Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates

Eric T. Swanson John C. Williams

Federal Reserve Bank of San Francisco

BU-Boston Fed Macro-Finance Conference
Federal Reserve Bank of Boston
December 1, 2012
Three Motivating Observations

1. New Keynesian IS curve:

\[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]

\[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]
Three Motivating Observations

1. New Keynesian IS curve:

\[
y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t
\]

\[
= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t
\]
Three Motivating Observations

1. New Keynesian IS curve:

\[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]

\[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]

2. Brian Sack: “The best measure of the stance of monetary policy is the 2-year Treasury yield.”
Three Motivating Observations

1. **New Keynesian IS curve:**

 \[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]

 \[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]

2. **Brian Sack:** “The best measure of the stance of monetary policy is the 2-year Treasury yield.”

3. **The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:**
Three Motivating Observations

1. New Keynesian IS curve:

\[y_t = E_t y_{t+1} - \alpha r_t + \varepsilon_t \]

\[= -\alpha E_t \sum_{j=0}^{\infty} r_{t+j} + \varepsilon_t \]

2. Brian Sack: “The best measure of the stance of monetary policy is the 2-year Treasury yield.”

3. The zero lower bound is not a substantial constraint on monetary policy if the central bank can affect longer-term interest rates:
 - Gürkaynak, Sack, and Swanson (2005):
 60–90% of the response of 2- to 10-year Treasury yields to FOMC announcements is due to statement, not funds rate
2-Year Treasury Yield $\gg 0$ for Much of 2008–10
2-Year Treasury Yield $\gg 0$ for Much of 2008–10
Questions We Address

- Was the ZLB a substantial constraint on monetary policy? —e.g., was the 2-year Treasury yield constrained?
- If so, when?
- And how severely?
Questions We Address

- Was the ZLB a substantial constraint on monetary policy?—e.g., was the 2-year Treasury yield constrained?
- If so, when?
- And how severely?

Implications for fiscal as well as monetary policy:
- Several papers show fiscal multiplier larger when ZLB binds (Christiano-Eichenbaum-Rebelo 2011, Erceg-Lindé 2010, Eggertsson-Krugman 2011)
- But did ZLB constrain yields that matter for private-sector spending?
Empirical:
- We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
- And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.
What We Do

1. Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

2. Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results
Empirical:
- We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
- And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

Modeling:
- Simple NK model with ZLB motivates empirical specification
- Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:
What We Do

1. Empirical:
 - We compute the sensitivity of interest rates of various maturities to macroeconomic news in normal times (1990–2000)
 - And compare it to the sensitivity of those yields to news when the ZLB may have been a constraint.

2. Modeling:
 - Simple NK model with ZLB motivates empirical specification
 - Shows ZLB able to explain all of our results

The level of yields alone is not a good measure of ZLB constraint:
- No way to measure severity or statistical significance —e.g., is a 50 bp 2-year Treasury yield constrained or not?
- Crowding out, fiscal multiplier determined by *response* of yields to fiscal policy, not *level* of yields
- Effective lower bound may be $\gg 0$, e.g. 50bp in the UK
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

\[\Delta y_t = \alpha + \beta X_t + \varepsilon_t \]
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

\[\Delta y_t = \alpha + \beta X_t + \varepsilon_t \]

- Regression is at daily frequency.
- \(\Delta y_t \) denotes one-day change in Treasury yield on date \(t \).
- \(X_t \) is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date \(t \).
- \(\varepsilon_t \) denotes effects of other news and other factors on yields.
Measuring Treasury Yield Sensitivity to News

Measure Treasury yield sensitivity to news in normal times using a high-frequency regression:

\[\Delta y_t = \alpha + \beta X_t + \varepsilon_t \]

- regression is at daily frequency
- \(\Delta y_t \) denotes one-day change in Treasury yield on date \(t \)
- \(X_t \) is a vector of surprises in macroeconomic data releases (GDP, CPI, nonfarm payrolls, etc.) on date \(t \)
- \(\varepsilon_t \) denotes effects of other news and other factors on yields

Surprise component of data release: \(x_t - E_{t-1} x_t \).

Market expectation of macroeconomic data releases measured by Money Market Services, Bloomberg surveys.
Measuring Time-Varying Sensitivity to News

Time-varying sensitivity version:

$$\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t$$

where δ^i scalar, $i \in 1990, 1991, \ldots, 2012$.
Measuring Time-Varying Sensitivity to News

Time-varying sensitivity version:

\[\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \]

where \(\delta^i \) scalar, \(i \in 1990, 1991, \ldots, 2012 \).

- Assumption: *relative* responses \(\beta \) constant over time
- Estimate \(\delta^i, \beta \) by nonlinear least squares
- Normalize \(\delta^i \) so that average \(\delta^i \) from 1990–2000 is 1
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th></th>
<th>3-month</th>
<th>2-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Util.</td>
<td>0.72</td>
<td>1.48</td>
<td>0.83</td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76</td>
<td>1.37</td>
<td>0.88</td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40</td>
<td>1.91</td>
<td>1.27</td>
</tr>
<tr>
<td>GDP</td>
<td>0.93</td>
<td>1.44</td>
<td>0.98</td>
</tr>
<tr>
<td>Initial Claims</td>
<td>-0.30</td>
<td>-1.10</td>
<td>-0.98</td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24</td>
<td>2.74</td>
<td>2.02</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84</td>
<td>0.66</td>
<td>0.52</td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06</td>
<td>4.84</td>
<td>2.96</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84</td>
<td>1.87</td>
<td>1.60</td>
</tr>
<tr>
<td>Unemployment</td>
<td>-1.23</td>
<td>-1.26</td>
<td>-0.35</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Observations</td>
<td>2747</td>
<td>2747</td>
<td>2747</td>
</tr>
<tr>
<td>R^2</td>
<td>.08</td>
<td>.17</td>
<td>.10</td>
</tr>
<tr>
<td>$H_0 : \beta = 0$, p-value</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
</tr>
</tbody>
</table>
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th></th>
<th>3-month</th>
<th></th>
<th>2-year</th>
<th></th>
<th>10-year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Util.</td>
<td>0.72</td>
<td>1.48</td>
<td>0.83</td>
<td>2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76</td>
<td>1.37</td>
<td>0.88</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40</td>
<td>1.91</td>
<td>1.27</td>
<td>3.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.93</td>
<td>1.44</td>
<td>0.98</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Claims</td>
<td>−0.30</td>
<td>−1.10</td>
<td>−0.98</td>
<td>−5.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24</td>
<td>2.74</td>
<td>2.02</td>
<td>5.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84</td>
<td>0.66</td>
<td>0.52</td>
<td>1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06</td>
<td>4.84</td>
<td>2.96</td>
<td>6.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84</td>
<td>1.87</td>
<td>1.60</td>
<td>4.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment</td>
<td>−1.23</td>
<td>−1.26</td>
<td>−0.35</td>
<td>−0.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Observations</td>
<td>2747</td>
<td>2747</td>
<td>2747</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.08</td>
<td>.17</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H_0 : \beta = 0$, p-value</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H_0 : \beta$ constant, p-value</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nonlinear Regression Results for β, 1990–2012

<table>
<thead>
<tr>
<th></th>
<th>3-month</th>
<th>2-year</th>
<th>10-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Util.</td>
<td>0.72</td>
<td>1.48</td>
<td>0.83</td>
</tr>
<tr>
<td>Consumer Conf.</td>
<td>0.76</td>
<td>1.37</td>
<td>0.88</td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.40</td>
<td>1.91</td>
<td>1.27</td>
</tr>
<tr>
<td>GDP</td>
<td>0.93</td>
<td>1.44</td>
<td>0.98</td>
</tr>
<tr>
<td>Initial Claims</td>
<td>−0.30</td>
<td>−1.10</td>
<td>−0.98</td>
</tr>
<tr>
<td>ISM Manufact.</td>
<td>1.24</td>
<td>2.74</td>
<td>2.02</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>0.84</td>
<td>0.66</td>
<td>0.52</td>
</tr>
<tr>
<td>Nonfarm Payrolls</td>
<td>3.06</td>
<td>4.84</td>
<td>2.96</td>
</tr>
<tr>
<td>Retail Sales</td>
<td>0.84</td>
<td>1.87</td>
<td>1.60</td>
</tr>
<tr>
<td>Unemployment</td>
<td>−1.23</td>
<td>−1.26</td>
<td>−0.35</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Observations</td>
<td>2747</td>
<td>2747</td>
<td>2747</td>
</tr>
<tr>
<td>R^2</td>
<td>.08</td>
<td>.17</td>
<td>.10</td>
</tr>
<tr>
<td>$H_0 : \beta = 0$, p-value</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-16}$</td>
</tr>
<tr>
<td>$H_0 : \beta$ constant, p-value</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$H_0 : \delta$ constant, p-value</td>
<td>$< 10^{-16}$</td>
<td>$< 10^{-10}$</td>
<td>.016</td>
</tr>
</tbody>
</table>
To study time-varying \(\delta \) in finer detail, run daily rolling regressions:

Estimate:

\[
\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t
\]

(*)
Motivation

Empirical Framework

Main Results

Discussion

Conclusions

Rolling Regressions

\[\Delta y_t = \alpha_i + \delta^i \beta X_t + \varepsilon_t \] \hspace{1cm} (*)

To study time-varying \(\delta \) in finer detail, run daily rolling regressions:

- Use \(\hat{\beta} \) from (*) to define “generic surprise” regressor \(\hat{\beta} X_t \)
- Estimate:
 \[\Delta y_t = \alpha^\tau + \delta^\tau \hat{\beta} X_t + \varepsilon_t \]

 where sample is 1-year rolling window centered around date \(\tau \)
- When \(\tau = \) midpoint of year \(i \), then \(\delta^\tau \) agrees with \(\delta^i \)
Rolling Regressions

\[\Delta y_t = \alpha^i + \delta^i \beta X_t + \varepsilon_t \] \hfill (*)

To study time-varying \(\delta \) in finer detail, run daily rolling regressions:

- Use \(\hat{\beta} \) from (*) to define “generic surprise” regressor \(\hat{\beta} X_t \)
- Estimate:
 \[\Delta y_t = \alpha^\tau + \delta^\tau \hat{\beta} X_t + \varepsilon_t \]
 where sample is 1-year rolling window centered around date \(\tau \)
 - When \(\tau = \) midpoint of year \(i \), then \(\delta^\tau \) agrees with \(\delta^i \)

Account for 2-stage sampling uncertainty in rolling regressions:

- Use standard errors for \(\delta^i \) in (*) as benchmarks
- Interpolate between them using estimates for \(\delta^\tau \)
Time-Varying Sensitivity δ^τ, 3-month Treasury

(a) 3-Month Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^τ, 6-month Treasury

(b) 6-Month Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^τ, 1-year Treasury
Time-Varying Sensitivity δ^τ, 2-year Treasury

(d) 2-Year Treasury Yield Sensitivity to News
Time-Varying Sensitivity δ^τ, 5-year Treasury
Time-Varying Sensitivity δ^τ, 10-year Treasury
Private-Sector Expectations of Funds Rate “Liftoff”

Why were 1- and 2-year Treasury yields so responsive to news from 2008–2010?
Private-Sector Expectations of Funds Rate “Liftoff”

Why were 1- and 2-year Treasury yields so responsive to news from 2008–2010?

Look at private sector expectations of funds rate “liftoff”:
- Blue Chip survey
- interest rate options
- Eurodollar futures
Private-Sector Expectations of Funds Rate “Liftoff”

Blue Chip Consensus expectation, time until first funds rate increase:

FOMC issues "mid-2013" guidance
Private-Sector Expectations of Funds Rate “Liftoff”

One-year-ahead implied probability distribution for federal funds rate, derived from options, on November 2, 2011:
Private-Sector Expectations of Funds Rate “Liftoff”

Probability of funds rate < 50bp in 5 quarters, from options:
Monetary Policy Expectations from Eurodollar Futures

(b) 2 to 3-Quarter-Ahead Eurodollar Future Sensitivity to News

(c) 3 to 4-Quarter-Ahead Eurodollar Future Sensitivity to News

(d) 4 to 5-Quarter-Ahead Eurodollar Future Sensitivity to News

(e) 5 to 6-Quarter-Ahead Eurodollar Future Sensitivity to News
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?

(e) 5-Year Treasury Yield Sensitivity to News

(f) 10-Year Treasury Yield Sensitivity to News

In the illustrative model, all yields are attenuated by the ZLB (although longer-term yields are attenuated less)
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?

In the illustrative model, all yields are attenuated by the ZLB (although longer-term yields are attenuated less)
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?

Forward Guidance:
- Eggertsson-Woodford (2003), Reifschneider-Williams (2000)
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?

Forward Guidance:
- Eggertsson-Woodford (2003), Reifschneider-Williams (2000)

Federal Reserve’s long-term bond purchases:
- 11/25/08: $500B MBS, $100B GSE
- 3/18/09: $750B MBS, $100B GSE, $300B Treasuries
- 11/3/10: $600B Treasuries
- 9/21/11: $400B “Operation Twist”
Federal Reserve Long-Term Bond Purchases

Why are 5-, 10-year Treasuries so sensitive to news in 2010–12?

Forward Guidance:
- Eggertsson-Woodford (2003), Reifschneider-Williams (2000)

Federal Reserve’s long-term bond purchases:
- 11/25/08: $500B MBS, $100B GSE
- 3/18/09: $750B MBS, $100B GSE, $300B Treasuries
- 11/3/10: $600B Treasuries
- 9/21/11: $400B “Operation Twist”

Theoretical and empirical studies:
Implications for the Fiscal Multiplier

(A) Liftoff expected sooner
(B) Liftoff expected later

This paper: 2008–10 look like scenario A

\[t_0, t_A, t_B \]
Implications for the Fiscal Multiplier

A) liftoff in 4 qtrs. \implies multiplier same as normal (CER 2011)

B) liftoff in 8 qtrs. or more \implies large multiplier (CER 2011)
Implications for the Fiscal Multiplier

(A) Liftoff expected sooner
(B) Liftoff expected later

A) liftoff in 4 qtrs. \(\Rightarrow\) multiplier same as normal (CER 2011)
B) liftoff in 8 qtrs. or more \(\Rightarrow\) large multiplier (CER 2011)
This paper: 2008–10 look like scenario A
Conclusions

What we do:

- **Test** whether interest rates are responding normally to news.
- Measure the **degree** to which interest rates are attenuated.

What we find:

- 1- and 2-year Treasury yields were surprisingly responsive to news throughout 2008–10.

What we conclude:

- Effectiveness of monetary and fiscal policy likely close to normal throughout 2008–10.
- Zero lower bound a more severe constraint since mid-2011.