Consumer revolving credit and debt over the life-cycle and business cycle

Scott L. Fulford
Boston College
scott.fulford@bc.edu

Scott Schuh
Federal Reserve Bank of Boston
Scott.Schuh@bos.frb.org

The views expressed in this paper are the author’s and do not necessarily reflect the official position of the Federal Reserve Bank of Boston or the Federal Reserve System.
Overview

- Motivation
- Literature
- Data
- Empirical results
- Theory and estimation
 - Identification of convenience use vs. revolving
 - Credit limit and debt dynamics
- Conclusions and future research
Consumer revolving credit

Source: Author’s calculations from BEA NIPA Tables and Fed Board G.19 Statistical Releases.
Sources of liquidity for payments

Source: Author's calculations from Equifax/CCP, Survey of Consumer Payment Choice (SCPC), Survey of Currency and Transaction Account Usage (SCTAU), and Fed Board H.6 Releases.
Sources: Carroll and Samwick (1997), Fulford (2015a, JME), authors’ calculations from Equifax/CCP and BEA NIPA Tables.
Abbreviated Literature Review

- Household finance is important
 - Campbell (2006), Zinman (forthcoming)
- Credit cards as a source of revolving credit
- Credit cards as a payment instrument
Data Sources

<table>
<thead>
<tr>
<th></th>
<th>NY Fed/CCP</th>
<th>SCPC</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Quarterly</td>
<td>Annual</td>
<td>Triannual</td>
</tr>
<tr>
<td>Unit of Obs</td>
<td>Consumers</td>
<td>Consumers</td>
<td>Households</td>
</tr>
<tr>
<td>Sponsor</td>
<td>Equifax</td>
<td>Boston Fed</td>
<td>Fed Board</td>
</tr>
<tr>
<td>Sample size</td>
<td>15 mil (5% sample of all Equifax credit accounts)</td>
<td>~2,000</td>
<td>~30,000</td>
</tr>
</tbody>
</table>

Summary
- **NY Fed/CCP**: Full credit history for each account (aggregate by debt type, plus mortgage trade lines).
- **SCPC**: Consumer preferences, adoption, and use of payment options.
- **SCF**: Household assets and liabilities, income.
Combinations of consumer debt, summary

Debt bundles

Share of Consumers

CreditOnly

Others

Mortgage

Share of Debt

Source: Authors’ calculations from Equifax/CCP.

<table>
<thead>
<tr>
<th>Empirical Results</th>
<th>Credit and debt</th>
<th>Fulford and Schuh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-8-</td>
</tr>
</tbody>
</table>
Combinations of consumer debt, mortgage adopters

Debt bundles among mortgage adopters

Source: Authors’ calculations from Equifax/CCP.

<table>
<thead>
<tr>
<th>Empirical Results</th>
<th>Credit and debt</th>
<th>Fulford and Schuh</th>
</tr>
</thead>
</table>
Combinations of consumer debt, non-mortgage adopters

Debt bundles among non-mortgage adopters with some debt

Source: Authors’ calculations from Equifax/CCP.

<table>
<thead>
<tr>
<th>Empirical Results</th>
<th>Credit and debt</th>
<th>Fulford and Schuh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-10</td>
</tr>
</tbody>
</table>
Credit limits and debts vary over time, utilization does not.

Source: Author's calculations from Equifax/CCP.
Credit limits and debts increase with age

Source: Author’s calculations from Equifax/CCP.
Credit utilization decreases slowly

Source: Author’s calculations from Equifax/CCP.

Empirical Results Credit and debt Fulford and Schuh -13-
Distributions of utilization by age

All ages

Age 20-30

Age 30-40

Age 40-50

Age 50-60

Age 60-80

Source: Author’s calculations from Equifax/CCP.
A little theory

- **Convenience users**: Past debts or utilization not predictive of future utilization

\[D_{i,t} = \omega_{i,t} C_{i,t} \]

Credit utilization \(i,t \) = \(D_{i,t} / B_{i,t} = \omega_{i,t} C_{i,t} / B_{i,t} \)

- **Revolvers**: Past debts or utilization predict future debts and utilization. Accumulation equation:

\[D_{t+1} = (1 + r)(D_t + C_t - Y_t) \]

- Any observation could be coming from either a Revolver or Convenience user.
- Use theory to distinguish which is more probable
A little estimation

- Convenience users and revolvers are not identified in the data.
- Assume convenience users essentially do not respond to limits.
 - Based on the assumption, can estimate probabilities that an individual in the Equifax/CCP data is a convenience user vs. revolver, based on the time series of their past limits and debts.
- Further impose the SCF conditional likelihood of revolving/convenience based on credit utilization and age to be the same as those estimated in Equifax/CCP.
- To implement estimation, use an expectation maximization (EM) procedure, to infer/identify convenience use and revolving.
Credit utilization by convenience users and revolvers

Notes: Linear age trend is from fixed effects. Colinearity of age-cohort-year effects means the linear trend can be in any of them. Source: Author’s calculations from Equifax/CCP.
Credit utilization results

Credit utilization\(_{it}\) = \(\theta_t + \theta_a + \alpha_i + \beta\) Credit utilization\(_{i,t-1}\) + \(\epsilon_{it}\)

<table>
<thead>
<tr>
<th>Credit utilization(_{t-1})</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>Revolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.874***</td>
<td>0.868***</td>
<td>0.647***</td>
<td>0.647***</td>
<td>0.514***</td>
<td>0.766***</td>
<td></td>
</tr>
<tr>
<td>(0.000876)</td>
<td>(0.000892)</td>
<td>(0.00131)</td>
<td>(0.00139)</td>
<td>(0.00441)</td>
<td>(0.00125)</td>
<td></td>
</tr>
<tr>
<td>Credit utilization(_{t-2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0156***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000643)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit util(_{t-1}) × Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00314***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(9.93e-05)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.0479***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000461)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations	347,642	347,642	347,642	332,696	347,642	238,111
R-squared	0.741	0.743	0.429	0.444	0.431	0.616
Fixed effects	No	No	Yes	Yes	Yes	Yes
Age and year effects	No	Yes	Yes	Yes	Yes	Yes
Number of accounts	10,451	10,103	10,451			
Frac. Variance from FE	0.477	0.467	0.498			

Source: Author’s calculations from Equifax/CCP.
Credit and debt regressions

\[\log \text{Debt}_{it} = \theta_i + \theta_t + \theta_a + \alpha \log \text{Limit}_{i,t-1} + \beta \log \text{Debt}_{i,t-1} + \epsilon_{it} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Debt(_{t-1})</td>
<td>0.505*** (0.00157)</td>
<td>0.758*** (0.00119)</td>
<td>0.604*** (0.00132)</td>
<td>0.861*** (0.000593)</td>
<td>0.00687*** (0.000561)</td>
<td>-0.0141*** (0.000580)</td>
<td>0.0240*** (0.000616)</td>
</tr>
<tr>
<td>Log Credit Limit(_{t-1})</td>
<td>0.414*** (0.00262)</td>
<td>0.134*** (0.00148)</td>
<td>0.313*** (0.00243)</td>
<td>0.130*** (0.000787)</td>
<td>0.848*** (0.000933)</td>
<td>0.736*** (0.00114)</td>
<td>0.903*** (0.000807)</td>
</tr>
</tbody>
</table>

Observations: 296,369 296,369 361,280 293,014
R-squared: 0.432 0.667 0.610 0.926
Accounts: 10,028 10,718 10,718
Fixed effects: Yes No Yes Yes
Zero included: No No Yes No
Age effects: Yes Yes Yes Yes
Long-term credit impact: 0.862 0.875 0.879 0.990
Credit salience \(\sigma\): 0.443 0.665 0.530 0.756

Source: Author's calculations from Equifax/CCP.
Interactions with utilization and age for Revolvers

One quarter impact 1% change in limit

One quarter impact 1% change in debt

Source: Author's calculations from Equifax/CCP.
Interactions with utilization and age for Revolvers

Long term impact 1% change in limit

Source: Author’s calculations from Equifax/CCP.
Summary of results

- Aggregate utilization of credit is essentially acyclical.
- Average utilization starts at \(\sim 50\% \) (age 20) and drops to \(\sim 20\% \) (age 60).
 - Convenience users have lower, more stable utilization over lifetime.
 - Revolvers have higher, declining utilization over lifetime.
 - Transition of some revolvers to convenience users is an important dynamic of average lifecycle utilization.
- Revolvers adjust their debt to changes in credit limits essentially one-for-one within two years.
 - Assumes convenience users essentially do not respond to limits.
- Future research:

References II

