TECHNOLOGY DIFFUSION IN
U.S. MANUFACTURING:
THE GEOGRAPHIC DIMENSION

Jane Sneddon Little and Robert K. Triest*

“Technology” is a key determinant of growth, but economists
frequently leave its components jumbled together in Rosenberg’s black
box. In neoclassical models, we let the residuals represent technology
and, waving our hands, treat technical progress as “manna from heaven.”
And, while the endogenous growth approach explicitly seeks to model
the production of technology, the customary use of R&D spending
to represent technological change has serious drawbacks. Not all R&D
spending is equally productive, for instance, and a significant portion
relates to the invention of new consumer products (product innovation).
While product innovation may well influence national or regional busi-
ness cycles and improve consumer welfare, this type of innovation
generally has fairly minor effects on factor productivity. By contrast, the
invention of new types of capital equipment or new production methods
(process innovation) is a key determinant of the production frontier. After
all, the state of scientific and technical knowledge sets the limits.
Nevertheless, the invention of new capital equipment or manufacturing
methods represents just one step in the evolution of prevailing produc-
tion procedures.
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A second critically important determinant of dominant manufactur-
ing practice is the manner in which state-of-the-art technology enters
general use. If the speed, intensity, and uniformity with which advanced
technologies are adopted vary across nations and regions, these differ-
ences will affect the extent to which (or the pace at which) long-term
growth rates converge. Views about the ease and pace of technology
diffusion differ. Boyan Jovanovic (1995) suggests, for example, that the
repetitive process by which each adopting firm learns about and incor-
porates a new technology into its operations generally consumes a larger
share of national income than innovation itself.! By contrast, in neoclas-
sical models, the acquisition of frontier technology occurs without delay
or cost.

If the neoclassical assumption applies anywhere, that place is surely
the United States, given the flow of labor, capital, and information among
the U.S. states. Yet, Barro and Sala-i-Martin (1991) and others have found
that per capita output converges at a 2 to 3 percent annual rate across
the U.S. states, a pace far too slow to conform to neoclassical predictions
for a closed, much less an open, economy.? While Barro, Mankiw, and
Sala-i-Martin (1995) explain this surprisingly slow convergence by incor-
porating differences in human capital and a requirement that investment
in human capital be financed locally, variations in technology adoption
might also play a role. Thus, examining actual patterns in technology use
across the U.S. states could be informative. Moreover, identifying any
environmental characteristics that impede or accelerate technological
diffusion would improve our understanding of the growth process and
could have useful policy implications.

Accordingly, this paper explores the geographic dimension of tech-
nology diffusion in U.S. manufacturing. Using relatively new data from
the Census Bureau’s Surveys of Manufacturing Technology (SMTs) for
1988 and 1993, it examines variations in the adoption of 17 advanced
technologies across the nation and within individual U.S. states.® It asks,
in particular, whether proximity to firms already using high-tech equip-

! Similarly, Lucas (1993) concludes that a key characteristic distinguishing fast-growing
developing countries from slow-growth ones is an ability to adopt increasingly sophisti-
cated production methods and to move along successive learning curves. He suggests that
openness to trade supports such an ability.

2 Cogley and Spiegel (1996) reconfirm this finding using time-series methods and
Monte Carlo techniques to improve the precision of the estimates. While Barro and
Sala-i-Martin found a somewhat faster rate of convergence (4.6 percent annually) for
manufacturing output, this pace remains slow for a neoclassical world with capital mobility.

3 The SMT covers the use of the 17 advanced technologies listed and described in
Appendix 1 at firms with 20 or more employees in the fabricated metals, industrial
machinery and equipment, electronic and other electric equipment, transportation equip-
ment, and instruments and related products industries (SIC codes 34-38).
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ment fosters adoption, but it also seeks to distinguish other plant and
locational characteristics linked to increased probability of technology use.

The paper is organized as follows. The first section discusses why
technology use might be expected to vary by geographic area. It distin-
guishes the influence of locational characteristics, like the availability of
skilled workers, from the impact of proximity to other high-tech users. It
also points to reasons, like the prevalence of multi-establishment firms,
why technology use might be remarkably evenly distributed in the
United States. The next section describes the SMT and other Census data
bases used in the study, while the third discusses the use of the SMT
for geographical analysis and presents some summary tables and maps.
The fourth section presents the econometric models used to examine the
speed of technology adoption between 1988 and 1993. While this analysis
focuses on the impact of proximity to other technology users on the speed
of adoption, the models also control for plant and geographic character-
istics. The final section offers conclusions.

WHY GEOGRAPHY MIGHT MATTER

The use of advanced technologies could vary considerably by state
and region for many reasons, such as differences in access to skilled labor
or industrial concentration and in the applicability of technologies across
industries. As might be expected, for instance, given the auto firms’
reputation for close ties to their suppliers, the SMT for 1993 shows that
almost one-fourth of the establishments in transportation use intercom-
pany computer networks to link plants with suppliers and customers,
whereas only 15 percent of industrial machinery plants have adopted this
technology. Similarly, since electronics firms have successfully adapted
pick-and-place robots to set chips on semiconductors, the electronics
industry reports the greatest use of this equipment; by contrast, trans-
portation plants are the heaviest users of “other” robots.

To illustrate the differences in industrial concentration across the
nation, Map 1 shows the share of manufacturing employment in each
metropolitan and broader non-metro area* accounted for by firms with
20 or more workers in SICs 34 through 38 (the SMT sample popula-
tion), while Table 1 shows how the use of the 17 advanced technologies
examined in the SMT varies across these industries. Map 2 depicts
regional variations in the educational attainment of the labor pool,
presumably an important locational consideration.

4 For reasons discussed below, we combine non-metropolitan areas within a state into
“quasi-MSAs” (QMSAs); in some cases, QMSAs include small metro counties or combine
non-metro areas across state borders.
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Map 1
Share of Manufacturing Employment in Establishments with 20+ Employees,
SICs 34 to 38, 1987
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Note: Regions are MSAs and QMSAs, defined in the text.
Source: U.S. Bureau of the Census, County and City Data Book, 1994.

Yet another explanation for regional differences in technology use
may be that many of the advanced technologies covered by the SMT,
particularly those linked to flexible manufacturing, are especially useful
to firms with varied output and short production runms, since this
equipment reduces down times and set-up costs. But branch plants with
standardized output and long production runs and plants making a
variety of innovative or niche products tend to locate in different areas.
For branch plants, minimizing labor costs and transportation to mass
markets may be crucial, whereas plants producing customized items
or prototypes may require a more highly skilled labor force or frequent
contact with product designers at headquarters.

These variations in the applicability of technologies, combined with
a clustering of plants by industry or stage of product cycle, may explain
some geographic differences in technology use; however, these explana-
tions are distinct from the possible impact of proximity to other plants
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Table 1
Share of Establishments Using Selected Manufacturing Technologies
in 1993, by Industry

Percent
Electronic Instruments
and Other and
Fabricated Industrial  Electrical Transportation Related

Technology Metals  Machinery Equipment  Equipment Products
Design & Engineering
CAD or CAE 46.5 64.1 64.2 53.9 65.5
CAD to Control Machines 19.3 34.8 21.5 255 18.5
CAD Used in Procurement 7.0 11.6 16.1 9.6 16.1
Fabrication/Matching Assembly
Flexible Manufacturing

Cells/Systems 9.5 11.8 17.0 156.5 14.2
NC or CNC Machines 404 61.9 34.5 44 1 35.1
Materials Working Lasers 3.4 4.3 7.8 5.4 6.3
Pick-and-Place Robots 6.6 5.4 16.2 101 117
Other Robots 3.8 3.6 5.3 11.7 3.8
Automated Material Handling
Automatic Storage/

Retrieval 1.2 2.3 3.8 3.8 4.8
Automatic Guided Vehicle

Systems 3 1.1 1.7 2.2 1.5
Sensor-Based Inspection/Testing
For Incoming or

In-Process Materials 8.1 8.1 11.8 15.6 1.7
For Final Product 9.6 10.6 17.5 16.2 14.7
Communication and Control
AN for Technical Data 20.1 29.4 371 28.0 40.7
LAN for Factory Use 14.5 21.0 30.5 23.9 30.0
Intercompany Computer

Network 16.7 16.4 21.9 23.4 15.3
Programmable Controllers 30.2 29.0 30.7 30.7 20.8
Computers Used to

Control Factory Floor 20.2 28.1 33.2 26.8 29.0

See Appendix for descriptions of technologies.

Source: U.S. Bureau of the Census, Manufacturing Technology: Prevalence and Plans for Use 1993, SMT
(93)-3, U.S. Government Printing Office, Washington, D.C., 1994.

using advanced technologies. Why might nearness to plants already
using high-tech equipment exert an independent effect on adoption
decisions? Because early adopters “infect” other firms. Or, more pre-
cisely, because closeness to plants already using advanced technologies
is likely to reduce the perceived risk and actual cost of investing in this
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Map 2
Share of Population Age 25+ with High School Diploma or Higher, 1990
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Note: Regions are MSAs and QMSAs, defined in the text.
Source: U.8. Bureau of the Census, County and City Data Book, 1994.

new equipment.® A firm incorporating new technology into its produc-
tion function faces significant costs. Management must learn about a
technology, assess the costs and benefits of this often lumpy investment
for its own operations, look for the best vendor, adjust the plant’s
manufacturing operations to accommodate the new equipment, and
possibly modify the new equipment to fit the plant’s needs. The adoption
costs also include a loss of human capital acquired in using the old
equipment and reduced productivity while employees work their way
down a new learning curve.

Proximity to firms already using a new technology is likely to reduce
the apparent riskiness and other costs of investing in this new equipment
because it permits process engineers and management staff to observe
the equipment in operation at nearby facilities and to discuss the

5 Aizenman (1995) demonstrates that uncertainty acts as an implicit tax on new
activities.
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advantages and disadvantages of its use. These neighbors may also have
helpful advice about specific vendors, and about problems encountered
in introducing the equipment onto the shop floor.6 Because adopting
advanced technologies usually requires changing manufacturing proce-
dures—possibly even the plant layout—the process generally requires
considerable engineering input. Accordingly, location near a pool of
engineers experienced in using this equipment could cut adoption costs.
Similarly, access to a pool of production workers with knowledge of these
technologies could also lessen the required investment in human capital.
As a final external economy, a cluster of plants using advanced technol-
ogies might draw firms supplying support services and parts.” In other
words, all the Marshallian agglomeration economies pertain.

On the other hand, several forces could be operating to dilute the
impact of proximity and promote an even distribution of technology
across the United States. First, equipment vendors promote their wares
nationwide in business media and at trade shows. Vendors actively try to
eliminate any technological backwaters they can find. In addition, many
plants are part of a multi-establishment firm and benefit from experience
with new technologies at related facilities. Then too, defense contractors
and subcontractors are generally required to use many of the technologies
covered by the SMT. While many areas are considerably more dependent on
defense work than others, these requirements are actually intended to
encourage technology diffusion as well as to ensure the quality of military
procurement (Rees, Briggs, and Oakey 1984; Knudsen, Jacobs, Conway, and
Blake 1994). Finally, several of the technologies covered by the SMT have
been available long enough to allow their adoption wherever they are
relevant. In particular, numerically controlled (NC) machines, which are not
distinguished from computer numerically controlled machines (CNC) on the
SMT questionnaire, have been widely used for decades.

Existing evidence on the impact of proximity on technology use
is slim. In a recent American Economic Review article, Ciccone and Hall
(1996) found that productivity is positively associated with employment
density across states, a result consistent with the hypothesis that prox-
imity to users spurs technology adoption. More directly relevant is work
by or cited by Nadiri (1993), who finds evidence of large externalities
from R&D activities and suggests that the spillovers could occur via intra-
or inter-industry channels, customer-supplier relations, or geographic
location. In addition, Jaffe, Trajtenberg, and Henderson (1993) and Jaffe

6 As Nooteboom (1993) and Wozniak (1993) point out, informal contacts and chance
meetings may be particularly important in the case of small, single-establishment firms and
early adopters.

7 Alternatively, a cluster of firms using advanced technologies may grow up around
manufacturers of high-tech equipment—machine tool makers or software developers, for
instance. See Assembly of Engineering (1981).
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(1995) use patent citations to trace significant spillovers from local patenting
activity. They find that, excluding self-referrals, patent citations are two to six
times more likely to occur within the same SMSA and two times more likely
to occur within the same state, compared with the results for a control group.
Similarly, Audretsch and Feldman (1996) find that product innovation
clusters even when they control for concentration in production activity. But,
as mentioned earlier, invention differs from adoption.

Maintaining this distinction, another body of work has found that
location in a metropolitan area promotes product innovation but not
necessarily process innovation or advanced technology use. Davelaar and
Nijkamp (1989), for example, examined the generation of product and
process innovation among Dutch manufacturers and found that location
in highly urban areas was important to product but not to process
innovation. Similarly, Harrison, Kelley, and Gant (1996) studied the
adoption of programmable automation among U.S. metalworking firms
and concluded that the likelihood of adoption was significantly associ-
ated with location in metropolitan suburbs and edge cities rather than
in an urban core or rural area. They also found no association with
proximity to clusters of firms in the same industry. Moreover, Rees,
Briggs, and Oakey (1984) noted evidence of regional contagion in the use
of NC and CNC machines for small plants or single-establishment firms,
but not for their entire sample. They attributed the positive impact of
location in the North Central region to this area’s history as the center
of the machine tool industry. Finally, in a study on the use of advanced
manufacturing technologies in Canada, based on a Canadian version of
the SMT, McFetridge (1992) noted that establishments in Quebec and
Ontario were somewhat more likely to adopt some technologies than
were plants in the Atlantic or western parts of the country.

The limited amount of econometric work on the role of geography
in the adoption process undoubtedly reflects the lack of a comprehen-
sive micro-level data base with a direct measure of technology use. With
the exception of McFetridge, all of the studies cited in the preceding
paragraph were based on comparatively small, one-time surveys. As
the 1993 SMT summary publication points out, “information on technol-
ogy use was in great demand and short supply” until the late 1980s
(U.S. Bureau of the Census 1994). But, starting in 1988, the Surveys of
Manufacturing Technology improved the situation dramatically.

WHAT WE HAVE LEARNED FROM THE SMT 1O DATE

The SMTs and the data bases linked to them provide a wealth of
information to researchers interested in technology, growth, and produc-
tivity issues. These surveys are designed to obtain a reliable reading on
the use of 17 advanced technologies in five groups (design and engineer-
ing; fabrication/machining and assembly; automated materials handling;
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automated sensor-based inspection and testing equipment; and commu-
nications and control) at establishments with 20 or more employees in SIC
codes 34 to 38.8 The first survey, conducted in 1988, was based on 10,526
establishments representing a universe of 39,556, while a follow-on
survey, done in 1993, was based on 8,336 units representing 42,991
establishments (accounting for over 40 percent of employment and value
‘added in the 1987 Census of Manufactures).® The samples were stratified by
3-digit SIC code and three employment-size groups (20-99; 100~499; and
500 and above) and drawn from the 1987 Census of Manufactures by simple
random sampling within strata.’® Within each stratum, thus, each estab-
lishment had an equal chance of being selected. The establishment count
for each cell in the summary publications (and this paper) is a simple
weighted estimate, where the establishment weights are the inverse of the
sampling fraction.!*

Tables 2 and 3 present summary data drawn from the 1993 SMT.
Table 2 shows the number of establishments and the percentage using at
least one and at least five advanced technologies, broken down by
industry, size, age, manufacturing process, and whether or not the plant
produces to military specification. This summary table immediately
suggests that technology use increases with plant size (but not necessarily
with age) and is greatest at establishments that combine fabrication and
assembly work and that produce to military specification.

Table 3 shows the percent of establishments using each of the 17
technologies and when they first adopted them. As the table suggests,
the usage rates vary considerably from highs of 59 percent for computer-
aided design and engineering and 47 percent for numerically and com-
puter numerically controlled machines to lows of less than 3 percent for
automated materials handling equipment. It is also clear that most of the
machining, materials handling, and inspection technologies were intro-
duced by the largest share of users before 1988, whereas most of the
computer-aided design and engineering and communication and control
technologies were introduced between 1988 and 1991. Only in the case of

8 Appendix 1 lists and describes the 17 technologies. The industries covered by SIC
codes 34 to 38 include: fabricated metal products; industrial machinery and equipment;
electronic and other electric equipment; transportation equipment; and instruments and
related products.

9 An SMT survey conducted in 1991, “Manufacturing Technology: Factors Affecting
Adoption,” was not designed to follow up the 1988 survey; it does not cover one of the
technology groups included in the 1988 and 1993 surveys (communications and control),
and it asks a different set of questions. Issues covered concern factors affecting the decision
to adopt, intensity of use, time required to achieve full operation, barriers and benefits to
adoption, and problems encountered with technology use.

10 Tn some sparsely inhabited cells, the entire population was surveyed.

1 In this paper, the weights are normalized within each area by a region-specific
normalization factor, Accordingly, weighted data should not be biased by differences in
probability of sample inclusion across strata. See Appendix 2 for further discussion.
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Table 2
Manufacturing Technology Use in 1993, by Establishment Characteristic
Using at Using at
Number of Least 1 Least 5

Characteristic Establishments Technology (%) Technologies (%)
All Establishments 42,991 75.0 201
Industry
Fabricated Metals 13,190 67.1 22.3
Industrial Machinery 14,231 81.5 30.2
Electronic & Other

Electrical Equipment 7,472 78.8 35.6
Transportation Equipment 4110 68.7 33.2
Instruments 3,988 78.0 31.1
Employment Size
2010 99 30,502 69.1 18.3
100 to 499 10,321 89.3 50.3
500 & over 2,168 0.6 80.2
Age of Plants (years)
Less than 6 4,893 82.9 23.4
5t015 13,722 81.2 30.9
1610 30 11,308 83.4 32.6
Over 30 9,310 80.3 36.7
Not Specified 3,763 4.1 5
Manufacturing Process
Fabrication/Machining 6,795 80.3 26.9
Assembly 6,388 79.9 26.9
Both 23,393 85.7 36.6
Neither 2,577 56.3 13.4
Not Specified 3,838 5.3 1.1
Products Made to Military Specification
Yes 14,112 88.9 . 39.5
No . 22,214 78.4 28.0
Don't Know 2,939 73.9 23.6
Not Specified 3,726 3.8 4

Source: U.S. Bureau of the Census, Manufacturing Technology: Prevalence and Plans for Use 1993, SMT
(98)-3, U.S. Government Printing Office, Washington, D.C., 1994, Table 1, pp. 5-6.

intercompany computer networks linking plants with suppliers, subcon-
tractors, and customers were adoption rates increasing in the most recent
period. Moreover, and surprisingly perhaps, the use of robots other than
pick-and-place, automated material handling systems, and programma-
ble controllers actually declined between 1988 and 1993. As McGuckin,
Streitwieser, and Doms (1995) suggest, technology may be an “experience
good” involving much trial and error. In addition, some establishments
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Table 3
Share of Establishments Using Selected Technologies in 1993, by Time of Adoption
Percent

Adopting in
Establishments  Adopting in Past 2 to Adopting 5+

Technology Usingin 1993  Past 2 Years 5 Years Years Ago
Design & Engineering .
CAD or CAE 58.8 12.4 26.2 19.4
CAD to Control Machines 25.6 5.9 10.9 8.4
CAD Used in Procurement 11.3 3.8 4.8 2.3
Fabrication/Machining
Flexible Manufacturing

Cells/Systems 12.7 3.9 4.7 3.8
NC or CNC Machines 46.9 4.4 1.7 29.6
Materials Working Lasers 5.0 15 1.3 2.0
Pick-and-Place Robots 8.6 1.9 3.0 3.4
Other Robots 4.8 .9 1.8 1.9
Automated Material Handling
Automatic Storage/Retrieval 2.6 5 9 1.1
Automatic Guided Vehicle

Systems 1.1 2 4 .5
Sensor-Based Inspection/Testing
For Incoming or In-Process

Materials 9.9 2.4 3.5 3.6
For Final Product 12.5 3.0 4.3 4.7
Communication and Control
LAN for Technical Data 29.3 10.0 12.0 6.0
LAN for Factory Use 22.1 7.8 8.2 5.3
Intercompany Computer

Network 17.9 7.4 6.1 3.6
Programmable Controllers 30.4 5.2 10.2 13.4
Computers Used to Control

Factory Floor 26.9 71 10.0 8.6

See Appendix for descriptions of technologies.

Source: U.S. Bureau of the Census, Manufacturing Technology: Prevalence and Plans for Use 1993, SMT
(93)-3, U.S. Government Printing Office, Washington, D.C., 1994,

may be eliminating some of the older technologies as they gradually
update their facilities—replacing programmable controllers, say, with
CAD/CAM systems. (See Beede and Young (1996) on possible technol-
ogy ladders within the SMT group.)

To add to the researcher’s cornucopia, the plant-specific data on
technology use from the SMT can be matched with information in the
Longitudinal Research Database (LRD) to trace individual establishments
covered by the Annual Surveys and Censuses of Manufactures over
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time.1? The SMT can also be linked to the Worker-Employer Character-
istics Database (WECD), not used in this paper, which matches employee
data for individuals filling out the long form for the 1990 Census of
Population with establishment-level data from the Census of Manufac-
tures. Finally, firm identifiers allow linking individual establishments to
the appropriate firm.!3

Studies based on the SMT and related data bases have already
addressed a number of important issues. (See Alexander (1994) for a
survey of this work.) For instance, Dunne (1994) finds that use of
advanced technologies rises with plant size but is relatively uncorrelated
with age, a result supporting the use of models that allow firms to
upgrade their capital base. Dunne and Schmitz (1995) use the SMT to
examine the large wage premium associated with large employer size, a
link that has intrigued researchers for some time. They find that techni-
cally advanced plants pay higher wages and employ a greater fraction
of non-production (presumably more highly skilled) workers; they also
conclude that use of advanced technologies accounts for a significant part
of the size-wage premium.'* Noting that use of advanced technologies
has been positively linked to measures of plant performance like produc-
tivity, sales and employment growth, and survival rates, McGuckin,
Streitwieser, and Doms (1995) conclude that the primary explanation for
these cross-section relationships is that well-managed plants adopt new
technologies, not that these technologies clearly improve plant perfor-
mance. Similarly, Doms, Dunne, and Troske (1995) find that technologi-
cally advanced plants employ a larger share of highly skilled and highly
paid?®* workers both before and after adopting high-tech equipment.
While adopting new technologies may increase the demand for skilled
workers, they could not find much correlation between the change in
plant-level skill mix and technology use.167

12 The LRD contains linked data on 300,000 to 400,000 individual manufacturing plants
covered by the Census of Manufactures from 1963 on. It also contains linked data from
Annual Survey of Manufactures samples starting with 1972.

13 Access to these confidential establishment- and firm-level data bases requires
affiliation with the Census Bureau’s Center for Economic Studies and careful attention to
their disclosure procedures.

14 Reilly (1995) draws a similar conclusion about the impact of computer use on the
size-wage premium. See also, Davis and Haltiwanger (1991) who, using the LRD and the
WECD, find continuously expanding size-wage differentials after 1967. They also attribute
rising wage inequality in the United States to skill-biased technical change.

15 Doms, Dunne, and Troske (1995) find that including quality measures from the
WECD mutes but does not eliminate the wage premium associated with use of advanced
technologies.

16 Their study was based on a relatively small sample of plants answering both the 1988
and 1993 SMTs and liriked to the WECD.

17 Sheffrin and Triest (1995) suggest methods for determining the direction of causality
in growth models.
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Map 3
Number of Observations in 1993 SMT, by GMISA
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Source: U.S. Bureau of the Census, Survey of Manufacturing Technology, 1983,

UsING THE SMT 10 EXPLORE GEOGRAPHIC ISSUES

To date, studies based on the SMT have not examined the impact of
locational characteristics on technology use, although several authors
note that their statistical analysis has included dummies for the nine
Census regions (in addition to industry dummies).’® Accordingly, an
extremely important issue becomes defining the appropriate geographic
unit for analysis. Over how big an area should the educational attainment
of the labor force or proximity to other technology users be measured, for
example? Clearly, states often incorporate more than one labor market,
and many are too large to be relevant to the issue of proximity. However,
in most non-urban (and many urban) counties caught in the SMT net, the
SMT sample size is too small to allow meaningful analysis or to meet
disclosure constraints. Accordingly, we chose to focus on metropolitan
statistical areas (CMSAs and MSAs) and a construct that combines all

8 Although some papers mention that the regional dummies were statistically signif-
icant as a group, they generally do not provide results for the individual regions.
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Map 4
Mean Number of Technologies Used, 1988 *
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the non-metro counties in a state (a construct called quasi- or QMSAs).*?
Even then, some 150 MSAs or QMSAs did not meet Census disclosure
requirements or our own analytic criteria. In these cases, we merged
small-sample MSAs with an adjacent QMSA and small-sample QMSAs
with similar rural areas across a state border. As a result, we ended with
154 MSA /QMSAs, none of which had fewer than 6 observations in 1988
or 1993.20 Map 3 shows the location of the well and less well sampled
regions for 1993, while Appendix 3 shows the distribution of QMSAs by
number of observations contained. Both suggest that the QMSAs with
few observations are located in areas with little manufacturing activity
and represent a small part of the information available for analysis.

Maps 4 through 7 provide a first visual impression of the variations
in technology use across the nation and of how that usage changed
between 1988 and 1993. Three caveats are in order. First, these maps do
not account for differences in industry mix, plant size, or other charac-
teristics known to influence technology adoption. In addition, in areas
with small samples, chance variation may have produced misleading
results. Finally, the maps relate only to technology use by establishments
in SICs 34 to 38; they tell us nothing about technology use in chemicals or
plastics, for instance, or in business or financial services.

To start with one broad measure of technology use, Maps 4 and 5
show the mean number of technologies used by establishments in the
SMT population in 1988 and 1993, by QMSA 2! Unfortunately, the SMTs
for 1988 and 1993 provide little information on the intensity with which
these technologies are used.?2 However, using the 1991 SMT, which asks
about the share of operations dependent on advanced technologies,
Doms, Dunne, and Roberts (1995) found that number of technologies
used is positively correlated with intensity of use and that number used
is a good proxy for intensity. Still, it should be noted that some
technologies, like “other” robots and automated materials handling
systems, appear to be relevant only to a small number of large plants in
a couple of industries. More important, some of these technologies are
substitutes; thus, plants are likely to use both only when they are
experimenting or shifting from one to another.

One impression emerging from the maps is that technology diffusion

19 Jaffe, Trajtenberg, and Henderson (1993) used a similar construct which they called
“phantom” SMSAs.

20 In mapping the use of individual technologies, we also dropped all MSA/QMSAs
with fewer than 20 observations to meet disclosure requirements and analytic criteria.

21 It is important to note that the data displayed in the maps are weighted using SMT
weights normalized by region-specific factors. See Appendix 2 for further discussion of the
need to use weighted data and other weighting issues.

22 Although the 1993 SMT does ask about the number of workstations involved—
where that question is relevant—it provides no basis for comparing actual with potential
use.
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Map 6
Share of Planis Using CAD to Control Machines or in Procurement, 19887

Quartile Ranges (%)

[] 27t0160
16.110 22.4

22.5t0 28.6

|
] 28710542
]

<20 Plants

Map 7
Share of Plants Using CAD to Control Machines or in Procurement, 1993

Southern
New England
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2 Based on weighted data.
Note: Regions are MSAs and QMSAs, defined in the text.
Source: U.S. Bureau of the Census, Survey of Manufacturing Technology, 1988 and 1993.
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Table 4
Technology Use, by Beale Code
Weighted Data
Beale Code
Metro Urban Rural

ftem 0 1 2 3 4 5 5] 7 8 9
Mean Number of 1988 30 30 32 32 33 42 31 381 24 26

Technologies 1993 35 39 36 39 39 41 41 37 30 37
Share of Establishments Using (%)
At least five 1088 251 246 28.0 271 31.8 413 259 26.0 1563 19.1

technologies 1993 31.0 37.0 323 352 354 453 404 36.0 32.1 38.0

CAD or CAE alone 1988 43.3 48.6 47.7 43.8 40.7 55.9 403 39.2 429 429
1993 64.4 664 628 664 66.4 64.7 69.0 654 564 68.2

CAD used to control
machines and/orin 1888 19.0 14.4 21.2 17.0 129 231 167 154 145 93
procurement 1993 358 414 313 315 32.7 37.7 308 257 26.7 41.2

LAN for factory use
and/or intercompany 1988 26.2 274 27.9 30.3 32.8 39.9 353 346 257 265
computer networks 1993 33.2 408 357 37.4 30.3 426 402 381 258 386

Source: U.S. Bureau of the Census, Survey of Manufacturing Technology, 1988 and 1993,

between 1988 and 1993 was rapid and widespread; unusually intense
technology use measured by 1988 criteria ranks only as lowest-quartile
use by 1993. Nevertheless, the maps also indicate that the share of plants
making above-average use of advanced technologies in any given period
varies considerably across regions and within states. In 1988, relatively
high-tech use within the SMT population was concentrated in parts of
New York and New England, Virginia, South Carolina, Tennessee,
Minnesota, Nebraska, and isolated metro regions dotted about the
country. However, many metro areas, particularly in the East, appear as
islands of relatively light technology use. By 1993 (Map 5), areas of
intense technology use occur in parts of New York-New England, an arc
of states that happen to be popular with foreign auto companies and their
suppliers (Ohio, Iilinois, Kentucky, and Tennessee), and a cluster formed
by New Mexico, Colorado, and Nebraska. Some contiguous states in New
England, the South Atlantic, the East North, and the West South Central
regions also exhibit above-average adoption. On the whole, the pattern of
technology use appears less scattered in 1993 than in 1988.

Maps 6 and 7 show the share of SMT establishments that had
adopted a specific pair of relatively new technologies, CAD for control-
ling machines or for procurement. Again, these technologies spread
rapidly in the sample period, with above-average use in 1988 subsumed
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into the lowest quartile by 1993. In the earlier period, the most intense use
of CAD beyond design and engineering work occurred in a scattering of
metro areas, including the Boston-Worcester-Lawrence and the Seattle-
Tacoma-Bremerton CMSAs, as well as the southern Mountain states. By
1993, the heaviest use had spread through most of the Mid-Atlantic, along
with Minnesota, Nebraska, and Arkansas. Again, metro regions (with
more than 20 observations) do not appear to be at a disadvantage
compared with surrounding areas. Interestingly, areas using large num-
bers of technologies in 1993 (Ohio, Kentucky, Tennessee, and Illinois, for
instance) did not exhibit widespread adoption of these new CAD tech-
nologies, while West Coast areas, with low mean numbers, showed
above-average use of extended CAD.

Because the maps (and, indeed, the construction of QMSAs) blur the
distinctions between urban, suburban, and rural counties, Table 4 pro-
vides information similar to that covered by the maps for nine types of
counties, running from urban core to rural as classified by the Beale
codes.2324 For 1988 this table appears to confirm Harrison, Kelley, and
Gant’s (1996) conclusions that technology use peaks in urban counties
outside of metropolitan areas (Beale Codes 4 and 5), at least for broad
measures of technology use. The data suggest relatively limited technol-
ogy use in core metro or completely rural areas. However, even in 1988,
the pattern is less clear in the case of the newer CAD and LAN tech-
nologies. By 1993, moreover, the distinction between total technology use
in metro and smaller urban counties seems less pronounced, possibly
because the use of CAD and LAN technologies rose relatively fast in
metro areas. This pattern raises a question as to whether new manufac-
turing technologies, which are comparatively inexpensive and reduce the
relative cost of short production runs, may be particularly well-suited to
the often small facilities located in metro areas.

ECONOMETRIC ANALYSIS OF TECHNOLOGY ADOPTION

The maps just discussed suggest considerable variation in the use of
technologies across and within states and regions. However, as discussed
above, the maps are subject to several limitations, and we are reluctant to
draw conclusions based solely on them. In order to investigate the

2 The 1993 urban-rural continuum codes, first developed in 1975 and updated by
Calvin Beale, provide a classification scheme that distinguishes metropolitan counties by
size and status as core or fringe counties and nonmetro counties by degree of urbanization
and proximity to metro areas. These codes reflect population density, commuting patterns,
and metro influence generally. See specific definitions in Appendix 4.

24 Again, the data in the table are not adjusted for differences in industry mix or other
determinants of technology adoption. In addition, outside of the metro areas, the number of
observations falls off sharply.
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regional aspects of technology diffusion more systematically, thus, we
estimate a set of econometric models that allow us to control for the
effects of plant, firm, and QMSA characteristics. Data for this exercise
come from the 1988 and 1993 SMTs; details of our sample construction
procedures, along with variable definitions and descriptive statistics, are
provided in Appendix 4. ‘

The first measure of technology adoption examined is the change in
the number of advanced technologies used by SMT establishments
between 1988 and 1993. For each of the 17 technologies covered by the
SMT, establishments reported whether they had adopted the technology
within the past two years, in the last two to five years, or more than
five years ago. With this information, we can calculate the increase in
the number of technologies used between 1988 and 1993 for each plant.?5

As Figure 1 shows, a large share of the sample establishments either
did not increase the number of technologies used, or added only one or
two new technologies between 1988 and 1993. Accordingly, we have
chosen a negative binomial specification for the conditional distribution
of the change in the number of technologies used (since the negative
binomial is appropriate for data concentrated at small, non-negative
integer values).?¢ In the negative binomial regression analysis, the natural
logarithm of the expected increase in the number of technologies adopted
is specified to be a linear function of various conditioning variables.

In our first specification, shown in the left-most column in Table 5,
we control only for proximity to other users of advanced manufacturing
technologies.?” Our proximity measure is the natural logarithm of the
mean number of advanced technologies used within the establishment’s
QMSA in 1988 (based on data from the 1988 SMT). Since large establish-
ments seem likely to have a greater impact on neighbors’ technology use
than do small ones, we weighted each establishment by its total employ-

25 The count of technologies used in 1993 is based on a series of questions asking
whether each technology is “currently used in operations,” while the count of technologies
used in 1988 is based on the questions asking whether each technology was used “more than
5 years ago.” Less than 0.2 percent of our sample observations reported using more
technologies in 1988 than in 1993. For these observations, the change in the number of
technologies used variable was set equal to zero. In addition, establishments less than 5
years old (based on the answer to a question inquiring whether the establishment had been
manufacturing products at the current location for “less than 5 years,” “5 to 10 years,” “16
to 30 years,” or “over 30 years”) were droppped from the sample, since they could not have
adopted any technologies more than 5 years ago.

26 Hausman, Hall, and Griliches (1984) and Cameron and Trivedi (1986) provide
expositions of count data models, including the negative binomial regression specification.

The contributions to the log-likelihood function were weighted by the SMT sample
weights in estimating the regressions.

27 The “In(dispersion parameter)” coefficient indicates whether the dispersion in the
count data is greater than would be expected under a Poisson data-generating process. The
dispersion parameter would equal zero (and its natural log ~o) in a Poisson specification.
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Figure 1

Change in the Number of Technologies Used, 1988 to 1993
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Source: Authors' calculations, using 1993 Survey of Manufacturing Technology.
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Table 5
Results from Negative Binomial Regressions
Change in Number of Technologies Number of Technologies
Used, 1988 to 1993 Used, 1993
Independent Coefficient Coefficient® Coefficient® Coefficient Coefficient® Coefficient®
Variable (Std. Error) (Std. Error)  (Std. Error)  (Std. Error) (Std. Error) (Std. Error)
LN (PROXIMITY) 226 190 105 .236 182 .096
(.051) (-046) (.051) (.044) (-035) (.038)
LN (TECH USEgg) -.137 —-.142
(.020) (.020)
MULTI-EST A71 131 .333 .301
(.236) (.236) (175) (174)
LN (EST SIZE) .953 942 .684 .680
(.074) (.074) (.054) (.054)
[LN (EST SizE)]? ~.061 —.060 -.033 —-.033
(.007) (.007) (-008) (.005)
LN (FIRM SIZE) ~.036 —-.028 —-.088 .005
(.063) (.063) (.047) (.046)
[LN (FIRM SIZE)]? .004 .004 .008 .008
(.004) (.004) (.003) (.003)
MILITARY SPEC 168 163 75 A71
(.026) (.026) (.019) (.019)
FABRICATION 253 257 .304 304
(.039) (.039) (.030) (.030)
NO FABRIC/NO ASSM ~.299 —.296 —.206 —-.202
(.070) (.070) (.054) (.054)
FOREIGN OWN 123 132 114 120
(.042) (-236) (.031) {(031)
AGE 16-30 ~.111 -.112 —-.068 -.068
(.028) (.028) (.021) (.021)
AGE >30 ~.226 —.240 —.148 —-.157
(.031) (.031) (.023) (.023)
HIGH SCHOOL + 1.875 1.597
(:315) (-237)
BA+ 449 594
(.370) (.278)
RD1gg0 —.022 .060
(.075) (.052)
BEALE,, -.070 —-.037
(.032) (.024)
BEALE,, —-.022 .013
’ (.047) . (.035)
BEALEg, —.043 -.019
(.050) (.037)
CONSTANT 391 -.287 -3.781 .859 -2.027 —2.850
(.097) (.224) (.282) (.083) (.167) (.211)
In (dispersion ~.402 ~.995 -1.012 -.608 -1.676 -1.700
parameter) (.085) (.048) (.048) (.030) (.053) (.054)
Observations 6,214 6,214 6,214 6,214 6,214 6,214

Log Likelihood —12,423 -11,706 —11,686 —14,861 -13,511 -13,485

Aindicates that specification also inciuded 25 industry dummy variables. See Appendix & for criteria used for
dropping observations. Source: Authors' calculations, using 1993 Survey of Manufacturing Technology.
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ment in calculating the proximity measure.?® The proximity coefficient
can be interpreted as the elasticity of the expected change in technology
use with respect to prior technology use by other firms in the same
area. The elasticity is sizable, 0.23, and reasonably precisely estimated.
Thus, the number of advanced technologies adopted by plants between
1988 and 1993 is estimated to be an increasing function of the level of
technology use by nearby plants in the base year.

This estimate is consistent with proximity to other users of advanced
technology being an important determinant of adoption, but this result
could also be driven by more general agglomeration economies that lead
similar firms (with similar needs for technology) to cluster geographi-
cally. To explore this hypothesis, we next added a set of establishment
and firm characteristics to the model. Estimates from this specification are
shown in the second column in Table 5; in addition to the variables shown,
25 industry dummy variables were also included in the estimation.?®

Surprisingly, the inclusion of the establishment and firm character-
istics has relatively little impact on the size of the estimated proximity
effect. Apparently, in other words, the impact of proximity to high-tech
neighbors on nearby plants’ technology adoption decisions is not simply
a matter of similar firms clustering together.

Turning to the establishment characteristics, the estimated coeffi-
cients on these variables generally conform with our expectations. The
natural log of the number of technologies used by the firm in 1988 is
negative and precisely estimated.3’ Firms that were already heavy users
of technology tended to adopt comparatively few additional technolo-
gies, while firms that were less technologically intensive in 1988 most
likely chose to adopt a greater number of new technologies in order to
stay competitive.3!

As in previous work, employment size is found to be an important
predictor of technology adoption. The coefficient on the natural log of

28 Some plants were included in both the 1988 and 1993 SMT samples; in addition, the
parents of 1993 SMT establishments sometimes owned other plants within the same QMSA
that were also included in the 1988 sample. To avoid having our proximity measure capture
intra-firm or lagged plant effects, for each 1993 SMT establishment we calculated the
proximity measure excluding other plants owned by the same firm (as of 1992) as well as
the establishment itself. SMT sample weights (normalized to average 1 within each QMSA)
were used in computing the proximity measure.

29 The industry groups represented by the dummy variables were created by merging
two or three similar 3-digit industries. Details are provided in the list of SIC groups in
Appendix 4.

30 Since a non-trivial number of establishments used none of the advanced technologies
in 1988, one was added to the number of technologies used before taking logs.

31 An alternative, more mechanical, explanation is that since the SMT only asked about
17 specific technologies, the higher the initial number of technologies, the smaller the
maximum possible increase.



TECHNOLOGY DIFFUSION IN U.S. MANUFACTURING 237

the employment size variable can be interpreted as the elasticity of the
increase in the number of technologies used with respect to the number
of employees. This elasticity is nearly 1 for small plants, but the negative
coefficient on the quadratic term suggests that the elasticity decreases
with plant size.

Why should we expect a positive relationship between technology
adoption and employment size? Some explanations focus on there being
a minimum plant scale associated with efficient utilization of given
technologies. Other explanations relate to both firm and plant size.
Economists have long pointed out, for instance, that large firms reap
economies of scale in technology adoption because they can spread fixed
costs, like the required Ré&D or the risk of failed implementation, over a
larger sales base. While the expected returns to adoption are proportional
to size, many of the costs are not. (See Babbage 1835, cited in Rosenberg
1994; Mansfield 1963; Keefe 1991; Nooteboom 1993; and Wozniak 1987,
1993.) In addition, large firms or plants may also encounter more frequent
opportunities to make sometimes lumpy capital investments?? (Rose and
Joskow 1988) or to experiment. Large firms may also have relatively
ready access to capital and a sophisticated R&D network.

In an attempt to sort out the relative importance of firm and plant
size, we include firm employment as a measure of capital access and,
possibly, R&D sophistication for multi-establishment firms.3® Surpris-
ingly, when we control for establishment employment, firm size appears
to have relatively little effect on technology adoption. The indicator
variable for multi-plant firms is positive but has a standard error more
than twice its size.3* The coefficients for the natural log of firm manufac-
turing employment and for the square of the log (both of which are
interacted with the multi-plant dummy variable) are small and statisti-
cally insignificant. These results strongly suggest that plant size, rather
than firm size, affects the speed of technology adoption.

As expected, the indicator variables for fabrication activity (FABRI-
CATION) and defense-related production (MILITARY SPEC) are both
positive and statistically significant, while the dummy variable indicat-
ing that a plant is engaged in neither assembly nor fabrication (NO

32 While investment in CAD/CAM or LAN equipment might appear to be less lumpy
than investment in flexible machining cells or automated materials handling systems, say,
adoption of CAM or LAN systems requires developing a new system of organization and
control, an expensive proposition, as Mowery (1988) points out.

33 Our firm size variable captures only employment in establishments appearing in the
1992 Census of Manufactures. Employment in the non-manufacturing facilities belonging to
parents of SMT establishments is not included in this measure.

3¢ “Multi-plant” was defined to include firms with more than one plant appearing in
the 1992 Census of Manufactures. Firms with a single manufacturing plant and other
non-manufacturing facilities would not be classified as multi-plant by this definition.
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FABRIC/NO ASSM) is negative and significant. Like production to
military specification, foreign ownership (FOREIGN OWN) also has a
significant positive association with technology use. This result is consis-
tent with foreign direct investment theory linking investment activity
with technological sophistication. By contrast, the coefficients on the plant
age dummy variables suggest that older plants are slower to take up new
technologies.

While the specification just discussed shows that the proximity effect
remains largely intact after conditioning on plant characteristics, it does
not address whether proximity is capturing spillover effects or is instead
serving as a proxy for regional characteristics, like educational attain-
ment, that facilitate technology adoption. We investigate this question
in the third specification shown in Table 5, in which several QMSA
characteristics are added to the model.

Although the size of the proximity elasticity drops to 0.105 when the
QMSA variables are added to the model, it remains both economically
and statistically significant. Among the QMSA variables added are two
measures of the educational attainment of the labor force (the share of the
adult population with a high school diploma but less than a B.A. and the
share with a four-year college degree or more) since much previous
research has documented a link between technology use and the educa-
tion of the managers or workers at the facility with the new equipment or
process. (See Bartel and Lichtenberg 1987; Doms, Dunne and Troske 1995;
Nelson and Phelps 1966; and Wozniak 1987, 1993.) In addition, in the 1991
SMT, cost of education and training and lack of skilled labor were among
the major impediments to technology adoption cited by respondents
foreseeing barriers.?

The variable measuring the fraction of the adult population with a
high school diploma but less than a B.A. (HIGH SCHOOL+) has a large,
positive, and statistically highly significant coefficient. However, a similar
variable measuring the share of the adult population with at least a
four-year college degree (BA+) usually has a relatively small, positive,
sometimes statistically significant coefficient. These combined results
suggest that college graduates are associated with more technology
adoption than high school dropouts but have a less favorable impact
than high school graduates who did not complete a four-year college.
We expected to find that access to a work force with at least a high
school education would be associated with technology adoption, but
we find the BA+ coefficient puzzling. One possible explanation is that

3 Somewhat less than half of the respondents anticipated barriers to acquiring
equipment in any of the four technology groups covered. For those who foresaw difficulties,
the top problems (out of 12 possibilities) were always cost of equipment and cost of soft-
ware, generally followed by cost of training, lack of benefit, and lack of skilled work force.
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manufacturers need educated workers but do not wish to pay produc-
tion workers the college wage premium. Thus, the most attractive labor
pool may contain a large share of individuals with a high school
education or post-secondary technical training but not a four-year college
degree. Or, professional workers may move in a national labor market.
In addition, technologies could vary in their requirements for educated
workers.? Finally, the BA+ variable may be picking up the effects of
omitted QMSA characteristics like land prices and quality-adjusted labor
costs.?”

Because local firms benefit from proximity to research universities
— by hiring graduates or faculty consultants, conducting joint research,
attending seminars, and the like—the geographic variables also include
university R&D spending per worker by QMSA (RD;gyy).%8 Previous
research has shown that proximity to major research universities has
spillover effects in the case of patenting activity. Recently, moreover,
many universities have strengthened their links to local industry through
increased efforts to commercialize university inventions or through
technology transfer programs. (See Bania, Eberts, and Fogarty 1993;
Henderson, Jaffe, and Trajtenberg 1995.) However, as with the BA+
variable, our expectations were not borne out. The university R&D
variable has a small, negative, statistically insignificant coefficient. While
universities may have an important impact on generating new technol-
ogies, our results suggest that they have little to do with the diffusion of
fairly mature technologies such as those measured by the SMT.

The last three geographic variables included in the specification
are a set of dummy variables indicating whether the plant is located
in a county assigned Beale codes 1 or 2 (non-core but large metro
counties), 3 through 5 (small metro or large urban counties), or 6 through
9 (small urban and rural counties); the omitted category is Beale code 0
(central city counties of large metro areas). The Beale code dummy
coefficients are all quite small and, with one exception, negative. This
result reinforces the impression made by the simple tabulations shown in

36 For instance, exceptions to the significant positive link between HIGH SCHOOL+
and adoption of specific technologies, discussed below, occur in the case of: 1) the relatively
large-scale and little-used flexible manufacturing systems suitable for long production
runs; 2) lasers, robots, and automated materials handling systems, also generally found
in large-scale facilities in specific industries; and 3) the older programmable controllers
now being replaced by more flexible CAD/CAM and LAN systems.

3 Crude preliminary attempts at addressing this issue by adding measures of housing
costs and average manufacturing earnings to the specification did not change the flavor of
the results. An exploratory effort to control for variations in economic conditions across
QMSAs, as measured by the change in manufacturing employment in the QMSA between
1987 and 1992, also had little perceptible impact on the results.

38 The RD,gq, variable is based on research and development expenditures of the top
280 research universities (ranked by R&D spending).
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Table 4: Although the central urban counties may have lagged in
technology adoption at one point, that effect is not apparent in the more
recent data.

In addition to the regressions for change in number of technologies
used, Table 5 also shows the results of estimating negative binomial
regressions where the dependent variable is the number of advanced
technologies used in 1993 (with identical conditioning variables, exclud-
ing the number of technologies used in 1988). The results are very similar
to those discussed earlier, an outcome suggesting that technology adop-
tion occurred via a similar process both before 1988 and between 1988
and 1993.%°

While a count of the number of technologies used is a useful scalar
measure of technology intensity, we were also interested in examining
the diffusion of specific technologies. For this purpose, we grouped the
17 technologies covered by the SMT into 10 relatively homogeneous
categories. For each category, we formed an ordinal variable measuring
the speed of technology adoption. This variable takes on the highest value
if the plant adopted the technology more than five years ago, and the
lowest value if the establishment had not yet adopted the technology
(as of 1993),40 .

For each of the 10 technology groups, we estimated an ordered
probit regression relating the ordinal speed of technology adoption to the
same set of variables used in the technology count analysis already dis-
cussed. But proximity is now measured as the fraction of SMT employment
within the QMSA using the technology in question in 1988.4! As before, we
first condition on proximity alone, then add establishment characteristics,
and finally include QMSA variables. Estimation results are shown in Table
6; to conserve space, the establishment characteristic coefficients are not
shown in the text (but are presented in Appendix 6).

When we control only for proximity, once again the proximity effect
is sizable and nearly always statistically significant. In these regressions
the dependent variables are latent measures of the speed of technology
adoption, normalized to have unit variance. Thus, the proximity coeffi-
cient of 0.46 for the first technology group (computer-aided design or
engineering), for example, can be interpreted as indicating that if CAD

% In a future revision of this paper, we will address this hypothesis more directly
by estimating regressions with the number of technologies used in 1988 specified as the
dependent variable.

40 The two intermediate categories are: adopted two to five years ago, and adopted
within the past two years—again relative to 1993. For each technology group, the tech-
nology was considered “adopted” at the earliest time any component technology was used.

4 The proximity measure was calculated using steps similar to those described for
the proximity variable used in the negative binomial regressions, as described above in the
text and in footnote 28. Again, they are subject to the same limitation, being based only on
plants observed in the 1988 SMT.
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Table 6
Technology Adoption Estimation Results
Ordered Probit Specification

Technology Groups
Variable 1 2 3 4 5 6 7 8 9 10

Controlling Only for Proximity

PROXIMITY 460 .478 537 247 430 417 390 .500 .705 .403
(129) (105) (128) (140) (124) (125) (109) (111) (126) (131)

Controlling for Proximity and Establishment Characteristics®

PROXIMITY 396 408 297 .183 361 .220 .330 428 377 373
(134) (111) (138) (150) (141) (137) (114) (116) (134) (137)

Controlling for Proximity, QMSA Characteristics, and Establishment Characteristics®

PROXIMITY —.097 093 .140 .196 .358 .150 .080 .247 .287 .250
(167) (129) (146) (155) (149) (147) (130) (123) (140) (.143)

HIGH 1821 1604 1122 616 .688 1.583 2.696 2.366 .314 1.272
SCHOOL+ (403) (432) (409) (519) (536) (507) (430) (427) (430) (433)
BA+ —A11 1499 1702 ~.016 —.361 .135 1.280 ~.265 —.973 1.353
(513) (511) (481) (630) (640) (608) (535) (490) (504) (512)
RD1660 148 029 -.0068 —-.014 —.183 .61 255 127 216 011
(089) (100) (099) (124) (150) (.113) (092) (094) (097) (.098)
BEALE,, 007 —.037 —.042 044 —082 —.080 —.017 ~.018 —.006 —.011
(039) (043) (042) (055) (056) (052) (044) (043) (045) (045)
BEALE,, 068 —.040 028 192 —008 —.002 .043 ~.135 —.030 .065
(058) (065) (064) (080) (082) (078) (065) (064) (066) (067)
BEALE, 024 —110 —.046 086 —.002 —.034 —.063 ~.038 .030 .141

(081) (068) (067) (086) (085) (082) (070) (067) (070) (070)

CUTOFF 3.778 3667 4.610 2.951 3.768 2.850 4.392 3.873 2.448 3.773
POINT1  (355) (398) (393) (481) (504) (465) (404) (389) (403) (405)

CUTOFF 4176 3.942 4.769 3.183 3.889 3.067 4.7956 4.317 2.636 4.049
POINT 2 (.356) (.399) (.394) (.482) (504} (465) (404) (B889) (403) (.405)

CUTOFF 5.099 4.578 5.175 3.637 4.380 3470 5515 4.956 3.100 4.584
POINT 3 (:367) (.399) (394) (482) (504) (465) (405) (.330) (404) (.4086)

Observations 6165 6177 6141 6182 6165 6171 6121 6119 6095 6115
Technology Groups

CAD or CAE alone

CAD used to control machines or in procurement

NC/CNC

Flexible manufacturing cells or systems

Materials working lasers, robots, and automated materials handling equipment
Sensor-based inspection/testing

LAN for technical data

LAN for factory use and intercompany computer networks

Programmable controllers

10 Computers used to control the factory floor

QO NOO P WN

See Appendix 5 for criteria used for dropping observations.
aCoefficients for establishment characteristics are shown in Appendix 6.
Source: Authors' calculations, using 1993 Survey of Manufacturing Technology.
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or CAE technology had been used by an extra 10 percent of a QMSA's
work force, the latent technology index would have been roughly 0.05
standard deviations higher.42 The proximity effects generally seem closer
in magnitude to each other than one would expect a priori; eight out of
the 10 coefficients have values between 0.35 and 0.55.

When plant and firm characteristics are added to the specification,
the proximity coefficients tend to drop by a somewhat greater percentage
than in the count regressions. This result probably reflects the fact that
industry specificity is greater for use of particular technologies than
for the number of technologies used. Overall, however, proximity to
other users of the same technology remains important even when plant
characteristics are taken into account.

The addition of geographic characteristics changes the picture con-
siderably. The value of several of the proximity coefficients drops a
good deal, and most (taken individually) are now statistically insignifi-
cant. The educational attainment coefficients also vary a good deal in
magnitude, although the share of the adult population who had gradu-
ated from high school generally emerges as an important determinant of
the speed of technology adoption. The R&D and Beale code coefficients
are erratic, varying in both magnitude and sign over the technology
groups.

Why are the results so much weaker when we examine the effects of
proximity and other geographic characteristics on the adoption of indi-
vidual technologies, rather than on the total number of technologies
used? One possibility is that, beyond the impact of proximity to users of
" a specific technology, proximity to technologically advanced plants in
general has an independent effect on technology adoption. This omitted
variable may be biasing the coefficients of the other local area variables
in ways that vary over the technology groups. Another possibility is that
each ordinal variable is too crude an indicator of the speed of technology
adoption to permit us to decipher the separate influences of the geo-
graphic variables. Finally, it may be the case that, in truth, the proximity
and other geographic characteristics affect technology adoption in ways

42 A somewhat more down to earth interpretation can be made by examining the
estimated cutoff points shown in the Appendix. The cutoff points show how the ordinal
variable categories are mapped into ranges of the Jatent (unit variance) speed of adoption
variable. The first cutoff point divides the “have not adopted” and “adopted within the past
two years” categories; the second cutoff point divides the “adopted within the past two
years” and “adopted two to five years ago” categories; the third cutoff point divides the
“adopted two to five years ago” and “adopted more than five years ago” categories.
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that vary widely over technology groups. Further research is needed to
explore these possibilities.3

CONCLUSIONS

Geography does make a difference to the speed of adoption of
advanced technologies. Proximity to other users of technology is associ-
ated with higher rates of adoption, and this effect remains apparent even
when industry and other plant characteristics are taken into account. In
many ways, this outcome is surprising. Given the well-developed com-
munications and transportation networks, and national markets for
capital goods and skilled workers, one might expect the United States to
approach the limiting case of immediate, costless diffusion of technology.

Human capital appears to be an important component of the
proximity effect. Access to a work force with at least a high school

4 In his thoughtful comments on this paper at the June conference, John Haltiwanger
emphasized the drawbacks of using retrospective data to measure the change in the number
of technologies used between 1988 and 1993 (in the negative binomial regressions) and
the timing of technology adoption (in the ordered probits). As Haltiwanger pointed out,
comparing responses given in 1988 and 1993 for establishments in both the 1988 and 1993
SMT reveals a large number of inconsistencies.

In response to these comments, we reran all of our regressions using data from the 1988
and 1993 SMTs for 2,228 establishiments appearing in both surveys. Using current 1988 and
1993 responses rather than retrospective information for this relatively small sample does
not change the overall flavor of the results. If anything—to our surprise—this change
strengthens the conclusion that proximity to early users encourages technology adoption.
Results for the regressions estimating the change in the number of technologies used for the
matched subsample reveal that the size of the proximity coefficient is nearly twice as large
when the 1988 SMT information is used as when only the retrospective information from the
1993 SMT is used. However, in the case of the ordered probits, the differences between the
results based on the 1988 SMT information and the results based solely on the 1993
retrospective data are less clear.

We note one interesting difference between the full sample results shown in Table 5 and
the results for the same specifications estimated using the subsample of plants found in both
the 1988 and 1993 SMTs. In the subsample, the size of the proximity coefficient is much
larger when establishment characteristics are held constant than when proximity is the only
explanatory variable. This difference holds whether the dependent variable is based only on
retrospective information or on information from the matched 1988 and 1993 SMT
observations. The proximity coefficient drops somewhat when the geographic characteris-
tics are added to the set of explanatory variables, but the drop is much smaller than occurs
with the full sample. A likely reason for the differences between the results for the full and
subsamples is that the matched 1988-93 subsample contains relatively large firms. Since the
distribution of plant characteristics differs markedly between the full sample and the
subsample, it is not surprising that adding plant characteristics to the specification has quite
different effects on the magnitude of the proximity coefficients estimated from the two
samples.

the authors would be glad to supply regression results for the matched 1988-93
subsample upon request.
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education is associated with a faster rate of technology adoption, and
some, perhaps much, of the remaining proximity effect likely reflects
technical knowledge spread through social interactions within geo-
graphic areas. In other words, human capital seemingly influences not
just the productivity with which a given stock of physical capital is used,
but also the technology incorporated in that capital stock.

To summarize more specific results, the regression analysis generally
confirms previous research linking technology adoption to establishment
size; however, it finds little association between multi-establishment firm
size or multi-establishment status and technology use. The limited impact
of firm size suggests that the positive link between size and technology
use reflects plant scale rather than favored access to capital or firm-level
technological sophistication. The research also reconfirms that facilities
that engage in fabrication use relatively large numbers of technologies.*
By contrast, unlike previous studies, this paper also finds some evidence
of a significant negative relationship between plant age and technology
adoption. As expected, moreover, manufacturing to military specification
has a sizable and consistently positive impact on technology adoption, a
finding that demonstrates yet again how defense spending serves as this
country’s industrial policy. Foreign ownership also has a positive asso-
ciation with technological sophistication. Finally, this research finds
almost no evidence that, in 1993, center-city counties of large metro areas
were at a significant disadvantage in terms of technology use compared
with smaller or less urban areas. Indeed, if anything, the data suggest a
positive association between a core urban location and the increase in the
number of technologies used between 1988 and 1993.45 Possibly, in other
words, the new CAM and LAN technologies are especially suited to
urban manufacturing needs.

As for the geographic characteristics, although we were not able to
disentangle proximity/spillover effects from the impact of educational
attainment/university R&D in a satisfactory manner, we generally find a
significant link between technology adoption and the availability of a
relatively well-educated work force, particularly in the case of the
newer CAD and LAN technologies. However, the relatively great im-
portance of high school graduates as compared with individuals with
college degrees remains puzzling. Nevertheless, we believe we see
enough evidence of uneven technology diffusion, particularly of the
newer technologies, to warrant further research on this topic. Exploring
the impact of other locational variables that may be more directly linked
to technology adoption—the availability of engineers and technicians or

4 The association is less pronounced in the case of the CAD and LAN technologies.
45 Including, in particular, LAN for factory use and intercompany networks.



TECHNOLOGY DIFFUSION IN U.S. MANUFACTURING 245

software designers, for example, or proximity to leading vendors of
high-tech equipment—might be a promising approach. In addition, we
need to develop a more complex model of the endogenous relationships
between proximity and location and between investment and technology
adoption.

In sum, the results of this first effort to explore the geographic
dimensions of the SMT suggest that locational characteristics do play a
role in technology diffusion. Because the repetitive process of technology
adoption is extremely expensive for individual firms and the nation,
gaining a better understanding of this process remains an important
goal.

APPENDIX 1—DESCRIPTION OF MANUFACTURING
TECHNOLOGIES, TAKEN FROM “MANUFACTURING
TECHNOLOGY: PREVALENCE AND PLANS FOR UsE 1993”

1. Design and Engineering

a. Computer Aided Design (CAD) and/or Computer Aided Engineering (CAE)—Use of
computers for drawing and designing parts or products and for analysis and testing of
designated parts or products.

b. Computer Aided Design (CAD)/Computer Aided Manufacturing (CAM)—Use of CAD
output for controlling machines used to manufacture the part or product.

c. Digital Data Representation—Use of digital representation of CAD output for control-
ling machines used in procurement activities.

2. Fabrication/Machining and Assembly

a. Flexible Manufacturing Cells (FMC)—Two or more machines with automated material
handling capabilities controlled by computers or programmable controllers, capable of
single-path acceptance of raw material and single-path delivery of finished product.

Flexible Manufacturing Systems (FMS)—Two or more machines with automated
material handling capabilities controlled by computers or programmable controllers,
capable of multiple-path delivery of finished product. An FMS also may be comprised of
two or more FMCs linked in series or parallel.

b. NC/CMC Machines—A single machine either numerically controlled (NC) or computer
numerically controlied (CNC) with or without automated material handling capabilities.
NC machines are controlled by numerical commands punched on paper or plastic mylar
tape. CNC machines are controlled electronically through a computer residing in the
machine,

c. Materials Working Laser(s)—Laser technology used for welding, cutting, treating,
scribing, and marking.

d. Pick and Place Robot(s)—A simple robot, with one, two, or three degrees of freedom,
which transfers items from place to place by means of poini-to-point moves. Little or no
trajectory control is available.
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e. Robot(s)—A reprogrammable, multifunctional manipulator designed to move materials,
parts, tools, or specialized device through variable programmed motions for the perfor-
mance of a variety of tasks.

3. Automated Material Handling

a. Automatic Storage and Retrieval System (AS/RS)—Computer-controlled equipment
providing for the automatic handling and storage of materials, parts, subassemblies, or
finished products.

b. Automatic Guided Vehicle Systems (AGVS)—Vehicles equipped with automatic
guidance devices programmed to follow a path that interfaces with work stations for
automated or manual loading and unloading of materials, tools, parts, or products.

4. Automated Sensor Based Inspection and/or Testing Equipment

Automated Sensor Based Inspection and/or Testing Equipment—Includes automated
technical data within design and engineering departments.

5. Communications and Control

a. Technical Data Network—Use of local area network (LAN) technology to exchange
technical data within design and engineering departments.

b. Factory Network-—Use of local area network (LAN) technology to link subcontractors,
suppliers, and/or customers with the plant.

c¢. Intercompany Computer Network—Use of network technology to link subcontractors,
suppliers, and/or customers with the plant.

d. Programmable Controller(s)—A solid state industrial control device that has program-
mable memory for storage of instructions, which performs functions equivalent to relay
panel or wired solid state logic control system.

e. Computer(s) Used for Control on the Factory Floor—Excludes computers imbedded
within machines, or computers used solely for data acquisitions or monitoring. Includes
computers that may be dedicated to control but are capable of being programmed for other
functions.

APPENDIX 2— USE OF SMT SAmMPLE WEIGHTS
IN CONSTRUCTING GEOGRAPHIC ESTIMATES

To understand the importance of using weighted data for geographic analysis,
suppose that a region has a disproportionately large share of big firms, which have a
relatively high probability of both sample inclusion and advanced technology use. While
unweighted data would tend to exaggerate the extent of technology adoption in that area,
weighted data (normalized by region-specific factors) will not be subject to that bias since
the weights correct for differences in probability of sample inclusion across strata.

Regionally normalized sample weights are appropriate for our purposes because they
result in unbiased estimates of means and proportions within regions. Suppose, for
example, that N and n are the overall population and sample sizes, that Ny, and n,, are the
population and sample sizes in stratum h, and that N; and n, are the population and sample
sizes in geographic area g. Thus, Ny, and n,, are the population and sample sizes of
establishments in both stratum g and area h. The sample weight for establishments in the
SMT is N}, /ny,, the inverse of the sampling probability. A standard result in sampling theory
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is that sample means and proportions computed using these weights, multiplied by n/N to
normalize to one, will be unbiased estimators of their population counterparts (Cochran
1963, chapter 5). In other words, the arithmetic mean of (n/N)(Ny, /ny,)y; will be an unbiased
estimator of the population mean of y.

Within geographic area g, the appropriate sample weight to use in estimating
population means and proportions is Ny, /ng,, normalized to average one within region g.
However, simple random sampling within strata leads to the result that Ngh / N = N, /1y,
In other words, since the probability of sample inclusion within a given stratum does not
vary over regions, the sample weight for an establishment in stratum i relative to the sample
weight of an establishment in stratum j should also not vary over regions.

The normalization factor for region g is n, /N,. This factor, the probability of sample
selection in region g (not conditioning on stratum membership) will vary over regions
because of interregional differences in industry mix and the distribution of employment
size. Thus, region-specific normalization factors must be applied in computing estimates by
region. The normalization factors can be simply calculated as the multiplicative scalar
factors which result in the weights having mean values equal to one within each region.
They do not need to be estimated using an external data source.

APPENDIX 3—DISTRIBUTION OF OBSERVATIONS BY
CMSA, 1993

Number of Number of Cumulative Total Share of

Observations QMSAs Observations Observations
6-7 12 76 1.07
8-10 15 214 3.01
11-15 29 596 8.38
16-20 14 843 11.85
21-25 12 1112 15.63
26-30 7 1310 18.41
31-35 2 1376 19.34
36-40 10 1754 24.65
41-45 6 2016 28.33
46-50 5 2256 31.71
51-65 7 2629 36.95
56-60 8 2978 41.86
61-65 1 3043 42.77
66-70 3 3251 45.69
70-75 6 3689 51.85
76-100 5 4117 57.86
101-125 4 4578 64.34
126-150 2 4844 68.08
151-200 2 5166 72.61
201-250 3 5857 82.32
251-400 2 6558 92.17
Over 400 1 7115 100.00

Source: U.S. Bureau of the Census, Survey of Manufacturing Technology, 1993.
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APPENDIX 4 —V ARIABLE DEFINITIONS AND DATA SOURCES

Variable Description Source and Comments
Dependent:
TECH NUMgg Number of technologies used Survey of Manufacturing Technology

A TECH NUMgg. o5

PROB(TECH,)

Independent:
LN (TECH USEgg)

LN (EST SIZE)
LN (EST SIZE)2

LN (FIRM SIZE)
[LN (FIRM SIZE)]?

AGE 16-30
AGE >30

IND, . . . INDys
MULTI-EST

MILITARY SPEC

FABRICATION
NO FABRIC/
NO ASSM

by establishment in 1993, used
in negative binomial regressions

Change in number of technolo-
gies used by establishment
1988-93, used in negative
binomial regressions

Probability of establishment
adopting technology,: not yet,
less than 2 years ago, 2t0 5 -
years ago, or more than 5 years
ago, for technology groups
1-10, used in ordered probit
regressions

Establishment Characteristics:
Natural log of number of tech-
nologies used by establishment
in 1988, used in regression for
A tech numgg.gs

Establishment size: natural log
and natural log squared of total
employment at establishment in
1992

Firm size: natural log and natu-
ral log squared of total 1992
employment at firm to which
establishment belongs, for
muiti-establishment firms

Dummies for age of establish-
ment; ages 16 to 30 and above
30 versus ages 6 to 15

Dummies for 3-digit SIC cluster;
see list below

Dummy for multi-establishment
firm in 1992

Dummy: establishment pro-
duces some goods to military
specification: yes versus no or
don’t know

Dummy for type of operation:
fabrication or fabrication and
assembly versus assembly only
and neither versus assembly
only

(SMT) 1993, extract provided by the
U.S. Bureau of the Census, Center for
Economic Studies (CES)

SMT 1983, extract provided by the
CES. (SMT 1988 used in regressions
described in footnote 43.)

SMT 1993, extract provided by the
CES. (SMT 1988 used in regressions
described in footnote 43.)

SMT 19983, extract provided by the
CES. (SMT 1988 used in regressions
described in footnote 43.)

Census of Manufactures (CM) 1992,
extract from the Longitudinal Re-
search Database (LRD) provided by
the CES

CM 1992, extract from the LRD
provided by the CES

CM 1992, extract from the LRD
provided by the CES

SMT 1993, extract provided by the
CES

CM 1992, extract from the LRD
provided by the CES

SMT 1993, extract provided by the
CES

SMT 1993, extract provided by the
CES
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Variable Description Source and Comments
FOREIGN OWN Dummy for foreign owned: yes SMT 1993, extract provided by the
versus no or don't know CES
Location Characteristics:
PROXIMITY Proximity to other users of SMT SMT 1988 and 1993, extract pro-
technologies: natural log of mean  vided by CES
number of technologies used in
QMSA by unrelated establish-
ments in 1988, weighted by plant
employment, in the negative bi-
nomial regressions; share of SMT
employment in QMSA at unre-
lated establishments using the
same technology; in 1988, in the
ordered probits
HIGH SCHOOL+  Share of the population 25 years  U.S. Bureau of the Census, County
of age and over with a high and City Data Book, 1994
school diploma but less than a
B.A., 1990, in QMSA
BA+ Share of the population 25 years  U.S. Bureau of the Census, County
of age and over with a bachelor’s  and City Data Book, 1994
degree and above, 1990, in
QMSA
RDgo Academic science and engineer-  National Science Foundation/SRS,
ing R&D expenditures by top 280  Survey of Scientific and Engineering
research universities, per worker,  Expenditures at Universities and
in QMSA, in FY 1993 Coileges
BEALE,, . .. Dummies for Beale codes, 1993:  Butler and Beale, U.S. Department
BEALEgg 1and?2; 3, 4, 5; and of Agricuiture, Economic Research
6, 7,8, 9versus 0 Service, 1993
SIC Groups
34 Fabricated Metal Products
341 + 343  Metal cans and shipping containers -+ plumbing and heating except electric
342 Cutlery, handtools, and hardware
344 Fabricated structural metal products
345 + 346  Screw machine products, bolts, etc. + metal forgings and stampings
347 + 349  Metal services, nec + miscellaneous fabricated metal products
348 Ordnance and accessories

35 Industrial Machinery and Equipment

351
352 + 353
354
355 + 358
356 + 359
357

Engines and turbines

Farm and garden machinery + construction and related

Metalworking machinery

Special industry machinery + refrigeration and service machinery
General industry machinery + industrial machinery, nec

Computers and office equipment
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Appendix 4—continued

36 Electronic and Other Electric Equipment

361 + 362 Electric distribution equipment + electrical industrial apparatus

363 + 364 +  Household appliances + electric lighting and wiring + household audio
365 + 369 and video equipment + miscellaneous

366 Communications equipment

367 Electronic components and accessories

37 Transportation Equipment

371 Motor vehicles and equipment

372 Aircraft and parts

373 Shipbuilding, boats and repair

376 Guided missiles

374 + 375 Railroad equipment + motorcycles, bicycles, and parts +
+ 379 miscellaneous

38 Instruments and Related Products

381 Search and navigation

382 Measuring and controlling devices

384 Medical instruments and supplies

385 + 386 Ophthalmic goods + photographic equipment and supplies +
+ 387 watches and clocks

Technology Groups

CAD or CAE alone

CAD used to control machines or in procurement

NC/CNC

Flexible manufacturing cells or systems

Materials working lasers, robots, and automated materials handling equipment
Sensor-based inspection/testing

LAN for technical data

LAN for factory use and intercompany computer networks

Programmable controllers

Computers used to control the factory floor

OQWOWONSGE WN -

=

Rural-Urban Continuum Codes for Metro and
Nonmetro Counties (Beale Codes)

Metro Counties

0  Central counties of metro areas of 1 million population or more

1 Fringe counties of metro areas of population of 1 million or more
2 Counties in metro areas of 250,000 to 1 million population

3  Counties in metro areas of fewer than 250,000 population

Nonmetro Counties

Urban population of 20,000 or more, adjacent to a metro area

Urban population of 20,000 or more, not adjacent to a metro area

Urban population of 2,500 to 19,999, adjacent to a metro area

Urban population of 2,500 to 19,999, not adjacent to a metro area

Completely rural or less than 2,500 urban population, adjacent to a metro area
Completely rural or less than 2,500 urban population, not adjacent to a metro area

OO NN Ul
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Descriptive Statistics for Variables

Varlable Mean Standard Deviation
TECH NUMgq 3.686 3.116
A TECH NUMgg 2.267 2.245
LN (TECH USEgg) 1.420 1.976
LN (EST SIZE) 4,282 1.070
[LN (EST SIZE)]? 19.485 10.494
LN (FIRM 8IZE)? 7.352 2.036
[LN (FIRM SIZE)]?® 58.199 31.475
AGE 16-30 .330

AGE >30 275

MULTI-EST .397

MILITARY SPEC .382

FABRICATION 796

NO FABRIC/NO ASSM .061

FOREIGN OWN .079

PROXIMITY 6.794 1.724
PROX1 727 108
PROX2 442 147
PROX3 661 118
PROX4 .320 .138
PROX5 514 150
PROX6 428 149
PROX7 .483 146
PROX8 .b56 140
PROX9 667 .128
PROX10 .603 125
HIGH SCHOOL+ .554 .044
BA+ .203 .054
RD49g0 131 185
BEALE,, .251

BEALE 126

BEALEq 116

Observations 6214

“These variables are reported only for establishments that are part of a multi-establishment firm; therefore, the

number of observations for these variables is 3482,
Source: Survey of Manufacturing Technology, 1988 and 1993.

APPENDIX 5—CRITERIA FOR DROPPING

OBSERVATIONS FROM ANALYSIS

Criteria for dropping observations include:

1. Establishment shipments valued at less than $1,000

2. Establishment employment of less than 10 for production workers or total employees
3. Observations coded AR (administrative record) in 1988, for which data were fully

imputed

OO NN

. Establishments lacking unique permanent plant numbers (an issue in 1993 only)
. Establishments with inconsistent geographic codes

. Multi-establishment plants without an identifiable parent firm in 1992

. Establishments with illogical or out-of-range survey responses

. Establishments less than six years old (for the regression analysis)

. Establishments in Alaska and Hawaii
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APPENDIX 6—TECHNOLOGY ADOPTION ESTIMATION RESULTS
Technology Adoption Estimation Results: Ordered Probit Specification

Technology Group 1 Technology Group 2
Independent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error)
PROXIMITY 460 396 -.097 478 .408 .093
(.129) (134) (.167) (.105) (111 (.129)
MULTI-EST 454 443 194 .095
(.295) (.296) (.325) (.327)
LN (EST SIZE) 563 567 183 206
(.101) (.101) (.103) (.104)
LN (EST SIZE)P? -014 -.015 011 .009
(.011) (.011) (.011) (011)
LN (FIRM SIZE) —.099 —-.098 —.066 —.041
(.081) (.081) (.088) (.089)
[LN (FIRM SIZE)]? .007 .007 .004 .003
(.005) (.005) (.006) (.006)
MILITARY SPEC 140 31 241 227
(.031) (.032) (.034) (.035)
FABRICATION 104 07 460 465
(.047) (.047) (.056) (.056)
NO FABRIC/ —.645 —.642 —-.166 —.167
NO ASSM {.083) (.083) (.103) (.103)
FOREIGN OWN 052 .056 019 022
(.055) (.055) (.060) (.081)
AGE 16-30 012 013 .003 .004
(.034) (.035) (.038) (.039)
AGE >30 —. 111 —.118 ~.040 —.053
(.038) (.038) (.042) (.042)
HIGH SCHOOL -+ 1.821 1.804
) (.403) (.432)
BA+ 1.707 1.499
(.466) (511)
RD,g00 148 .029
(.089) (.100)
BEALE,, .001 -.037
(.039) (.043)
BEALE 5 .068 ~.040
(.058) (.065)
BEALE 024 -.110
(.081) (.068)
CUTOFF —.042 2,751 3.778 .605 2.586 3.667
POINT 1 (.095) (.284) (.355) (.050) (.298) (.398)
CUTOFF .290 3.147 4.176 .849 2.860 3.942
POINT 2 (.095) (.285) (.356) (.050) (.298) (.399)
CUTOFF 1.082 4.067 5.099 1.421 3.494 4.578
POINT 3 (.096) (.286) (.357) (.052) (.298) (.399)
Observations 6165 6165 6165 6177 6177 6177
Log Likelinood -8177 —7371 —7354 —6280 —5821 —5807

Source: Authors' calculations, using 1993 Survey of Manufacturing Technology.
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Technology Adoption Estimation Results: Ordered Probit Specification

Technology Group 3 Technology Group 4
Independent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable (Std. Error)  (Std. Error) (Std. Error) (Std. Error}  (Std. Error)  (Std. Error)
PROXIMITY 537 297 140 247 183 196
(.128) (.138) (.146) (-140) (.150) (.155)
MULTI-EST 427 .367 —.469 —.442
(.320) (.322) (.421) (.422)
LN (EST SIZE) 441 469 .289 261
(.107) (.107) (.124) (.125)
[LN (EST SizE)? -.013 ~.016 .004 .006
(.011) (011) (012) (012)
LN (FIRM SIZE) —.131 -.118 102 .093
(.088) (.089) (.110) (.110)
[LN (FIRM SIZE)]? .009 .008 —-.003 —-.002
(.006) (.008) (.007) (.007)
MILITARY SPEC 270 256 173 182
(.034) (.035) (.044) (.044)
FABRICATION 1.221 1.228 154 149
(.059) {.060) (.067) (.067)
NO FABRIC/ 180 143 -.347 —.349
NO ASSM (.099) (.099) (.132) (.133)
FOREIGN OWN 067 .069 073 077
(.061) (.061) (.070) (.070)
AGE 16-30 —-.033 ~.028 -.107 -.116
(.038) (.038) (.050) (.080)
AGE >30 —.003 ~.006 —.142 -.182
(.041) (.L041) (.054) (.054)
HIGH SCHOOL + 1.122 616
, (.409) (519)
BA+ 1.702 —.016
(481) (.630)
RD4ggo ~.008 -.014
(.099) (124)
BEALE,, ~.042 044
(.042) (.055)
BEALEzg .028 192
(.064) (.080)
BEALEgs ~.046 .066
(.067) (.086)
CUTOFF 262 3.666 4,610 1.157 2.642 2,951
POINT 1 (.086) (.306) (-393) (.049) (.351) (.481)
CUTOFF .384 3.824 4.769 1.359 2.873 3.183
POINT 2 (.086) (.306) (.394) (.050) (.351) (.482)
CUTOFF 71 4.228 5.175 1.761 3.326 3.637
POINT 3 (.086) (.307) (.394) (.053) (.352) (.482)
Observations 6141 6141 6141 6182 6182 6182
Log Likelihood —6954 -5997 —~5982 —3457 —-3128 -3121

Source: Authors’ calculations, using 1993 Survey of Manufacturing Technology.
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Appendix 6 (cont'd)
Technology Adoption Estimation Results: Ordered Probit Specification
Technology Group 5 Technology Group 6
Independent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error)
PROXIMITY 430 361 .358 417 229 .150
(.124) (.141) (.149) (.125) (.137) (.147)
MULTI-EST .630 655 143 24
(.431) (.431) (.391) (-392)
LN {EST SIZE) .365 335 .068 057
(137) (.137) (121) (122)
[LN (EST SIZE)? .019 .021 .028 .028
(.013) (.013) (.012) (.012)
LN (FIRM SIZE) —.228 —.235 —.054 —.051
(113) (114) (.103) {(.104)
[LN (FIRM SIZE)]? .020 .020 .006 .006
(.007) (.007) (.007) (.007)
MILITARY SPEC 190 191 201 200
(.044) © (.044) (.042) (.042)
FABRICATION 279 282 126 125
(.066) (.066) (.062) (.062)
NO FABRIC/ ~.144 —-.139 .066 074
NO ASSM (.128) (.128) (.106) (.106)
FOREIGN OWN 190 194 212 221
(.067) (.067) {.066) (.066)
AGE 16-30 —.000 -.006 —-.063 —.064
(-049) (.049) (.047) (.047)
AGE >30 -.135 ~.144 —.096 -.109
(.055) (,085) (.052) (.052)
HIGH SCHOOL + 688 1.683
(-536) (:607)
BA+ —.361 135
(.640) (.608)
RD,gg0 -.183 161
(.150) (113)
BEALE,, -.082 -.060
(.056) (.052)
BEALE,, —-.008 ~.002
(.082) (.078)
BEALE,g -.002 —-.034
(.085) (.082)
CUTOFF 1.163 3.567 3.768 1.120 2.024 2.859
POINT 1 (.067) (.382) (.504) (.058) (.339) (.465)
CUTOFF 1.326 3.788 3.989 1.296 2.232 3.067
POINT 2 (.068) (.383) (.504) (.058) (.339) (.465)
CUTOFF 1.613 4,178 4,380 1.640 2,634 3.470
POINT 3 {.069) (.383) (.504) (.060) {339 (-465)
Observations 6165 6165 6165 6171 6171 6171
Log Likelihood —~3961 -3215 -3210 —3994 —3554 ~3647

Source: Authors’ calculations, using 1993 Survey of Manufacturing Technology.
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Appendix 6 (cont’d)
Technology Adoption Estimation Results: Ordered Probit Specification
Technology Group 7 Technology Group 8
Independent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error)  (Std. Error)
PROXIMITY .390 .339 .080 .500 428 247
(.109) (.114) (.130) (111) (.116) (.128)
MULTI-EST ~.006 ~.089 714 .658
(.330) (.332) (.318) (-320)
LN (EST SIiZE) 333 324 455 436
(.108) (-108) (.103) (.103)
[LN (EST SIZE)]? .005 .006 -.012 -.010
(.011) (011) (.010) (010)
LN (FIRM SIZE) ~.014 .003 -.179 —.165
(.089) (.089) (.086) (.087)
(LN (FIRM SIZE)? .004 .003 .015 015
(.006) (.008) (.006) (.006)
MILITARY SPEC .100 .098 128 128
{.036) (.036) (.035) (.035)
FABRICATION .085 .086 .072 .075
(.053) (.053) (.052) (.052)
NO FABRIC/ -.129 -121 —.230 -.222
NO ASSM (.094) (.094) (.091) (.091)
FOREIGN OWN 133 147 122 .138
(.058) (.058) (.057) (.057)
AGE 16-30 —~.146 —.143 -.074 —-.074
(.040) (.040) (.038) (.039)
AGE >30 —~.242 ~.261 —.189 -.207
(.044) (.044) (.042) (.043)
HIGH SCHOOL + 2.696 2.366
(-430) (.427)
BA+ 1.289 —.265
(.835) (.490)
RD;a90 255 a27
(,092) (.094)
BEALE,, -.017 -.018
(.044) (.043)
BEALEg .043 -.135
(.085) (.084)
BEALEg —-.063 —-.038
(.070) (.067)
CUTOFF 673 2.766 4.392 .665 2.786 3.873
POINT 1 (.055) (.304) (-404) (.064) (.291) (.389)
CUTOFF 1.019 3.165 4,795 1.047 3.227 4317
POINT 2 (.056) (-305) (-404) (.085) (-292) (.389)
CUTOFF 1.854 3.881 5.515 1.610 3.864 4.956
POINT 3 (.058) (-305) (.405) (.066) (.292) (.390)
Observations 6121 6121 6121 6119 6119 6119
Log Likelihood —-5860 —5337 —5309 —6276 —-5735 -5717

Source: Authors’ calculations, using 1993 Survey of Manufacturing Technology.
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Appendix 6 (cont’d)
Technology Adoption Estimation Results: Ordered Probit Specification

Technology Group 9 Technology Group 10
Independent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Variable {Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error)  (Std. Error)
PROXIMITY .705 377 287 403 373 .250
(.126) (.134) (.140) (.131) (.137) (.143)
MULTI-EST 457 478 127 121
{.335) (.336) (.337) (.338)
LN (EST SIZE) 355 332 402 396
(111) (112 (107) (107)
[LN (EST SIZE)? .006 .008 ~.006 —.006
(011) (011) (011) (011)
LN (FIRM SIZE) —.094 -.102 —-.040 —.040
(.091) (.091) (.090) (.091)
[LN (FIRM SIZE)P 010 010 .006 .006
(.006) (.006) (.006) (.006)
MILITARY SPEC .068 075 213 .208
(.036) (.036) (.036) (.036)
FABRICATION 413 412 .206 .208
(.057) (.057) (.056) (.056)
NO FABRIC/ 449 460 .108 116
NO ASSM (.089) (.089) (.093) (-093)
FOREIGN OWN .075 .080 186 .188
(.060) (.060) (.059) (.059)
AGE 16-30 -.088 —-.088 ~.050 —.052
(.040) (.040) (.041) (.041)
AGE >30 —.054 —.055 -.1186 —.124
(.043) (.043) (.044) (.045)
HIGH SCHOOL+ 314 1.272 .
(.430) (-433)
BA+ -.973 1.353
(.504) (:512)
RD1690 215 .011
(.097) (-098)
BEALE,, -.006 —-.011
(.045) (-045)
BEALE;5 —-.030 .065
(.066) (-067)
BEALEgg .030 A4
(.070) (070}
CUTOFF .888 2.568 2.448 793 2.858 3.773
POINT 1 (.086) (.309) (.403) (.081) (.306) (-405)
CUTOFF 1.044 2,755 2.636 1.032 3.133 4.049
POINT 2 (.086) (.309) (.408) (.081) (-.308) (-405)
CUTOFF 1.437 3.219 3.100 1.505 3.667 4.584
POINT 3 {.087) (-309) (.404) (.082) (-307) (.406)
Observations 6095 6095 6095 6115 6115 6115
Log Likelihood —5969 ~5328 -5322 -5621 —5143 —5135

Source: Authors’ calculations, using 1993 Survey of Manufacturing Technology.
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Di1sCUSSION

John C. Haltiwanger*

The paper by Jane Sneddon Little and Robert K. Triest reflects careful
empirical work with a rich and relatively new source of establishment-
level data on the use of advanced manufacturing technologies. Using
data from the 1988 and 1993 Surveys of Manufacturing Technology
(SMT) combined with other establishment-level data from the Census
and Annual Survey of Manufactures, Little and Triest explore important
issues regarding the process of technological diffusion. Their basic
question is: Do your technological neighbors matter? That is, are individ-
ual producers more likely to adopt advanced technology if other produc-
ers in their local geographic area have also adopted advanced technolo-
gies? The investigation into this question provides a fascinating glimpse
into the complex process of adoption and diffusion of advanced technol-
ogies in the U.S. economy. Understanding this process is of fundamental
importance for understanding the determinants of economywide and
regional growth.

The results from the specific empirical exercises undertaken in this
paper are a bit mixed. Using a broad measure of the number of advanced
technologies an individual producer has adopted, they find that, even
controlling for other factors, technological neighbors exhibit a positive
and significant influence on adoption of advanced technologies. When
the authors try to push the data a bit harder to investigate the connection
between specific technologies and the detailed timing of adoption, the
results are weaker. It is apparently more difficult to find a robust
technological neighborhood effect in this more detailed level of analysis.

Since the analysis is carefully done, most of my comments reflect

*Professor of Economics, University of Maryland.
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concerns about data and measurement issues as well as broader concerns
about the interpretation of the results. To begin, I raise some data and
measurement issues that should be considered in evaluating the current
results.

DATA AND MEASUREMENT ISSUES

A key aspect of this study is the use of responses from the 1993
SMT that asked retrospectively about the timing of adoption of specific
technologies. The survey asks respondents whether they have adopted a
specific technology in the past two years, within the past two to five
years, and more than five years ago. The timing is important in this
context since the core empirical specification involves investigating the
probability of adopting a technology between 1988 and 1993 as a function
of initial conditions in 1988, where the latter includes information on the
extent of technology adoption in the local geographic area.

Unfortunately, recent research with these data by Dunne and Troske
(1995) indicates that the responses to the retrospective questions on the
1993 SMT are suspect, with substantial evidence of systematic recall bias.
Respondents appear to systematically date adoption more recently than
actually occurred. Consider, for example, the adoption of computer-aided
design (CAD). Using the 1993 SMT, about 60 percent of respondents had
this technology in use in 1993 and, based upon retrospective responses,
only about 20 percent had this technology in use in 1988. This pattern
suggests a tremendous increase in the use of CAD over this five-year
period. However, the 1988 SMT indicated that about 40 percent of plants
had this technology in use in 1988.

One possible explanation for this wide difference is that the 1988 and
the 1993 SMTs represent different samples. Dunne and Troske investigate
this by examining a matched sample of plants that responded to both the
1988 and the 1993 SMTs. Based upon a matched sample of approximately
2,300 plants, they examine the set of plants that had adopted CAD by
1988, based upon the 1988 SMT, and still were using CAD in 1993 based
upon the 1993 SMT. One would hope that the responses to the retrospec-
tive questions in the 1993 SMT would be such that virtually all such
plants would indicate that they had this technology in place in 1988.
However, Dunne and Troske found that only 60 percent of such plants
indicated in the retrospective responses that they had adopted CAD by
1988.

These measurement issues raise a variety of questions about the
interpretation of the results in Little and Triest. Their strongest results
are based upon the relationship between the number of technologies
purportedly adopted between 1988 and 1993 and initial conditions.
However, it may be that their dependent variable is a better measure of
the number of technologies in place in 1993 rather than the number of
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technologies adopted between 1988 and 1993.! Thus, while their results
indicate some degree of clustering of advanced technologies, the potential
timing problems raise related questions about causality and in turn about
the underlying source of this clustering. While many other geographic
controls are considered in the analysis, omitted variable problems are
always a concern. The potential problems from omitted variables are
exacerbated if these results primarily reflect generic clustering as opposed
to specific results on the timing of adoption. Further, the weaker results
that emerge when the authors try to exploit the detailed data on
specific technology adoption and timing may reflect these measurement
problems.

Another measurement issue that may be important in this context is
also raised by the work of Dunne and Troske (1995). Dunne and Troske
find that “de-adoption” of specific technologies apparently is significant.
That is, on the basis of the matched 1988-93 sample, a large fraction of
establishments had a number of specific technologies in use in 1988 but
no longer used them in 1993. For example, the de-adoption rate for LANs
(local area networks) is 39 percent, while the de-adoption rate for pick
and place robots is 37 percent. These large de-adoption rates suggest
either additional measurement error problems or an interesting economic
phenomenon. Under this latter interpretation, it looks as if many plants
experiment with advanced technologies but may ultimately not use them.
If this de-adoption phenomenon is real, then the process of adoption and
diffusion should be modeled (theoretically and empirically) as one that
involves gross positive and negative changes. In an environment with
substantial gross positive and negative changes, an increase in the net
adoption rate may reflect either an increase in the number of plants that
have adopted the technology or a decrease in the number of plants
abandoning the technology. The idea that a region or sector might be
deemed more technologically advanced because the pace of de-adoption
is slower there suggests that we should be thinking about the process of
technical change in richer ways.

INTERPRETATION OF THE RESULTS

Beyond these measurement issues lie more basic questions about the
interpretation and implications of the results. A key question in inter-
preting these results is whether the adoption of advanced technologies
matters for outcomes that we really care about. Adoption of advanced
technologies per se is not an objective of households, firms, or policy-
makers. They are concerned about the maximization of outcomes such as

1 Indeed, the results of their Table 5 (rightmost columns) appear to confirm this
hypothesis, since they obtain very similar results when using the number of technologies
used as the dependent variable rather than the change in the number of technologies used.
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the growth of income, employment, productivity, and profits (ultimately,
of course, of economic welfare). One might presume that a tight link
exists between indicators of the success of an individual company (and
ultimately a particular region or the entire economy) and the adoption
of the latest advanced technology. However, a number of recent studies
of establishment-level behavior of employment and productivity growth
raise a variety of questions about the link between observable estab-
lishment characteristics and measures of productivity and employment
growth.?

While the literature on plant-level productivity and employment
dynamics is still in its early stages, a number of patterns relevant for the
current analysis are beginning to emerge. Even after controlling for
differences in detailed industry, establishment size, establishment age,
region, and factor intensities (such as energy or capital intensities), large
residual differences across plants are found in the growth rates of
employment and in productivity growth (either labor or total factor
productivity). Indeed, within-group differences dwarf between-group
differences, so that idiosyncratic factors dominate the determination of
the fortunes of individual plants.

For those of us who have been involved in generating such results,
considerable speculation has followed about what these idiosyncratic
factors represent. Possible suggestions include differences in technology
(broadly defined to include both “hardware” differences such as those
investigated in this paper and differences in organizational capital),
managerial ability, human resource practices, and just plain luck. The
SMT data provide a means for evaluating the contribution of the adoption
of specific advanced technologies to explain differences in outcomes
across seemingly similar plants. Results in Doms, Dunne, and Troske
(1995) suggest that differences in technology adoption rates are not
particularly helpful in this regard. The latter paper finds that, after
controlling for detailed industry, region, size, age, and capital intensity,
there remains a positive and significant effect of adoption of advanced
technologies on plant-level labor productivity.

However, even in this cross-sectional result, it is important to
distinguish between statistical significance and overall economic signifi-
cance. It turns out that differences in adoption rates account for only a
very small fraction of the overall variation in labor productivity. All
observable factors taken together account for about 28 percent of the
cross-sectional variation in labor productivity, but the marginal contri-
bution of the adoption rates is only about 1 percent. Even more striking
are the results on labor productivity growth rates. For the same set of
observables (in first differences now, as appropriate), Doms, Dunne, and

2 Relevant studies include Baily, Campbell, and Hulten (1992); Davis, Haltiwanger, and
Schuh (1996); and Baily, Bartelsman, and Haltiwanger (1996).
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Troske (1995) find that over a 15-year horizon, observables account for
only about 10 percent of the variation across plants in labor productivity
growth rates. Further, they find no statistically significant relationship
between adoption of advanced technologies and labor productivity
growth at the plant level. Putting these results together suggests that
knowing whether individual plants have adopted an advanced technol-
ogy is not particularly helpful in determining the variation in outcomes
across plants.

Understanding the sources and dynamics of the differences across
plants is important, not only for the micro dynamics of job and produc-
tivity growth but also for aggregate dynamics. It turns out that the high
rates of job reallocation evidenced by the large differences in employment
growth rates, and the large differences in productivity and productivity
growth rates, are intimately linked. That is, the ongoing reallocation
process of capital and labor tends to shake things up in the right direction.
For example, Baily, Campbell, and Hulten (1992) and Baily, Bartelsman,
and Haltiwanger (1996) show that an important component of aggregate
productivity growth is the reallocation of resources away from less
productive plants toward more productive plants (both between and
within industries). In many ways, these are precisely the results one
would expect from a market-oriented economy in which resources are
allocated to their highest-valued uses. The striking nature of these
findings from recent studies is the magnitude of the within-group
variation and in turn its contribution to aggregate growth.

These results on the dominance of idiosyncratic factors and the
importance of the reallocation processes in moving resources between
seemingly similar plants do not imply that the processes of adoption and
diffusion are unimportant for aggregate dynamics. Instead, these find-
ings serve as a caution for both the micro and macro implications of the
results on adoption and diffusion. The process of growth at the micro and
ultimately the macro level involves a very noisy and complex process of
change at the micro level. Apparently, considerable experimentation
occurs on a variety of dimensions, including products, processes, loca-
tions, organizational structures, and human resource practices. Further,
some plants that innovate and adopt new technologies do it well, while
others do it poorly. Resources ultimately flow to the more successful, but
the continuous underlying process of reallocation is both time- and
resource-consuming, with some individuals undoubtedly hurt in the
process. It is this large-scale, ongoing process of reallocation that lies at
the heart of popular concerns about job insecurity and the link between
technological change and job insecurity. Understanding the factors that
generate this noisy process of growth and change and the factors that
facilitate the necessary but sometimes painful ongoing process of reallo-
cation should be a first-order priority.
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DiscussioN

George N. Hatsopoulos*

I found the paper by Jane Sneddon Little and Robert Triest very
interesting and also very gratifying: interesting because I believe that
technology diffusion is at least as important as technology creation, and
gratifying because it confirms some of my own empirical, subjective
discoveries over my 40 years in high-technology manufacturing. I also
appreciate the comments of Professor Haltiwanger because he, too,
touches on things that I believe are important.

Over my years in general management, I have discovered that peer
pressures, or peer effects, are more significant to the performance of the
labor force than are influences by superiors. This is a very important
lesson for businessmen to understand. It is really an expansion of the
syndrome of “keeping up with the Joneses.” If your peers do certain
things, you are much more desirous of adopting tools or practices or even
technologies than if you are told by your bosses, by the head of the
corporation, to do certain things in a certain way. In fact, I have even
found that subordinates can have, in many cases, just as much influence
on local managers as their superiors. But certainly their peers have the
most influence. Let me select as examples some of the findings of the
paper that we are discussing right now.

Little and Triest have found that proximity has a strong effect on the
adoption of technology, but they found that strength to be independent of
establishment and firm characteristics. That is something that I would
expect intuitively as a manager. I believe that technology adoption is
influenced very much by interactions between employees of a certain
level—middle management, foremen, from the plant and from neighbor-

*Chairman and President, Thermo Electron Corporation.
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ing plants—and much less by the directives of some corporate headquar-
ters, probably far away from the plant.

I would like to give you a specific example. A number of years ago
we acquired a plant in the United Kingdom, up north in Manchester. That
plant was making exactly the same products we were making in Auburn,
Massachusetts. But we found its productivity was substantially lower,
by a factor of two. In other words, the added value per hour of work was
only half that of our Auburn plant. So, we started to study what was
going on. Many, factors were involved, including organization and
technology adoption. I went up to Manchester and personally talked to
the people running the plant and to their direct reports, the foremen, and
I asked why they were not using certain technologies and organizational
techniques. Basically, the conclusion I reached was that they were not
doing it because their neighboring plants were doing something different.
They were catering more to the neighboring plants. The product we were
making is used by the paper industry, and Manchester has tremendous
concentration of manufacturers for the paper industry. Their influence
was so overwhelming that we had a hell of a time trying to change our
plant’s behavior. We did, eventually; we had to import some American
managers and it was like pulling teeth, but we finally got them close.
They are still less productive today than their American counterparts, but
at least they are much closer.

Authors Little and Triest found another puzzle in the dependence of
technology adoption on employment size. This finding might also be
expected, for the usual reasons of economies of scale and access to capital.
But they also found, and were puzzled to find, that the employment size
of the plant per se matters, but the employment size of the firm to which
the plant belongs is irrelevant. That, of course, can very well be explained,
and it would be a conclusion I would reach, too. We have divisions all
over the world, and we have plants all over the world. And I have found
that it is very hard to change local culture. Access to capital is of course
a central characteristic of the firm. Some firms have access to a lot of
capital and have different capital costs than other firms, but I would not
expect that factor to be anywhere near as dominant as the local culture.
And, of course, plant size does affect technology adoption, because of the
obvious economies of scale at the plant level.

Now, let me turn to the third puzzle, where Little and Triest found
that the availability of employees with a high school diploma was a factor
very strongly correlated with the adoption of technology, but they also
found that technology adoption was negatively correlated with the
presence of employees with college degrees. Now I do not quite believe
the negative part of it, but I do believe in a zero effect. These effects are
primarily due to the influence of middle management, usually foremen;
and it is very important to these people to be in a location where a lot of
employees with high school degrees are available.
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In conclusion, let me say that I have found this discussion and this
inquiry to be very important, not only to economists but also to
managers. Plant culture can have much more influence, not only on
productivity but also on innovation and on the economic growth of the
plant, than any directives that come from a boss.





