Advances in Loss Data Analytics: What We Have Learned at ORX

Federal Reserve Bank of Boston: New Challenges For Operational Risk Measurement and Management

May 14, 2008
Regulatory and Management Context

• U.S. Final Rule defines external operational loss data as “gross operational loss amounts, dates, recoveries, and relevant causal information for operational loss events occurring at organizations other than the bank”

• Banks must establish a systematic process for incorporating external loss data into their AMA system
 – Supplement internal data in quantitative models
 – Inform scenario analysis
 – Validate adequacy of internal data and capital

• To be useful in quantitative modeling external loss data should
 – Reduce sampling error when combined with internal data
 – Introduce minimal bias in parameter and/or quantile estimates
 – Data should be stationary for the unit-of-measure under consideration
Operational Risk Data Exchange (ORX)

- ORX currently has 42 members in 14 countries and more than 90,000 loss events totaling more than €30 billion
 - Improve understanding of operational risk and key drivers of operational losses
 - Provide peer benchmarks
 - Enhance efforts to measure operational risk exposure
 - Develop and propagate best practices
- Key questions for the use of external data are:
 - Is external loss data relevant to the institution?
 - Do the internal and external loss data come from the same underlying probability distribution?
 - How do we control for regional variation and differences in the size of institutions contributing losses to the database?
- To address these issues, core members of the ORX Analytics Working Group engaged in three work-streams with IBM Research serving as analytics agent
 - Homogeneity analysis
 - Scaling Analysis
 - Combined Homogeneity & Scaling Model
Testing for Homogeneity in External Data

- Analysis explored similarities in the size of losses and shape of loss distributions between ORX members
- Similarity was assessed in terms of statistical measures of goodness-of-fit among loss distributions
- Success was determined by reduction of error in the predicted value of large losses resulting from use of pooled data rather than internal data alone
- Clustering techniques were used to determine groupings of banks with similar loss distributions
- Overall results:
 - Simple transformations of location and scale were effective in aligning many loss distributions
 - A high level of homogeneity was evident in the shapes of various loss distributions across all levels in the sample
 - Groupings were often correlated with firm size and region
 - Pooling losses among banks with similar loss distributions resulted in significant error reductions (20-30%) when estimating high quantiles of the loss severity distribution
Example: Scale Shift Model

- Multiplying North American Private Banking losses by a scale factor results in a distribution almost exactly like that seen in Western Europe.
Losses averaged across banks are frequently correlated with gross income

Retail Banking – Cluster sizes: 25, 3; \(p = .01 \)

Internal Fraud – Cluster sizes: 12, 8; \(p = .025 \)

Clearing – Cluster sizes: 8, 5; \(p = .065 \)

Execution, Delivery, Process Mgmt – Cluster sizes: 25, 3; \(p = .025 \)
Scaling Methodology

- Determine if indicators such as region and firm size influence the size of small, medium and large losses
 - Provide the distribution location and scale transformations with an economic interpretation
 - Quantile regression methods were used to estimate how losses at each level of the distribution changed with exposure indicators

- Overall Results
 - In many loss categories, the scale of the loss distribution was strongly correlated to the exposure indicators
 - Both increasing and decreasing relationships between loss amount and firms size were observed
 - Large differences were seem between Western European and North American losses in several categories
 - In some cases, large losses scaled differently from small or medium sized losses

- Results submitted for publication in Operational Risk Journal (Spring 2008)
Distribution Clusters

Trading & Sales

External Fraud

Corporate Finance

Internal Fraud
Combining the Homogeneity and Scaling Methodology

- Derive statistical models for each event type and business line combination
 - Include regional and firm/business line size as appropriate
 - Pool loss data from categories with similar distributions
 - Validate that models can accurately predict future losses

- Developed decision tree methods for characterizing loss distribution shape, scale and location
 - Partitioned data according loss distribution shape
 - Within partitions, we characterize distributional differences by location and scale shifts using quantile regression models

- The quantile regression models returned two sets of results:
 - An *estimated base distribution*, which indicates the overall shape of the distribution
 - *Location- and scale-shift factors*, which indicate how the base distribution should be scaled and shifted in response to different loss subcategories
 - A typical location-shift model is of the form
 \[
 \log(LOSS_i) = b_1 \cdot 1\{RB, CB\} + b_2 \cdot 1\{AP, EE\} + b_3 \cdot 1\{NA\} + b_4 \cdot \frac{QTR.TOT.GI}{10^9} + \varepsilon_i
 \]
 - The parameters b_1, b_2, b_3, b_4 are estimated location-shift parameters, and an estimated CDF is provided for the base distribution ε_i
The diagram below gives an example of how losses in a single event category might be modeled.

Starbursts indicate exposure indicators used in the QR model.

Partition shadings indicate the various cluster units.

Each undivided area of the table corresponds to categories sharing the same loss distribution.
Examples of Loss Distribution Partitions

External Fraud and Clients, Products & Business Practices loss distributions have partitions with significant Gross Income and Regional effects for some banks

<table>
<thead>
<tr>
<th>External Fraud</th>
<th>Clients, Products & Business Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>TS RB CB CF CL AS AM BR PB CI</td>
</tr>
<tr>
<td>EE</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>WE</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td></td>
</tr>
</tbody>
</table>

1: \[Y_i = -\beta_1 \cdot 1\{WE\} + \varepsilon_i \]
2: \[Y_i = -\beta_1 \cdot 1\{AP or WE\} - \beta_2 \cdot 1\{LA\} - \beta_3 \cdot 1\{NA\} - \beta_4 \cdot \frac{QTR.BL.GI}{10^9} + \varepsilon_i \]
3: \[Y_i = -\beta_1 \cdot 1\{NA\} + \varepsilon_i \]
4: \[Y_i = \beta_1 \cdot 1\{AP, WE, or LA\} + \varepsilon_i \]

1: \[Y_i = \beta_1 \cdot \frac{QTR.BL.GI}{10^9} + \beta_2 \cdot 1\{NA\} + \varepsilon_i \]
2: \[Y_i = \beta_1 \cdot 1\{NA\} + \varepsilon_i \]
3: \[Y_i = \beta_1 \cdot 1\{NA\} + \varepsilon_i \]
4: \[Y_i = -\beta_1 \cdot 1\{LA\} + \varepsilon_i \]
5: \[Y_i = \beta_1 \cdot \frac{QTR.TOT.GI}{10^9} + \varepsilon_i \]
Scaling Analysis Results

• The scaling model can control for large differences between Western European and North American losses in several categories
 – Corporate Finance losses in Clients, Products, and Business Practices were higher in North America
 – Retail Banking losses for Internal and External Fraud were higher in Western Europe
 – A possible economic explanation for this may be differences in legal and regulatory environments
• It also provides a mechanism to control for differences in loss characteristics between smaller and larger banks
 – Risk management practices
 – Product Complexity
 – Transaction Size
• Significant business utility is realized from using external loss data
 – Homogeneity analysis suggests that model accuracy can be improved by an average of 20% by pooling industry data
 – Larger improvements are expected using scaled data