Liquidity Traps and Monetary Policy: Managing a Credit Crunch

Buera and Nicolini

Discussant: Virgiliu Midrigan
Overview

- Study monetary/fiscal policies after credit crunch at ZLB
 - no sticky prices
 - heterogeneous entrepreneurs collateral constrained
 - tighter constraint affects productive, reduces TFP, Y

- Study 2 policies:
 1. No monetary intervention: deflation, then inflation
 - costly if nominal debt – redistributes away from productive
 2. Constant, low inflation target
 - Less misallocation – lower TFP decline, less severe recession
 - Prevent real rate from declining, prolong recession
Intuition from real model, Moll 2012

- Entrepreneurs heterogeneous in productivity, z:

$$\max_{c_t, a_{t+1}} \sum_{t=0}^{\infty} \beta^t \log(c_t)$$

- Technology: $y_t = z k_t$. Friction: $k_t \leq \lambda a_t$, $\lambda \geq 1$

- Budget constraint:

$$c_t + a_{t+1} = \max_k (z - r_t) k_t + (1 + r_t) a_t$$

- Solution: $k_t = \lambda a_t$ for $z > r_t$, 0 otherwise

- Return on a:

$$R_t(z) = \lambda \max(z - r_t, 0) + 1 + r_t$$
Intuition from real model, Moll 2012

$$\max_{c_t, a_{t+1}} \sum_{t=0}^{\infty} \beta^t \log(c_t)$$

s.t.

$$c_t + a_{t+1} = R_t(z) a_t$$

- Solution: $a_{t+1} = \beta R_t(z) a_t$
Intuition from real model, Moll 2012

- Equilibrium r_t given $g_t(z, a)$

$$
\int_z \int_a k_t(z, a) g_t(z, a) \, da \, dz + B_t = \int_z \int_a a g_t(z, a) \, da \, dz = A_t
$$

$$
\lambda \int_{z \geq r_t} \int_a a g_t(z, a) \, da \, dz = A_t - B_t
$$

- Higher B – higher r
Intuition from real model, Moll 2012

• Equilibrium \(r_t \) given \(g_t(z, a) \)

\[
\int z \int_a k_t(z, a) g_t(z, a) \, da \, dz + B_t = \int z \int_a a g_t(z, a) \, da \, dz = A_t
\]

\[
\lambda \int_{z \geq r_t} \int_a a g_t(z, a) \, da \, dz = A_t - B_t
\]

• Higher \(B \) – higher \(r \)
Intuition from real model, Moll 2012

- Higher B – higher r

- Two effects on Y:
 - higher TFP – unproductive drop out
 - lower K – high r reduces $R_t(z) = \lambda(z - r_t) + 1 + r_t$
 - overall reduces Y
Monetary model

- Flex. prices: \((\Delta M, i)\) alone small effect on allocations
 - But fiscal policy \((\Delta B)\) changes \(r\)

- Suppose \(r^* < 0\) – e.g. constrained economy

- Suppose \(\pi = 0\) – bad monetary policy
 - ZLB \((i \geq 0)\) implies \(r \geq -\pi = 0 > r^*\)
 - Need to increase \(B\) to implement \(i = 0\) and \(\pi = 0\):
 - Higher \(r\) implies drop in \(Y\) relative to \(r = r^*\)
Key lessons:

• Strict low π targeting bad idea
 • With ZLB, does not allow r to adjust
 • Amplifies effect of credit crunch

• Tradeoff btw current and future Y declines

• Nature of government transfers important
Comparison to NK models: inflation

- NK models: \(\pi_t = \kappa y_t + \beta \pi_{t+1} \)

- Low inflation due to price stickiness + lack of commitment
 - not poor choice of M.P.

- Question in NK: what is optimal policy given constraints?

- BN: ZLB not an actual constraint on policy
 - E.g., choose high \(i \) and low \(\pi \) – same \(r \)
 - Friedman rule optimal
 - Unlike NK, no distortions from non-zero \(\pi \)
 - Such distortions motivate \(\pi \) targeting in NK models

- But very similar lesson: want higher inflation at ZLB
Comparison to NK model: ↑ Fed balance sheet

- NK models: banks constrained, don’t lend entrepreneurs
 - E.g. Gertler-Karadi: \(k_t \leq \lambda a_t \), \(k_t \) bank loans
 - Implies \(R_{k,t} - r_t \) higher when lower \(\lambda a_t \)
 - Direct Fed loans reduce spreads: \(K = k^{bank} + k^{Fed} \)
 - Rationale for MBS etc. purchases

- BN would work similarly:
 - Lump-sum transfers vs. transfers targeted to entrepreneurs
 - Even lower \(Y \) declines if target to high \(z \)

- High debt, \(r \) not necessarily bad – inefficient transfers are
Questions, comments

- What is role of transaction frictions?
 - Are Y, K, TFP responses affected?
 - Cashless limit?

- What is optimal policy?
 - Uninteresting in current version: lots instrum., commit.
 - No cost inflation
 - Restrict instruments and study optimal responses
 - Model source of $k \leq \lambda a_t$, cost of π
Questions, comments

- Study optimal monetary policy \((M, i)\) given fiscal \((B)\)

- Are CRS, no uncertainty important for results?
 - high \(z\) never grows out of credit constraint
 - high \(r\) unambiguously increases spreads
 - with DRS high \(r\) allows to quicker grow out of CC?
 - Bewley-Ayagari-McGrattan intuition on optimal \(B\) and \(r\)?
Questions, comments

- Take a stand: positive or normative?
 - Study policy in an alternative non-NK environment?
 - Or argue model describes recent U.S. experience?
 - low π, high debt?
 - and therefore Fed made bad mistakes
 - contrary to what NK model suggests
 - quantitative evidence BN vs. NK?
BN recession
U.S. recession

Output

Labor

Capital

TFP adj
Conclusions

• Overall: excellent, important paper

 • Closed-form solutions show mechanism very transparently
 • Explicitly model source of ZLB, decline \(r^* \)
 • Important interactions btw \(\pi \) and \(r^* \)
 • Raises lots of interesting questions

• One of few to explicitly introduce heterogeneity in monet. model

 • Striking feature recession: differential responses to CC
 • Model can inform on how M.P. can deal with heterogeneity