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We consider a standard macroeconomic model of a small open economy with a fixed ex-
change rate and study optimal capital controls. We characterize their use in response to a
variety of macroeconomic shocks. We show that capital controls are more effective when
employed against transitory shocks and when the degree of openness (exports/GDP) is
small. They are particularly effective at neutralizing risk-premium shocks that affect the
interest rate differential. Although we focus on fixed exchange rates, we show that in
some cases capital controls may be optimal even if the exchange rate is flexible. Finally,
we compare the single country’s optimum to a coordinated world solution. We find a
limited need for coordination.

1 Introduction

Capital flows have been extensively blamed for episodes of booms and busts in emerging
markets (Calvo, 1998) and may also have contributed to the ongoing crisis in the eurozone—
capital inflows and real appreciations in the periphery during the boom, followed by capital
flight during the downturn. These concerns are especially relevant when the exchange rate
is fixed, as it was for emerging markets seeking to stabilize inflation and more recently in
the EMU. Indeed, Mundell’s trilemma states that a country cannot simultaneously have
free capital flows, independent monetary policy, and a fixed exchange rate. Since countries
often maintain a fixed exchange rate, either by independent choice or as members of a cur-
rency union, how then should these countries cope with macroeconomic shocks? To what
degree should they give up on free capital mobility to regain monetary policy? Although
the International Monetary Fund has recently sided more sympathetically with the use of
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research assistance.
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capital controls (Ostry et al., 2010), we still lack a benchmark model to answer these macro-
stabilization questions. Our goal is to fill this gap by studying optimal capital control policy
in a standard open economy model with fixed exchange rates.

Our model, which builds on Clarida, Gali and Gertler (2002) and Gali and Monacelli
(2005, 2008), introduces capital controls in an open economy model with nominal rigidities
(we focus on price rigidities but show that our results extend to a setup with sticky wages).
We study the optimal use of capital controls in response to a great variety of shocks, in-
cluding the usual productivity shocks, as well as fluctuations in export demand, terms of
trade, foreign interest rates and risk premia. The latter are especially relevant for us because
they are a proximate cause of capital movements and because risk premium fluctuations
have been suggested as important drivers of the business cycle in emerging open economies
(see Neumeyer and Perri, 2005). We show that the optimal use of capital controls depends
crucially on the nature of the shock, on the stickiness of prices, and on the openness of the
economy. Capital controls are more effective for transitory shocks in economies that are not
too open and they are particularly powerful to respond to fluctuations in the risk premium
demanded by foreign investors. Finally, we contrast the optimum for a single country, acting
independently and taking the rest of the world as given, with a cooperative world optimum.
We only find limited gains from coordination.

We start with the case of flexible prices. Even with flexible prices, optimal capital controls
are generally nonzero, a point explored in detail in Costinot et al. (2011).1 In our context,
with a small open economy there is no ability to affect the world interest rate. However, each
country still has some monopoly power over its terms of trade. Absent more direct trade
barriers, capital controls emerge as an imperfect tool to manipulate these terms of trade. By
reallocating spending over time a country can raise its export prices in some periods and
lower them in others and will choose to do so under some conditions. Because this effect
is not the focus of our paper, we isolate a few cases where it is not at play: when shocks
are permanent, or in the Cole-Obstfeld parametrization (unitary inter- and intra-temporal
elasticities). Nevertheless, flexible prices act as a benchmark to compare our results with
nominal rigidities.

We first contrast the case of flexible prices with its polar opposite: perfectly rigid prices.
Thus, we assume that the exchange rate and prices are fixed forever. As with flexible prices,
capital controls are not employed in response to permanent shocks. In response to transitory
shocks, however, capital controls now play a more important countercyclical role.

Figure 1 illustrates the basic logic behind the potential benefits of capital controls. The
figure depicts the consumption of home produced goods versus foreign imported goods.

1Jeanne (2011) shows how capital controls can be used to affect the real exchange rate in a model with
non-tradable goods, where terms of trade are fixed internationally.
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Figure 1: Graphical illustration of capital controls in response to an export demand shock.

Suppose the initial equilibrium point, labeled a in the figure, is first best. The initial relative
price equals the slope of the indifference curve going through point a. When nominal prices
are rigid the relative price cannot respond to shocks in the short run, so the equilibrium
is disturbed by moving along the Engel curve, shown in the figure as a ray going through
the origin. Now suppose the economy receives a transitory shock, or combination of shocks,
that puts the first best temporarily at point b, with a rise in the consumption of foreign goods
and no change in home goods. Examples of shocks with these general properties are a surge
in capital inflows due to lower risk premia or a positive export demand shock. But there are
many other possibilities. With rigid prices, the economy must move along the Engel curve,
and reaches a point such as c. Thus, the desirable rise in the consumption of foreign goods
leads to an undesirable rise in the consumption of home goods; the economy overheats.

The key point is that a tax on capital inflows can moderate this general rise in consump-
tion. It does so by raising the nominal interest rate and reallocating spending from the
present towards the future. With capital controls, the equilibrium can be shifted along the
Engel curve. A tradeoff emerges between aligning the equilibrium with the first-best level
of consumption for foreign goods (staying at point c) or the first best level of consumption
of home goods (returning to point a); hitting both targets, reaching point b, is simply not
feasible. The second-best optimum reaches a compromise at point d. This discussion under-
scores the fact that capital controls allow the country to regain some monetary autonomy
and, with it, some control over the intertemporal allocation of spending, but it cannot affect
the composition of expenditure. Therefore, our analysis requires working with a non-trivial
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second-best planning problem.
Our finding that capital controls may be beneficial with fixed exchange rates may not sur-

prise students of monetary history. Indeed, capital controls were strongly endorsed by the
1944 Bretton Woods Agreement and became an integral part of the international monetary
system (see e.g. Eichengreen, 2004).2

We then study the same model under the intermediate assumption that prices are set one
period in advance, just as in Obstfeld and Rogoff (1995). In this case capital controls have
some subtle effects. In contrast to the case with rigid prices, capital controls are now also
employed in response to permanent shocks. Indeed, the responses are qualitatively similar
to those for transitory shocks. Intuitively, when prices eventually adjust, even permanent
shocks induce transitory movements in economic variables, which capital controls can help
stabilize to improve welfare.

We also study the model under staggered Calvo pricing, the workhorse assumption in
New Keynesian models. In addition to allowing for more realistic dynamics, this has two
important implications for our analysis. First, it introduces a welfare cost from inflation—
absent in all previous cases. Second, because capital controls affect the dynamics of inflation,
it creates a prudential motive for policy. Forward looking policy will consider the effects
that current and future temporary shocks have on absolute and relative prices. With sticky
prices these changes may have undesirable consequences in other periods. For example, a
temporary capital inflow may heat up the economy and appreciate the real exchange rate in
a way that is harmful once these flows are reverted.

We provide closed-form solutions for some revealing cases and also explore the model
numerically. As was the case with prices set one period in advance, capital controls are em-
ployed in response to permanent shock, not just temporary shocks. However, now that
prices adjust continuously, the response of capital controls is also more drawn out. In
response to variations in risk premia, capital controls mitigate variations in the domestic
nominal interest rate, but do not perfectly stabilize it (except in the closed economy limit).
Our numerical simulations show that capital controls are employed counter-cyclically for all
shocks and are quite effective, especially in response to risk premium shocks. We also find
that capital controls slow down inflationary dynamics and the adjustment of relative prices.
In this way, they help stabilize the real exchange rate.

We also provide some new results regarding the role of openness, captured in our model
by a home-bias preference parameter. One may imagine that the constraints imposed by

2The founding fathers of the Bretton Woods System, Harry Dexter White and John Maynard Keynes favored
economic liberalization generally, yet encouraged capital controls. Indeed Keynes is quoted by (Gallagher,
2012) as saying: “in my view the whole management of the domestic economy depends on being free to
have the appropriate rate of interest without reference to the rates prevailing elsewhere in the world. Capital
controls is a corollary to this.”
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a fixed exchange diminish if the economy is less open and perhaps vanish in the closed
economy limit. Without capital controls we show that this limit result is not true. This lack
of continuity with the closed economy model does not rely on the fact that a fixed exchange
rate constrains the interest rate response. It holds even for shocks that do not affect the
natural rate of interest, e.g. a perfectly permanent shock to productivity. However, with
capital controls perfect stabilization does obtain in some, but not all, cases. In particular, it
holds when prices are set one period in advance or, in the Calvo case, in response to risk
premium shocks.

Flexible exchange rates are not always perfect, and capital controls are sometimes used
even with a flexible exchange rate. Indeed, variations in risk premia create capital flows and
optimal policy leans against these to stabilize the current account and stabilize the nominal
exchange rate. Thus, a lower premium is met with taxes on capital inflows to moderate both
capital inflows and the nominal exchange rate appreciation.3

Up to this point we have discussed the problem of a small open economy with a fixed
exchange rate, taking as given conditions in the rest of the world, including policy choices
by other countries, equilibrium interest rates and prices. We also consider whether capital
controls have beggar-thy-neighbor effects and whether there are gains from coordinating
their use. We contrast the coordinated solution within a monetary union where countries
cooperate on capital controls to maximize the sum of utilities, to the uncoordinated, nonco-
operative equilibrium, where each country acts in isolation. Perhaps surprisingly, we find a
rather limited role for coordination. In particular, although the aggregates may or may not
differ, capital controls imposed by each country are identical at the uncoordinated equilib-
rium and coordinated optimum. Interestingly, the gains from coordination are independent
of the degree of heterogeneity across countries.

One may wonder whether capital controls are feasible in practice, whether there is ev-
idence that they are affect the economy in the way our model assumes it does. There is a
large literature documenting that, as with any tax or regulation, capital controls are to some
extent evaded and eluded. Nevertheless, the survey by Magud, Reinhart and Rogoff (2011)
which summarizes the evidence of over 30 empirical studies, concludes that capital controls
are effective at regaining monetary autonomy, consistent with the focus of our analysis.

The international monetary literature is vast and has led to a detailed understanding of
how monetary policy should be used in open economies (for a recent review see Corsetti
et al. 2010). In comparison, stabilization policy when monetary policy is constrained by
fixed exchange rates, as in a currency union, remains largely unexplored. In their classical
treatments, Mundell (1963) and Fleming (1962) suggested that with fixed exchange rates
and perfect capital mobility one must give up monetary policy, which may be detrimental to

3We also provide a second case in the appendix where wages, in addition to prices, are sticky.
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macroeconomic stabilization. Can capital controls then offer a partial substitute to monetary
policy in such a situation? If so how should they be used and how effective are they? The
main contribution of our paper is to provide an extensive analysis of these questions in a
standard open economy model. Our goal is to offer a useful counterpart to existing analyses
of monetary policy. In this vein, we provide sharp results characterizing the optimal use and
effectiveness of capital controls in reaction to a large variety shocks. We emphasize the roles
played by the persistence of disturbances, the degree of nominal rigidity and the openness
of the economy. Taken together, our results help extend our understanding of stabilization
policy past situations where the exchange rate is flexible.

There has been much recent interest in capital controls in a variety of economic con-
texts. In recent work, Schmitt-Grohe and Uribe (2012) study a disequilibrium model fea-
turing downward rigid wage and a fixed exchange rate. Although our models are quite
different, their reported simulations show that capital controls are used counter cyclically,
consistent with our results on the optimal use of capital controls. A large literature in in-
ternational macroeconomics is motivated by the volatility of capital flows, especially “sud-
den stops”, see Mendoza (2010) and the references therein. Models with financial frictions
such as Caballero and Krishnamurthy (2004) emphasize domestic and international collat-
eral constraints that create inefficiencies and a potential role for intervention in international
borrowing, even without nominal rigidities. A related strand of work emphasizes pecu-
niary externalities that work through prices in borrowing constraints, for example Bianchi
and Mendoza (2010), Bianchi (2011), Jeanne and Korinek (2010), Korinek (2011). All these
papers provide a rationale for “prudential” policies that attempt to prevent excessive bor-
rowing. Martin and Taddei (2010) provide a different mechanism, with adverse selection,
by which international lending is inefficient.

2 A Small Open Economy

We build on the framework by Gali and Monacelli (2005, 2008), who develop a model com-
posed of a continuum of open economies. Our main focus is on policy in a single country,
which we call Home, taking as given the rest of the world, which we call Foreign. How-
ever, we also explore the joint policy problem for the entire world when coordination is
possible. In contrast to their simplifying assumption of complete markets, we prefer to as-
sume international financial markets are incomplete. No risk sharing between countries is
allowed, only risk free borrowing and lending. Given this assumption, to keep the analysis
tractable, we limit our attention to one-time unanticipated shocks to the economy. Relative
to the literature, this is not a limitation since most studies, including Gali-Monacelli, work
with linearized equilibrium conditions, so that the response to shocks is unaffected by the
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presence of future shocks.

2.1 Households

There is a continuum measure one of countries i ∈ [0, 1]. We focus attention on a single
country, which we call Home, and can be thought of as a particular value H ∈ [0, 1]. In
every country, there is a representative household with preferences represented by the utility
function

∞

∑
t=0

βt

[
C1−σ

t
1− σ

− N1+φ
t

1 + φ

]
, (1)

where Nt is labor, and Ct is a consumption index defined by

Ct =

[
(1− α)

1
η C

η−1
η

H,t + α
1
η C

η−1
η

F,t

] η
η−1

,

where CH,t is an index of consumption of domestic goods given by

CH,t =

(ˆ 1

0
CH,t(j)

ε−1
ε dj

) ε
ε−1

,

where j ∈ [0, 1] denotes an individual good variety. Similarly, CF,t is a consumption index of
imported goods given by

CF,t =

(ˆ 1

0
Λ

1
γ

i,tC
γ−1

γ

i,t di

) γ
γ−1

,

where Ci,t is, in turn, an index of the consumption of varieties of goods imported from coun-
try i, given by

Ci,t =

(ˆ 1

0
Ci,t(j)

ε−1
ε dj

) ε
ε−1

.

Thus, ε is the elasticity between varieties produced within a given country, η the elas-
ticity between domestic and foreign goods, and γ the elasticity between goods produced in
different foreign countries. An important special case obtains when σ = η = γ = 1. We
call this the Cole-Obstfeld case, in reference to Cole and Obstfeld (1991). This case is more
tractable and has some special implications that are worth highlighting. Thus, we devote
special attention to it, although we will also derive results away from it.

The parameter α indexes the degree of home bias, and can be interpreted as a measure of
openness. Consider both extremes: as α → 0 the share of foreign goods vanishes; as α → 1
the share of home goods vanishes. Since the country is infinitesimal, the latter captures a
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very open economy without home bias; the former a closed economy barely trading with
the outside world.

We have included a taste shifter Λi,t, which is always normalized so that
´

Λi,tdi = 1,
that affects the utility of imports from country i. All countries experience the same taste
configuration {Λi,t}. Thus, variations in ΛH,t allow us to consider variations in the demand
for Home’s exports.

Households seek to maximize their utility subject to the sequence of budget constraints

ˆ 1

0
PH,t(j)CH,t(j)dj +

ˆ 1

0

ˆ 1

0
Pi,t(j)Ci,t(j)djdi + Dt+1 +

ˆ 1

0
Ei,tDi

t+1di

≤WtNt + Πt + Tt + (1 + it−1)Dt +

ˆ 1

0

1 + τt−1

1 + τi
t−1

Ei,t(1 + ii
t−1)Di

tdi

for t = 0, 1, 2, . . . In this inequality, PH,t(j) is the price of domestic variety j, Pi,t is the price
of variety j imported from country i, Wt is the nominal wage, Πt represents nominal profits
and Tt is a nominal lump sum transfer. All these variables are expressed in domestic cur-
rency. The portfolio of home agents is composed of home and foreign bond holding: Dt is
home bond holdings of home agents, Di

t is bond holdings of country i of home agents. The
returns on these bonds are determined by the nominal interest rate in the home country it,
the nominal interest rate ii

t in country i, and the evolution of the nominal exchange rate Ei,t

between home and country i. Capital controls are modeled as follows: τt is a tax on capital
inflows and subsidy on capital outflows in the home country, and similarly τi

t is a tax on
capital inflows and subsidy on capital outflows in country i. The proceeds of these taxes
are rebated lump sum to the households at Home and country i, respectively. The Home
country taxes inflows to make the after tax (net of any subsidy paid by their own country of
origin) return to foreign investors (1 + it−1)/(1 + τt−1) in domestic currency.4

2.2 Firms

Technology. A typical firm in the home economy produces a differentiated good with a
linear technology given by

Yt(j) = AH,tNt(j) (2)

where AH,t is productivity in the home country. We denote productivity in country i by Ai,t.

4In other words, if we take after tax return to be (1 − ϑt−1)(1 + it−1) then this represents a tax equal to
ϑt−1 = τt−1/(1 + τt−1). To see why this is required assume τi

t−1 = 0. Absence of arbitrage by domestic

residents requires 1 + it−1 = (1 + τt−1)
Ei,t

Ei,t−1
(1 + ii

t−1), while absence of arbitrage for residents of country i

requires (1− ϑt−1)
Ei,t−1

Ei,t
(1 + it−1) = 1 + ii

t−1. The two are compatible if and only if ϑt−1 = τt−1/(1 + τt−1).
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Price-setting assumptions. We will consider a variety of price setting assumptions: flexi-
ble prices, one-period in advance sticky prices, and sticky prices a la Calvo.

As in Gali and Monacelli (2005), we maintain the assumption that the Law of One Price
(LOP) holds so that at all times, the price of a given variety in different countries is identi-
cal once expressed in the same currency. This assumption is sometimes known as Producer
Currency Pricing (PCP). This is sometimes contrasted with the assumption of Local Cur-
rency Pricing (LCP), where each variety’s price is set separately for each country and quoted
(and potentially sticky) in that country’s local currency. Thus, LOP does not necessarily
hold. It has been shown by Devereux and Engel (2003) that LCP and PCP may have differ-
ent implications for monetary policy. However, for our purposes, these two polar cases are
equivalent since, for the most part, we will study the model assuming fixed exchange rates.

First, consider the case of flexible prices. We allow for a constant employment tax 1+ τL,
so that real marginal cost deflated by Home PPI is given by MCt = 1+τL

AH,t

Wt
PH,t

.We take this
employment tax to be constant in our model. We explain below how it is determined. Firm
j optimally sets its price PH,t(j) to maximize

max
PH,t(j)

(PH,t(j)Yt|t − PH,tMCtYt|t)

where Yt|t =
(

PH,t(j)
PH,t

)−ε
Yt, taking the sequences for MCt, Yt and PH,t as given. Second, we

consider the case where prices are perfectly rigid. Third we consider the case where are set
one period in advance as in Obstfeld and Rogoff (1995). Since we consider only one time-
unanticipated shocks around the symmetric deterministic steady state, this simply means
that prices are fixed at t = 0 and flexible for t ≥ 1. Fourth, we consider Calvo price setting,
where in every period, a randomly selected fraction 1 − δ of firms can reset their prices.
Those firms that get to reset their price choose a reset price Pr

t to solve

max
Pr

t

∞

∑
k=0

δk

(
k

∏
h=1

1
1 + it+h

)
(Pr

t Yt+k|t − PH,tMCtYt+k|t)

where Yt+k|t =
(

Pr
t

PH,t+k

)−ε
Yt+k.

2.3 Terms of Trade, Exchange Rates and UIP

It is useful to define the following price indices: home’s Consumer Price Index (CPI) Pt =

[(1 − α)P1−η
H,t + αP1−η

F,t ]
1

1−η , home’s Producer Price Index (PPI) PH,t = [
´ 1

0 PH,t(j)1−εdj]
1

1−ε ,

and the index for imported goods PF,t = [
´ 1

0 Λi,tP
1−γ
i,t di]

1
1−γ , where Pi,t = [

´ 1
0 Pi,t(j)1−εdj]

1
1−ε

is country i’s PPI.
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Let Ei,t be nominal exchange rate between home and i (an increase in Ei,t is a depreciation
of the home currency). Because the Law of One Price holds, we can write Pi,t(j) = Ei,tPi

i,t(j)
where Pi

i,t(j) is country i’s price of variety j expressed in its own currency. Similarly, Pi,t =

Ei,tPi
i,t where Pi

i,t = [
´ 1

0 Pi
i,t(j)1−ε]

1
1−ε is country i’s domestic PPI in terms of country i’s own

currency. We therefore have
PF,t = EtP∗t

where P∗t = [
´ 1

0 Λi,tP
i1−γ
i,t di]

1
1−γ is the world price index and Et is the effective nominal ex-

change rate.5

The terms of trade are defined by

St =
PF,t

PH,t
=

EtP∗t
PH,t

.

Similarly let the real exchange rate be

Qt =
EtP∗t

Pt
.

Absence of arbitrage requires that

1 + it =
1 + τt

1 + τi
t
(1 + ii

t)
Ei,t+1

Ei,t

for all i ∈ [0, 1]. This equation indicates that capital controls introduce a wedge in the Un-
covered Interest Parity (UIP) equation—an observation that will play an important role in
our analysis.

2.4 Equilibrium Conditions with Symmetric Rest of the World

We now summarize the equilibrium conditions. For simplicity of exposition, we focus on the
case where all foreign countries are identical. Moreover, we assume that foreign countries do
not impose capital controls. We denote foreign variables with a star. Taking foreign variables
as given, equilibrium in the home country can be described by the following equations. We
find it convenient to group these equations into two blocks, which we refer to as the demand
block and the supply block.

The demand block is independent of the nature of price setting. It is composed of the
Backus-Smith condition

Ct = ΘtC∗tQ
1
σ
t , (3)

5The effective nominal exchange rate is defined as Et = [
´ 1

0 Λi,tE
1−γ
i,t Pi1−γ

i,t di]
1

1−γ /[
´ 1

0 Λi,tP
i1−γ
i,t di]

1
1−γ .
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where Θt is a relative Pareto weight whose evolution is given by equation (7) below, by the
equation relating the real exchange rate to the terms of trade

Qt =
[
(1− α) (St)

η−1 + α
] 1

η−1 , (4)

the goods market clearing condition

Yt = (1− α)

(
Qt

St

)−η

Ct + αΛH,tS
γ
t C∗t , (5)

the labor market clearing condition

Nt =
Yt

AH,t
∆t (6)

where ∆t is an index of price dispersion ∆t =
´ 1

0

(
PH,t(j)

PH,t

)−ε
, the Euler equation

1 + it = β−1 Cσ
t+1

Cσ
t

Πt+1

where Πt =
Pt+1

Pt
= ΠH,t

St
Qt

Qt−1
St−1

is CPI inflation, the arbitrage condition between home and
foreign bonds

Θσ
t+1

Θσ
t

=
1 + it

1 + i∗t

Et

Et+1
, (7)

and the country budget constraint

NFAt = −C∗−σ
t

(
S−1

t Yt −Q−1
t Ct

)
+ β(1 + τ∗t )NFAt+1 (8)

where NFAt is the country’s net foreign assets at t, which for convenience, we measure in
the foreign price at home PF,t as the numeraire, and which we adjust by the foreign marginal
utility of consumption C∗−σ

t . The country budget constraint is derived from the consumer’s
budget constraint after substituting out the lump-sum transfer. Under government budget
balance the transfer equals the sum of the revenue from the labor tax and the tax on foreign
investors, net of the revenue lost to subsidize domestic residents’ investments abroad.6 We
also impose a No-Ponzi condition so that we can write the budget constraint in present-value
form

NFA0 = −
∞

∑
t=0

βt( t−1

∏
s=0

(1 + τ∗s )
)
C∗−σ

t

(
S−1

t Yt −Q−1
t Ct

)
. (9)

6We do not require budget balance but since Ricardian equivalence holds here, all other government financ-
ing schemes have the same implications.
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The supply block varies with the nature of price setting. With flexible prices, it boils
down to the following condition, which combines the household and firm’s first-order con-
ditions,

C−σ
t S−1

t Qt = M
1 + τL

AH,t
Nφ

t (10)

where M = ε
ε−1 is the desired markup of price over marginal cost, together with the no

price dispersion assumption ∆t = 1. With one period in advance price stickiness, the only
difference is that at t = 0, all prices are fixed. This means that S0 = E0

P∗0
PH,0

where P∗0 and PH,0

are fixed. Finally with Calvo price setting, the supply block is more complex. It is composed
of the equations summarizing the first-order condition for optimal price setting. These con-
ditions are provided in Appendix A.1. We will only analyze a log-linearized version of the
model with Calvo price setting (see Section 4).

For most of the paper, we will be concerned with fixed exchange rate regimes (either
pegs or currency unions) in which case we have the additional restriction that Et = E0 for
all t ≥ 0 where E0 is predetermined.

2.5 Steady State Labor Tax

We allow for a constant tax on labor in each country. We pin this tax rate down by assuming
that it is optimally set by each country and considering a symmetric steady state with flexible
prices.7

Proposition 1 (Steady State Tax). Suppose prices are flexible, that productivity is constant across
time and countries and there are no export demand shocks. Then at a symmetric steady state, τL =
1
M

η+γ−1
(1−α)η+γ−1 − 1 and optimal capital controls are equal to zero.

From each country’s perspective, the labor tax is the result of a balancing act between
offsetting the monopoly distortion of individual producers and exerting some monopoly
power as a country. The two terms in the optimal tax formula reflect the two legs of this
tradeoff.

2.6 Shocks

In the remainder of the paper we will characterize the response to various shocks. We as-
sume that the economy is initially at the deterministic symmetric steady state and charac-
terize the optimal use of capital controls for a country in response to various shocks. For the

7The level of the tax is actually only relevant when we study the model under the Calvo pricing assumption.
Our other results apply for any level of the tax rate.
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most part, until Section 5, we assume that other countries do not use capital controls, so that
τ∗t = 0 for t ≥ 0.

We will consider the following shocks: productivity shocks {AH,t}t≥0, export demand
shocks {ΛH,t}t≥0, foreign consumption shocks {C∗t }t≥0, wealth shocks to NFA0, risk-premium
shocks {Ψt}t≥0. In the small open economy context, there are many interpretations for the
wealth shock. It may capture the return on investments in risky assets, the default on debt
held abroad, etc, which are not explicitly modeled. Another important interpretation for
wealth shocks is fluctuations in commodity prices. 8

The risk premium shock can be introduced as a separate shock or computed as a com-
bination of the export demand shocks and consumption shocks. Indeed, shocks to foreign
consumption represent changes in both world interest rates and export demand for the home
country. For example, a change that increases the growth rate of {C∗t }t≥0 implies an increase
in world real interest rates. In any period t, the level of C∗t also affects export demand
αΛH,tS

γ
t C∗t . Thus, a shock to interest rates that keeps export demand unchanged requires

a combination of shocks to both {C∗t }t≥0 and {ΛH,t}t≥0 so that C∗t ΛH,t is unchanged. As
far as the home country is concerned, changes in interest rates that leave export demand
unchanged are equivalent to shocks to the rate of return in the home country demanded by
investors, due to a wedge between foreign investors and the home country. Although our
model lacks uncertainty, such a wedge could stand in for the risks of investing in the home
country, if these risks are not equally valued between borrowers and lenders. It may also
represent investor’s preferences for a particular country’s bonds along the lines of portfolio-
balance models a la Black (1973) and Kouri (1976). Thus, we will call this particular combi-
nation of shocks, to both {C∗t }t≥0 and {ΛH,t}t≥0, a risk premium shock Ψt = (C∗t+1/C∗t )

σ.
When we turn to the loglinearized version of the model with Calvo price setting, we do not
make use of this isomorphism and instead model the risk premium shock directly.

3 Flexible, Rigid and One-Period Sticky Prices

In this section, we study three different price setting assumptions. We first focus on two
extreme cases, perfectly flexible or perfectly rigid prices. We then consider an intermediate
case where prices are set one period in advance. The next section considers the canonical
New Keynesian pricing assumption with staggered price setting a la Calvo.

8Suppose in addition to the goods described previously, the Home country owns an endowment of a com-
modity good Xt (e.g. oil, copper, soybeans, etc.) that it does not consume and exports to international markets
taking the price P∗X,t as given in a reference foreign currency with exchange rate E∗t . A shock to the price path
{P∗X,t}t≥0 or the endowment path {Xt}t≥0 enters as a shock to NFA0.
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3.1 Flexible Prices

We start with the case of flexible prices. The planning problem maximizes utility (1) subject
to the equilibrium conditions (3), (4), (5), (6) with ∆t = 1, (9), and (10). The maximization
takes place over {Ct, Yt, Nt, St,Qt} taking both domestic productivity {AH,t} and foreign
variables {C∗t , ΛH,t} as given.

If the sequence {AH,t, C∗t , ΛH,t} is constant, then the solution for {Ct, Yt, Nt, St,Qt} is also
constant as long as the program is sufficiently convex. We have verified convexity in the
Cole-Obstfeld case. We assume it also holds away from this case so that we can characterize
the optimum using first order conditions, as is typically done for other Ramsey problems.

Interestingly, even with flexible prices, when the paths for AH,t and ΛH,t are not con-
stant, it is generally optimal to use capital controls. Optimal capital controls can be inferred
by taking the first-order conditions of the planning problem above and using the fact that
Θt+1

Θt
= (1 + τt)

1
σ .

Proposition 2 (Flexible Prices). Assume prices are perfectly flexible. In general, optimal capital
controls are non zero. They equal zero in the following cases:

i. for permanent shocks to productivity AH,t = A′H for all t ≥ 0;

ii. for permanent export demand shocks ΛH,t = Λ′H for all t ≥ 0;

iii. for permanent foreign consumption shocks C∗t = C∗′ for all t ≥ 0;

iv. for wealth shocks NFA0 6= 0.

When σ = η = γ = 1, optimal capital controls are equal to zero for any {AH,t}t≥0 and {C∗t }t≥0,
and τt has the same sign as ΛH,t+1 − ΛH,t in response to export demand shocks, and the opposite
sign as Ψt − 1 in response to risk premium shocks.

The fact that capital controls are in general useful even though prices are flexible might
seem surprising given the fact that we are considering a small open economy, with no ability
to affect the world interest rate. This issue is discussed in detail in Costinot et al. (2011). The
result can be understood by noting that capital controls, by allowing a country to reallocate
demand intertemporally, allow this country to manipulate its terms of trade, raising them
in some periods and lowering them in others. This margin is in general useful, unless the
shocks are permanent, in which case no gain can be reached by engaging in this kind of
intertemporal terms of trade manipulation. Moreover, in the Cole-Obstfeld case, it is not
optimal to use capital controls in response to any path for productivity, foreign consumption
shocks or wealth shocks. Capital controls are optimal in this case, however, in response to
export demand shocks.
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3.2 Sticky Prices: Rigid and One Period in Advance

Rigid Prices. We now turn to the extreme opposite case, where prices are entirely rigid
and fixed at their steady state values St = Qt = 1 for all t ≥ 0. The planning problem now
drops as constraints equations (4) and (10); the former is dropped since it is automatically
satisfied, the latter should not be imposed because firms must supply whatever is demanded
at the given price. The planning problem imposes St = Qt = 1 for all t ≥ 0 in all the
remaining constraints. After substituting out the constraints for consumption and labor it
can be written as

max
{Θt}

∞

∑
t=0

βt

[
1

1− σ
Θ1−σ

t C∗1−σ
t − 1

1 + φ
(αΛH,t + Θt(1− α))1+φ

(
C∗t

AH,t

)1+φ
]

subject to,

α
∞

∑
t=0

βtC∗1−σ
t [Θt −ΛH,t] = NFA0.

The problem is convex: it features a concave objective and linear constraint in Θt. Putting a
multiplier Γ > 0 on the left-hand side of the budget constraint, the necessary and sufficient
first-order condition is

Θ−σ
t − (1− α) (αΛH,t + Θt(1− α))φ A−(1+φ)

H,t C∗σ+φ
t + Γα = 0. (11)

The next proposition follow immediately using this equation.

Proposition 3 (Rigid Prices). If prices are completely rigid the optimal capital controls τt are:

i. the same sign as AH,t+1 − AH,t, in response to productivity shocks;

ii. the opposite sign as ΛH,t+1 −ΛH,t, in response to export demand shocks;

iii. the opposite sign as C∗t+1 − C∗t , in response to foreign consumption shocks;

iv. the opposite sign as Ψt − 1, in response to risk premium shocks;

v. equal to zero in response to initial wealth shocks.

It is interesting to contrast the use of capital controls when prices are flexible with their
use when prices are entirely rigid. There are both similarities and differences. In both cases,
capital controls are not used in response to permanent productivity, export demand, or ini-
tial wealth shocks. But the use of capital controls in response to transitory shocks is quite
different. For example, at least in the Cole-Obstfeld case, in response to productivity shocks
or foreign consumption shocks, capital controls are zero when prices are flexible, but have
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the opposite sign as C∗t+1 − C∗t or the same sign as AH,t+1 − AH,t when prices are entirely
rigid. In response to export demand shocks, optimal capital controls τt have the same sign
as ΛH,t+1 − ΛH,t when prices are flexible, but the opposite sign when prices are entirely
rigid.

One Period in Advance Price Setting. We now assume that prices are set one period in
advance, as in Obstfeld and Rogoff (1995). We continue to examine a shock that hits the
economy at t = 0. This implies that prices are effectively fixed in short run, at t = 0 when
the shock hits, but flexible thereafter t = 1, 2, . . .

We use dynamic programming to split the planning problem into two. The problem for
t ≥ 1 given NFA1 is identical to the case with flexible prices. Let V be the value function
associated with the flexible price planning problem.9 The t = 0 planning problem is

max
C0,Θ0,N0,Y0,NFA1

(
C1−σ

0
1− σ

−
N1+φ

0
1 + φ

+ βV(NFA1)

)

subject to (3), (5), (6) with ∆0 = 1, for t = 0, imposing S0 = Q0 = 1 in all these constraints,
and the budget constraint

NFA0 = −C∗−σ
0 (Y0 − C0) + βNFA1.

With one-period in advance price setting, we are able to provide tight results for tempo-
rary productivity and export demand shocks, as well as for permanent productivity, export
demand, and wealth shocks in the Cole-Obstfeld case.

Proposition 4 (Transitory Shocks with Sticky Prices). Suppose that prices are sticky one period
in advance. Then optimal capital controls τ0 in period t = 0

i. are a decreasing function of AH,0 and equals zero when AH,0 = AH in response to a transitory
productivity shock (with AH,t = AH for all t ≥ 1);

ii. are an increasing function ΛH,0 and equals zero when ΛH,0 = 1 in response to a transitory
export demand shock (with ΛH,t = 1 for all t ≥ 1), in the limit of small time intervals (β→ 1);

9This value function is defined as

V(NFA1) = max
{Ct ,Θt ,Nt ,Yt ,St ,Qt}∞

t=1

∞

∑
t=1

βt−1

[
C1−σ

t
1− σ

− N1+φ
t

1 + φ

]

subject to the equilibrium conditions (3), (4), (5), (6) with ∆t = 1, (10) , for all t ≥ 1, and the budget constraint
NFA1 = −∑∞

s=0 βsC∗−σ
s+1

(
S−1

s+1Ys+1 −Q−1
s+1Cs+1

)
.
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iii. have the same sign as C∗0 − C∗ in response to a transitory foreign consumption shock (with
C∗t = C∗ for all t ≥ 1) when σ = 1;

iv. have the same sign as Ψt − 1 in response to a transitory risk premium shock (with Ψt = 1 for
all t ≥ 1) when σ = 1 in the limit of small time intervals (β→ 1).

In all these cases, optimal capital controls τt are zero for t ≥ 1.

Overall, this proposition echoes the findings in Proposition 3, which assumed perfectly
rigid prices. Our next result deals with non-transitory shocks focusing on the Cole-Obstfeld
case. The proof is contained in the appendix.

Proposition 5 (Persistent Shocks with Sticky Prices). Suppose that prices are sticky one period
in advance. Consider the Cole-Obstfeld case σ = η = γ = 1. Then

i. in response to any shock to the path {AH,t}t≥0 of productivity, optimal capital controls τ0 are
an decreasing function of AH,0 and zero when AH,0 = AH.

ii. in response to a small enough permanent export demand shock ΛH,t = ΛH for all t ≥ 0 where
ΛH 6= 1, optimal capital controls τ0 are an increasing function of ΛH with τ0 = 0 when
ΛH = 1;

iii. in response to any shock to the path {C∗t }t≥0 of foreign consumption, optimal capital controls
τ0 are an increasing function of C∗0 and zero when C∗0 = C∗.

iv. in response to a small enough wealth shock NFA0 6= 0, optimal capital controls τ0 are an
increasing function of NFA0 and zero when NFA0 = 0;10

In all these cases, optimal capital controls τt are zero for t ≥ 1.

This proposition highlights an important insight regarding the effect of intermediate
price rigidity. When prices are perfectly flexible or perfectly rigid, capital controls are not
used to respond to permanent shocks. In contrast, they are used in these circumstances
when prices are sticky for just one period. Intuitively, when prices can adjust more in the
long run than in the short run, permanent shocks have a different effect in the short and long
run. In this sense, the result is similar to temporary shocks in the case of perfectly flexible or
rigid prices, where capital controls are used.

10This last result is true more generally for any positive shock NFA0 > 0.
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Discussion. To gain some intuition for these results, consider the case of a temporary neg-
ative productivity shock in the Cole-Obstfeld case. With flexible prices, the allocation would
feature constant labor, a temporary decrease in output, consumption, and exports (but with
constant export revenues). At t = 0, there would be a temporary improvement in the terms
of trade brought about by an increase in the prices of home goods, and a constant wage.
The nominal interest rate would be unchanged, but there would be a temporary high real
interest rate brought about by expected deflation as the prices of home goods revert to their
original values.

Now consider what happens with one period in advance sticky prices. If the exchange
rate were flexible, we would achieve the same real allocation by temporarily raising the
nominal interest rate, letting the exchange rate appreciate at t = 0 and depreciate back at
t = 1. This can be seen as a version of the classical argument in favor of flexible exchange
rate famously put forth by Friedman (1953). This adjustment recreates the temporary im-
provement in the terms of trade and the increase in the real interest rate.

If the exchange rate is not flexible, then this solution cannot be attained because the terms
of trade are fixed at t = 0. Without capital controls, at t = 0, labor temporarily increases,
consumption and output are constant. Compared with the flexible price allocation, output,
labor and consumption are higher. Similarly, at t = 0, inflation and the real interest rate are
unchanged and are respectively higher and lower than at the flexible price allocation. It is
therefore intuitively desirable to impose positive capital controls and increase the nominal
interest rate to decrease consumption at t = 0. At t = 0, output then also decreases, but
by less than consumption. Therefore the country runs positive net exports at t = 0, which
implies higher consumption and lower output for t ≥ 1.

This analysis underscores that capital controls are a second best instrument. They al-
low the country to regain some monetary autonomy and therefore some control over the
intertemporal allocation of spending. However, this reallocation is costly since it introduces
a wedge between the intertemporal prices for home and foreign households. Moreover, cap-
ital controls cannot affect the division of spending between home and foreign goods in the
short run when prices are fixed.

A final remark is in order. When exchange rates are fixed our analysis and results hold
under either PCP or LCP assumptions. In the PCP case flexible exchange rates would obtain
the first best allocation. If unavailable, then capital controls are a useful second-best instru-
ment. Interestingly, in the LCP case, flexible exchange rates are not enough to obtain the
first-best allocation. Indeed, when prices are completely rigid, as in the previous section, or
when prices are set one period in advance, as in this section, capital controls are a perfect
substitute for the exchange rate. Both operate on the UIP margin, liberating monetary policy,
and both lack any expenditure switching effects. This exact equivalence will no longer hold
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when staggered price setting, as in the Calvo price setting case which we turn to next.

3.3 The Role of Openness

The degree to which a fixed exchange rate, coupled with nominal rigidities, lowers welfare
depends crucially on the openness of the economy. In particular, in the closed economy limit
with α→ 0 the inefficiency stemming from the distorted prices of home versus foreign goods
disappears, because the share of home goods becomes negligible. As we now show, without
capital controls, this does not necessarily imply that welfare losses vanish. With the nominal
interest rate pinned down by the UIP condition, monetary policy is severely constrained.
As a result, intertemporal distortions remain, affecting overall consumption decisions, even
in the limit. Capital controls, however, can resolve these intertemporal matters and restore
welfare to the first best level in some, but not all, cases.11

Proposition 6. In the closed economy limit as α→ 0

i. without capital controls: when prices are perfectly rigid or set one period in advance, for generic
shocks to {AH,t, ΛH,t, C∗t }t≥0 and {Ψt}t≥0 welfare is strictly below the level obtained with
flexible prices;

ii. with capital controls:

(a) when prices are perfectly rigid:

i. for generic shocks to {AH,t, ΛH,t, C∗t }t≥0 welfare remains strictly below the level
obtained with flexible prices;

ii. for risk premium shocks {Ψt}t≥0, welfare converges to the the level obtained with
flexible prices;

(b) when prices are set one period in advance: welfare converges to the level obtained with
flexible prices.

The first part of the proposition, highlights an interesting property of open-economy
models: as the economy becomes closed, by taking the import share to zero, we do not nec-
essarily converge to the closed economy equilibrium. For α > 0, a fixed exchange rate en-
sures a unique equilibrium. In contrast, in a closed economy a fixed exchange rate amounts,
through the UIP condition, to setting the interest rate at the foreign interest rate. As is well
known, this closed economy model with a fixed interest rate features a continuum of equi-
libria. Technically, the equilibrium correspondence with a fixed exchange rate is not (lower

11We omit wealth shocks because in the closed economy limit they require some rescaling. For example, one
could study the limit where the initial wealth shocks are scaled so that NFA0

α remains constant.
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hemi) continuous in the parameter α at α = 0 (it is upper hemi continuous). Less technically,
it suggests caution in using a closed economy model as an approximation to an open econ-
omy. The result is of independent interest, since it is unrelated to capital controls and we are
unaware of any similar result in the literature.

Why are capital controls always successful at eliminating welfare losses in the closed
economy limit when prices are set for just one period but not when they are permanently
fixed? By affecting the interest rate, capital controls can target any level of total consumption.
Although the composition of consumption, between home and foreign goods is distorted,
the associated welfare losses vanish in the limit. On first thought, this would seem to imply
that optimal capital controls help approach the first best welfare as α → 0 quite generally.
However, manipulating total consumption via capital controls requires (small) departures
from trade balance (for low α). This creates (small) positive or negative NFA1. Now, when
prices can adjust in the following period these (small) NFA1 balances have a negligible ef-
fects on continuation utility. This result extends when prices are fixed for any number N > 1
of periods. However, when prices are permanently rigid, small changes in NFA1 amount to
wealth shocks that have non-negligible effects on welfare. For low α and perfectly rigid
prices, these small wealth shock may have large effects on the economy because inducing
the necessary trade balance adjustment requires large changes in overall consumption.

This raises an interesting question: Does Calvo pricing look closer to rigid price case or
the one-period-in-advance case? In the next section we show that, just as in the case of fully
rigid prices, the first best is not generally attained as α→ 0.

An important exception is the case of risk premium shocks. From the home country’s
perspective, this shock amounts to a world interest rate shock. What is special is that in the
closed economy limit the flexible price allocation, as well as its relative prices, are unchanged
by risk premium shocks. Thus, the economy does not need to adjust to these shocks, just in-
sulate itself from them and capital controls are able to do precisely this. The surprising result
is perhaps that this logic does not apply more generally to other shocks, such as productivity.

4 Staggered Price Setting

In this section, we study the standard New Keynesian version of the model, with staggered
price setting a la Calvo. In addition to allowing for more realistic dynamics, this has two im-
portant implications for our analysis. First, it introduces a welfare cost from inflation, which
is not present in the case of prices set one period in advance. Second, capital controls af-
fect the evolution of absolute and relative prices, including the real exchange rate. Forward
looking optimal policy must take this into account because prices only adjust gradually. In
this sense, it may introduce a prudential concern for the temporary movement of relative
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prices. By this we mean that it might be optimal to use capital controls now if forcing vari-
ables (productivity, export demand, foreign consumption) are either expected to return to
their steady state or remain at their steady state values (e.g. “hot money”) for a while and
deviate only in the future (e.g. “news shocks”).

As is standard in the literature, we work with a log-linearized approximation of the
model. As before, at t = 0, the economy is hit with an unanticipated shock. It is conve-
nient to work with a continuous time version of the model. This does not affect our results,
but it is useful because it implies that no price index can jump at t = 0 and this simplifies the
derivation of initial conditions characterizing the equilibrium. We denote the instantaneous
discount rate by ρ, and the instantaneous arrival rate for price changes by ρδ.

Throughout this section, we maintain the assumption of wage flexibility. However this
is not key for our results. What is important is some form of nominal rigidity, in prices or in
wages. We refer the reader to the appendix for a treatment of the sticky wage case.

4.1 Summarizing the Economy

We first describe the natural allocation with no intervention, defined as the allocation that
prevails if prices are flexible and capital controls are not used. We then summarize the
behavior of the sticky price economy with capital controls in log-deviations (gaps) from the
natural allocation. For both the natural and the sticky price allocation with capital controls,
the behavior of the rest of the world is taken as given. We use lower cases variables to denote
gaps from the symmetric deterministic steady state. We denote the natural allocation with
bars, and the gaps from the natural allocation with hats. We refer the reader to (Gali and
Monacelli, 2005, 2008) for details on the derivation.

The natural allocation. The shocks we consider are {ah,t, λh,t, c∗t , i∗t , π∗t }t≥0 and NFA0.
Although we could imitate a risk premium shock from a combination of c∗t and λh,t, as we
did in the previous section, we shall now tackle this shock separately in a later section.

We first solve for the allocation as a function of these primitive shocks using the log-
linearized versions of the equilibrium conditions described in Section 2.4. One can show
that the natural allocation is given by

ȳt =
σ̂−1(1 + φ)

1 + φσ̂−1 ah,t +
α

1 + φσ̂−1 λh,t −
α(ω− 1)
1 + φσ̂−1 c∗t −

αω

1 + φσ̂−1 θ̄,

s̄t =
1 + φ

1 + φσ̂−1 ah,t −
φα

1 + φσ̂−1 λh,t −
σ + φ

1 + φσ̂−1 c∗t −
σ + φ(1− α)

1 + φσ̂−1 θ̄,
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with

θ̄ =
ρ

α
NFA0 + ρ

ˆ ∞

0
e−ρtλh,tdt +

(
ω
σ − 1

)
σ̂

1 +
(

ω
σ − 1

)
σ̂(1− α)

ρ

ˆ ∞

0
e−ρt(ȳt − y∗t )dt,

where y∗t = c∗t , since the world needs to run balanced trade with itself. We can also compute
the natural levels of employment and consumption from the equations ȳt = ah,t + n̄t and
c̄t = θ̄ + c∗t +

1−α
σ s̄t, where we have substituted q̄t = (1− α)s̄t into the Backus-Smith condi-

tion. The constants are given by ν = − log(1 + τL), µ = log M, ω = σγ + (1− α)(ση − 1),
and σ̂ = σ

1−α+αω .
The natural real interest rate r̄rt is defined from the home Euler equation ˙̄ct = σ−1(r̄rt −

ρ). It is more convenient to work with the natural interest rate r̄t defined in terms of the
home good r̄t = r̄rt + α ˙̄st. This turns out to equal

r̄t − ρ =
1 + φ

1 + φσ̂−1 ȧh,t −
αφ

1 + φσ̂−1 λ̇h,t +
α(ω− 1)φ
1 + φσ̂−1 ċ∗t .

Using the home Euler equation ˙̄ct = σ−1(r̄t − α ˙̄st − ρ), the foreign Euler equation ċ∗t =

σ−1(i∗t − π∗t − ρ), and differentiating the Backus-Smith condition c̄t = θ̄ + c∗t +
1−α

σ s̄t, we
obtain the following restriction:

i∗t − r̄t = − ˙̄st + π∗t . (12)

Summarizing the system in gaps. At the symmetric steady state, we have it = i∗t = r̄t = ρ,
πH,t = π∗t = 0, ŷt = 0 and s̄t = 0. The unexpected shock that hits the economy at date 0
upsets the economy’s primitives {ah,t, λh,t, c∗t , i∗t , π∗t }t≥0 and NFA0. This shock translates
into a shock to the sequence {r̄t, s̄t, i∗t , π∗t , λh,t}t≥0 and NFA0.

The equations summarizing an equilibrium are the log linearized analogues of the equi-
librium conditions derived in Section 2.4. The demand block is summarized by three equa-
tions,

˙̂yt =
1− α

σ
(it − i∗t ) + σ̂−1[i∗t − πH,t − r̄t],

σ ˙̂θt = it − i∗t ,ˆ ∞

0
e−ρtθ̂tdt =

(
ω
σ − 1

)
σ̂

1 +
(

ω
σ − 1

)
σ̂(1− α)

ˆ ∞

0
e−ρtŷtdt,

representing the Euler equation (after substituting out for consumption using the goods
market clearing condition and the Backus-Smith condition), the UIP equation and the budget
constraint, respectively.
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The supply block consists of one equation, the New-Keynesian Philips Curve

π̇H,t = ρπH,t+1 − κ̂ŷt − λσ̂αωθ̂t

where λ = ρδ(ρ + ρδ) and κ̂ = λ (φ + σ̂).
Finally, we have the initial condition

ŷ0 = (1− α)θ̂0 − σ̂−1s̄0,

which formalizes the fact that prices are sticky so that the terms of trade are predetermined
at t = 0, i.e. that ŝ0 = −s̄0. These equations are sufficient to pin down an equilibrium in the
variables that are needed to evaluate welfare (see below).12

4.2 Optimal Capital Controls in the Cole-Obstfeld Case

From now on we focus on the Cole-Obstfeld case. This case is attractive for two reasons.
First, with flexible prices, it is optimal not to use capital controls (at least when there are no
export demand shocks). Second, it is possible to derive a second order approximation of the
welfare function around the symmetric deterministic steady state.

Loss function. For σ = γ = η = 1 we derive a second order approximation for welfare
that is valid to obtain a first order approximation to the optimal response to shocks. The
associated welfare loss function is13

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + (ŷt +
α

1+φ (λh,t − θ̄))2 + αθ(θ̂t + θ̄ − αψλh,t)
2
]

dt,

with απ = ε
λ(1+φ)

, αθ = α
1+φ

(2−α
1−α + 1− α

)
and αψ = 1−α

2−α
1−α+1−α

. Note that in the absence of

initial wealth and export demand shocks, so that θ̄ = λh,t = 0, the first two terms in the loss
function are familiar in New-Keynesian models and are identical to those obtained by Gali
and Monacelli (2005, 2008).

The third term is new and captures the direct distortions introduced by capital controls.
When θ̄ = λh,t = 0, the third term is simply αθ θ̂2 and it penalizes deviations from efficient
consumption smoothing at θ̂t = 0. Capital controls reallocate consumption intertemporally
by allowing paths with θ̂t 6= 0 (satisfying the budget α

´
e−ρtθ̂tdt = 0) but this reallocation

12We can back out the rest of the variables as follows. The terms of trade gap ŝt from ŷt = (1− α)θ̂t + σ̂−1 ŝt,
which combines the market clearing condition with the Backus-Smith condition. Similarly, we can back out the
employment gap n̂t and the consumption gap ĉt fromŷt = n̂t and ŷt = ĉt + α ω

σ ŝt − αθ̂t. Finally, capital controls
can be inferred from the UIP equation τt = it − i∗t .

13This expression omits terms independent of policy. See Appendix A.7 for the detailed derivation.
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comes at a cost due to the intertemporal distortions it creates. In the closed economy limit, as
α→ 0, the cost of capital controls vanishes, αθ → 0. This reflects the fact that trade balances
−αθ̂t vanish as α goes to zero (for a given path of θ̂t), so the welfare losses associated with
intertemporal distortions also vanish. However, as we shall see below, this does not mean
that capital controls allow perfect macroeconomic stabilization.

With initial wealth or export demand shocks, either θ̄ 6= 0 or λh,t 6= 0, the second and
third terms of the loss function are affected to reflect the fact that the natural allocation
without capital controls is no longer optimal, even if prices are flexible.

Planning problem. The planner solves the optimal control problem

min
{πH,t,ŷt,it,θ̂t}

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + (ŷt +
α

1 + φ
(λh,t − θ̄))2 + αθ(θ̂t + θ̄ − αψλh,t)

2
]

dt (13)

subject to
π̇H,t = ρπH,t − κ̂ŷt − λαθ̂t,

˙̂yt = (1− α)(it − i∗t )− πH,t + i∗t − r̄t,

˙̂θt = it − i∗t ,ˆ ∞

0
e−ρtθ̂tdt = 0,

ŷ0 = (1− α)θ̂0 − s̄0.

The corresponding first-order conditions can be found in the appendix.
To get a better feel for the planning problem, it is useful to imagine how it would change

if the exchange rate were flexible. The only difference is that i∗t must now be replaced by
i∗t + ėt, and the initial condition becomes ŷ0 = (1 − α)θ̂0 − s̄0 + e0 where the initial level
of the exchange rate e0 and the rate of exchange rate depreciation ėt are additional control
variables. In the case where there are no initial wealth shocks or export demand shocks
(NFA0 = λh,t = 0), it is clear that the solution then features πH,t = ŷt = θ̂t = 0 and it =

i∗t +
r̄t−i∗t
1−α . The associated path for the exchange rate is determined by et = s̄t for all t, which

is equivalent to e0 = s̄0 and ėt =
r̄t−i∗t
1−α . With a flexible exchange rate the natural allocation

can be attained with no capital controls. Fixed exchange rates prevent this outcome, but
capital controls can help regaining some monetary autonomy.

Flexible prices. Without shocks to export demand, optimal capital controls are equal to
zero when prices are flexible. In this case, the natural allocation represents an upper bound
on welfare with sticky prices. This is not necessarily true when there are shocks to export
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demand. In that case, optimal capital controls are not zero when prices are flexible, and the
natural allocation is not necessarily and upper bound on welfare with sticky prices. This is
not necessarily true when there are export demand shocks.

Proposition 7 (Flexible Prices). Suppose prices are completely flexible. Then optimal capital con-
trols are

τt =
( α

1+φ )
2 + αθαψ

( α
1+φ )

2 + αθ
λ̇h,t,

and the allocation can be expressed in closed form (see the appendix).14

Rigid prices. When prices are completely rigid the solution can be expressed in closed
form. In Section 3, we found that the optimal Θt satisfied a simple first-order condition.
The closed form solution we provide next can be seen as a log-linear approximation to the
solution of this first-order condition.

Proposition 8 (Rigid Prices). If prices are completely rigid optimal capital controls are

τt =
1

1− α + αθ
1−α

(r̄t − i∗t ),

and the allocation can be expressed in closed form (see the appendix).

Consistent with the earlier Proposition 3, the formula shows that, when prices are rigid,
capital controls are not used in response to a pure terms of trade shock: a permanent shock
in s̄t with no shock to r̄t (for example, due to a permanent shock in productivity). Capital
controls are used in response to natural interest rate shocks (r̄t).

Closed Economy limit (α → 0). We can also derive the optimal allocation in closed form
for the closed-economy limit α → 0.15 It is important to understand what this limit rep-
resents. Basically, we index the solution of our planning problem (13) by α and look at
the limit (for any t) of this solution when α → 0. This is not equivalent to the planning
problem for a closed economy. The difference is that a closed economy would not face
the budget constraint

´ ∞
0 θ̂te−ρtdt = 0. The closed economy solution is trivial and fea-

tures perfect stabilization ŷt = πH,t = 0 with it = r̄t, ˙̂θt = r̄t − i∗t and θ̂0 = s̄0 so that´ ∞
0 θ̂te−ρtdt = 1

ρ s̄0 +
1
ρ

´ ∞
0 (r̄t − i∗t )e

−ρtdt. As long as s̄0 +
´ ∞

0 (r̄t − i∗t )e
−ρtdt 6= 0, the con-

straint
´ ∞

0 θ̂te−ρtdt = 0 binds for the planning problem (13) with α → 0, and the solution of

14This result also applies in the limit to flexible prices, i.e. by taking λ → ∞ while simultaneously varying
απ = ε

λ(1+φ)
and κ̂ = λ(1 + φ).

15To take this limit, we assume that there are not initial wealth shocks so that NFA0 = 0.
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the planning problem does not converge to the closed economy solution. These observations
are consistent with the discontinuity results in Proposition 6.

Proposition 9 (Closed Economy Limit). In the closed economy limit as α→ 0,

τt = r̄t − i∗t + Γ
(
(1− απκ̂)2

απ(ρ− ν)
eνt − 1

ραπ

)
,

where

ν =
ρ−

√
ρ2 + 4α2

πκ̂2

2
,

Γ =

[
s̄0 +

ˆ ∞

0
e−ρt(r̄t − i∗t )

] [
1 + κ̂ + (1− απκ̂)

(
1

ρ2απ
− 1− απκ̂

απ(ρ− ν)2

)]
.

The allocation can be expressed in closed form (see the appendix).

For any finite time t, the proposition provides an accurate approximation to the solution
for small α. However, as long as Γ 6= 0 capital controls do not return to zero in the long
run. By contrast, for α > 0, one can show that capital controls always returns to zero in the
long run. Thus, the double limits limα→0 limt→∞ τt = 0 and limt→∞ limα→0 τt 6= 0 do not
coincide. This reflects the fact that, as α → 0, capital controls converges to zero in the long
run, as t → ∞, but do so increasingly slowly. This is something that will be apparent in our
simulations. In the particular case where 1− απκ̂ = 0, the solution is remarkably simple.

Corollary. In the closed economy limit α → 0, in the special case where 1 − απκ̂ = 0, capital
controls are given by

τt = r̄t − i∗t − κ̂
Γ
ρ

,

and the allocation is constant: ŷt = −Γ and πH,t = − 1
ραπ

Γ.

As an example, consider a permanent improvement in the terms of trade, so that s̄0 < 0
with no change in r̄t or i∗t . Then Γ = s̄0(1 + κ̂) < 0 and the solution entails positive capital
controls: τt = −κ̂ Γ

ρ > 0. This conclusion on the use of capital controls in response to per-
manent productivity shocks is consistent with Proposition 5 and 6. Consider now the case
of a pure (positive or negative) mean-reverting natural interest rate shock to r̄t with s̄0 = 0
and i∗t = ρ. In this case Γ has the same sign as the natural interest rate shock, and so does
it − r̄t = κ̂ Γ

ρ . In other words, in the closed economy limit, capital controls less than fully off-
set natural interest rate shocks, although they move one for one over time with the natural
interest rate.

This shows that the Calvo pricing case shares properties of the rigid prices case and of the
one period in advance price setting case. As with one period in advance price setting, and
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by contrast with rigid prices, capital controls are used to accommodate permanent shocks to
productivity. As with rigid prices, and by contrast with one period in advance price setting,
the natural allocation is not attained in the closed economy limit.

The solution for capital controls is history dependent as long as Γ 6= 0—it depends on
future and past values of the shocks. Imagine for example that productivity is unchanged
for t ∈ [0, T], is then expected to gradually decrease to a new lower level over the interval t ∈
[T, T′], and then remain constant for t ∈ [T′, ∞). Capital controls would be zero for t ∈ [0, T]
under flexible prices (Proposition 7), rigid prices (Proposition 8) or prices set one period in
advance (Proposition 4). In contrast, with Calvo pricing, since Γ < 0 capital controls are
positive τt > 0 for t ∈ [0, T]. This illustrates a prudential nature of capital controls, which is
absent without staggered price setting.16

4.3 A Risk Premium Shock

Many discussions of capital controls, especially in developing countries, focus on capital in-
flow surges that are taken to be exogenous fluctuations in investor sentiments. To capture
this, we now model a risk premium shock ψt. The UIP equation becomes it = i∗t + ψt + τt, so
that the risk premium introduces a wedge between foreign investors and the home country,
in addition to capital controls. We do not attempt to model this wedge endogenously. Al-
though our model lacks uncertainty, it could stand in for the risks of investing in the home
country, if these risks are not equally valued between borrowers and lenders. It may also
represent investor’s preferences for a particular country’s bonds along the lines of portfolio-
balance models a la Black (1973) and Kouri (1976).

As we already discussed in Section 3, as far as the home country is concerned, this shock
admits an equivalent representation as a combination of a shock to {C∗t }t≥0 with Ċ∗t

C∗t
= ċ∗t =

ψt accompanied by an offsetting shock {ΛH,t}t≥0 to the demand for the home country’s
exports so that C∗t ΛH,t = C∗. We exploited this equivalent representation in Section 3. Here
instead, we model the risk premium shock directly, which we find in many respects more
enlightening. We confine ourselves to the Cole-Obstfeld case.

The natural allocation. We confine ourselves to shocks to ψt, setting c∗t = at = π∗t = 0,
NFA0 = 0 and i∗t = ρ. Without capital controls we have θ̄t = θ̄0 +

´ t
0 ψsds. The natural

16For perfectly rigid prices, this is true as a first order approximation, i.e. it is a feature of the log-linearized
solution but not of the full nonlinear solution. The solution for Θt in equation (11) depends on Γ. However,
what Proposition 8 shows is that, to a first-order approximation, the ratio Θt+1/Θt is independent of Γ.
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allocation is then

ȳt = −
α

1 + φ
θ̄t,

s̄t = −
1 + φ(1− α)

1 + φ
θ̄t,

where the budget constraint

θ̄0 +

ˆ ∞

0
ψte−ρtdt = 0

pins down θ̄0. We can also compute the natural levels of employment and consumption
from the equations ȳt = n̄t and c̄t = θ̄t + (1− α)s̄t.

We can compute the natural interest rate

r̄t − ρ =
αφ

1 + φ
˙̄θt.

The natural allocation features trade imbalances. Indeed net exports are given by n̄xt =

−αθ̄t, so that for negative risk premium shocks (ψt ≤ 0 for all t), the home country ini-
tially runs a trade deficit, and eventually runs a trade surplus together. Hence a negative
risk premium shock leads on impact to current account deficits or “capital inflow surges”.
Conversely, a positive risk premium shock leads on impact to current account surpluses or
“capital flights” or “sudden stops”.

The planning problem in gaps. We are led to the following planning problem

min
{πH,t,ŷt,it,θ̂t}

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + (ŷt −
α

1 + φ
θ̄t)

2 + αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)
2
]

dt (14)

subject to
π̇H,t = ρπH,t − κ̂ŷt − λαθ̂t,

˙̂yt = (1− α)(it − i∗t − ψt)− πH,t + i∗t + ψt − r̄t,

˙̂θt = it − i∗t − ψt,ˆ ∞

0
e−ρtθ̂tdt = 0,

ŷ0 = (1− α)θ̂0 − s̄0.

Capital controls are given by τt = it − i∗t − ψt.
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Flexible prices. With flexible prices, optimal capital controls are not zero, consistent with
Proposition 2.

Proposition 10 (Risk Premium Shock, Flexible Prices). Suppose prices are completely flexible
and the economy is subject to risk-premium shocks ψt. Then optimal capital controls are given by

τt = −
( α

1+φ )
2 + αθαψ

( α
1+φ )

2 + αθ
ψt,

and the allocation can be expressed in closed form (see the appendix).17

Optimal capital controls are proportional to the current risk premium ψt shock. The tax τt

has the opposite sign from ψt—policy leans against the wind, reducing the nominal interest
rate it when ψt > 0 and increasing it when ψt < 0. Recall that with no intervention we have
it = i∗t + ψt.

Optimal capital controls also have the property of stabilizing the trade balance. Since
the trade balance with intervention equals nxt = n̂xt + n̄xt = −α

αθ(1−αψ)

( α
1+φ )

2+αθ
θ̄t and without

intervention equals n̄xt = −αθ̄t, the ratio nxt/n̄xt is constant and less than one. Optimal
capital controls therefore mitigate the capital inflow surges associated with negative risk
premium shocks, as well as the capital flight episodes associated with positive risk premium
shocks.

Rigid prices. We can prove the analogues of Propositions 8 and 9. When prices are com-
pletely rigid, we find the following simple solution.

Proposition 11 (Risk Premium Shock, Rigid Prices). Suppose that prices are completely rigid,
then optimal capital controls are given by

τt = −
1

1− α + αθ
1−α

1 + φ(1− α)

1 + φ
ψt.

and the allocation can be expressed in closed form (see the appendix).

Once again, policy leans against the wind, more so than under flexible prices (τt reacts
more to ψt with rigid prices than with flexible prices), and the more so, the smaller α. Just
as with flexible prices, optimal capital controls have the property of stabilizing the trade
balance and the ratio nxt/n̄xt is constant, less than one, and lower than under flexible prices.
As shown in the appendix,

´ ∞
0 ŷte−ρtdt = 0, so that ŷt necessarily takes both signs.

17This result also applies in the limit to flexible prices, i.e. by taking λ → ∞ while simultaneously varying
απ = ε

λ(1+φ)
and κ̂ = λ(1 + φ).
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Closed economy limit (α → 0). We can also look at the closed economy limit α → 0 for
any degree of price rigidity.

Proposition 12 (Risk Premium Shock, Closed Economy Limit α → 0). In the closed economy
limit α → 0, optimal capital controls are τt = −ψt so that the nominal interest rate is it unaffected
by the shock. The allocation coincides with the natural allocation: ŷt = πH,t = 0.

This result implies that optimal policy is history independent: in response to risk pre-
mium shocks it reacts directly to current shocks only. Again, optimal policy leans against
the wind, but, in this case, the tax perfectly offsets the effect of the risk premium shock on
the domestic nominal interest rate. This policy perfectly stabilizes output and inflation, at-
taining the first best. Hence in the closed economy limit, capital controls are the perfect tool
to stabilize risk premium shocks.

Flexible exchange rate. The allocation with flexible prices can be attained with sticky
prices if the exchange rate is allowed to vary. It is interesting to translate our results under
this reinterpretation. Without capital controls, we denote by ēt the path for the natural nom-
inal exchange rate that implements the natural allocation with zero home inflation πH,t = 0.
Consider the case of a mean-reverting negative risk premium shock. Then the exchange rate
appreciates on impact and then depreciates over time. Moreover one can show that with
flexible exchange rates but in the absence of capital controls, this allocation is optimal.

However, a better outcome can be achieved by also using capital controls as in Proposi-
tion 10. The path for the nominal exchange rate et that implements this allocation with zero
home inflation πH,t = 0 is smoother with et/ēt constant and less than one (it actually equals
nxt/n̄xt since the relevant elasticity is unitary).

This however, is still not the optimal joint use of capital controls and exchange rate policy
when prices are sticky, which is the solution of a planning problem similar to the one in (14)
with the following differences: first, there is an additional control variable ėt; second, i∗t must
be replaced throughout by i∗t + ėt; third, the initial condition must be dropped (technically it
must be replaced by ŷ0 = (1− α)θ̂0 − s̄0 + e0 where e0 is an independent control variable).

Proposition 13 (Risk Premium Shock, Flexible Exchange Rate). Suppose that the exchange rate
is flexible. The optimal solution features nonzero inflation πH,t 6= 0 and capital controls are given by

τt = −αψψt −
λα

αθ
αππH,t,

and the solution can be expressed in closed form (see the appendix).

The solution is particularly simple when prices are rigid. Then capital controls are given
by τt = −αψψt, and so lean less against the wind than at the allocation characterized in
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Proposition 10. This illustrates an interesting interaction of rigid prices and capital controls
even with a flexible exchange rate. One can also show that capital controls lean less against
the wind when the exchange rate is flexible than when the exchange rate is fixed.

4.4 Numerical Exploration

In this section we numerically explore how capital controls are optimally used to respond to
pure terms of trade shocks, pure natural interest rate shocks, mean-reverting productivity
shocks and risk-premium shocks. We follow Gali and Monacelli (2005) by setting φ = 3,
ρ = 0.04, δ = 1− 0.754, ε = 6. We report results for two degrees of openness: α = 0.4 and
α = 0.1.

For our simulations, in the interest of space, we will focus mean-reverting productiv-
ity shocks, and mean-reverting risk premium shocks.The green line is the outcome without
interventions (zero capital controls). The blue line is the outcome with optimal capital con-
trols.The red line represents optimal capital controls with perfectly rigid prices. The black
lines corresponds to the natural allocation in levels.

A temporary shock to productivity. We look at a mean-reverting productivity shock that
initially appreciates the natural terms of trade to s̄0 = −0.05. The half-life of the shock is set
to 3.5 years. Figure 2 shows the results two values of openness, α = 0.4 and α = 0.1. Note
that when α is lower, capital controls are much closer to the rigid price solution (the red line)
which is turn much closer to r̄t. The paths for the output gap and inflation become much
smoother.

To gain intuition, consider first the outcome without intervention. If prices were fully
flexible there would be an immediate and permanent upward jump in the price of home
goods PH, which would revert back to its original level over time. With Calvo pricing, the
price of home goods adjusts only over time through inflation. As shown in the figure, the
home inflation and output gaps are initially positive. They turn negative after a while (not
shown in the figure) and eventually asymptote to 0. Due to the Cole-Obstfeld parameteriza-
tion, the transition does not affect trade balance.

Turning to the optimum, Proposition 7 indicates that with flexible prices no intervention
is required. The red line indicates the optimal intervention if prices were fully rigid: positive
capital controls are required to increases the domestic interest rate in order to stabilize the
home economy. Capital controls can shift spending across time. In the short run, the optimal
policy intervention lowers home consumption and output relative to the no-intervention
equilibrium. The drop in consumption lowers imports, which creates a trade surplus. Note
the tradeoff: the optimal policy initially lowers output and consumption, which makes in-
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flation lower, slowing the needed adjustment in home prices. Thus, eventually the output
gap with and without intervention cross. (In fact, they cross again due to the income effect
from the accumulated trade surpluses.)

A temporary risk premium shock. For our experiment, we look at a shock to ψt which be-
comes negative (with ψ̄0 = −0.05) and then mean-reverts to zero, such that ψt = ψshocke−ρψt.
The half-life of the shock is 0.5 years. Figure 3 shows the results for α = 0.4 and α = 0.1.

We have shown in Proposition 12 that in the closed economy limit, capital controls are a
perfect stabilization tool to deal with risk premium shocks. These figures confirm that that
even away from this limit, capital controls perform extremely well. Notably, the optimum
with rigid price provides a good benchmark, optimal capital controls are close to the red
line, especially for α = 0.1. It is also apparent that compared with the allocation with no
intervention, the allocation with optimal capital controls increases net exports in the short
run and decreases net exports in the long run. The natural allocation features trade deficits
in the short run, and trade surpluses in the long run. Hence optimal capital controls help
stabilize the trade balance. As is apparent in the figures, optimal capital controls also smooth
out the real exchange rate appreciation brought about by the risk premium shock.

5 Policy Coordination

Up to this point we have isolated the problem of a small open economy with a fixed ex-
change rate and characterized the optimal use of capital controls taking as given conditions
in the rest of the world, including policy choices by other countries. We have therefore been
silent on possible spillover effects from one country to the other. Do capital controls have
beggar-thy-neighbor effects? Are there reasons to worry about “capital control wars”? Are
there gains from coordinating capital controls?18

To address these questions, we now consider a coordinated solution within a monetary
union using capital controls to maximize the sum of utilities. We will contrast this solution
to the uncoordinated, noncooperative equilibrium, where each country acts in isolation. We
focus on Calvo pricing, in the Cole-Obstfeld case, and focus on shocks to productivity shocks
{ai,t}t≥0. We set export demand shocks {λi,t}t≥0 and initial wealth shocks NFAi,0 to zero for
simplicity. We should note that the Cole-Obstfeld case is known to be special regarding
the role of coordination with flexible exchange rates—see for example Clarida et al. (2002).
We focus on that case because with capital controls, one cannot easily find a second order
approximation of the loss function away from it.

18Korinek (2012) studies policy coordination in the context of models where capital controls are used to
address pecuniary externalities in borrowing constraints.
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An important consideration is the level of the labor tax and whether we hold it constant
in our comparison. At a symmetric steady state with no coordination on this tax, the rate
satisfies M(1 + τL) =

1
1−α because countries attempt to manipulate their terms of trade. In

contrast, if the labor tax is coordinated then it is set at a lower rate, satisfying M(1+ τL) = 1,
because the union as a whole refrains from terms of trade manipulation.

An obvious point is to note that coordination on the labor tax alone may be welfare
improving, even in a steady state without shocks. We have nothing new to say on this.
Instead, we find it more interesting to study coordination on capital controls alone, taking
as given the labor tax level. It isolates the stabilization motives for coordination, addressing
the question of how best to respond to shocks, rather than the steady-state terms-of-trade
manipulation issue involved in the tax level. In the text we study the case where there is no
coordination on the labor tax at the symmetric steady state so that M(1 + τL) =

1
1−α . In the

appendix we also treat the case where the labor tax is set with coordination. The implications
for the role of coordination of capital controls are very similar.

We define a new reference allocation which corresponds to the flexible price allocation
with no capital controls. This allocation differs from the natural allocation in Section 4,
which we denoted with a single bar, which corresponded to the flexible price allocation in
the home country, taking the rest of the world as given. Here instead, we impose flexible
prices in every country. We denote by ¯̄si

t the terms of trade of the corresponding allocation,
where by construction

´ 1
0

¯̄si
tdi = 0. Because we assume only productivity shocks, we have

¯̄si
t = ai,t −

´ 1
0 ai,tdi.19 We denote by ˆ̂yi

t and ˆ̂θi
t the deviations of yi

t and θi
t from their flexible

price counterparts. We denote by ỹi
t = ˆ̂yi

t − ˆ̂y∗t and θ̃i
t = ˆ̂θi

t −
ˆ̂θ∗t where ˆ̂y∗t =

´ 1
0

ˆ̂yi
tdi and

ˆ̂θ∗t =
´ 1

0
ˆ̂θi
tdi = 0 the deviations these variables from the corresponding aggregates. Note

that ˆ̂θi
t is already a normalized variable so that ˆ̂θi

t = θ̃i
t.

Coordination. For small α, a simple representation of the coordinated loss function with
an uncoordinated labor tax is available—it is valid only for small α, otherwise, a second
order approximation of the constraints is required:

1
2

ˆ ∞

0

ˆ 1

0
e−ρt

[
απ(π̃

i
H,t + π∗t )

2 + (ỹi
t + ˆ̂y∗t )

2 + αθ(θ̃
i
t)

2 − 2α

(1− α)(1 + φ)
( ˆ̂y∗t + ỹi

t)
]
di dt.

Intuitively, the extra linear term 2α
(1−α)(1+φ)

( ˆ̂y∗t + ỹi
t) can be traced back to the fact that the

that the coordinated solution abstains from terms of trade manipulation. As a result the
objective acquires a preference for higher output, leading to a classical inflationary bias. 20

19Although we do not need it for our analysis, not that the natural interest rate is given by and ¯̄ri
t = ȧi,t.

20A line by line derivation of the coordinated loss function leads to a different coefficient on (θ̃i
t)

2, but the
difference with αθ is of order 1 in α, leading to a correction term of order 3 when multiplied by (θ̃i

t)
2 and can
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Using the fact that
´ 1

0 ỹi
tdi =

´ 1
0 π̃i

H,tdi = 0, we are led to the following coordinated
planning problem:

min
1
2

ˆ ∞

0

ˆ 1

0
e−ρt

[
απ(π̃

i
H,t)

2 + (ỹi
t)

2 + αθ(θ̃
i
t)

2

+ απ(π
∗
t )

2 + ( ˆ̂y∗t )
2 − 2α

(1− α)(1 + φ)
ˆ̂y∗t
]
di dt (15)

subject to

˙̃πi
H,t = ρπ̃i

H,t − κ̂ỹi
t − λαθ̃i

t, (16)

˙̃yi
t = (1− α) ˙̃θi

t − π̃i
H,t − ˙̄̄si

t, (17)

ˆ ∞

0
e−ρtθ̃i

tdt = 0, (18)

ỹi
0 = (1− α)θ̃i

0 − ¯̄si
0, (19)

ˆ 1

0
ỹi

tdi = 0, (20)
ˆ 1

0
π̃i

H,tdi = 0, (21)

π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t , (22)

where the minimization is over the variables π̃i
H,t, π∗t , ỹi

t, ˆ̂y∗t , θ̃i
t. Note that since

´ 1
0

¯̄si
tdi = 0,

the constraints imply that
´ 1

0 θ̃i
tdi = 0. This pins down controls through the equation ˙̃θi

t = τi
t .

It follows that we can break down the planning problem into two parts. First, there is an
aggregate planning problem determining the average output gap and inflation ˆ̂y∗t and π∗t

min
1
2

ˆ ∞

0
e−ρt

[
απ(π

∗
t )

2 + ( ˆ̂y∗t )
2 − 2α

(1− α)(1 + φ)
ˆ̂y∗t

]
dt (23)

subject to (22).
Second, there is a disaggregated planning problem determining deviations from the ag-

gregates for output gap, home inflation and consumption smoothing, ỹi
t, π̃i

H,t and θ̃i
t

min
1
2

ˆ ∞

0

ˆ 1

0
e−ρt

[
απ(π̃

i
H,t)

2 + (ỹi
t)

2 + αθ(θ̃
i
t)

2
]

didt (24)

therefore be ignored.
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subject to (16), (17), (18), (19), (20), and (21). Consider dropping the last two constraints. The
resulting relaxed planning problem can be broken down into separate component planning
problems for each country i ∈ [0, 1]

min
1
2

ˆ ∞

0
e−ρt

[
απ(π̃

i
H,t)

2 + (ỹi
t)

2 + αθ(θ̃
i
t)

2
]

dt (25)

subject to (16), (17), (18), (19).

No coordination. With no coordination, each country i ∈ [0, 1] takes the evolution of
aggregates as given and solves the following uncoordinated component planning problem:

min
1
2

ˆ ∞

0
e−ρt

[
απ(π̃

i
H,t)

2 + 2αππ∗t π̃i
H,t + (ỹi

t)
2 + 2 ˆ̂y∗t ỹi

t + αθ(θ̃
i
t)

2
]

dt (26)

subject to (16), (17), (18), (19), where the minimization is over the variables π̃i
H,t, ỹi

t, θ̃i
t, taking

ˆ̂y∗t , and π∗t as given. As usual, capital controls in country i can be computed by τi
t =

˙̃θi
t. Note

that the path for aggregates { ˆ̂y∗t ,π∗t }t≥0 affects the solution to this problem solely through
linear terms in the objective function.

A central monetary authority, by setting monetary policy, can choose aggregates { ˆ̂y∗t ,π∗t }
subject to the following constraints. First, it must ensure that the solutions to the uncoordi-
nated component planning problems satisfy

´ 1
0 ỹi

tdi = 0 and
´ 1

0 π̃i
H,tdi = 0. This amounts to

verifying a fixed point, that aggregates are actually equal to their proposed path. Second, it
must ensure that the aggregate Phillips curve is verified, π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t . Both requirements
define a set F of feasible aggregate outcomes { ˆ̂y∗t ,π∗t }t≥0. The set is a linear space, which we
can characterize in closed form (see the appendix for a proof): the aggregates { ˆ̂y∗t ,π∗t }t≥0 are
in the feasible set F if and only if

˙̂̂y∗t = − κ̂

ρ
ˆ̂y∗0 −

λα + (κ̂(1− α) + λα) κ̂απ

κ̂(1− α)
π∗t ,

π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t .

The feasible set F is of dimension one, parameterized by ˆ̂y∗0 . For each ˆ̂y∗0 there is a unique
π∗0 such that the solution of the 2x2 differential system is bounded.

Which aggregate outcome in the feasibility occurs depends on the objective of the central
monetary authority. For example, we can examine the Ramsey problem where the central
monetary authority seeks to maximize aggregate welfare, taking into account that capital
controls are set uncooperatively. For small α, this can be represented as the same planning
problem as (23) but where the constraint set is the feasible set F instead of (22). We refer the
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reader to the appendix for a characterization of the solution of the planning problem.

Proposition 14 (Coordination vs. No Coordination with Uncoordinated Labor Tax). Sup-
pose that countries do not coordinate on the labor tax and that α is small. At the coordinated so-
lution, the aggregates solve the aggregate planning problem (23): ˆ̂y∗t = α

(1−α)(1+φ)
eνt and π∗t =

α
(1−α)(1+φ)

κ̂
ρ−ν eνt for all t ≥ 0, where ν =

ρ−
√

ρ2+4κ̂απ

2 . In particular, ˆ̂y∗t = π∗t = 0 for all t ≥ 0 is

feasible but ˆ̂y∗t = α
(1−α)(1+φ)

eνt and π∗t = α
(1−α)(1+φ)

κ̂
ρ−ν eνt for all t ≥ 0 is not. Both at the coordi-

nated and at the uncoordinated solutions, the disaggregated variables π̃i
H,t, ỹi

t, θ̃i
t solve the component

planning problems (25).

The Role of Coordination. Propositions 14 help understand the role of coordination. For
a given labor tax, the aggregates ˆ̂y∗t and π∗t associated with the coordinated solution and the
uncoordinated solutions differ. Indeed, the aggregates corresponding to the coordinated so-
lution are not feasible. By contrast, the disaggregated variables π̃i

H,t, ỹi
t, θ̃i

t (and hence capital
controls) coincide at the coordinated and uncoordinated solutions. They do not depend on
whether countries coordinate or not for a given labor tax. In other words, the lack of coor-
dination impacts the solution by restricting the set of feasible aggregate outcomes, but does
not impact the disaggregated variables and the associated capital controls for any feasible
aggregate outcome.21
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Figure 2: Mean-reverting productivity shock, α = 0.4 (top) and α = 0.1 (bottom).
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Figure 3: Mean-reverting risk premium shock, α = 0.4 (top) and α = 0.1 (bottom).
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A Appendix

A.1 FOCs for the Nonlinear Calvo Price Setting Model

The FOCs for Calvo price setting in the nonlinear model can be expressed as follows:

1− δΠε−1
H,t

1− δ
=

(
Ft

Kt

)ε−1

,

Kt = M
1 + τL

AH,t
YtN

φ
t + δβΠε

H,t+1Kt+1,

Ft = YtC−σ
t S−1

t Qt + δβΠε−1
H,t+1Ft+1,

together with an equation determining the evolution of price dispersion

∆t = h(∆t−1, ΠH,t),

where h(∆, Π) = δ∆Πε + (1− δ)
(

1−δΠε−1

1−δ

) ε
ε−1 .

A.2 Proof of Proposition 1

To solve for this optimal labor subsidy it is useful to consider the following relaxed problem,
which allows taxes to vary over time. As it turns out, at a steady state, the optimal tax is
constant. Assume that the world is at a symmetric deterministic steady state. Each country
takes the rest of the world as given and uses a time-varying tax on capital inflow and subsidy
on capital outflow controls τt and labor tax τL,t to maximize the welfare of its households.

For example, the home country solves

max
{Ct,Yt,Nt,Θt,Qt,St}

∞

∑
t=0

[
C1−σ

t
1− σ

− N1+φ
t

1 + φ

]

subject to

Ct = ΘtC∗Q
1
σ
t ,

Yt = C∗
[
(1− α)Q

1
σ−η
t Sη

t Θt + αSγ
t

]
,

Qt =
[
(1− α)Sη−1

t + α
] 1

η−1 ,
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Nt =
Yt

A
,

0 =
∞

∑
t=0

βtC∗−σ
(

S−1
t Yt −Q−1

t Ct

)
.

We can then back out the optimal labor tax using and the optimal capital controls using

S−1
t Θ−σ

t C∗−σ = M
1 + τL

t
A

Nφ
t ,

Θt+1

Θt
= (1 + τt)

1
σ .

Using this program we can prove the following.
Assuming the optimization problem is sufficiently convex, stationarity implies that it

is optimal to pick constant values for {Ct, Yt, Nt, Θt,Qt, St}. This immediately implies that
τt = 0 and that τL is constant.

Dropping the t subscripts and substituting some of the constraints, we can rewrite the
planning problem as

max
S

[
(1− α) (S)η−1 + α

] (1−σ)η
η−1 S(1−σ)(γ−1)C∗1−σ

1− σ
− 1

1 + φ

C∗1+φ

A1+φ

[
(1− α) (S)η−1 + α

]1+φ
S(1+φ)γ

This yields a function S(C∗). We then need to solve for S(C∗) = 1. We can then back out the
corresponding τL from the labor-leisure condition.

We find

0 =

 (1− α)ηSη−1

S
[
(1− α) (S)η−1 + α

] + (γ− 1)
S

 [(1− α) (S)η−1 + α
] (1−σ)η

η−1 S(1−σ)(γ−1)C∗1−σ

−

 (η − 1)Sη−1

S
[
(1− α) (S)η−1 + α

] + γ

S

 C∗1+φ

A1+φ

[
(1− α) (S)η−1 + α

]1+φ
S(1+φ)γ

We now impose S = 1 and solve for C∗

0 = [(1− α)η + (γ− 1)]C∗1−σ − [(η − 1) + γ]
C∗1+φ

A1+φ

i.e.
C∗φ+σ

A1+φ
=

(1− α)η + γ− 1
η + γ− 1

42



We can now plug this back in the labor-leisure condition

1 = M(1 + τL)
C∗φ+σ

A1+φ

to obtain the proposition.

A.3 Proof of Proposition 2

The first part of the proposition follows immediately from the planning problem, provided
the program is sufficiently convex, as we assume. We therefore focus on the Cole-Obstfeld
case. The planning problem simplifies to

max
{Θt,St}

∞

∑
t=0

βt
[

log Θt + (1− α) log St −
1

1 + φ

1
M(1 + τL)

Θ−1
t [(1− α)Θt + αΛH,t]

]
subject to

NFA0 = α
∞

∑
t=0

βt (ΛH,t −Θt) ,

1 = M(1 + τL)
1

A1+φ
H,t

S1+φ
t C∗φ+1

t Θt [(1− α)Θt + αΛH,t]
φ .

Solving for St as a function of Θt from the second constraint and substituting we can rewrite
this problem as a function of the path for {Θt}. Then the first order condition is then

φ + α

1 + φ
− (1− α)2φ

1 + φ

Θt

αΛH,t + (1− α)Θt
+

(1− α)αΛH,t

1 + φ

1
Θt
− ΓΘt = 0.

For a given value of Γ, then Θt is independent of AH,t and increasing in ΛH,t. Since Θt+1
Θt

=

(1 + τt)
1
σ the result follows.

A.4 Proof of Proposition 4

We start with transitory productivity shocks. The optimal allocation is constant for t ≥ 1.
Let Θ be the corresponding value of Θ, which is related to Θ0 by (Θ− 1) = 1−β

β (1− Θ0).
This immediately implies that τt = 0 for t ≥ 1. Then we need to solve the t = 0 problem
maxΘ0 U(Θ0, A0) where

U(Θ0, A0) = C∗1−σ Θ1−σ
0

1− σ
− C∗1+φ

A1+φ
0

[(1− α)Θ0 + α]1+φ

1 + φ
+ βV

(
1
β

C∗1−σα (1−Θ0)

)
.
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It is easily verified that UA0,Θ0 > 0. This implies that Θ0 is an increasing function of A0.
This in turn implies that Θ is a decreasing function of A0. The first result in the proposition
follows since capital controls τ0 are given by Θ

Θ0
= (1 + τ0)

1
σ .

Now consider temporary export demand shocks. The optimal allocation is constant allo-
cation for t ≥ 1, so we drop the t subscripts. This immediately implies that τt = 0 for t ≥ 1.
We are interested in the limit of small time intervals (β → 1). We have 1−β

β α (ΛH,0 −Θ0) =

α
(
Q 1

σ−ηΘ− Sγ−1ΛH

)
. Using the other constraints, we can write the right hand side as a

function J(Θ) with J(1) = 0. We find that to a first order in 1− β we can write

Θ = 1 +
1

J′(1)
(1− β)α (ΛH,0 −Θ0) + O(1− β)2.

We can then write welfare for t ≥ 1 as a function H(Θ). We find that up to second order
terms in 1− β, we have to solve maxΘ0 U(Θ0, Λ0) where

U(Θ0, ΛH,0) = C∗1−σ Θ1−σ
0

1− σ
− C∗1+φ

A1+φ

[(1− α)Θ0 + αΛH,0]
1+φ

1 + φ
+

H′(1)
J′(1)

α (ΛH,0 −Θ0) .

It is easily verified that UΛH,0,Θ0 < 0. This implies that Θ0 is a decreasing function of ΛH,0.
Moreover, up to first order terms in 1− β, Θ is constant. The second result in the proposition
follows since capital controls τ0 are given by Θ

Θ0
= (1 + τ0)

1
σ .

Finally consider foreign consumption shocks. The optimal allocation is constant for
t ≥ 1. Let Θ be the corresponding value of Θ, which is related to Θ0 by C∗1−σ (Θ− 1) =
1−β

β C∗1−σ
0 (1 − Θ0). This immediately implies that τt = 0 for t ≥ 1. We have to solve

maxΘ0 U(Θ0, Λ0) where

U(Θ0, C∗0 ) = C∗1−σ
0

Θ1−σ
0

1− σ
−

C∗1+φ
0

A1+φ

[(1− α)Θ0 + α]1+φ

1 + φ
+ βV

(
1
β

C∗1−σ
0 α (1−Θ0)

)
.

We find

UC∗0 ,Θ0(Θ0, C∗0 ) = (1− σ)C∗−σ
0 Θ−σ

0 − (1− α)(1 + φ)
C∗φ0

A1+φ
[(1− α)Θ0 + α]φ

− (1− σ)C∗−σ
0 αV′

(
1
β

C∗1−σ
0 α (1−Θ0)

)
− (1− σ)C∗1−σ

0 C∗1−σ
0 (1−Θ0)

1
β

α2V′′
(

1
β

C∗1−σ
0 α (1−Θ0)

)
.

Clearly, for σ = 1, we have UC∗0 ,Θ0(Θ0, C∗0 ) < 0. The third result follows.
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A.5 Proof of Proposition 5

In the Cole-Obstfeld case, we can write V(NFA1) as the maximization over {Θt}t≥1 of

(1− α) log(AH,t) + α log C∗t +
1− α

1 + φ
log(1− α) +

φ + α

1 + φ
log(Θt)

− (1− α)φ

1 + φ
log [αΛH,t + (1− α)Θt]−

(1− α)
αΛH,t+(1−α)Θt

Θt

1 + φ

subject to

NFA1 = −
∞

∑
t=0

βtα(ΛH,t −Θt).

Consider first productivity shocks. For all t ≥ 1 productivity AH,t, the solution of the plan-
ning problem for t ≥ 1 features a constant allocation, for which we drop the t subscripts.
This immediately implies that optimal capital controls are zero for t ≥ 1. It is immediate that
the optimal Θ is independent of the path AH,t for t ≥ 1. The result for productivity shocks
then simply follows from Proposition 4.

Consider next foreign consumption shocks. For all t ≥ 1 productivity C∗t , the solution
of the planning problem for t ≥ 1 features a constant allocation, for which we drop the t
subscripts. This immediately implies that optimal capital controls are zero for t ≥ 1. It
is immediate that the optimal Θ is independent of the path C∗t for t ≥ 1. The result for
productivity shocks then simply follows from Proposition 4.

Consider next permanent export demand shocks ΛH,t = ΛH for all t ≥ 0. For all t ≥ 1
the solution of the planning problem for t ≥ 1 features a constant allocation, for which we
drop the t subscripts. This immediately implies that optimal capital controls are zero for
t ≥ 1. We also find it convenient to define Θ̃0 = Θ0 − ΛH and Θ̃ = Θ− ΛH. The country
budget constraint establishes the following relationship between Θ̃ and Θ̃0: Θ̃ = −1−β

β Θ̃0.
We are left with the following maximization problem

max

[
log
[
Λ0 + Θ̃0

]
+ log C∗ − 1

1 + φ

(
C∗

AH

)1+φ (
ΛH + (1− α)Θ̃0

)1+φ
+ βV(−α

β
Θ̃0)

]

where

(1− β)V(Θ̃) = (1− α) log(AH) + α log C∗ +
1− α

1 + φ
log(1− α) +

φ + α

1 + φ
log
[
Θ̃ + ΛH

]
− (1− α)φ

1 + φ
log
[
ΛH + (1− α)Θ̃

]
−

(1− α)ΛH+(1−α)Θ̃
Λ+Θ̃

1 + φ
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Let U(Θ̃0, ΛH) be the objective function. We can compute

UΘ̃0,ΛH
=

φ + α

1 + φ

1
(Θ̃ + ΛH)2

+
α(1− α)

1 + φ

Θ̃−ΛH

(ΛH + Θ̃)3
− 1

(ΛH + Θ̃0)2

− (1− α)φ

(
C∗

AH

)1+φ (
ΛH + (1− α)Θ̃0

)φ−1 − (1− α)2φ

1 + φ

1
[ΛH + (1− α)Θ̃]2

For Θ̃0 = 0 (and hence Θ̃ = 0) we always have UΘ̃0,ΛH
(0, ΛH) < 0, so that at least for small

shocks, Θ̃0 is decreasing in ΛH and Θ̃ is increasing in ΛH with Θ̃ = Θ̃0 = 0 for ΛH = 1. The
result in the proposition follows since capital controls τ0 are given by ΛH+Θ̃

ΛH+Θ̃0
= 1 + τ0.

Finally, let’s us consider wealth shocks NFA0 6= 0. For all t ≥ 1 the solution of the
planning problem for t ≥ 1 features a constant allocation, for which we drop the t subscripts.
This immediately implies that optimal capital controls are zero for t ≥ 1. We also find
it convenient to define Θ̃0 = Θ0 − 1 − (1 − β) 1

α NFA0 and Θ̃ = Θ − 1 − (1 − β) 1
α NFA0.

The country budget constraint establishes the following relationship between Θ̃ and Θ̃0:
Θ̃ = −1−β

β Θ̃0. We are left with the following maximization problem over Θ̃0 :

log
(

Θ̃0 + 1 + (1− β)
1
α

NFA0

)
+ log C∗

− 1
1 + φ

(
C∗

AH

)1+φ (
(1− α)Θ̃0 + (1− β)

1− α

α
NFA0 + 1

)1+φ

+ βV(Θ̃)

where

(1− β)V(Θ̃) = (1− α) log(AH) + α log C∗ +
1− α

1 + φ
log(1− α)

+
φ + α

1 + φ
log
[

Θ̃ + 1 + (1− β)
1
α

NFA0

]
− (1− α)φ

1 + φ
log
[
(1− α)Θ̃ + (1− β)

1− α

α
NFA0 + 1

]

−
(1− α)

(1−α)Θ̃+(1−β) 1−α
α NFA0+1

Θ̃+1+(1−β) 1
α NFA0

1 + φ
.

Let U(Θ̃0, NFA0) be the objective function. We have

1
(1− β) 1

α

UΘ̃0,NFA0
=

φ + α

1 + φ

1
[Θ̃ + 1 + (1− β) 1

α NFA0]2
− 1

[Θ̃0 + 1 + (1− β) 1
α NFA0]2

− (1− α)2φ

(
C∗

AH

)1+φ (
(1− α)Θ̃0 + (1− β)

1− α

α
NFA0 + 1

)φ−1

− (1− α)3φ

1 + φ

1
[(1− α)Θ̃ + (1− β)1−α

α NFA0 + 1]2
− 2

α(1− α)

1 + φ

1
[Θ̃ + 1 + (1− β) 1

α NFA0]3
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For Θ̃0 = 0 (and hence Θ̃ = 0) we always have UΘ̃0,NFA0
(0, NFA0) < 0, so that at least for

small shocks, so that at least for small shocks, Θ̃0 is decreasing in W0 and Θ̃ is increasing in
W0 with Θ̃ = Θ̃0 = 0 for ΛH = 1. The result in the proposition follows since capital controls

τ0 are given by 1+(1−β) 1
α NFA0+Θ̃

1+(1−β) 1
α NFA0+Θ̃0

= 1 + τ0. . More generally we have UΘ̃0,NFA0
(Θ̃0, NFA0) <

0 for all Θ̃0 < 0 which implies, together with the concavity of U in Θ̃0, that for positive
shocks to NFA0, Θ̃0 is a decreasing function of NFA0 so that the result generalizes to any
positive shock to initial wealth NFA0 > 0.

A.6 Proof or Proposition 6

We begin with the latter three claims in the proposition then return to the first claim.
We note that in general, for rigid prices or for prices set one period in advance, the plan-

ning problem with capital controls for α > 0 can be written in a way that makes it continuous
in α. Then this shows that the unique solution of the planning problem for α > 0 converges
to the unique solution of a limit planning problem when α→ 0. This limit planning problem
is more constrained than the planning problem of a closed economy (α = 0): they coincide
except that in the latter, the country budget constraint is dropped. The solution of the closed
economy planning problem is the flexible price allocation which coincides with first best.
Hence the optimal allocation with capital controls converges to the first best allocation as
α→ 0 if and only if the country budget constraint is not binding in the limit planning prob-
lem. We illustrate this logic in detail for the second claim and in less detail for the other
claims to avoid repetition.

We start by the case of rigid prices with capital controls. The planning problem for α > 0
can be rewritten as

max
{Θt}

∞

∑
t=0

βt

[
1

1− σ
Θ1−σ

t C∗1−σ
t − 1

1 + φ
(αΛH,t + Θt(1− α))1+φ

(
C∗t

AH,t

)1+φ
]

subject to,
∞

∑
t=0

βtC∗1−σ
t [Θt −ΛH,t] = 0.

It is continuous in α and admits a unique solution since the problem is convex. This shows
that the optimal allocation with capital controls as α → 0 converges to the solution of the
following limit planning problem:

max
{Θt}

∞

∑
t=0

βt

[
1

1− σ
Θ1−σ

t C∗1−σ
t − 1

1 + φ
Θ1+φ

t

(
C∗t

AH,t

)1+φ
]

(27)
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subject to,
∞

∑
t=0

βtC∗1−σ
t [ΛH,t −Θt] = 0. (28)

For generic shocks to the sequences {AH,t, ΛH,t, C∗t }t≥0, this limit planning problem is strictly
more constrained than the corresponding closed economy planning problem which coin-
cides with the planning problem (27) but where the budget constraint is dropped. In the
closed economy, capital controls act as a perfect substitute to monetary policy and allow
to replicate the flexible-price allocation, which coincides with the first best allocation. The
claim that the budget constraint (28) is binding in the limit program (27) can be seen as fol-
lows. Let Ct be the flexible price allocation of the closed economy and let Θ̃t = Ct

C∗t
. Then

unless
∞

∑
t=0

βtC∗1−σ
t

[
ΛH,t − Θ̃t

]
= 0,

which does not hold for generic shocks, the budget constraint is binding.
Next consider the third claim. For risk premium shocks {Ψt}t≥0, the flexible price allo-

cation of the closed economy features Ct = C so that Θ̃t = ΛH,t since C = ΛH,tC∗t . It is then
immediate that in this case,

∞

∑
t=0

βtC∗1−σ
t

[
ΛH,t − Θ̃t

]
= 0,

which shows that the budget constraint is not binding in the limit planning problem.
We now show that with one period in advance price setting with capital controls the

allocation converges to the flexible price allocation of the closed economy. It suffices to
show that the budget constraint is not binding in the limit α→ 0. To see that this is the case,
rewrite limit of the budget constraints as (using the fact that in the limit α→ 0, Qt = St)

C∗1−σ
0 [ΛH,0 −Θ0] +

∞

∑
t=1

βtC∗1−σ
t Q−η

t

[
Qη+γ−1

t ΛH,t −Q
1
σ
t Θt

]
= 0.

Now note that for t ≥ 1, when α → 0, welfare and the equilibrium conditions (3), (4), (5),

(6) with ∆t = 1, (10) , depend on Θt and Qt only through Θ̃t = ΘtQ
1
σ
t . It then suffices to let

choose Θ̃t =
Ct
C∗t

where Ct is the flexible price allocation of the closed economy, and to pick a
sequence {Qt}t≥1 (there are infinitely many such sequences) such that

C∗1−σ
0

[
ΛH,0 − Θ̃0

]
+

∞

∑
t=1

βtC∗1−σ
t Q−η

t

[
Qη+γ−1

t ΛH,t − Θ̃t

]
= 0,
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and to then pick Θt =
Θ̃t

Q
1
σ
t

and Θ0 = Θ̃0. This immediately shows that the budget constraint

is not binding in the limit α→ 0.
We now return to the first claim. The result in the case of rigid prices follows directly from

the second claim, which we already proved. It remains to prove the result where prices are
set one period in advance. To see this, and following the proof of the fourth claim, it suffices
to show that among the sequences {Qt}t≥1 such that

C∗1−σ
0

[
ΛH,0 − Θ̃0

]
+

∞

∑
t=1

βtC∗1−σ
t Q−η

t

[
Qη+γ−1

t ΛH,t − Θ̃t

]
= 0,

none satisfies Θ̃t

Q
1
σ
t

= Θ̃0, which is clearly true unless

C∗1−σ
0

[
ΛH,0 − Θ̃0

]
+

∞

∑
t=1

βtC∗1−σ
t

(
Θ̃t

Θ̃0

)−η
[(

Θ̃t

Θ̃0

)η+γ−1

ΛH,t − Θ̃t

]
= 0,

which does not hold for generic shocks.

A.7 Derivation of the Loss Function in Section 4

We focus on Cole-Obstfeld case σ = γ = η = 1. We provide an derivation that spans Section
4.2 in which case θ̄t = θ̄ and Section 4.3 in which case θ̄t =

´ t
0 ψsds−

´ ∞
0 ψte−ρtdt.

We have the exact relationship

ct = θt + c∗t + (1− α)st

and the following second order approximation of the goods market clearing condition Yt =

StC∗t [(1− α)Θt + αΛH,t]:

yt = c∗t + st + (1− α)θt + αλh,t +
1
2

α(1− α)λ2
h,t +

1
2

α(1− α)θ2
t − α(1− α)θtλh,t.

Using these equations, we can derive

ct = αc∗t + θtα(2− α) + (1− α)yt

+ (1− α)

[
−αλh,t −

1
2

α(1− α)λ2
h,t

]
+

1
2
(1− α)2

[
−αθ2

t + 2αθtλh,t

]
.
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Hence in gaps,

ĉt = (1− α)ŷt + α(2− α)θ̂t +
1
2
(1− α)2 [−αθ̂t(θ̂t + 2θ̄t) + 2αθ̂tλh,t

]
.

We can use this expression to derive

log Ct = c̄t + ĉt

= c̄t + (1− α)ŷt + α(2− α)θ̂t +
1
2
(1− α)2 [−αθ̂t(θ̂t + 2θ̄t) + 2αθ̂tλh,t

]
.

We have
N1+φ

t
1 + φ

=
N̄1+φ

t
1 + φ

+ N̄1+φ
t

[
ŷt + zt +

1
2
(1 + φ)ŷ2

t

]
,

where

zt = log
ˆ (

PH,t(j)
PH,t

)−ε

≈ ε

2
σ2

pH,t
.

Using the fact that N̄1+φ
t = (1− α)(1 + αλh,t − αθ̄t) for all t, we get the following expres-

sion for the objective function:

ˆ ∞

0
e−ρt

(
Ut − Ūt

CUc

)
dt =

− (1−α)(1+φ)
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + ŷ2
t +

2α

1 + φ
ŷt
[
λh,t − θ̄t

]
− 2α(2−α)

(1−α)(1+φ)
θ̂t − 1−α

1+φ

[
−αθ̂t(θ̂t + 2θ̄t) + 2αθ̂tλh,t

] ]
dt,

where απ = ε/[λ(1 + φ)].
We now use a second order approximation of the country budget constraint to replace

the linear term in θ̂t in the expression above. We find that a second order approximation for
nxt:

nxt = −α(θt − λh,t +
1
2 θ2

t − 1
2 λ2

h,t).

We first abstract from risk premium shocks. We then have the following second order
approximation for the budget constraint

α

ˆ ∞

0
e−ρt(θ̂t +

1
2 θ̂t(θ̂t + 2θ̄t)) = 0,

so that we can replace the linear term in θ̂t in the expression for welfare to get the following
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expression for the loss function:

(1− α)(1+ φ)

ˆ
e−ρt

[
1
2

αππ2
H,t +

1
2

ŷt(ŷt +
2α

1 + φ
(λh,t − θ̄t)) +

1
2

αθ θ̂t(θ̂t + 2θ̄t − 2αψλh,t)

]
dt,

or up to a constant

(1− α)(1 + φ)

ˆ
e−ρt

[
1
2

αππ2
H,t +

1
2
(ŷt +

α

1 + φ
(λh,t − θ̄t))

2 +
1
2

αθ(θ̂t + θ̄t − αψλh,t)
2
]

dt,

where
αψ =

1− α
2−α
1−α + 1− α

and αθ =
α

1 + φ

(
2− α

1− α
+ 1− α

)
.

We now focus on the case of a pure risk premium shock. A first order approximation of
the discount factor e−ρte−

´ t
0 ψtdt is e−ρt [1 + θ̄0 − θ̄t

]
. Combining the two, we get the follow-

ing second order approximation for the budget constraint

α

ˆ ∞

0
e−ρt(θ̂t +

1
2

θ̂t(θ̂t + 2θ̄t) + (θ̄0 − θ̄t)θ̂t) = 0,

so that we can replace the linear term in θ̂t in the expression for welfare to get the following
expression for the loss function:

(1− α)(1 + φ)

ˆ
e−ρt

[
1
2

αππ2
H,t +

1
2

ŷt(ŷt −
2α

1 + φ
θ̄t) +

1
2

αθ θ̂t(θ̂t + 2(αψθ̄t + (1− αψ)θ̄0))

]
dt,

or up to a constant

(1− α)(1 + φ)

ˆ
e−ρt

[
1
2

αππ2
H,t +

1
2
(ŷt −

α

1 + φ
θ̄t)

2 +
1
2

αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)
2
]

dt.

A.8 Proof of Proposition 7

We have ŷt = − α
1+φ θ̂t and the planning problem is

min
ˆ

e−ρt

[
1
2

(
α

1 + φ

)2

(−θ̂t + (λh,t − θ̄))2 + αθ
1
2
(θ̂t + θ̄ − αψλh,t)

2

]
dt

s.t. ˆ
e−ρtθ̂tdt = 0.
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The solution is
(

α
1+φ

)2
(θ̂t − (λh,t − θ̄)) + αθ(θ̂t + θ̄ − αψλh,t) = 0

[(
α

1 + φ

)2

+ αθ

]
θ̂t = −αθ θ̄ +

(
α

1 + φ

)2

(λh,t − θ̄) + αθαψλh,t − Γ.

Since
´ ∞

0 e−ρtθ̄dt = 1
α NFA0 +

´ ∞
0 e−ρtλh,tdt we find

θ̂t =
( α

1+φ )
2 + αθαψ

( α
1+φ )

2 + αθ

[
λh,t − ρ

ˆ ∞

0
λh,te−ρtdt

]
,

ŷt = −
α

1 + φ

( α
1+φ )

2 + αθαψ

( α
1+φ )

2 + αθ

[
λh,t − ρ

ˆ ∞

0
λh,te−ρtdt

]
.

A.9 Proof of Proposition 8

We are led to the following planning problem:

min
ˆ

e−ρt
[

1
2
(ŷt +

α

1 + φ
(λh,t − θ̄))2 + αθ

1
2
(θ̂t + θ̄ − αψλh,t)

2
]

dt

s.t.
˙̂yt = (1− α)(it − i∗t ) + i∗t − r̄t,

˙̂θt = it − i∗t ,ˆ
θ̂te−ρtdt = 0,

ŷ0 = (1− α)θ̂0 − s̄0.

Let Γ be the multiplier on the budget constraint, and let µy,t and µθ,t be the co-states. We
find the following first-order conditions

µ̇y,t = −(ŷt +
α

1 + φ
(λh,t − θ̄)) + ρµy,t,

µ̇θ,t = −αθ(θ̂t + θ̄ − αψλh,t)− Γ + ρµθ,t,

(1− α)µy,t + µθ,t = 0.

This yields

ŷt +
α

1 + φ
(λh,t − θ̄) +

αθ

1− α
(θ̂t + θ̄ − αψλh,t) =

−1
1− α

Γ,
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which we can differentiate and combine with the Euler equation to get (using αθαψ

1−α = α
1+φ )

it = i∗t +
1

1− α + αθ
1−α

(r̄t − i∗t ),

implying

θ̂t = θ̂0 +

ˆ t

0

1
1− α + αθ

1−α

(r̄s − i∗s )ds.

We therefore have
ˆ ∞

0
θ̂te−ρtdt =

1
ρ

θ̂0 +
1
ρ

ˆ ∞

0

1
1− α + αθ

1−α

(r̄t − i∗t )e
−ρtdt,

so that
´

θ̂te−ρtdt = 0 requires

θ̂0 = −
ˆ ∞

0

1
1− α + αθ

1−α

(r̄t − i∗t )e
−ρtdt,

implying

θ̂t = −
ˆ ∞

0

1
1− α + αθ

1−α

(r̄t − i∗t )e
−ρtdt +

ˆ t

0

1
1− α + αθ

1−α

(r̄s − i∗s )ds.

The initial condition ŷ0 − (1− α)θ̂0 + s̄0 = 0 and the optimality condition ŷ0 +
α

1+φ (λh,0 −
θ̄) + αθ

1−α (θ̂0 + θ̄ − αψλh,0) =
−1

1−α Γ then imply that

1
1− α

Γ =

ˆ ∞

0
(r̄t − i∗t )e

−ρtdt + s̄0 −
α

1 + φ
(λh,0 − θ̄)− αθ

1− α
(θ̄ − αψλh,0).

We can the compute ŷt by replacing in

ŷt +
α

1 + φ
(λh,t − θ̄) +

αθ

1− α
(θ̂t + θ̄ − αψλh,t) =

−1
1− α

Γ.

A.10 Proof of Proposition 9

In the closed economy limit, the planning problem becomes

min
ˆ

e−ρt
[

1
2

αππ2
H,t +

1
2

ŷ2
t

]
dt

53



s.t.
π̇H,t = ρπH,t − κ̂ŷt,

˙̂yt = it − i∗t − πH,t + i∗t − r̄t,

˙̂θt = it − i∗t ,ˆ
θ̂te−ρtdt = 0,

ŷ0 = θ̂0 − s̄0.

Let Γ be the multiplier on the budget constraint, and let µy,t and µθ,t be the co-states. We
find the following first-order conditions

µ̇y,t = ρµy,t + Γ,

˙̂yt = −απκ̂πH,t + κ̂µy,t,

π̇H,t = ρπH,t − κ̂ŷt.

We can combine the second first order condition with the Euler equation to get

˙̂θt = (1− απκ̂)πH,t + κ̂µy,t + r̄t − i∗t .

Finally we have

ŷ0 = −Γ.

We get

µy,t = eρt[µy,0 + Γ
1
ρ
(1− e−ρt)] = eρt[µy,0 + Γ

1
ρ
]− Γ

1
ρ

,

which requires
1
ρ

Γ = −µy,0,

and implies

µy,t = −
1
ρ

Γ.

We are left with the following system:

˙̂yt = −απκ̂πH,t − κ̂
Γ
ρ

,

π̇H,t = ρπH,t − κ̂ŷt,
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ŷ0 = −Γ,

and then to solve for the value of Γ such that the solution of the differential equation

˙̂θt = (1− απκ̂)πH,t − κ̂
Γ
ρ
+ r̄t − i∗t

with the initial condition
θ̂0 = ŷ0 + s̄0

features ˆ
e−ρtθ̂tdt = 0.

Let

ν =
ρ−

√
ρ2 + 4α2

πκ̂2

2
The closed-form solution is

ŷt = Γ
1− απκ̂

−ν(ρ− ν)
(eνt − 1)− Γ,

πH,t = Γ
1− απκ̂

απ(ρ− ν)
(eνt − 1)− Γ

1
απ

[
−ρ(1− απκ̂) + ρ− ν

ρ(ρ− ν)

]
,

it = r̄t + (1− απκ̂)πH,t −
κ̂

ρ
Γ = r̄t + Γ

(1− απκ̂)2

απ(ρ− ν)
eνt − 1

ραπ
Γ,

where

Γ =

[
s̄0 +

ˆ ∞

0
e−ρt(r̄t − i∗t )

] [
1 + κ̂ + (1− απκ̂)

(
1

ρ2απ
− 1− απκ̂

απ(ρ− ν)2

)]
.

A.11 Proof of Proposition 10

With flexible prices, we have ŷt = − α
1+φ θ̂t and we can drop the initial condition since the

price of home goods can jump. Hence we are led to the planning problem

min
{θ̂t}

1
2

ˆ ∞

0
e−ρt

[(
α

1 + φ

)2

(−θ̂t − θ̄t)
2 + αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)

2

]
dt

subject to ˆ ∞

0
e−ρtθ̂tdt = 0.
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Let Γ be the multiplier on the budget constraint. The solution is given by[(
α

1 + φ

)2

+ αθ

]
θ̂t = −

[(
α

1 + φ

)2

+ αθαψ

]
θ̄t − αθ(1− αψ)θ̄0 − Γ.

Since
´ ∞

0 e−ρtθ̄tdt = 0 we find Γ = −αθ(1− αψ)θ̄0 so that the solution is

θ̂t = −
( α

1+φ )
2 + αθαψ

( α
1+φ )

2 + αθ
θ̄t,

ŷt =
α

1 + φ

( α
1+φ )

2 + αθαψ

( α
1+φ )

2 + αθ
θ̄t.

A.12 Proof of Proposition 11

We have following planning problem

min
ˆ

e−ρt[
1
2
(ŷt −

α

1 + φ
θ̄t)

2 + αθ
1
2
(θ̂t + αψθ̄t + (1− αψ)θ̄0)

2]

s.t.
˙̂yt = (1− α)(it − i∗t − ˙̄θt) + i∗t + ˙̄θt − r̄t,

˙̂θt = it − i∗t − ˙̄θt,ˆ ∞

0
e−ρtθ̂tdt = 0,

ŷ0 = (1− α)θ̂0 − s̄0.

Let Γ be the multiplier on the budget constraint and let µx,t and µθ,t be the co-states. We find
the following first-order conditions

µ̇y,t = −(ŷt −
α

1 + φ
θ̄t) + ρµy,t,

µ̇θ,t = −αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)− Γ + ρµθ,t,

(1− α)µy,t + µθ,t = 0.

This implies that

(ŷt −
α

1 + φ
θ̄t) +

αθ

1− α
(θ̂t + αψθ̄t + (1− αψ)θ̄0) =

−1
1− α

Γ,
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and hence differentiating, we get

˙̂yt +
αθ

1− α
˙̂θt = 0,

i.e.
− αθ

1− α
(it − i∗t − ˙̄θt) = (1− α)(it − i∗t − ˙̄θt) + i∗t + ˙̄θt − r̄t.

This can be rewritten as

it = i∗t + ˙̄θt +
1

1− α + αθ
1−α

[
r̄t − ˙̄θt − i∗t

]
,

or
it = i∗t + ψt +

1
1− α + αθ

1−α

[r̄t − ψt − i∗t ] ,

implying

τt =
1

1− α + αθ
1−α

[r̄t − ψt − i∗t ] ,

i.e.
τt = −

1
1− α + αθ

1−α

1 + φ(1− α)

1 + φ
ψt.

We also get

θ̂t = θ̂0 +

ˆ t

0

1
1− α + αθ

1−α

(r̄s − ˙̄θs − i∗s )ds

or

θ̂t = θ̂0 −
ˆ t

0

1+φ(1−α)
1+φ

1− α + αθ
1−α

˙̄θsds

which using
´ ∞

0 e−ρtθ̂tdt =
´ ∞

0 e−ρtθ̄tdt = 0, we can rewrite as

θ̂t =

ˆ ∞

0

1+φ(1−α)
1+φ

1− α + αθ
1−α

ψse−ρsds−
ˆ t

0

1+φ(1−α)
1+φ

1− α + αθ
1−α

ψsds,

i.e.

θ̂t = −

 1+φ(1−α)
1+φ

1− α + αθ
1−α

 θ̄t.

Finally, using the Euler equation and the initial condition, we find that

ŷt =
1 + φ(1− α)

1 + φ

αθ
1−α

1− α + αθ
1−α

[ˆ t

0
ψsds−

ˆ ∞

0
ψse−ρsds

]
.
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A.13 Proof of Proposition 12

In the closed economy limit, the planning problem becomes

min
{πH,t,ŷt,it,θ̂t}

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + ŷ2
t

]
dt

subject to
π̇H,t = ρπH,t − κ̂ŷt,

˙̂yt = it − πH,t − ρ,

˙̂θt = it − ρ− ψt,ˆ ∞

0
e−ρtθ̂tdt = 0,

ŷ0 = θ̂0 +

ˆ ∞

0
ψte−ρtdt.

We guess and verify that πH,t = ŷt = 0, θ̂t =
´ ∞

0 ψse−ρsds−
´ t

0 ψsds, and it = ρ is a solution.

A.14 Proof of Proposition 13

With capital controls we have

min
{πH,t,ŷt,it,θ̂t,et}

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + (ŷt −
α

1 + φ
θ̄t)

2 + αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)
2
]

dt

subject to
π̇H,t = ρπH,t − κ̂ŷt − λαθ̂t,

˙̂yt = (1− α)(it − i∗t − ėt − ψt)− πH,t + i∗t + ėt + ψt − r̄t,

˙̂θt = it − i∗t − ėt − ψt,ˆ ∞

0
e−ρtθ̂tdt = 0,

ŷ0 = (1− α)θ̂0 + e0 − s̄0.

Note that this allows the planner to control θ̂t and ŷt independently. We can drop the initial
condition. We can therefore rewrite the problem as

min
{πH,t,ŷt,θ̂t}

1
2

ˆ ∞

0
e−ρt

[
αππ2

H,t + (ŷt −
α

1 + φ
θ̄t)

2 + αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)
2
]

dt
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subject to
π̇H,t = ρπH,t − κ̂ŷt − λαθ̂t,ˆ ∞

0
e−ρtθ̂tdt = 0.

The FOCs are
−µ̇π,t = αππH,t,

ŷt −
α

1 + φ
θ̄t − κ̂µπ,t = 0,

αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0) + Γ− λαµπ,t = 0.

Note that this implies the following formula for capital controls

τt = −αψψt +
λα

αθ
µ̇π,t = −αψψt −

λα

αθ
αππH,t.

This formula depends on the endogenous object πH,t which we determine in closed form
below.

We have the following system of differential equations

π̇H,t = ρπH,t −
(

κ̂2 +
(λα)2

αθ

)
µπ,t + λα

[
Γ
αθ
− (1− αψ)θ̄t + (1− αψ)θ̄0

]
,

µ̇π,t = −αππH,t,

with µπ,0 = 0.
Let Xt = [πH,t, µπ,t]′,

A =

[
ρ −

(
κ̂2 + (λα)2

αθ

)
−απ 0

]
and

Bt =

[
λα
[

Γ
αθ
− (1− αψ)θ̄t + (1− αψ)θ̄0

]
0

]
.

We can rewrite this as
Ẋt = AXt + Bt.

The solution is

Xt = eAt[X0 +

ˆ t

0
e−AsBsds].
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The matrix A has exactly one negative eigenvalue

ν =
ρ−

√
ρ2 + 4απ

(
κ̂2 + (λα)2

αθ

)
2

.

Let Vν = [vν, 1]′ be the corresponding eigenvector where vν = − 1
απ

. We need X0 +
´ ∞

0 e−AsBsds
to be co-linear with Vν, i.e. we need

[πH,0, 0]′ +
ˆ ∞

0
e−AsBsds = µ[vν, 1]′.

We can project this equation using E1 = [1, 0]′ and E2 = [0, 1]′. We find

ˆ ∞

0
E′2e−AsBsds = µ,

πH,0 = −
ˆ ∞

0
E′1e−AsBsds− 1

απ

ˆ ∞

0
E′2e−AsBsds,

and X0 = [πH,0, 0]′. Hence we have

Xt = eAt[X0 +

ˆ ∞

0
e−AsBsds]−

ˆ ∞

t
e−A(s−t)Bsds,

and finally

Xt = eνt
(ˆ ∞

0
E′2e−AsBsds

)
[− 1

απ
, 1]′ −

ˆ ∞

t
e−A(s−t)Bsds.

We can now try to determine Γ. For this, we rewrite Bt = λ
αθ

ΓE1 + B̃t where B̃t =

[λα
[
αψθ̄t + (1− αψ)θ̄0

]
, 0]′. We then write

Xt = eνt
(

λ

αθ
ΓE′2A−1E1 +

ˆ ∞

0
E′2e−AsB̃sds

)
[− 1

απ
, 1]′ −

ˆ ∞

t
e−A(s−t)B̃sds− Γ

λ

αθ
A−1E1,

and we can use the budget constraint to find Γ as follows. First use

αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0) + Γ = λαE′2Xt,

and integrate to find

αθ((1− αψ)θ̄0) + Γ = λαρ

ˆ ∞

0
e−ρtE′2Xtdt,
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which leads to

αθ((1− αψ)θ̄0) + Γ =

λαρ
[ 1

ρ + ν

(
λ

αθ
ΓE′2A−1E1 +

ˆ ∞

0
E′2e−AsBsds

)
−
ˆ ∞

0
e−ρt
ˆ ∞

t
E′2e−A(s−t)B̃sdsdt− Γ

1
ρ

λ

αθ
E′2A−1E1

]
,

or

Γ =
−αθ(1− αψ)θ̄0 + λαρ

[
1

ρ+ν

(´ ∞
0 E′2e−AsBsds

)
−
´ ∞

0 e−ρt ´ ∞
t E′2e−A(s−t)B̃sdsdt

]
1 + ν

ρ+ν
λ2α
αθ

E′2A−1E1
.

Imagine now that prices are rigid. Then the problem simplifies to

min
{πH,t,ŷt,it,θ̂t,et}

1
2

ˆ ∞

0
e−ρt

[
(ŷt −

α

1 + φ
θ̄t)

2 + αθ(θ̂t + αψθ̄t + (1− αψ)θ̄0)
2
]

dt

subject to ˆ ∞

0
e−ρtθ̂tdt = 0.

The solution is ŷt =
α

1+φ θ̄t and θ̂t = −αψθ̄t, which implies

τt = −αψψt.

We can also compute et. For that we use

˙̂yt = (1− α)(it − ρ) + α(ėt + ψt)−
αφ

1 + φ
ψt,

˙̂θt = (it − ρ)− (ėt + ψt),

ŷ0 = (1− α)θ̂0 + e0 − s̄0.

This yields
et = −(1− α)(1− αψ)θ̄t,

i.e.

et = −(1− α)(1− αψ)

[ˆ t

0
ψsds−

ˆ ∞

0
ψse−ρsds

]
,

Hence in response to a negative risk premium shock that mean reverts to zero, the exchange
rate initially appreciates and then depreciates over time.
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This solution is clearly different from the one with fixed exchange rate which entails

τt = −
1

1− α + αθ
1−α

1 + φ(1− α)

1 + φ
ψt.

How can we compare them? In both cases, capital controls are used to lean agains the
wind. But the former leans less agains the wind than the latter.

We can also compare the solution to the flexible price solution

τt = −
( α

1+φ )
2 + αθαψ

( α
1+φ )

2 + αθ
ψt,

so that we see that capital controls are always used less with rigid prices and flexible ex-
change rate than with flexible prices. However, this difference disappears when α→ 0.

A.15 Sticky Wages

As Friedman (1953) forcefully argued, flexible exchange rates can act as a substitute for
flexible prices. When prices are sticky, but wages are not, a flexible exchange rate can be
used to achieve the flexible price allocation. In this way, flexible exchange rates yield perfect
macroeconomic stabilization. But this is no longer possible, in general, when wages are also
sticky. Perfect macroeconomic stabilization is not possible, even with a flexible exchange
rate. This raises the question we address here: are capital controls optimal when prices and
wages are sticky but a flexible exchange rate is managed optimally?

Assume that labor is an aggregate of different varieties Nt =
(´ 1

0 Nt(j)
εw−1

εw dj
) εw

εw−1
. We

denote the corresponding wage index by Wt =
(´ 1

0 Wt(j)1−εw dj
) 1

1−εw , and we let Mw ≡
εw

εw−1 . Wages are set a la Calvo by households, with arrival rate ρδw for wage change oppor-
tunities.

In the Appendix we present the planning problem with sticky prices and sticky wages.
We allow there for any path of the exchange rate et expressed relative to its prior, steady
state, value. It can be observed from this planning problem that, in general, there is a role
for capital controls when prices and wages are sticky, even when the exchange rate is flexible.
However, the role of capital controls is quite different than with a fixed exchange rate. With
a flexible exchange rate, each country already has the flexibility to set its own monetary
policy. However, this is not enough to perfectly stabilize the economy and hence capital
controls emerge as a second best instrument.

This role for capital controls entirely disappears when prices and wages are rigid, so that
optimal capital controls are zero. Similarly, in the closed economy limit, capital controls are
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useless in the sense that the gains from using capital controls vanish.

Proposition 15 (Sticky Prices, Wages, Flexible Exchange Rate). With sticky prices, sticky wages
and a flexible exchange rate, optimal capital controls are generally nonzero. However, with completely
rigid prices and wages, optimal capital controls are zero. Similarly, in the closed economy limit
α→ 0, there are no gains from using capital controls.

Here we allow any path for et. To consider the case with a fixed exchange rate we can
impose the further condition that et = 0. The planning problem is

min
{πH,t,πw

t ,ŷt,it,θ̂t,ω̂t,et}

ˆ ∞

0
e−ρt

[
1
2

αππ2
H,t +

1
2
(ŷt +

α

1 + φ
(λh,t − θ̄))2 +

1
2

αθ(θ̂t + θ̄ − αψλh,t)
2
]

dt

π̇w
t = ρπw

t − λw[(1− α) + φ]ŷt − λwα(2− α)θ̂t + λwω̂t,

π̇H,t = ρπH,t − λω̂t − λαŷt + λα(1− α)θ̂t,

˙̂yt = (1− α)it − (πH,t + r̄t) + α(i∗t + ėt),

˙̂θt = it − i∗t − ėt,

˙̂ωt = πw
t − (1− α)πH,t − α(π∗t + ėt)− ˙̄ωt,

together with the initial conditions

ω̂0 = −ω̄0 − αe0,

e0 − s̄0 = ŷ0 − (1− α)θ̂0,

and the country budget constraint

ˆ ∞

0
e−ρtθ̂t = 0.

By putting a multiplier Γ on the country budget constraint and incorporating it in the objec-
tive, we are left with an optimal control problem with state variables πH,t, πw

t , ŷt, θ̂t, ω̂t, and
control variables it and ėt.

A.16 Proof of Proposition 15

We first look at the case of rigid prices and wages. The planning problem simplifies to

min
{πH,t,πw

t ,ŷt,it,θ̂t,et}

1
2

ˆ ∞

0
e−ρt[(ŷt +

α

1 + φ
(λh,t − θ̄))2 + αθ θ̂2

t ]dt
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subject to
˙̂yt = (1− α)it − r̄t + α(i∗t + ėt),

˙̂θt = it − i∗t − ėt,ˆ ∞

0
e−ρtθ̂t = 0.

Clearly the optimal solution is to set θ̂t = 0 so that optimal capital controls are zero.
In the closed economy limit α→ 0, capital controls are useless since the loss function can

be solved as the solution of the following planning problem

min
{πH,t,πw

t ,ŷt,it,ω̂t}

1
2

ˆ ∞

0
e−ρt[αππ2

H,t + απw (πw
t )

2 + ŷ2
t ]dt

subject to
π̇w

t = ρπw
t − λw(1 + φ)ŷt + λwω̂t,

π̇H,t = ρπH,t − λω̂t,

˙̂yt = it − (πH,t + r̄t),

˙̂ωt = πw
t − πH,t − ˙̄ωt.

and the initial condition
ω̂0 = −ω̄0.

Note also that this system is identical to that of a closed economy with sticky prices and
sticky wages.

A.17 Coordinated Labor Tax

We now consider the case where there is coordination on the labor tax at the symmetric
steady state so that M(1 + τL) = 1. With a slight abuse of notation, we keep denoting with
a double bar the corresponding flexible price allocation with no capital controls. We denote
with a double hat the gap of a variable from its flexible price counterpart. We denote with
a tilde a variable minus its mean across countries. For example ỹi

t = ˆ̂yi
t − ˆ̂y∗t represents the

deviation of country i’s output gap from the corresponding aggregate.
We only summarize the results since the analysis is quite similar to the uncoordinated

labor tax case (the details can be found in the appendix). Starting with the coordinated
solution, we can still decompose the coordinated planning problem into an aggregate plan-
ning problem that determines the aggregates the aggregates{ ˆ̂y∗t ,π∗t }t≥0 and a disaggregated
planning problem that determines the disaggregated variables π̃i

H,t, ỹi
t, θ̃i

t. The disaggre-
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gated planning problem can then be relaxed and decomposed into independent component
planning problems. The uncoordinated solution can be described by two requirements: that
the aggregates{ ˆ̂y∗t ,π∗t }t≥0 be in a feasibility set F ′ for and that the disaggregated variables
π̃i

H,t, ỹi
t, θ̃i

t solve the component planning problem.
There are differences with the uncoordinated labor tax case in the objective functions for

these programs. First, the coefficient on 1
2(θ̃

i
t)

2 in the coordinated planning problem, the
disaggregated planning problem and the component planning problem, is now αθ =

α(2−α)
1+φ .

Second now there is no linear term in − 2α
(1−α)(1+φ)

ˆ̂y∗t in the aggregate planning problem,

but there is a linear term 2α
1+φ ỹi

t in the problem solved by an individual country under the
uncoordinated solution.

Proposition 16 (Coordination vs. No Coordination with Coordinated Labor Tax). Suppose
that countries coordinate on the labor tax and that α is small. At the coordinated solution, the aggre-
gates solve the aggregate planning problem: ˆ̂y∗t = 0 and π∗t = 0 for all t ≥ 0. At the uncoordinated
solution, the aggregates { ˆ̂y∗t ,π∗t }t≥0 are in the feasible set F ′ if and only if

˙̂̂y∗t = −1
ρ

α

1 + φ

λα

1− α
− 1

ρ
κ̂ ˆ̂y∗0 −

1
(1− α) κ̂

(λα + (κ̂(1− α) + λα) απκ̂)π∗t ,

π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t .

In particular, ˆ̂y∗t = −
( α

1+φ )
2 1

1−α

1+ λα+(κ̂(1−α)+λα)απκ̂
(1−α)κ̂

and π∗t = κ̂
ρ

ˆ̂y∗t for all t ≥ 0 is feasible but ˆ̂y∗t = π∗t = 0

for all t ≥ 0 is not. Both at the coordinated and at the uncoordinated solutions, the disaggregated
variables π̃i

H,t, ỹi
t, θ̃i

t solve the component planning problems.

A.18 Proof of Propositions 14 and 16

We provide the proof for Proposition 14. The proof of Proposition 16 is almost identical.
We start by showing that at the coordinated solution, the disaggregated variables π̃i

H,t,
ỹi

t, θ̃i
t that solve the disaggregated planning problem (24) are equivalent to the solution to

the component planning problem (25). Note that the family of problems in (25) constitute a
relaxed version of the problem in (24), since it is identical except that the two aggregation
constraints (20) and (21) are dropped. Also, the component planning problems (25) for any
two different countries i ∈ [0, 1] are identical linear quadratic problems, except for possibly
different paths for the forcing variable ¯̄si

t. We note three facts. First, if ¯̄si
t = 0 for all t ≥ 0

then the solution to (25) entails π̃i
H,t,= ỹi

t = θ̃i
t = 0. Second, the solution to (25) must be

linear in the path of the forcing variable { ¯̄si
t}t≥0. Third, we have by definition

´ 1
0

¯̄si
tdi = 0.

Putting these three facts together implies that the family of solutions to (25) automatically
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satisfy the two aggregation constraints 0 =
´ 1

0 ỹi
tdi and 0 =

´ 1
0 π̃i

H,tdi (equations (20), and
(21)) and therefore coincide with the solution to (24).

Next we show that that at the uncoordinated solution, the disaggregated variables π̃i
H,t,

ỹi
t, θ̃i

t also solve the component planning problems (25). First note that the uncoordinated
component planning problem (26) coincides with (25) when ˆ̂y∗t = π∗t = 0 for all t ≥ 0.
Second, for any path of { ˆ̂y∗t , π∗t , ¯̄si

t}t≥0 the problem is linear quadratic and the solution is
linear in these variables. Third, an uncoordinated solution { ˆ̂y∗t , π∗t }t≥0 ∈ F requires that the
associated solutions to (26) satisfy 0 =

´ 1
0 ỹi

tdi and 0 =
´ 1

0 π̃i
H,tdi. Putting these three facts

together implies that the family of solutions to (26) for { ˆ̂y∗t , π∗t }t≥0 ∈ F coincides with the
solution of the component planning problem (25).

The derivation of the feasible set can be found in the next subsection.

A.19 Derivation of the feasible sets F and F ′ in Propositions 14 and 16

We deal with the case where the labor tax is set at its uncoordinated level. The other case is
similar.

The uncoordinated component planning problem (26) is linear quadratic, so its solution,
for given { ˆ̂y∗t , π∗t }t≥0, is linear in { ¯̄si

t}t≥0. Then, since
´ 1

0
¯̄si
tdi = 0, it follows that the solution

to (26) with { ˆ̂y∗t , π∗t }t≥0 satisfies the aggregation constraints 0 =
´ 1

0 ỹi
tdi and 0 =

´ 1
0 π̃i

H,tdi
(equations (20), and (21)) if and only if the solution with ¯̄si

t = 0 for all t ≥ 0 yields π̃i
H,t =

ỹi
t = θ̃i

t = 0 for all t ≥ 0.
Thus, we have established that { ˆ̂y∗t , π∗t }t≥0 ∈ F if and only if π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t and and

the following problem yields π̃H,t = ỹt = θ̃t = 0:

min
1
2

ˆ ∞

0
e−ρt

[
απ(π̃H,t)

2 + 2αππ∗t π̃H,t + (ỹt)
2 + 2 ˆ̂y∗t ỹt + αθ(θ̃t)

2
]

dt

subject to
˙̃πH,t = ρπ̃H,t − κ̂ỹt − λαθ̃t,

˙̃yt = (1− α) ˙̃θt − π̃H,t,ˆ ∞

0
e−ρtθ̃tdt = 0,

ỹ0 = (1− α)θ̃0,

where the minimization is over the variables π̃H,t, ỹt, θ̃t, taking ˆ̂y∗t , and π∗t as given. We put
a multiplier Γ on the constraint

´
e−ρtθ̃tdt = 0 and incorporate it in the objective to obtain an
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optimal control problem. The first-order conditions are

−µ̇π,t = αππ̃H,t + αππ∗t − µy,t,

ρµy,t − µ̇y,t = ỹt + ˆ̂y∗t − κ̂µπ,t,

ρµθ,t − µ̇θ,t = αθ θ̃t + Γ− λαµπ,t,

(1− α)µy,t + µθ,t = 0,

µπ,0 = 0.

We can combine these equations to get

µπ,t =
1− α

κ̂(1− α) + λα
ỹt +

αθ

κ̂(1− α) + λα
θ̃t +

Γ
κ̂(1− α) + λα

+
1− α

κ̂(1− α) + λα
ˆ̂y∗t ,

leading to the following reduced system (which substitutes both µπ,t and µθ,t out):

1− α

κ̂(1− α) + λα
˙̃yt +

αθ

κ̂(1− α) + λα
˙̃θt +

1− α

κ̂(1− α) + λα
˙̂̂y∗t = −αππ̃H,t + µy,t − αππ∗t ,

ρµy,t − µ̇y,t =
λα

κ̂(1− α) + λα
ỹt −

κ̂αθ

κ̂(1− α) + λα
θ̃t −

κ̂Γ
κ̂(1− α) + λα

+
λα

κ̂(1− α) + λα
ˆ̂y∗t ,

˙̃πH,t = ρπ̃H,t − κ̂ ˜̂yt − λαθ̃t,

˙̃yt = (1− α) ˙̃θt − π̃H,t,

ỹ0 = (1− α)θ̃0,

1− α

κ̂(1− α) + λα
ỹ0 +

αθ

κ̂(1− α) + λα
θ̃0 +

Γ
κ̂(1− α) + λα

+
1− α

κ̂(1− α) + λα
ˆ̂y∗0 = 0.

In order for π̃H,t = ỹt = θ̃t = 0 to be the solution, we must then have

1− α

κ̂(1− α) + λα
˙̂̂y∗t = µy,t − αππ∗t ,

ρµy,t − µ̇y,t = −
κ̂Γ

κ̂(1− α) + λα
+

λα

κ̂(1− α) + λα
ˆ̂y∗t ,

Γ
κ̂(1− α) + λα

+
1− α

κ̂(1− α) + λα
ˆ̂y∗0 = 0,

We seek bounded solutions. Combining these three equations and using that π∗t = κ
´

e−ρ(s−t) ˆ̂y∗s ds
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we obtain
˙̂̂y∗t = −1

ρ
κ̂ ˆ̂y∗0 −

1
(1− α) κ̂

(λα + (κ̂(1− α) + λα) απκ̂)π∗t ,

which together with π∗t = κ
´

e−ρ(s−t) ˆ̂y∗s ds fully characterizes the feasibility set F .
To determine the dimensionality of F we then must solve the following system of differ-

ential equations

˙̂̂y∗t = −1
ρ

κ̂ ˆ̂y∗0 −
λα + (κ̂(1− α) + λα) απκ̂

(1− α) κ̂
π∗t ,

π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t .

Let Xt = [ ˆ̂y∗t , π∗t ]
′, B = [− 1

ρ κ̂ ˆ̂y∗0 , 0]′ and

A =

[
0 − 1

(1−α)κ̂ (λα + (κ̂(1− α) + λα) απκ̂)

−κ̂ ρ

]
.

We have Ẋt = AXt + B.
We need to find the eigenvalues of A. The characteristic polynomial of A is given by

x2 − ρx− λα+(κ̂(1−α)+λα)απ κ̂
1−α . This implies that A two real eigenvalues of opposite signs. Let

ν be the negative eigenvalue. Denote the corresponding eigenvector by Vν.
Let E1 = [1, 0]′ and E2 = [0, 1]′. We must then solve the system of two equations in three

unknowns (X0 = [ ˆ̂y∗0 , π∗0 ]
′ and αν):

E′iX0 −
1
ρ

κ̂(E′1X0)(E′i A
−1E1) = ανE′iVν.

And we have
Xt = ανeνtVν +

1
ρ

κ̂(E′1X0)A−1E1

so that limt→∞ Xt =
1
ρ κ̂(E′1X0)A−1E1. This means that the feasible set is a one-dimensional

linear space. Moreover, the set of limits is also one-dimensional. This implies that the set of
possible long-term limits for ˆ̂y∗t and π∗t is the locus 0 = ρπ∗t − κ̂ ˆ̂y∗t .

A.20 The Ramsey Problem

We treat the uncoordinated labor tax case. The coordinated labor tax case is similar. We want
to solve

min
1
2

ˆ ∞

0
e−ρt

[
απ(π

∗
t )

2 + ( ˆ̂y∗t )
2 − 2α

(1− α)(1 + φ)
ˆ̂y∗t

]
dt

subject to { ˆ̂y∗t , π∗t }t≥0 ∈ F .
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We know that the feasible set F is described by

Xt = ανeνtVν +
1
ρ

κ̂(E′1X0)A−1E1

where

E′iX0 −
1
ρ

κ̂(E′1X0)(E′i A
−1E1) = ανVν,

A =

[
0 − 1

(1−α)κ̂ (λα + (κ̂(1− α) + λα) απκ̂)

−κ̂ ρ

]
,

ν is the negative eigenvalue of A and Vνthe corresponding eigenvector.
Note that we have

Det(A) = −λα + (κ̂(1− α) + λα) απκ̂

1− α

and

A−1 =
1

Det(A)

[
ρ

λα+(κ̂(1−α)+λα)απ κ̂
(1−α)κ̂

κ̂ 0

]

so that A−1E1 = 1
Det(A)

[ρ, κ̂]′ = − 1−α
λα+(κ̂(1−α)+λα)απ κ̂

[ρ, κ̂]′. Note in passing that this shows
that a solution that starts with E′1X0 > 0 ends up with E′1X∞ < 0 and E′2X∞ < 0.

We have to solve

min
1
2

ˆ ∞

0
e−ρt

[
X′tΩXt −

2α

(1− α)(1 + φ)
E′1Xt

]
dt

subject to

X0 −
1
ρ

κ̂(E′1X0)A−1E1 = ανVν,

Xt = ανeνtVν +
1
ρ

κ̂(E′1X0)A−1E1,

where the minimization is over X0 and αν, and

Ω =

[
1 0
0 απ

]
.
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We can use the last constraint the rewrite the objective as

min
1
2

ˆ ∞

0
e−ρt

[
(αν)

2e2νtV′νΩVν +
2ανκ̂

ρ
(E′1X0)eνtV′νΩA−1E1 +

(
κ̂

ρ

)2

(E′1X0)
2E′1A′−1ΩA−1E1

− 2αανeνt

(1− α)(1 + φ)
E′1Vν −

2α 1
ρ κ̂

(1− α)(1 + φ)
(E′1X0)E′1A−1E1

]
dt

so that we are left with the following static linear quadratic problem in three variables (X0,
αν):

min
1
2

[
(αν)

2 1
ρ− 2ν

V′νΩVν + αν(E′1X0)
2κ̂

ρ(ρ− ν)
V′νΩA−1E1 +(E′1X0)

2
(

κ̂

ρ

)2 1
ρ

E′1A′−1ΩA−1E1

− αν
2α

(1− α)(1 + φ)(ρ− ν)
E′1Vν − (E′1X0)

2α 1
ρ κ̂

(1− α)(1 + φ)ρ
E′1A−1E1

]
subject to

X0 −
1
ρ

κ̂(E′1X0)A−1E1 = ανVν.

The FOCs together with the constraints lead to a linear system of five equations in five un-
knowns X0, αν, and the two multipliers λ1 and λ2 on the constraints (there are two con-
straints stacked in a vector). Let’s write it:

αν
1

ρ− 2ν
V′νΩVν +(E′1X0)

κ̂

ρ(ρ− ν)
V′νΩA−1E1−

α

(1− α)(1 + φ)(ρ− ν)
E′1Vν−λ1E′1Vν−λ2E′2Vν = 0,

αν
κ̂

ρ(ρ− ν)
V′νΩA−1E1 + (E′1X0)

(
κ̂

ρ

)2 1
ρ

E′1A′−1ΩA−1E1 −
α 1

ρ κ̂

(1− α)(1 + φ)ρ
E′1A−1E1

+ λ1

(
1− 1

ρ
κ̂E′1A−1E1

)
− λ2

1
ρ

κ̂E′2A−1E1 = 0,

λ2 = 0,

E′i X0 −
1
ρ

κ̂(E′1X0)E′i A
−1E1 = ανE′iVν.

Using λ2 = 0, we can rewrite this as a linear system of four equations in four unknowns:

αν
1

ρ− 2ν
V′νΩVν + (E′1X0)

κ̂

ρ(ρ− ν)
V′νΩA−1E1 − λ1E′1Vν =

α

(1− α)(1 + φ)(ρ− ν)
E′1Vν,
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αν
κ̂

ρ(ρ− ν)
V′νΩA−1E1 + (E′1X0)

(
κ̂

ρ

)2 1
ρ

E′1A′−1ΩA−1E1 + λ1

(
1− 1

ρ
κ̂E′1A−1E1

)
=

α 1
ρ κ̂

(1− α)(1 + φ)ρ
E′1A−1E1,

−ανE′iVν + E′i X0 −
1
ρ

κ̂(E′1X0)E′i A
−1E1 = 0.

We can also see that X0 = 0 (and αν = 0) is not a solution since λ1 cannot (generically)
simultaneously solve

λ1 = − α

(1− α)(1 + φ)(ρ− ν)
,

λ1 =
α 1

ρ κ̂

(1− α)(1 + φ)ρ

E′1A−1E1

1− 1
ρ κ̂E′1A−1E1

,

unless we are in the knife-edge case (but is that even possible given the signs of our vari-
ables...) where

− α

(1− α)(1 + φ)(ρ− ν)
=

α 1
ρ κ̂

(1− α)(1 + φ)ρ

E′1A−1E1

1− 1
ρ κ̂E′1A−1E1

.

Since E′1A−1E1 = 1
Det(A)

ρ = − (1−α)ρ
λα+(κ̂(1−α)+λα)απ κ̂

, this condition boils down to

α

(1− α)(1 + φ)(ρ− ν)
=

ακ̂

(1− α)(1 + φ)ρ

1−α
λα+(κ̂(1−α)+λα)απ κ̂

1− (1−α)κ̂
λα+(κ̂(1−α)+λα)απ κ̂

,

or
ρ

ρ− ν
=

κ̂(1− α)

λα + λααπκ̂ + κ̂(1− α)(απκ̂ − 1)
or

ρ

ρ− ν
=

1− α

α 1+απ κ̂
1+φ + (1− α)(απκ̂ − 1)

.

A.21 Coordination vs. No Coordination with Coordinated Labor Tax

In this section we outline the coordinated labor tax case: where there is coordination on the
labor tax at the symmetric steady state so that M(1+ τL) = 1. With a slight abuse of notation,
we keep denoting with a double bar the corresponding flexible price allocation with no
capital controls. We denote with a double hat the gap of a variable from its flexible price
counterpart. We denote with a tilde a variable minus its mean across countries. For example
ỹi

t = ˆ̂yi
t − ˆ̂y∗t represents the deviation of country i’s output gap from the corresponding
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aggregate.

Coordinated solution. The coordinated planning problem has the same constraint set as
(15) but a different objective

1
2

ˆ ∞

0

ˆ 1

0
e−ρt

[
απ(π̃

i
H,t)

2 + (ỹi
t)

2 + αθ(θ̃
i
t)

2 + απ(π
∗
t )

2 + ( ˆ̂y∗t )
2
]

di dt,

where we now have αθ = α(2−α)
1+φ . There are two differences with the objective in (15). First,

the coefficient on the term 1
2 θ̂2

t is different. Second, there is no linear term in ˆ̂y∗t .
As above we can break down the planning problem into two parts. First, there is an

aggregate planning problem determining the average output gap and inflation ˆ̂y∗t and π∗t .
This aggregate planning problem has the same constraint set as (23) but a different objective

1
2

ˆ ∞

0
e−ρt

[
απ(π

∗
t )

2 + ( ˆ̂y∗t )
2
]

dt, (29)

which features no linear term in ˆ̂y∗t . Second, there is a disaggregated planning problem de-
termining deviations from the aggregates for output gap, home inflation and consumption
smoothing, ỹi

t, π̃i
H,t and θ̃i

t. This disaggregated planning problem has the same constraint set
as (24) but a different objective

1
2

ˆ ∞

0

ˆ 1

0
e−ρt

[
απ(π̃

i
H,t)

2 + (ỹi
t)

2 + αθ(θ̃
i
t)

2
]

didt,

where the coefficient on 1
2(θ̃

i
t)

2 is (1− α)αθ instead of αθ. We can obtain a relaxed problem
by dropping the two aggregation constraints

´ 1
0 ỹi

tdi = 0 and
´ 1

0 π̃i
H,tdi = 0. This relaxed

planning problem can be broken down into separate component planning problems for each
country i ∈ [0, 1]. This component planning problem has the same constraint set as (26) but
with the objective 1

2

´ ∞
0 e−ρt

[
απ(π̃i

H,t)
2 + (ỹi

t)
2 + αθ(θ̃

i
t)

2
]

dt.

Uncoordinated solution. With no coordination, each country i ∈ [0, 1] takes the evolution
of aggregates as given and solves an uncoordinated component planning problem which
has the same constraint set as (26) but a different objective

min
1
2

ˆ
e−ρt

[
απ(π̃

i
H,t)

2 + 2αππ∗t π̃i
H,t + (ỹi

t)
2 + 2 ˆ̂y∗t ỹi

t

+
2α

1 + φ
ỹi

t + αθ(θ̃
i
t)

2dt
]
.
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There are two differences with the objective in (26). First, the coefficient on (θ̃i
t)

2 is (1− α)αθ

instead of αθ. Second, there is a linear term in ỹi
t. Intuitively, the extra linear term 2α

1+φ ỹi
t

can be traced back to the fact that the that the uncoordinated solution feature terms of trade
manipulation. As a result the objective acquires a preference for lower output—a form of
anti-inflationary bias.22

Exactly as in the case where there is no coordination on the labor tax, a central monetary
authority, by setting monetary policy, can choose aggregates { ˆ̂y∗t ,π∗t }t≥0 subject to the fol-
lowing constraints. First, it must ensure that the solutions to the uncoordinated component
planning problems satisfy

´ 1
0 ỹi

tdi = 0 and
´ 1

0 π̃i
H,tdi = 0. This amounts to verifying a fixed

point, that aggregates are actually equal to their proposed path. Second, it must ensure that
the aggregate Phillips curve is verified, π̇∗t = ρπ∗t − κ̂ ˆ̂y∗t . Both requirements define a set F ′

of feasible aggregate outcomes { ˆ̂y∗t ,π∗t }t≥0. Which aggregate feasible outcome is chosen de-
pends on the objective of the central monetary authority. For example, we can examine the
case where the central monetary authority seeks to maximize aggregate welfare, taking into
account that capital controls are set uncooperatively. For small α, this can be represented as
a planning problem of minimizing (29) over the feasible set F ′.

22A line by line derivation of the loss function for an individual country leads to a different coefficient on
(θ̃i

t)
2, but the difference with αθ is of order 1 in α, leading to a correction term of order 3 when multiplied by

(θ̃i
t)

2 and can therefore be ignored.
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