Collateral Crises

Gary Gorton
Yale University

Guillermo Ordoñez
Yale University

Second Boston U/Fed Conference on Macro-Finance Linkages
October 29, 2011
Motivation

- Information is at the heart of financial intermediation.
Motivation

- Information is at the heart of financial intermediation.

- Transparency is at the heart of new proposed regulation.
Motivation

- Information is at the heart of financial intermediation.
- Transparency is at the heart of new proposed regulation.
- How information production shapes business cycles and financial crises?
- Should policies induce transparency?
Our Preliminary Answers

- In a world of collateralized short-term debt, information production about the quality of collateral may not be optimal.
Our Preliminary Answers

- In a world of collateralized short-term debt, information production about the quality of collateral may not be optimal.
- Opacity makes it hard to distinguish good from bad collateral.
 - **Benefits:** "Ignorance Credit Boom": Firms with bad collateral get loans that they otherwise would not.
 - **Costs:** "Fragility": Firms with good collateral suffer from small shocks and do not get loans that they otherwise would.
Our Preliminary Answers

- In a world of collateralized short-term debt, information production about the quality of collateral may not be optimal.

- Opacity makes it hard to distinguish good from bad collateral.
 - **Benefits:** "Ignorance Credit Boom": Firms with bad collateral get loans that they otherwise would not.
 - **Costs:** "Fragility": Firms with good collateral suffer from small shocks and do not get loans that they otherwise would.

- Larger "ignorance credit booms", larger crises. Endogenous tail events
Our Preliminary Answers

- In a world of collateralized short-term debt, information production about the quality of collateral may not be optimal.
- Opacity makes it hard to distinguish good from bad collateral.
 - **Benefits:** "Ignorance Credit Boom": Firms with bad collateral get loans that they otherwise would not.
 - **Costs:** "Fragility": Firms with good collateral suffer from small shocks and do not get loans that they otherwise would.
- Larger "ignorance credit booms", larger crises. **Endogenous tail events**
- After crises, recoveries are faster if
 - Without expansionary policies, information is replenished.
 - With expansionary policies, information is NOT replenished.
Some lose evidence

- Jorda, Schularick, Taylor (2011) study 14 developed countries over 140 years (1870-2008)
 - "Our overall result is that credit growth emerges as the single best predictor of financial instability…"
- More recently...
 - Credit boom since 1990s and large credit drop in 2008.
 - Small shock, sudden and large collapse.
Some lose evidence

- Jorda, Schularick, Taylor (2011) study 14 developed countries over 140 years (1870-2008)
 - "Our overall result is that credit growth emerges as the single best predictor of financial instability…"
- More recently…
 - Credit boom since 1990s and large credit drop in 2008.
 - Small shock, sudden and large collapse.
- We test empirically our mechanism is at work behind these relations.
Related Literature

- Financial Intermediation.
 - **Reallocation of funds**: Diamond (85), Boyd and Prescott (86).
 - **Provision of trading securities**: Diamond and Dybvig (83), Gorton and Pennacchi (90), Dang et al (11).

- Macroeconomics and Crises
 - **Magnification and Persistence**: Bernanke, Gertler and Gilchrist (96), Kiyotaki and Moore (97), Krishnamurthy (09)
 - **Fragility**: Diamond and Dybvig (83), Allen and Gale (04), Ordonez (10).
 - **Leverage Cycles**: Geanakoplos (97 and 09).
 - **Information and Asymmetric Cycles**: Veldkamp (06), Ordonez (10).
Related Literature

- Financial Intermediation.
 - **Rereallocation of funds:** Diamond (85), Boyd and Prescott (86).
 - **Provision of trading securities:** Diamond and Dybvig (83), Gorton and Pennacchi (90), Dang et al (11).

- Macroeconomics and Crises
 - **Magnification and Persistence:** Bernanke, Gertler and Gilchrist (96), Kiyotaki and Moore (97), Krishnamurthy (09)
 - **Fragility:** Diamond and Dybvig (83), Allen and Gale (04), Ordonez (10).
 - **Leverage Cycles:** Geanakoplos (97 and 09).
 - **Information and Asymmetric Cycles:** Veldkamp (06), Ordonez (10).

 We provide a theory of fragility, magnification, persistence and asymmetry of cycles, purely driven by information dynamics.
Goods, Information and Agents

- Two goods that can be used to consume or to produce.
 - **Numeraire** (K): Perishable and reproducible.
 - **Land** (X): Non-perishable and non-reproducible.
Goods, Information and Agents

- Two goods that can be used to consume or to produce.
 - **Numeraire** (K): Perishable and reproducible.
 - **Land** (X): Non-perishable and non-reproducible.
 - **Good land**: Generates C units of numeraire (only once).
 - **Bad land**: Generates 0 units of numeraire (only once).
 - Mass 1 of land. A fraction \hat{p} is good.
 - **Symmetric perception** p_i that a unit of land i is good.
 - Whether a unit of land is good or bad can be observed at the beginning of the period at a cost γ (in terms of K).
Goods, Information and Agents

- Two goods that can be used to consume or to produce.
 - **Numeraire** (K): Perishable and reproducible.
 - **Land** (X): Non-perishable and non-reproducible.
 - **Good land**: Generates C units of numeraire (only once).
 - **Bad land**: Generates 0 units of numeraire (only once).
 - Mass 1 of land. A fraction \hat{p} is good.
 - **Symmetric perception** p_i that a unit of land i is good.
 - Whether a unit of land is good or bad can be observed at the beginning of the period at a cost γ (in terms of K).

- Two overlapping generations every period.
 - **Households**: Endowment of K and no projects. ("young")
 - **Firms**: Projects but not enough endowment of K. ("old")
Firms

- Mass 1 of risk neutral individuals ("old" generation).
- They born with L^* (no disutility), but no K.
- Production function of numeraire.

\[
Y = \begin{cases}
A \min\{K, L\} & \text{with prob. } q \\
0 & \text{with prob. } (1-q)
\end{cases}
\]

- Production is efficient ($qA > 1$). Optimal $K^* = L^*$.
Households

- Mass 1 of risk-neutral individuals ("young" generation).
- They born with endowment of numeraire $\bar{K} > K^*$, but no L^*.
- They can lend K to firms and buy land X from firms.
Markets for land and loans

- **Land is traded at the end of the period**
 - If the buyer has all the negotiation power, the land price is pC.

- **Loans are traded at the beginning of the period.**
 - The output of firms is non-contractible.
 - Firms can post a fraction x of land as collateral.
 - Assume lenders break even and $C > K^*$.

Aggregate Consumption

- Consumption at period t of
 - A household lending to firm p and buying a land p.
 \[\bar{K} - K(p) + E(\text{repay}|p) - pC \]
 - A firm with land p.
 \[E(Y|p) - E(\text{repay}|p) + pC \]
Aggregate Consumption

- Consumption at period t of
 - A household lending to firm p and buying a land p.
 \[\bar{K} - K(p) + E(repay|p) - pC\]
 - A firm with land p.
 \[E(Y|p) - E(repay|p) + pC\]
 - Aggregate consumption at period t is.
 \[W_t = \bar{K} + \int_0^1 [E(Y|p) - K(p)]f(p)dp\]
Aggregate Consumption

- Consumption at period t of
 - A household lending to firm p and buying a land p.

$$\overline{K} - K(p) + E(repay|p) - pC$$

- A firm with land p.

$$E(Y|p) - E(repay|p) + pC$$

- First Best aggregate consumption.

$$W^* = \overline{K} + K^*(qA - 1)$$
Information Sensitive Debt

- Firms and lenders learn the true value of collateral.
- Lenders break even and debt is risk free

\[p(qR_{IS} + (1 - q)xC) = \gamma + pK \quad \text{and} \quad R_{IS} =xC \]

Then

\[x = \frac{pK + \gamma}{pC} \]
Information Sensitive Debt - Profits

\[E(\pi|p, IS) \]

\[pK^*(qA - 1) - \gamma \]

\[p_L^I = \frac{\gamma}{K^*(qA - 1)} \]
Information Insensitive Debt

- Nor Firms nor lenders know the true value of collateral.
- Lenders break even and debt is risk free

\[qR_{II} + (1 - q)pxC = K \quad \text{and} \quad R_{II} = pxC \]

Then \(x = \frac{K}{pC} \)

- Loans do not trigger information acquisition if,

\[p[qR_{II} + (1 - q)xC - K] \leq \gamma. \]
Information Insensitive Debt

- Nor Firms nor lenders know the true value of collateral.
- Lenders break even and debt is risk free

\[qR_{II} + (1 - q)pXC = K \quad \text{and} \quad R_{II} = pXC \]

Then \[x = \frac{K}{pC} \]

- Loans do not trigger information acquisition if,

\[K \leq \frac{\gamma}{(1 - p)(1 - q)}. \]
Information Insensitive Debt - Profits

\[p_H = 1 - \gamma K^*(1 - q) \]

\[p_L = \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\gamma}{c(1-q)}} \]

\[E(\pi|p, II) = \frac{\gamma}{(1 - p)(1 - q)}(qA - 1) \]

\[pC(qA - 1) \]

\[K^*(qA - 1) \]
Information Insensitive Debt - Profits
Higher γ implies less information production
Aggregate Consumption

\[W_t = \bar{K} + \int_0^1 K(p)(qA - 1)f(p)dp, \]
Aggregate Consumption

- Now we will study the evolution of this distribution.
- The following analysis holds when types mean revert
Aggregate Consumption

- Now we will study the evolution of this distribution.
- The following analysis holds when types mean revert
- but let’s simplify the exposition
 - Every period, a fraction \((1 - \lambda)\) of land suffers an idiosyncratic shock and becomes good with prob. \(\hat{p}\).
 - The shock is observable. The realization is not.
Aggregate Consumption

\[W_t = \bar{K} + [0f(0) + K(\hat{p})f(\hat{p}) + K^* f(1)](qA - 1), \]
Aggregate Consumption - Information Sensitiveness

\[W_t^{IS} = \bar{K} + [(1 - \lambda)K(\hat{p}) + \lambda\hat{p}K^*](qA - 1) \]
Aggregate Consumption - Information Sensitiveness

$$W_t^{IS} = \bar{K} + \hat{p} K^* (qA - 1) - (1 - \lambda) \gamma < W^*$$
Aggregate Consumption - Information Insensitiveness

\[W_t^{ll} = \bar{K} + [(1 - \lambda)K(\hat{p}) + \lambda\hat{p}K^*](qA - 1) \]
Aggregate Consumption - Information Insensitiveness

\[W_t''' = \bar{K} + [(1 - \lambda^2)K(\hat{p}) + \lambda^2\hat{p}K^*] (qA - 1) \]
Aggregate Consumption - Information Insensitiveness

\[W_t^{II} = \tilde{K} + (1 - \lambda^t (1 - \hat{p})) K^* (qA - 1) \to W^* \]
Aggregate Shocks to Collateral
Aggregate Shocks to Collateral
Aggregate Shocks to Collateral
Numerical Simulations: Profits and Cutoffs

![Graph showing the expected profits and cutoffs.](image-url)
Numerical Simulations: Average Quality of Collateral

\[\eta = 0.97 \]
\[\eta = 0.91 \]
\[\eta = 0.90 \]
Numerical Simulations: Aggregate Consumption

Always produce information about idiosyncratic shocks.
Numerical Simulations: Aggregate Consumption

\[\eta = 0.97 \]

Always produce information about idiosyncratic shocks
Numerical Simulations: Aggregate Consumption

Always produce information about idiosyncratic shocks

$\eta = 0.97$

$\eta = 0.91$
Numerical Simulations: Aggregate Consumption

Always produce information about idiosyncratic shocks

\[\eta = 0.97 \]

\[\eta = 0.90 \]

\[\eta = 0.91 \]
Numerical Simulations: Standard Deviation of Beliefs

\[
\eta = 0.97
\]

\[
\eta = 0.91
\]

\[
\eta = 0.90
\]
A Planner

- Assume a planner that maximizes the discounted utility of cohorts

\[U_t = E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} W_t. \]

- Optimal range of information production is wider.

- The planner can implement the optimum by subsidizing a fraction \(\beta \lambda \) of the information cost \(\gamma \).
A Planner: Cutoffs

\[V_{IS} \]

effective monitoring cost = \(\gamma (1 - \beta \lambda) \)
Preventive Policies

- The possibility of a negative aggregate shock **does not always justify acquiring information**, reducing current output to insure against potential reductions in future output.
Preventive Policies

- The possibility of a negative aggregate shock does not always justify acquiring information, reducing current output to insure against potential reductions in future output.

- Under certain conditions (guaranteed if $\eta > \hat{\rho}$), incentives to acquire information increase with
 - The likelihood of the expected shock.
 - The size of the expected shock.
Ex-post Policies

- **Collateral Policies:**
 - Restore \hat{p}. *e.g.*, buy and guarantee collateral.
 - More effective when information is not produced.

- **Lending Policies:**
 - Avoid information acquisition. *e.g.*, subsidizing firm loans.
 - More effective in the presence of collateral policies.
Collateral Policies with Information

\[\eta = 0.97 \]

\[\eta = 0.90 \]

\[\eta = 0.91 \]

Always produce information about idiosyncratic shocks
Collateral Policies without Information

Always produce information about idiosyncratic shocks

\[\eta = 0.90 \]

\[\eta = 0.97 \]

\[\eta = 0.91 \]
Endogenous Security Structure

- Complex securities arise endogenously to increase borrowing.

- Assume two firms, one with land $p_1 = 1$ and the other $p_2 = 0.7$.
 How to increase expected borrowing?

- Pooling.
 - No pooling: II for p_1, borrowing K^*. IS for p_2, borrowing $0.7K^*$.
 - Pooling: II for expected quality $\bar{p} = 0.85$, borrowing $2K(\bar{p}) > 1.7K^*$

- More complexity (higher γ).
 - A higher γ that moves $p_H \leq 0.85$ implies total borrowing of $2K^*$.
A Real Source of a Credit Crunch

- A reduction in the success probability q can lead to a credit crunch.
A Real Source of a Credit Crunch

- A reduction in the success probability q can lead to a credit crunch.

$$\hat{p} = 1 - \frac{\gamma}{K^*(1-q)}$$

$$p^H = 1 - \frac{\gamma}{K^*(1-q)}$$

$$pK^*(qA - 1) - \gamma$$

$$\frac{\gamma}{(1-q)(1-p)}(qA - 1)$$
Final Remarks

- Information insensitive debt may be socially desirable, but it is vulnerable to a sudden loss of confidence in its insensitiveness.

- Macroeconomic implications:
 - Longer and larger "ignorance credit booms" generate more fragility and larger crises.
 - Recoveries.
 - NO expansionary policies: Information speeds up recoveries.
 - Expansionary policies: Information delays recoveries.

- Dispersion of beliefs (and of credit and production) is endogenous.
 We tested this implication of the mechanism empirically.
Extensions

- Endogenous complex securities.

- Crises without shocks, just decreasing marginal productivity.

- Optimal information production when collateral is productive?