Assimilating Dual Panel Surveys to Generate Population Estimates

Marcin Hitczenko

Consumer Payment Research Center Federal Reserve Bank of Boston

August 9, 2015

- Goal: estimate a population proportion, p. Example: Proportion of U.S. adults who own a credit card.
- Data come from two separate methodologies of collecting data.
- Samples *do not* represent dual frames \Rightarrow dual frame methods do not apply.
- No a priori knowledge of differences in sampling distributions.

Example 1: 2012 Survey of Consumer Payment Choice (SCPC)

- $\bullet \sim$ 2,000 American Life Panel (ALP) panelists who participated in SCPC of previous years
- \sim 1,000 ALP panelists who were newly recruited in 2012

Example 2: 2014 Survey of Consumer Payment Choice (SCPC)

- \sim 1,800 ALP panelists
- \sim 1,300 Understanding America Study (UAS) panelists
- Surveys in each were coded and administered using different software.

• A common approach is to post-stratify by demographics:

$$
\hat{p} = \sum f_{s} \hat{p}_{s},
$$

- $f_s =$ proportion of population in stratum s.
- \hat{p}_s = sample-based estimate of the proportion in stratum s.

We focus on stratum $s = 5$. Different results could be due to unaccounted-for demographic variables:

• We fit a logistic-regression model to each sample:

$$
P(\text{credit card adopter}) = \text{logit}^{-1}(M \times W \times J)
$$

• We use results from sample 1 to predict sample 2, and results of sample 2 to predict sample 1:

Consider stratum s, with data from two samples:

• Estimates based on each sample alone are

$$
\hat{p}_s(x) = \frac{X}{n} = 0.65
$$
 and $\hat{p}_s(y) = \frac{Y}{m} = 0.29.$

• Simply combining the data yields the estimate:

$$
\hat{p}_s = \frac{X+Y}{n+m} = 0.46
$$

• Uncertainty can be defined by distributions:

Beta(X+Y, n+m-X-Y) similar to Normal
$$
\left(\hat{p}_s, \frac{\hat{p}_s(1-\hat{p}_s)}{n+m}\right)
$$

.

Looking at the uncertainty intervals:

- Not an intuitive result.
- The error corresponds to frequentist assessment of distributions for sample means for samples collected using same methodology.
- \bullet We really want to assess uncertainty of true stratum proportion, $\rho_s,$ given our data.

We consider the following multi-level model:

- True stratum proportion: p_s .
- Every unique data collection methodology, c, produces sample with expected proportion $p_s(c) \sim \text{Beta}(\alpha, \beta)$.
- Then, $E[p_s(c)] = \frac{\alpha}{\alpha + \beta}$.

• Response in each sample are Bernoulli with probability $p_s(c)$:

 $X \sim \text{Binomial}(n, p_s(x))$ and $Y \sim \text{Binomial}(m, p_s(y)).$

We want to estimate $P(p_s | X, Y, n, m)$:

- For given α, β , $\hat{p}_s = \frac{\alpha}{\alpha + \beta}$ $^{\alpha+\beta}$
- \bullet Uncertainty about α,β corresponds to uncertainty about $\bm{\mathit{p_s}}.$
- Flat priors on α, β (slight shrinkage of p_s toward 0.5).
- Posterior of (α, β) in our stratum example:

• Can be tricky to sample when posterior of (α, β) is diffuse.

- If two samples are consistent with one another, posterior distribution of p_s resembles frequentist combining.
- As samples get less consistent wit one another, posterior distribution of p_s diffuses.

Using this approach for our example stratum:

Seems a more reasonable assessment of uncertainty.

Marcin Hitczenko (CPRC) 10

- $p_s(x)$, $p_s(y) \sim \text{Beta}(\alpha, \beta)$ assumes exchangeability of our samples; either is equally likely to have sample proportion closer to true stratum mean.
- What if we have additional information that tells us that one sample is more likely to be a better representation of the stratum?
- Consider $w \in [0,1]$, and

$$
p_s(x) \sim \text{Beta}\left(\frac{\alpha}{w}, \frac{\beta}{w}\right) \quad \text{and} \quad p_s(y) \sim \text{Beta}\left(\frac{\alpha}{1 - w}, \frac{\beta}{1 - w}\right)
$$

• Weight w keeps the same mean, but changes the variance around p_s for the two samples.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 Beta(5/0.2,5/0.2) Beta(5/0.8,5/0.8)

.

For given w , we run our algorithm to to estimate $\rho_{\mathsf{s}}.$ A few examples; vertical lines at $w\hat{p}_s(x) + (1 - w)\hat{p}_s(y)$.

- Information about relative quality of two samples can be incorporated into model to improve inference: smaller mean-squared errors, shorter uncertainty intervals.
- w represents how much more likely we believe the methodology in sample 1 to generate estimates closer to the true mean than the methodology in sample 2.
- $w \neq 0.5$ pushes posterior estimates of p_s closer to observed proportions in favored sample.

Future Work:

- \bullet How well do we need to accurately choose w to make sizeable gains in inference?
- How do we determine w, or distribution of w? Ask questions with known distributions under desirable sampling scheme? **Example:** Distribution of whites in sample $1(68/77)$ is different than in sample 2(58/88). Which is closer to the truth? Perhaps:

$$
\frac{w}{1-w} = \frac{P(\text{observing 68/77} \text{ whites in stratum under SRS})}{P(\text{observing 58/88} \text{ whites in stratum under SRS})}
$$
?

• Ideas? Suggestions?