Discussion of “Ambiguous Business Cycles”
by Cosmin Ilut and Martin Schneider

George-Marios Angeletos
MIT and NBER

BU/Boston Fed Conference on Macro-Finance Linkages
October 28, 2011
Expectations and the business cycle

- **uncertainty shocks**

 (Bloom, Bloom et al, Fernandez-Villaverde et al, Basu & Bundick, etc)

- **news/noise shocks**

 (Beaudry & Portier, Jaimovich & Rebelo, Christiano, Ilut et al, Lorenzoni, Barsky & Sims, etc)

- **sentiments**

 (Angeletos & La’O)
Ambiguity and the business cycle

- "ambiguity" about the productivity process
 → as if (irrationally) pessimistic beliefs

- time-varying "worst-case scenario"
 → fluctuations in pessimism

- break RE, but with some discipline
A simple model: preferences

\[U_t = u(C_t, N_t) + \beta \min_{p \in P_{t+1}} \mathbb{E}_p[U_{t+1}] \]
A simple model: preferences

\[U_t = u(C_t, N_t) + \beta \min_{p \in P_{t+1}} E_p[U_{t+1}] \]

\[u(C_t, N_t) = \frac{1}{1-\gamma} C_t^{1-\gamma} - N_t \]
A simple model: technology

\[C_t = e^{zt} K_t \]

\[K_{t+1} = N_t \]
A simple model: risk and ambiguity

$$z_{t+1} = \rho z_t + \mu_t + u_t \quad u_t \sim \mathcal{N} \left(-\frac{1}{2} \sigma^2, \sigma^2 \right)$$
A simple model: risk and ambiguity

\[z_{t+1} = \rho z_t + \mu_t + u_t \quad \text{where} \quad u_t \sim \mathcal{N} \left(-\frac{1}{2} \sigma^2, \sigma^2 \right) \]

\[\mu_t \in [-a_t, a_t] \]

\[a_t = (1 - \rho_a) \bar{a} + \rho_a a_{t-1} + \epsilon_t \]
A simple model: risk and ambiguity

$$z_{t+1} = \rho z_t + \mu_t + u_t \quad u_t \sim \mathcal{N} \left(-\frac{1}{2} \sigma^2, \sigma^2 \right)$$

$$\mu_t \in [-a_t, a_t]$$

$$a_t = (1 - \rho_a) \bar{a} + \rho_a a_{t-1} + \epsilon_t$$

- belief $p \in P_{t+1}$ indexed by μ_t
- set P_{t+1} indexed by a_t
Results

\[n_t = k_{t+1} = (\theta - 1) \left(\rho_{zt} - \frac{1}{2} \gamma \sigma^2 - a_t \right) \]
Results

\[n_t = k_{t+1} = (\theta - 1) (\rho_z z_t - \frac{1}{2} \gamma \sigma^2 - a_t) \]

- \(\rho_z z_t \rightarrow \) expected return
- \(-\frac{1}{2} \gamma \sigma^2 \rightarrow \) risk adjustment
- \(-a_t \rightarrow \) ambiguity adjustment
\[n_t = k_{t+1} = (\theta - 1) \left(\rho_z z_t - \frac{1}{2} \gamma \sigma^2 - a_t \right) \]

\[c_{t+1} = \theta \rho_z z_t + (\theta - 1) \left(-\frac{1}{2} \gamma \sigma^2 - a_t \right) + u_{t+1} \]

- both \(z_t \) and \(a_t \) shocks cause persistent fluctuations
- ambiguity shocks isomorphic to
 - \(\gamma \) shocks
 - irrational pessimism
 - a tax/wedge on savings
- in standard RBC, they’d fail to generate positive co-movement
Results

- decentralization: trade capital (stocks) and bonds

 - if bond is “unambiguously” safe →
 - higher a_t raises risk premium and reduces risk-free rate
 - looks like “Euler wedge shocks”

- but “tax on saving” if ambiguity about default
same basic idea, but embedded in a DSGE a la Smets-Wooters

impressive!

very tractable, because linearity preserved (→Dynare)

in preferred parameterization (estimation), ambiguity shocks account for a large fraction of the business cycle
Comment 1: Identification/Discipline

- identification?
- how do we chose the a_t process?
- why not i.i.d? why not negative autocorrelation?
- how separate from productivity/news/risk shocks?
- discipline not sufficiently clear (to me)
Comment 2: Comovement

- comovement?
- “news shocks” vs “Euler wedge shocks”?
- internal habit, investment adjustment costs?
- suboptimal monetary policy?
Comment 3: Interpretation

- **ambiguity shocks versus**
 - irrational biases?
 - γ or σ shocks?

- **first-order versus second-order effects**
 - an artifact of “extreme risk aversion”?
 - why care?

- **convenient proxies for uncertainty / risk aversion shocks?**
Comment 4: confidence, pessimism

- a theory of time-varying pessimism
- but what about optimism?
- what explains waves of optimism and pessimism?
Comment 5: confidence, sentiment

- this paper (and rest of the literature):
 confidence/sentiment = beliefs of fundamentals

- my own preferred way forward:
 confidence/sentiment = beliefs of economic activity
Concluding remarks

- impressive contribution!
- from basic insights to complete DSGE implementation
- want more on interpretation and explanatory power