η−−

−θ
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(A2.12) [ ]



 δ++δ+η−−−−

−
=∆ )())(1())1(,)1((

)1(
1

hh rmm
h

hwkug
mh

h  
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Steady-State Solution 

 If we assume perfect certainty, a closed-form solution can be obtained only if hk δ=δ , 
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otherwise, the five equations must be solved numerically.  Assuming hk δ=δ , equations (A2.9) 

and (A2.10) are solved for 
wh
ukk y ≡~ , which is substituted into equation (A2.11) to obtain 

k
k

c
c

y
y ∆=∆=∆≡γ .  This expression is set equal to the LHS of equation (A2.12) and solved for 

)1(, ww − .  The values of w  and yk~  are substituted into the production function to obtain tyy ,~ : 
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Time Path Solution 

 The solution for the time path of productivity is identical to the neoclassical model, 

except that it is derived from an output production function that is a reduced form of the two-

sector problem, with γ  given by equation (A2.14) and y~  given by equation (A2.15).  The 

expression for the reduced-form production function is: 

 (A2.16) α= kAey v
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The AK Model 

 The problem of the representative consumer is to: 

 
( )[ ][ ]tttt

t
t

t

c

krmmck
m

kts

cUMax

)()1()(
)1(

1..

)(
0

δ++δ+η−−−φ
−

=∆

β∑
∞

=  

To solve this problem, we set up a Lagrangian and take derivatives with respect to the 

control variable, tc , the state variable, 1+tk , and the co-state variable, tλ .  These derivatives form 

the first-order necessary conditions, which are reduced to the following two equations: 
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 Assuming perfect certainty, we substitute expressions derived from the linear production 

function for
k
k)(φ  and )(kφ′  into equations (A2.17) and (A2.18) and then ensure that equation 

(A2.17) satisfies the transversality condition.  Thus, we obtain the steady-state growth rate: 
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Adding the productivity shock to equation (A2.19), we take a first-order Taylor series expansion 

of these equations, evaluated at the steady-state given by equation (A2.19).  The first equation of 

the resulting system is the choice rule for capital, 1+tk .  The production function is rearranged and 
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substituted into this choice rule, providing the time path of productivity: 

(A2.20) 11 lnln ++ ϑ++γ= ttt yy  

where: [ ]ttt vmvmA
m
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Equation (A2.20) is a random walk.  A random walk can be decomposed into the sum of 

a stochastic trend and a stationary stochastic process.  Employing this decomposition for equation 

(A2.20), we obtain equations (1) through (4) in the text: 
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(A2.23) tt tyy ξ+γ+= 0lnln : a non-stationary stochastic trend with drift 
(A2.24) ttt ε+ξ=ξ −1 :  a non-stationary growth shock. 

 
 Appendix 3 
 The Data 
 
 I employ quarterly data on per-capita personal income for the eight census regions of the 

United States, spanning the time period from 1948:1 to 1998:3.  The growth models presented in 

the paper are designed to analyze productivity.  However, since there is no labor-leisure choice, 

nor any labor participation choice in these models, productivity is equivalent to per-capita 

income.  Ideally, I would like to use regional product as the income measure, but the gross state 

product data released by the U.S. Bureau of Economic Analysis have too short a time span for the 

analysis conducted in the paper.  Thus, we use the less than ideal measure of personal income. 

 Two data series make up per-capita personal income: personal income and population.  

The Bureau of Economic Analysis publishes a quarterly state personal income series.  The most 

recent release spanned the time period from 1969:1 to 1998:3.  To go back further in time, I 

compiled additional data from the publication: State Personal Income: 1929-1982.  I collected 



 38 
quarterly state personal income data from this publication that spanned the time period from 

1948:1 to 1968:4.  I spliced these data series onto the prior data series, providing a consistent 

data series spanning the entire time period.  We then subtracted a transfer payment series from 

personal income, to obtain personal income net of transfers, which is the nominal personal 

income series used in the analysis.  Because regional pricing data are very poor, nominal personal 

income was deflated with the annual GDP price deflator as published in The Economic Report of 

the President. 

 The population data comes from the Bureau of the Census and are the annual population 

estimates that the Bureau releases every year.  This data series is annual, so I linearly interpolated 

between every pair of years to generate a quarterly data series.  Both the inflation- adjusted 

personal income series and the quarterly population estimates were then aggregrated from the 

state to the regional level for each of the eight census regions for every point in time.  The per-

capita income series is then calculated as inflation-adjusted personal income divided by the 

population estimates. 

 Preliminary analysis of the first differences of this data set revealed two major problems 

requiring adjustment: the presence of outliers, combined with heteroscedasticity in the data.  We 

employed an iterative procedure developed by Chen and Liu (1993) to simultaneously treat both 

problems.  Because serial correlation estimates of ARCH/GARCH processes are biased in the 

presence of outliers, the Chen and Liu procedure endogenously searches for outliers in 

combination with providing an estimate of the ARCH 1 parameters in the outlier-free process.  

Once the procedure achieves convergence, we use these maximum likelihood ARCH estimates to 

obtain a one-step-ahead forecast of the uncontaminated conditional variances, and then add back 
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the outliers to form a conditional variance series that we use to weight the first differences of per-

capita incomes.  The adjusted first differences are then integrated to form a series of adjusted per-

capita income levels.  These adjusted series are used in all subsequent analysis. 

 

 Appendix 4 
 The Bai and Perron Procedure to Search for Structural Breaks in Linear Equations 
 

The Bai and Perron procedure is a Sup-F test – the maximum of a sequence of Wald F-

statistics – determining both the break date and the break-point estimator simultaneously.  To 

find the first break, the Wald F-statistic (using a consistent estimate of the unconstrained residual 

variance) is computed for every data point in the series.  The date that achieves the maximum of 

the sequence of F-statistics determines the date of the candidate break-point.  If the Sup-F 

statistic exceeds the stipulated critical value, then a break in the relationship occurs at this date.6  

With this break-point, the procedure is repeated, searching through each of the sub-samples for 

additional breaks.  If additional breaks are found, then these break-points divide the data into 

additional sub-samples, each of which is searched for breaks until no additional breaks-points are 

found.  This procedure is valid under the conditions of serial correlation in the errors, which is 

why we choose not to estimate the ARMA convergence processes (see Bai (1997), or Bai and 

Perron (1998) for additional information). 

                                                 
6 The critical value employed in our tests is 15.2, which was computed by Bruce Hansen for a single break.  See Bruce Hansen, 
"Tests for Parameter Instability in Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992. 
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Table A4.1 (a)
Cointegrating Equations -- Parameter Instability Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Break Dates Sup-F Statistics

New England Constant
1949:1 1965:1
1965:2 1973:3 1965:2 44.6836
1973:4 1981:2 1973:4 574.2981
1981:3 1989:4 1981:3 70.3851
1990:1 1998:1 1990:1 55.7037

Trend
1949:1 1954:3
1954:4 1981:2 1954:4 24.3962
1981:3 1985:3 1981:3 67.6707
1985:4 1998:1 1985:4 1,253.8619

Cointegrating Coeff
1949:1 1987:1
1987:2 1998:1 1987:2 33.5372

Middle Atlantic Constant
1949:1 1964:3
1964:4 1974:2 1964:4 290.4326
1974:3 1985:1 1974:3 1,908.6797
1985:2 1987:2 1985:2 173.2195
1987:3 1998:1 1987:3 601.6554

Trend
1949:1 1973:4
1974:1 1975:5 1974:1 89.8863
1976:1 1978:4 1976:1 19.3385
1979:1 1995:1 1979:1 75.5246
1995:2 1998:1 1995:2 22.3836

Cointegrating Coeff
1949:1 1951:3
1951:4 1973:1 1951:4 74.7290
1973:2 1984:1 1973:2 20.8689
1984:2 1998:1 1984:2 30.4848

Great Lakes Constant
1949:1 1957:3
1957:4 1972:3 1957:4 307.7112
1972:4 1979:2 1972:4 77.8547
1979:3 1981:3 1979:3 77.5635
1981:4 1998:1 1981:4 405.8063

Trend
1949:1 1963:1
1963:2 1964:4 1963:2 28.6102
1965:1 1992:3 1965:1 706.8869
1992:4 1998:1 1992:4 38.5790

Cointegrating Coeff
1949:1 1970:4
1971:1 1998:1 1971:1 30.1466

(a.)  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992



 41 
 

 

Table A4.1 (Continued)
Cointegrating Equations -- Parameter Instability Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Break Dates Sup-F Statistics

Great Plains Constant
1949:1 1954:3
1954:4 1969:2 1954:4 51.5788
1969:3 1975:4 1969:3 340.6436
1976:1 1988:2 1976:1 27.5003
1988:3 1998:1 1988:3 125.5702

Trend
1949:1 1956:3
1956:4 1961:4 1956:4 20.6572
1962:1 1964:3 1962:1 17.6449
1964:4 1972:4 1964:4 116.3199
1973:1 1994:1 1973:1 20.3841
1994:2 1998:1 1994:2 22.6396

Southeast Constant
1949:1 1959:2
1959:3 1968:1 1959:3 28.9956
1968:2 1969:2 1968:2 2,098.0996
1969:3 1984:1 1969:3 41.1398
1984:2 1987:2 1984:2 55.3695
1987:3 1998:1 1987:3 23.6003

Trend
1949:1 1954:4
1955:1 1990:3 1955:1 46.7077
1990:4 1998:1 1990:4 20.6622

Cointegrating Coeff
1949:1 1968:1
1968:2 1971:2 1968:2 559.6296
1971:3 1972:2 1971:3 347.6117
1972:3 1998:1 1972:3 43.0173

Southwest Constant
1949:1 1980:2
1980:3 1998:1 1980:3 67.2659

Trend
1949:1 1959:2
1959:3 1965:3 1959:3 37.6630
1965:4 1968:2 1965:4 52.0963
1968:3 1982:4 1968:3 599.4966
1983:1 1998:1 1983:1 68.1631

Cointegrating Coeff
1949:1 1969:4
1970:1 1980:4 1970:1 42.5454
1981:1 1986:2 1981:1 15.7148
1986:3 1998:1 1986:3 1,349.7491

a.  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992
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Table A4.1 (Continued)
Cointegrating Equations -- Parameter Instability Tests

Regime Dates
Region Coefficient Beginning Date Ending Date Break Dates Sup-F Statistics

Mountain Constant
1949:1 1953:1
1953:2 1986:1 1953:2 299.2389
1986:2 1987:4 1986:2 151.7546
1988:1 1998:1 1988:1 20.6920

Trend
1949:1 1969:2
1969:3 1994:1 1969:3 551.9840
1994:2 1998:1 1994:2 61.9057

Cointegrating Coeff
1949:1 1953:1
1953:2 1998:1 1953:2 22.3251

a.  The 5% Critical Value is 15.2.  See Bruce Hansen, "Tests for Parameter Instability in
      Regressions with I(1) Processes,"  Journal of Business and Economic Statistics, July 1992
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