Assimilating Dual Panel Surveys to Generate Population Estimates

Marcin Hitczenko

Consumer Payment Research Center Federal Reserve Bank of Boston

August 9, 2015

- Goal: estimate a population proportion, p. **Example:** Proportion of U.S. adults who own a credit card.
- Data come from two separate methodologies of collecting data.
- Samples do not represent dual frames \Rightarrow dual frame methods do not apply.
- No a priori knowledge of differences in sampling distributions.

Example 1: 2012 Survey of Consumer Payment Choice (SCPC)

- \sim 2,000 American Life Panel (ALP) panelists who participated in SCPC of previous years
- + \sim 1,000 ALP panelists who were newly recruited in 2012

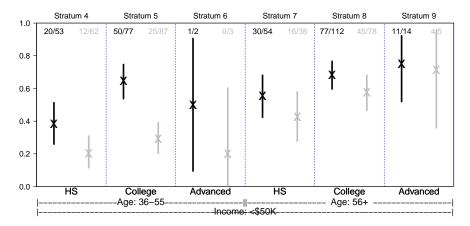
Example 2: 2014 Survey of Consumer Payment Choice (SCPC)

- \sim 1,800 ALP panelists
- \sim 1,300 Understanding America Study (UAS) panelists
- Surveys in each were coded and administered using different software.

• A common approach is to post-stratify by demographics:

$$\hat{p} = \sum f_s \hat{p}_s,$$

- f_s = proportion of population in stratum s.
- \hat{p}_s = sample-based estimate of the proportion in stratum s.



We focus on stratum s = 5. Different results could be due to unaccounted-for demographic variables:

	Sample 1	Sample 2
% Male (M=1)	35.1	36.8
% White (W=1)	48.1	54.5
% Employed (J=1)	88.3	65.9

• We fit a logistic-regression model to each sample:

$$P(\text{credit card adopter}) = logit^{-1}(M \times W \times J)$$

• We use results from sample 1 to predict sample 2, and results of sample 2 to predict sample 1:

	Predicted	Observed
Sample 1	0.68	0.65
Sample 2	0.28	0.29

Consider stratum *s*, with data from two samples:

Sample 1	X_1	X_2	 	X _n	$X = \sum_{i=1}^{n} X_i$
(n=77)	1	0	 	1	50
Sample 2	Y_1	Y_2	 Ym		$Y = \sum_{i=1}^{n} Y_i$
(m=87)	1	1	 0		25

• Estimates based on each sample alone are

$$\hat{p}_s(x) = \frac{X}{n} = 0.65$$
 and $\hat{p}_s(y) = \frac{Y}{m} = 0.29.$

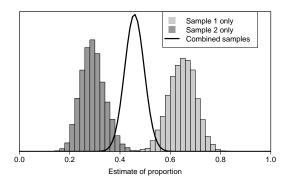
• Simply combining the data yields the estimate:

$$\hat{p}_s = \frac{X+Y}{n+m} = 0.46$$

• Uncertainty can be defined by distributions:

Beta(X+Y, n+m-X-Y) similar to Normal
$$\left(\hat{p}_s, \frac{\hat{p}_s(1-\hat{p}_s)}{n+m}\right)$$

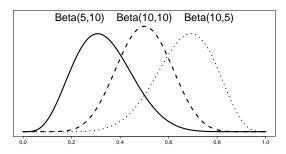
Looking at the uncertainty intervals:



- Not an intuitive result.
- The error corresponds to frequentist assessment of distributions for sample means for samples collected using same methodology.
- We really want to assess uncertainty of true stratum proportion, *p_s*, given our data.

We consider the following multi-level model:

- True stratum proportion: p_s .
- Every unique data collection methodology, c, produces sample with expected proportion p_s(c) ~ Beta(α, β).
- Then, $E[p_s(c)] = \frac{\alpha}{\alpha+\beta}$.

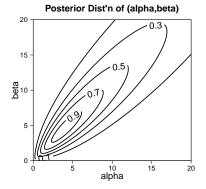


• Response in each sample are Bernoulli with probability $p_s(c)$:

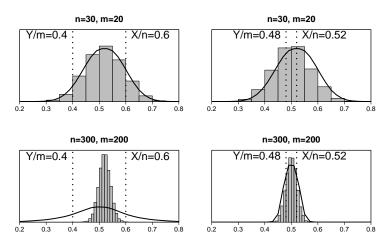
 $X \sim \text{Binomial}(n, p_s(x))$ and $Y \sim \text{Binomial}(m, p_s(y))$.

We want to estimate $P(p_s | X, Y, n, m)$:

- For given α, β , $\hat{p}_s = \frac{\alpha}{\alpha + \beta}$
- Uncertainty about α, β corresponds to uncertainty about p_s .
- Flat priors on α, β (slight shrinkage of p_s toward 0.5).
- Posterior of (α, β) in our stratum example:

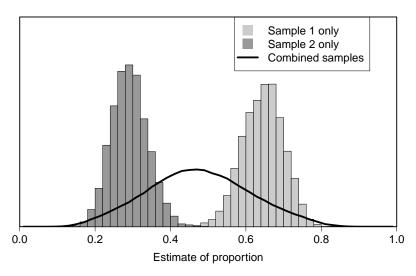


• Can be tricky to sample when posterior of (α, β) is diffuse.



- If two samples are consistent with one another, posterior distribution of p_s resembles frequentist combining.
- As samples get less consistent wit one another, posterior distribution of p_s diffuses.

Using this approach for our example stratum:



Seems a more reasonable assessment of uncertainty.

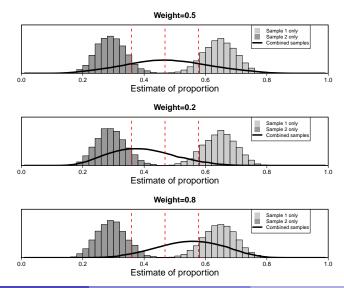
Marcin Hitczenko (CPRC)

- *p_s(x)*, *p_s(y)* ~ Beta(α, β) assumes exchangeability of our samples; either is equally likely to have sample proportion closer to true stratum mean.
- What if we have additional information that tells us that one sample is more likely to be a better representation of the stratum?
- Consider $w \in [0, 1]$, and

$$p_s(x) \sim \operatorname{Beta}\left(\frac{\alpha}{w}, \frac{\beta}{w}\right)$$
 and $p_s(y) \sim \operatorname{Beta}\left(\frac{\alpha}{1-w}, \frac{\beta}{1-w}\right)$.

 Weight w keeps the same mean, but changes the variance around ps for the two samples.

For given w, we run our algorithm to to estimate p_s . A few examples; vertical lines at $w\hat{p}_s(x) + (1 - w)\hat{p}_s(y)$.



- Information about relative quality of two samples can be incorporated into model to improve inference: smaller mean-squared errors, shorter uncertainty intervals.
- *w* represents how much more likely we believe the methodology in sample 1 to generate estimates closer to the true mean than the methodology in sample 2.
- $w \neq 0.5$ pushes posterior estimates of p_s closer to observed proportions in favored sample.

Future Work:

- How well do we need to accurately choose *w* to make sizeable gains in inference?
- How do we determine w, or distribution of w? Ask questions with known distributions under desirable sampling scheme?
 Example: Distribution of whites in sample 1(68/77) is different than in sample 2(58/88). Which is closer to the truth? Perhaps:

$$\frac{w}{1-w} = \frac{P(\text{observing 68/77 whites in stratum under SRS})}{P(\text{observing 58/88 whites in stratum under SRS})}?$$

• Ideas? Suggestions?