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Abstract
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it had imperfect knowledge about the structure of the U.S. economy and it was subject
to data misperceptions since the real-time data flow did not capture the true state of
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1 Introduction

There are three strands of narratives about the Great Inflation and the Great Moderation

in the academic literature. At opposite ends of the spectrum are the good/bad luck and

good/bad policy stories. The 1970s were a time of economic upheaval with strong and

persistent exogenous shocks that occurred with high frequency. It was simply bad luck to

have been a central banker at that time since despite best intentions the incidence of shocks

was too much for the central banker’s arsenal to handle. When the 1980s came around,

however, the reduced incidence and persistence of shocks rang in the Great Moderation.

This view is exemplified by Sims and Zha (2006). An almost orthogonal narrative argues

that the Federal Reserve conducted bad policy in the 1970s in that was not aggressive enough

in fighting inflation. It is only through Volcker’s disinflation engineered through a high-

interest rate policy that the Great inflation was reigned in. This bad policy view has been

advocated by Clarida, Gali, and Gertler (2000) and subsequently Lubik and Schorfheide

(2004). A third narrative, typically associated with Orphanides (2001), relies on the idea

that the Federal Reserve did not perceive the economic scenario of the 1970s correctly. Data

misperceptions led it to implement policies that delivered bad outcomes and that were only

abated in the 1980s with a better understanding of the state of the world.

Our paper attempts to integrate the bad policy narrative with the data misperception

narrative. More specifically, we provide an explanation why the Federal Reserve, almost

unwillingly, engaged at first in policy that led to bad outcomes (the Great Inflation), but

subsequently pursued monetary policy resulting in good outcomes (the Great Moderation).

We show that what appears in the data as invariably good and bad outcomes is the result

of an optimal policy problem under imperfect information. In doing so, we also combine

various recent contributions to the empirical and theoretical macroeconomic literature on

learning.

We take as a starting point the observation by Orphanides (2001) that the Federal

Reserve did not perceive the productivity slowdown as it was occurring during the 1970s.

We capture data misperception by assuming that the Federal Reserve observes all data

with error. We then follow Primiceri (2006) and assume additionally that the central bank

does not know the true data-generating process. It thus gathers information by estimating

a restricted reduced-form VAR and updates its beliefs about the state of the world and

the underlying economic model using least-squares learning. The linear-quadratic optimal

policy problem and its solution for a time-consistent policy is taken from Primiceri (2006).
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Private sector behavior is captured by a typical New Keynesian framework that is close

to that in Lubik and Schorfheide (2004) for reference purposes. The private sector knows

the current period monetary policy rule, forms rational expectations conditional on that

rule, and takes the central bank’s policy rule as given. The optimal policy rule derived

from the central bank’s policy problem thus completes the private sector system, which

together results in a rational expectations model. The original source for indeterminacy,

that is, for multiple solutions, possibly involving sunspots, that arise from the rational

expectations systems is the same as in Bullard and Mitra (2002), Woodford (2003), and

Lubik and Schorfheide (2004); to wit, a violation of the Taylor principle. In the face of

inflationary pressures the central bank is not aggressive enough in raising the real rate of

interest through its control of the nominal interest rate. As shown in these papers, the

violation of the Taylor principle can be tied to the value of the policy coeffi cients in a

(linear) interest-rate rule.

In this paper, we thus provide a rationale for why the central bank may choose policy co-

effi cients that inadvertently induce indeterminate outcomes. Given the learning mechanism

and the misperception of the data due to measurement issues, the estimated coeffi cients

of the central bank’s reduced-form model and thus the optimal policy coeffi cients change

period-by-period. The rational expectations equilibrium that arises each period is either

unique or indeterminate given the policy rule in place that period. It is the endogenous

shifts of the policy rule for fixed private sector parameters that move the economy across

the threshold between the determinate and indeterminate regions of the parameter space.

‘Bad policy’, that is, indeterminacy, arises not because of intent but because of data mis-

measurement and incomplete knowledge of the economy on behalf of the central bank.

We estimate the model using Bayesian methods on real-time and final data. Our find-

ings confirm the pattern of indeterminacy and determinacy during, respectively, the Great

Inflation and the Great Moderation as identified by Lubik and Schorfheide (2004). Yet, it

is rationalized by data misperception as argued by Orphanides (2001) and by learning as

argued by Primiceri (2006). Federal Reserve policy led to indeterminate outcomes especially

during the second half of the 1970s and before Volcker’s disinflation took hold. Afterwards,

during the Volcker-Greenspan period, endogenous policy under learning with measurement

error led to determinate outcomes in the Great Moderation. The driver for these results is

the extent of data revisions, and thus, the ex-post implied data misperception. We identify

two especially prominent turning points when the initially observed output decline turned

out to be much less dramatic following the revision. In other words, the Federal Reserve
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was confronted with a situation where a decline in growth implied a lessening of inflation-

ary pressures and a commensurately softer policy. Since the output decline was perceived

and the real economy in much better shape than believed, the Federal Reserve unwittingly

violated the Taylor principle.

Traditionally, DSGE models for the analysis of monetary policy have been estimated

using final data. It is only very recently that the importance of real-time data for un-

derstanding monetary policy decisions is being considered in this literature.1 Collard and

Dellas (2010) demonstrate in an, albeit calibrated2, New Keynesian DSGE model that mon-

etary misperceptions, interpreted as the difference between real-time and revised data, are

an important driver of observed economic fluctuations through a monetary policy trans-

mission channel. They also show that this imparts endogenous persistence on inflation

dynamics without the need to introduce exogenous sources, such as price indexation. Neri

and Ropele (2011) substantiate these insights by estimating a similar model for Euro area

real-time data using Bayesian Methods. Specifically, they find that data misperceptions

lead to higher estimated interest-rate smoothing coeffi cients than in the standard model,

which parallels our results as being one of the drivers of the switch between indeterminacy

and determinacy in the early 1980s.

These papers model monetary policy in terms of an ad-hoc Taylor-type interest-rate

feedback rule. This assumption is by definition not designed to address the question that is

central to the Lubik and Schorfheide (2004) interpretation of the Great Inflation, namely,

why a central bank would, in fact, choose an apparently suboptimal policy that leads to

indeterminacy. For this to happen, as we show in this paper, the central bank needs to

face both model and data uncertainty. Pruitt (2012) develops a model along these lines by

modifying Sargent, Williams, and Zha (2006) to take account of the real-time data issue

that the Federal Reserve faced in the 1970s and 1980s on top of a learning framework.

He shows that data misperceptions introduce sluggishness into the learning process which

can jointly explain the persistent rise of inflation in the 1970s and the ensuing fall in the

1980s as the Federal Reserve gained a better understanding of the underlying true model.

Pruitt’s model is very much reduced form, in which the central bank chooses inflation and

1This is notwithstanding earlier contributions, such as Orphanides and Williams (2005), which use
reduced-form models and non-system based empirical methods to understand the implications of data mis-
perceptions.

2Collard, Dellas, and Smets (2009) estimate this model using Bayesian methods and find strong support
in terms of overall fit for the data mismeasurement specification. However, they do not use real-time data
in their estimation. Consequently, measurement error takes on the role of a residual that is not disciplined
by the relevant, namely real-time data in the empirical model.
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unemployment directly by minimizing quadratic loss in these two variables subject to a

backward-looking and not micro-founded Phillips-curve relationship. He therefore cannot

address the issue of indeterminacy during the Great Inflation and does not link his results

to observed interest-rate policies; that is, the Volcker disinflation in terms of a sharp Federal

Funds rate hike is absent.3

Our paper also connects with the recent and emerging literature on regime-switching in

macroeconomics. Following the contributions of Sims and Zha (2006), Davig and Leeper

(2007), and Farmer, Waggoner, and Zha (2009) who study Markov-switching in the para-

meters of a structural VAR and in the coeffi cients of a monetary policy rule, Bianchi (2013),

Davig and Doh (2013) and Liu, Waggoner and Zha (2011) estimate regimes and coeffi cients

within the context of New Keynesian models. Generally, they find evidence of a regime

shift in the early 1980s and in the early 1970s, thus supporting the argument in Lubik and

Schorfheide (2004) who imposed these break dates exogenously. What the authors do not

allow for is the possibility of indeterminacy. High inflation is the outcome of a higher infla-

tion target and a weaker policy response. Moreover, in this line of research the emphasis

is on identifying the break endogenously within the confines of a DSGE model, whereas

our paper proposes an explanation and a microfoundation for why these regime switches

occurred.

The paper is structured as follows. The next section presents a simple example of the

mechanism that we see at work. We first discuss determinate and indeterminate equilibria in

a simple rational expectations model and then show how a least-squares learning mechanism

can shift the coeffi cient that determines outcomes across the determinacy boundaries. We

present our theoretical model in section 3 and discuss the timing and information assump-

tions in detail. We also explain how we compute equilibrium dynamics in our framework,

and how we choose indeterminate equilibria. Section 4 discusses data and estimation is-

sues. Section 5 presents the baseline estimation results, while section 6 contains a bevy of

robustness checks. Section 7 concludes and lays out a path for future research.

2 A Primer on Indeterminacy and Learning

Methodologically, the argument in our paper rests on two areas in dynamic macroeconomics,

namely the determinacy properties of linear rational expectations models and the dynamic

3 In a more recent contribution, Givens and Salemi (2013) estimate a simple forward-looking New Keyne-
sian framework with real-time data and data misperception. The central bank solves optimal policy under
discretion, but does not have to learn the structure of the economy. They only estimate the model from the
early 1980s on and do not consider indeterminate equilibria.
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properties of least-square learning. In this section, we introduce and discuss these issues

by means of a simple example. The key points that we want to emphasize are: first,

whether a rational expectations equilibrium is determinate or indeterminate depends on the

values of structural parameters; second, in a learning environment the values of the inferred

underlying structural parameters are time varying. By connecting these two concepts we

can develop a rationale for the behavior of the Federal Reserve during the Great Inflation of

the 1970s and in later periods. The discussion of equilibrium determinacy borrows a simple

framework from Lubik and Surico (2010), while the exposition of least-squares learning

borrows from Evans and Honkapohja (2001).

2.1 Determinate and Indeterminate Equilibria

We consider a simple expectational difference equation:

xt = aEtxt+1 + εt, (1)

where a is a structural parameter, εt is a white noise process with mean zero and variance σ2,

and Et is the rational expectations operator conditional on information at time t. A solution

to this equation is an expression that does not contain any contemporaneous endogenous

variables and that depends only on exogenous shocks and lagged values of the variables in

the information set. The type of such a reduced-form solution depends on the value of the

parameter a.

If |a| < 1 there is a unique (‘determinate’) solution which is simply:

xt = εt. (2)

This solution can be found by iterating the equation (1) forward. Imposing covariance sta-

tionarity as an equilibrium concept for rational expectations models and utilizing transver-

sality arguments then result in this expression. Substituting the determinate solution into

the original expectational difference equation verifies that it is, in fact, a solution.

On the other hand, if |a| > 1, there are multiple solutions and the rational expectations

equilibrium is indeterminate. In order to derive the entire set of solutions we follow the

approach developed by Lubik and Schorfheide (2003). We rewrite the model by introducing

endogenous forecast errors ηt = xt − Et−1xt, which by definition have the property that
Et−1ηt = 0, and thereby impose restrictions on the set of admissible solutions. Define

ξt = Etxt+1 so that equation (1) can be rewritten as:

ξt =
1

a
ξt−1 −

1

a
εt +

1

a
ηt. (3)
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We note that under the restriction that |a| > 1 this is a stable difference equation in its

deterministic part, where the process for ξt is driven by the exogenous shock εt and the

endogenous error ηt. Any covariance-stationary stochastic process for ηt is a solution for

this model since there are no further restrictions on the evolution of the endogenous forecast

error ηt.
4

In general, the forecast error can be expressed as a linear combination of the model’s fun-

damental disturbances and extraneous sources of uncertainty, typically labeled ‘sunspots’.

We can therefore write:

ηt = mεt + ζt, (4)

where the sunspot ζt is a martingale-difference sequence, and m is an unrestricted parame-

ter.5 Substituting this into equation (3) yields the full solution under indeterminacy:

xt =
1

a
xt−1 +mεt −

1

a
εt−1 + ζt. (5)

The evolution of xt now depends on an additional (structural) parameter m which indexes

specific rational expectations equilibria.

Indeterminacy affects the behavior of the model in three main ways. First, indeter-

minate solutions exhibit a richer lag structure and more persistence than the determinate

solution. This feature can be exploited for distinguishing between the two types of rational

expectations equilibria for a given model. In the simple example, this is fairly obvious: un-

der determinacy the solution for xt is white noise, while under indeterminacy the solution

is described by an ARMA(1,1) process. Specifically, the (composite) error term exhibits

both serial correlation and a different variance when compared to the determinate solution.

Second, under indeterminacy sunspot shocks can affect equilibrium dynamics. Other things

being equal, data generated by sunspot equilibria are inherently more volatile than their

determinate counterparts. The third implication is that indeterminacy affects the response

of the model to fundamental shocks, whereas the response to sunspot shocks is uniquely

determined. In the example, innovations to εt could either increase or decrease xt depending

on the sign of m.

What is important for the purposes of our paper is that the nature and properties of the

equilibrium can change when the parameter a changes in such a way that it moves across

4 In the case of determinacy, the restriction imposed is that ξt = 0, ∀ t, which implies ηt = εt.
5There is a technical subtlety in that ζt is, in the terminology of Lubik and Schorfheide (2003), a reduced-

form sunspot shock, with ζt = mζζ
∗
t , with mζ a structural parameter and ζ∗t a structural sunspot shock.

Setting mζ = 0 would therefore result in a sunspot equilibrium without sunspots. Moreover, in less simple
models, there would be additional restrictions on the coeffi cients since they depend in general on other
structural parameters.
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the boundary between determinacy and indeterminacy, which is given by |a| = 1. The

simple example assumes that the parameter a is fixed. Our argument about indeterminacy,

namely that it is caused by the central bank’s data misperceptions, relies on the idea that

parameters which affect the type of equilibrium, such as coeffi cients in a monetary policy

rule, move around. We capture this rationale formally by a learning mechanism. The next

section introduces this idea by discussing a simple example of how least-squares learning

in combination with measurement error can result in time variation of the parameters that

determine the type of equilibrium.6

2.2 Indeterminacy through Learning

We illustrate the basic mechanism at work by means of a simple example. The true data-

generating process is equation (1), where we assume for illustration purposes that a = 0.01.

The solution under rational expectations is therefore xt = εt, and thus determinate. In the

environment with learning we assume that the agents have the perceived law of motion:

xt = bxt−1 + νt, (6)

which they estimate by least squares to gain knowledge about the underlying structural

model. In our full model, this would be equivalent to the VAR that the central bank

estimates for the economy. In the determinate case b = 0, while under indeterminacy

b = 1/a. The least-squares estimate of the lag coeffi cient in the perecived law of motion, b̂t,

is varying over time as the information changes under constant-gain learning and thereby

can introduce persistence in the actual evolution of the economy. We note that in this

special case any deviation from b̂t = 0 would indicate an indeterminate equilibrium.

We can derive the actual law of motion, that is, the evolution of the data-generating

process under the application of the perceived law of motion by substituting the latter into

(1). In our full model framework, this is equivalent to the Federal Reserve announcing the

policy rule to the private sector each period. Since Et
(
b̂txt + νt+1

)
= b̂txt for given b̂t, we

6There is a subtlety here that we abstract from in this paper. We assume that the private sector operates
under rational expectations in an environment where structural and policy parameters are believed to be
fixed forever. The private sector is myopic in the sense that it does not realize that the policy parameters
are time-varying and can change period by period. Moreover, the private sector does not take into account
that the central bank solves a learning problem. These assumptions considerably simplify our computational
work since, with respect to the latter assumption, we do no have to solve an additional private sector learning
problem. The first assumption liberates us from not having to solve what amounts to a regime-switching
rational expectations model under indeterminacy. Research into this area is still in its infancy (see Davig
and Leeper, 2007, and Farmer, Waggoner, and Zha, 2009).
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find:7

xt =
(

1− ab̂t
)−1

εt. (7)

Although the rational expectations solution is i.i.d. the learning mechanism by itself intro-

duces persistence into the actual path of xt which would indicate an indeterminate equilib-

rium.

A central element of our argument is how mis-measured data influence beliefs and, thus,

economic outcomes.8 We now demonstrate in a simple example how data mismeasurement

can lead agents astray in that they believe to be in an indeterminate equilibrium. Estimating

procedures that agents use in learning models such as recursive-least squares algorithms rely

on forming second-moment matrices of observed data, which then enter the calculation of

estimated coeffi cients. If the data are measured with error, even if that error has zero mean,

this will lead to a biased estimate of this second-moment matrix and will therefore induce

a bias in the parameter estimates. We present results from a simulation exercise in Figure

3. We draw i.i.d. shocks for 180 periods and have the agent estimate the lag coeffi cient

in the perceived law of motion. Panel A of the figure shows the estimate and the 5th and

95th percentile bands for b̂t in the case when there is no measurement error. The estimates

are centered at zero. In a second simulation for the same draws of the shocks we add

measurement error. From period 80 to 100 we force the learning agent to observe the actual

data with error which we assume to be equal to 2 standard deviations of the innovations in

the model. After period 100, the measurement error disappears.

As Panel B of Figure 3 shows, agents believe that there is substantial persistence in

the economy as there would be under indeterminacy. The estimate of the perceived au-

toregressive reduced-form parameter b reaches values as high as 0.4, which would indicate

a structural parameter of a = 2.5 and therefore an indeterminate solution to (1). Given

the time series from Panel A, an econometrician tasked with deciding between a determi-

nate and an indeterminate equilibrium would likely favor the latter because of the higher

observed persistence.9 We want to emphasize that in our simulation the true value of

a = 0.01. The incorrect inference stems from the combination of least-squares learning and,

more importantly, the introduction of measurement error. The simple example simulation

thus shows that an economy can inadvertently drift into the indeterminacy region of the

7We abstract from the subtlety that under indeterminacy the rational expectations solution is an
ARMA(1,1) process, which could be reflected in the perceived law of motion.

8Pruitt (2012) elaborates in more detail why measurement error can have important consequences for
models of learning.

9This intuition is discussed in more detail in Lubik and Schorfheide (2004). Figure 1 on p.196 shows the
likelihood functions for both cases.
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parameter space. We now turn to our full modelling framework, where we add an optimal

policy problem to capture the idea of inadvertent indeterminacy.

3 The Model

3.1 Overview and Timing Assumptions

Our model consists of two agents, a central bank and a private sector. The central bank

is learning about the state of the economy. It only has access to economic data that are

measured with error and it is not aware of the mis-measurement. The central bank treats the

observed data as if they are measured without error10. Furthermore, the central bank does

not know the structure of the data-generating process (DGP). Instead, it uses a reduced-

form specification to conduct inference. The central bank’s policy is guided by an ad-hoc

quadratic loss function. The private sector knows the central bank’s current period policy

rule and determines inflation and output accordingly. It is aware of the mismeasurement

problem that the central bank faces and the stochastic process that governs the measurement

errors. The private sector itself does not face the mismeasurement problem: it observes the

data perfectly. At the same time, the private sector is myopic in that it treats the policy

coeffi cients which are varying period-by-period as fixed indefinitely.11

The timing of the model is such that the central bank estimates its model of the economy

at the beginning of period t using data up to and including period t− 1. The central bank

then minimizes its loss function subject to its estimated law of motion for the private

sector, treating parameter estimates as fixed. It computes a time-consistent solution under

discretion for the set of linear feedback rules. This results in optimal policy coeffi cients,

which are then communicated to the public. The private sector observes the true state of

the world and the policy coeffi cients. Then, shocks are realized and equilibrium outcomes

are formed. The central bank’s policy rule, taken as given by the private sector, and the

structural equations of the private sector form a linear rational expectations model that

can have a determinate or an indeterminate solution, depending in which region of the

parameter space the estimates fall. The central bank observes these new outcomes and

updates its estimates at the beginning of the next period.

10We consider alternative specifications (in which the central bank has access to final data) as a robustness
exercise.
11We will discuss this “anticipated utility”assumption in more detail below.
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3.2 The Central Bank

The central bank deviates from rational expectations in two critical aspects. First, it does

not know the structure of the economy. Hence, it conducts inference based on a reduced-

form model. We follow the learning literature and endow the central bank with a VAR,

which we restrict in such a way that it resembles the specification in Primiceri (2006), which

serevs as a benchmark. However, we explicitly focus on the nominal interest rate as the

central bank’s policy instrument.12 The central bank employs a learning mechanism, namely

least-squares learning with constant gain, to infer the exact reduced-form representation of

the structural model. The second key aspect of our approach is that the central bank

observes the actual data with error. This is designed to mimic the problems central banks

face when data arrive in real time, but are subject to frequent revisions.

We assume that the central bank observes Xt, a noisy measurement of the true state

Xtrue
t :

Xtrue
t = Xt + νt, (8)

where νt is a measurement error independent of the true outcome Xtrue
t . We assume that

the error is serially correlated of order one:

νt = ρννt−1 + ενt , (9)

where the Gaussian innovation ενt has zero mean and is independent of X
true
t . While it may

be problematic to justify autocorrelated measurement errors on a priori grounds, we note

that it is a key finding in Orphanides’(2001) analysis of monetary policy during the Great

Inflation. Perhaps more importantly, we also assume that the central bank does not learn

about the measurement error, which therefore persists during the estimation period. We

consider alternative assumptions in a robustness exercise below.

The central bank sets the interest rate target:

iCBt = it + εit, (10)

based on a policy rule of the form:

iCBt =

K∑
k=1

αktXt−k + γtit−1, (11)

where εit is a zero-mean monetary policy implementation error. The policy coeffi cients αt

and γt are chosen from an optimal policy problem. Time variation in the coeffi cients arises

12This is also a key difference to the approach in Pruitt (2012).
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from the learning problem described below. We follow Sargent, Williams, and Zha (2006)

and Primiceri (2006) in assuming that the central bank chooses the policy coeffi cients to

minimize the quadratic loss function:

Wt = Et

∞∑
j=t

β(j−t)
[
(πj − πtarget)2 + λy(∆yj −∆ytarget)2 + λi(it − it−1)2

]
, (12)

subject to estimated laws of motion for the relationship between the state variables, inflation

πt and output yt, the policy variable iCBt , and the definition of the policy instrument.

0 < β < 1 is the constant discount factor, λy, λi ≥ 0 are weights in the loss function that

we treat as structural parameters.13 πtarget and ∆ytarget are fixed target values for inflation

and output growth, respectively.

In order to learn about the structure of the economy, the central bank estimates a VAR

of the type:

Xj =
n∑
k=1

At,kXj−k +
m∑
l=0

Bt,lij−l + uj . (13)

The set of matrices A and B carry t-subscripts since they are re-estimated every period.

They are, however, taken as fixed by the central bank when it minimizes its loss function.

This leads to a standard linear-quadratic decision problem that the central bank needs to

solve every period for a varying set of coeffi cient matrices. Similar to Primiceri (2006),

we restrict the matrices in the central bank’s model further so that we have one equation

that resembles a backward-looking Phillips curve, and another that resembles a dynamic

IS-equation. Specifically, the central bank estimates the two-equation model:

πj = cπ,t + at(L)πj−1 + bt(L)yj−1 + uπt , (14)

∆yj = cy,t + dt(L)∆yj−1 + δtit−1 + uyt . (15)

We thus have Xtrue
t = [πt,∆yt]

′ as the nominal interest rate is not observed with error. All

coeffi cients in the lag-polynomials at(L), bt(L), and dt(L), and the interest-rate coeffi cient

δt are potentially changing over time as are the intercepts cπ,t and cy,t.

Given the estimates of the empirical model, the central bank needs to update its beliefs

about the state of the economy. In line with the majority of the learning literature (see

Evans and Honkapohja, 2001), we assume that it uses least squares learning. The algorithm

13A loss function of this kind can be derived from a representative household’s utility function within a New
Keynesian framework. In this case, λy and λi would be functions of underlying structural parameters. While
it is conceptually possible to derive a loss function within our learning framework, it is beyond the scope
of our paper. Nevertheless, using a welfare-based loss function with a reduced-form model of the economy
might be problematic since it raises the question how the central bank can calculate the welfare-based loss
function without knowledge of the structure of the economy.
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works as follows: suppose the central bank wants to estimate an equation of the following

form:

qt = p′t−1φt + ξt (16)

where qt is the dependent variable or a vector of dependent variables, pt−1 a vector or

matrix of regressors, ξt the residual(s) and φt the vector of parameters of interest. Using

this notation, the least squares learning algorithm can be written as:

Rt = Rt−1 + gt
(
pt−1p

′
t−1 −Rt−1

)
, (17)

φt = φt−1 + gtR
−1
t pt−1

(
qt − p′t−1φt−1

)
, (18)

which are the updating formulas for recursive least squares estimation. Rt is an estimate

of the second-moment matrix of the data. A key parameter is the gain gt. The standard

assumption in the literature, as in Primiceri (2006) and Sargent, Williams, and Zha (2006),

is to use a constant gain gt = g. This amounts to assuming that the agents who estimate

using constant gain think that parameters drift over time. The size of this gain determines

by how much estimates are updated in light of new data. It encodes a view about how

much signal (about the coeffi cients) and how much noise is contained in a data point. We

initialize Rt and φt using a training sample, which we assume to consist of 10 quarters of

real-time data.14 The central bank in our model estimates its 2-equation model equation

by equation, which is a standard assumption in the literature.

3.3 The Private Sector

The behavior of the private sector is described by a New Keynesian Phillips curve that

captures inflation dynamics using both forward- and backward-looking elements:

πt − πt = β [απEtπt+1+ (1− απ)πt−1−πt] + κyt − zt. (19)

0 ≤ απ ≤ 1 is the coeffi cient determining the degree of inflation indexation, while κ > 0

is a coeffi cient determining the slope of the Phillips curve. zt is a serially correlated shock

with law of motion zt = ρzzt−1 + εzt . Output dynamics is governed by an Euler-equation in

terms of output:

yt = −σ−1(it − it − Et(πt+1 − πt)) + Etyt+1 + gt, (20)

where σ > 0 is the coeffi cient of relative risk aversion. gt is a serially correlated shock with

law of motion gt = ρggt−1 + εgt . The innovations to both AR(1) processes are Gaussian.

14An alternative is to use a decreasing gain. For instance, a recursive version of OLS would set the gain
equal to a decreasing function of t.
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The private sector equations share the same structure as in Lubik and Schorfheide (2004)

for reference purposes. The equations can be derived from an underlying utility and profit

maximization problem of, respectively, a household and a firm. Since these steps are well

known we do not do these derivations explicitly. We deviate from the standard specification

in that we include the time-varying inflation target πt separately in these equations because

the views the private sector holds about the steady-state level of inflation change as the

central bank changes its policy rule. The private sector knows the steady state real interest

rate and can thus infer from the current period monetary policy rule the implied steady-state

level of inflation.

The private sector equation system is completed by the monetary policy reaction func-

tion. This results in the three-equation model that forms the backbone for the standard

DSGE model used in the analysis of monetary policy (Smets and Wouters, 2003). The

policy rule is communicated to the private sector after the central bank has solved its op-

timal policy problem. The private sector thus knows the time t policy rule when making

its decision at time t. We assume that the private sector believes that the policy rule will

not change in the future. This is akin to the anticipated utility assumption that the central

bank is making above and that is more generally often made in the learning literature.

More specifically, the private sector realizes that the central bank makes a mistake in terms

of basing the policy rule decision on mismeasured data. Yet, it is myopic in the sense

that it does not assign any positive probability to changes in that policy rule when making

decisions.

3.4 Deriving the Equilibrium Dynamics

Conditional on the central bank’s reaction function, the private sector generates the final

data which the central bank oberves with error but uses as an input in next period’s optimal

policy problem under learning. The behavior of the two agents is thus intricately linked in

an essentially non-linear manner. We now describe how to combine the two systems into a

state-space format that can be used for likelihood-based inference.

In order to derive the equilibrium dynamics we define the vectors Qt and Zt. Qt

contains all variables that directly enter the private agents equilibrium conditions: Qt =[
Xtrue
t , it, zt, gt

]′. Zt adds to that vector the variables that are needed for the central bank’s
reaction function:15 Zt =

[
Qt, νt, νt−1, νt−2, Xtrue

t−1 , X
true
t−2

]′. The private sector’s equilib-
rium conditions and the definition of GDP growth can be stacked to give the following set
15To economize on notation, we derive the equilibrium dynamics for our benchmark case in which the

central bank reacts to three lags of inflation and output growth.
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of forward-looking equations:

AQt = BEtQt+1 + CQt−1 + εQt . (21)

εQt contains all exogenous innovations that appear in the private sector equations described

above. It is worth noting that the private sector structural equations do not feature time

variation. It is only the time-varying nature of the central bank’s decision rules (and the

private sector’s knowledge of those time-varying decision rules) that will make the private

sector decision rules vary over time and allow the resulting rational expectations equilibrium

possibly drift between determinate and indeterminate regions.

Equation (21) can not yet be solved: there is no equation determining the nominal

interest rate. In other words, A, B and C do not have full row rank. We will therefore

combine equation (21) with the central bank’s decision rule and the definition of the mis-

measured economic data Xt:

AZt Zt = BZ
t EtZt+1 + CZt Zt−1 + εZt (22)

We define 1i to be a selector vector that selects it from Qt. AZt is then given by:

AZt =



A 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I
1i 0 α1t α2t −α1t −α2t


. (23)

It is not immediately obvious that AZt is a square matrix since A is not square. The 0 and

I arrays are always assumed to be of conformable size. BZ
t is a matrix of zeroes except for

the left upper-hand corner where B resides. CZt is given by:

CZt =



C 0 0 0 0 0
0 ρη 0 0 0 0

0 I 0 0 0 0
0 0 I 0 0 0
I 0 0 0 0 0
0 0 0 0 I 0
γt 0 0 −α3t 0 α3t


(24)

εZt contains all the i.i.d. Gaussian innovations in the model. At each date t, we can use

standard tools to solve equation (22). The reduced form of the model is then given by:

Zt = StZt−1 + Ttε
z
t (25)
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In order to compute a model solution when the equation solver indicates non-existence of

equilibrium, we use a projection facility. That is, if a policy rule in a certain period implies

non-existence of a stationary equilibrium, the policy rule is discarded and last year’s policy

rule is carried out. If the policy rule implies an indeterminate equilibrium, we pick the

equilibrium chosen by the rational expectations solver as in Sims (2002).

4 Data and Estimation

4.1 Data

In our model, there are two data concepts. The key assumption we make is that the central

bank only has access to real-time data. That is, its decisions are based on data releases as

they first become available. These are then subject to data revisions. We therefore use real-

time data from the Federal Reserve Bank of Philadelphia for the estimation problem of the

central bank. Our sample period starts in 1965:Q2 due to the availability of real-time data.

The last data point is 2012:Q2. We use the first 6 years of data for a pre-sample analysis

to initialize the prior. The effective sample period over which the model is estimated starts

therefore in 1971. The data are collected at the quarterly frequency.

A key assumption in our framework is that the private sector serves as data-generating

process for the final data. Our estimation then combines real-time and final observations

on output growth and the inflation rate in addition to the nominal interest rate which is

observed without error (since it is the policy instrument of the central bank). We use as

policy rate the Federal Funds rate, while output is measured as real GDP, and inflation is

the percentage change in the CPI. Figures 1 and 2 depict, respectively, the real time and

the final data for the growth rate in real GDP and CPI inflation. The Appendix contains

further details on the construction of the data series.

In our estimation exercise, we find it convenient to calibrate some parameters. Table 1

lists the calibrated parameters and their source. We set the inflation target πtarget in the

central bank’s loss function to an annual rate of 2%. While for much of the sample period,

the Federal Reserve did not have an offi cial inflation target, we take it to be commonly

understood, and even mandated by the (revision to the) Federal Reserve Act of 1977, that

it pursued stable prices, a proxy for which we consider a CPI inflation rate of 2%. The output

growth target ∆ytarget is set to a quarter-over-quarter rate of 0.75%, which is simply the

sample average. We fix the discount factor at β = 0.99. The model estimation turned out

to be sensitive to the specification of the backward-looking NKPC and Euler equations. For

instance, Sargent and Surico (2011) find almost purely backward-looking dynamics in their
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rational-expectations model. We therefore experimented with various specifications of the

lag terms in these equations. The best-fitting specification was one with a backward-looking

coeffi cient of 0.5 in the NKPC and no backward-looking dynamics for the output gap in the

Euler-equation. We thus fix the respective coeffi cients to these values in our estimation.

We assume that the lag length in all central bank regressions is 3. Based on preliminary

investigation, we found that for shorter lag lengths most of the draws would have implied

indeterminacy throughout the sample, which we did not find plausible. We fix the gain

for the regressions at 0.01, which is at the lower end of the values used in the learning

literature. When we estimated this parameter (while restricting it to be no smaller than

0.01) all estimates clustered around this value. As in Primiceri (2006) we therefore chose

to calibrate it.

4.2 Likelihood Function and Bayesian Inference

We use the Kalman filter to calculate the likelihood function. Let Yt denote the observables

used to calculate the likelihood function. Our solution method for solving linear rational

expectations models, the Gensys algorithm from Sims (2002) and adapted by Lubik and

Schorfheide (2003) for the case of indeterminacy, delivers a law of motion for each time

period for the vector of variables as a solution to the expectational difference equations

given before. The state-space system to calculate the likelihood function is then given by:

Yt = RZt + εyt , (26)

Zt = StZt−1 + Ttε
z
t , (27)

where St is the time t solution to the above equation system.

A key element of the learning algorithm is the specification of the initial beliefs held by

the central bank. We follow Primiceri (2006) and use real-time data from a training sample,

together with a gain parameter from the current parameter draw in the MCMC algorithm.

The training sample only includes the information available to the central bank at the end

of the period, not the final data releases. We prefer this approach since otherwise the

number of parameters to estimate becomes very large. An alternative approach, namely to

fix all standard parameters in the model and then estimate initial beliefs within the learning

algorithm, is pursued as a robustness exercise.

In our benchmark specification, we also assume that the central bank never has access to

updated data and never learns the true values of the variables.. This assumption is made for

convenience, but also parsimony since we do not have to model the process by which data
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gets updated over time. In order to avoid stochastic singularity when we use the full set of

real time and final data we add a monetary policy shock to the model. The central bank’s

decision problem is unaffected by this because of certainty equivalence. Furthermore, we

assume that the measurement errors in the central bank’s observation of output growth and

inflation are AR(1) processes, the parameters of which we estimate along with the model’s

other structural parameters. In any case, the private sector knows the structure of the

measurement errors and understands the central bank’s informational shortcomings.

We use a standard Metropolis-Hastings algorithm to take 300,000 draws from which we

discard the first 50,000 as burn-in. The estimation problem is computationally reasonably

straightforward but time-consuming since we have to solve a linear-quadratic dynamic pro-

gramming problem and a linear rational expectations model every period for every draw.16

5 Estimation Results

5.1 Parameter Estimates, Impulse Responses and Equilibrium Determi-
nacy

Figure 4 shows the marginal posterior distributions for each parameter that we estimate,

while Table 2 shows their median estimates and the 5th and 95th percentile. The estimation

algorithm seems to capture the behavior around the posterior mode reasonably well, with

parameters being tightly estimated. The “supply”and “demand”shocks, zt and gt, respec-

tively, show a high degree of persistence at ρ̂z = 0.91 and ρ̂g = 0.67. These numbers are

very close to those found by Lubik and Schorfheide (2004) and other papers in the literature

for this sample period. While the measurement error in the inflation rate is small, not very

volatile, and especially not very persistent (ρ̂π = 0.075), the picture is different for output

growth. Its median AR(1) coeffi cient is estimated to be ρ̂y = 0.49, which appears consider-

able. This observation appears to confirm the notion that the Federal Reserve missed the

productivity slowdown in the 1970s and thus misperceived the state of the business cycle

in their real-time observations of output growth. Finally, the structural parameter esti-

mates a low weight on output growth and a considerably stronger emphasis on interest rate

smoothing in the central bank’s loss function, the latter of which generates the observed

persistence in interest rate data.

Figure 5 contains the key result in the paper. It shows the determinacy indicator over

the estimated sample period. A value of ‘1’indicates a unique equilibrium, while a value

16We also estimated the model using the adaptive Metropolis-hastings algorithm of Haario et al. (2001)
to safeguard against any pathologies. The results remain unchanged.
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of ‘0’ means indeterminacy. The indicator is computed by drawing from the posterior

distribution of the estimated model at each data point, whereby each draw results in either

a determinate or an indeterminate equilibrium. We then average over all draws, so that the

indicator can be interpreted as a probability similar to the regime-switching literature. As

it turns out, our estimation results are very unequivocal as far as equilibrium determinacy

is concerned since the indicator attains either zero or one.

Two observations stand out from Figure 5. First, the U.S. economy has been in a

unique equilibrium since the Volcker disinflation of 1982:3 which implemented a tough

anti-inflationary stance through sharp interest rate increases. In the literature, these are

commonly interpreted as a shift to a policy rule with a much higher feedback coeffi cient

on the inflation term (see Clarida, Galí, and Gertler, 2000). The second observation is

that before the Volcker disinflation the economy alternated between a determinate and

an indeterminate equilibrium. The longest indeterminate stretch was from 1977:1 until

1980:4 which covers the end of Burns’chairmanship of the Federal Reserve, Miller’s short

tenure, and the early Volcker period of a policy of non-borrowed reserve targeting. This

was preceded by a short determinacy period starting at the end of 1974. The U.S. economy

was operating under an indeterminate equilibrium at the beginning of our effective sample

period.

We report impulse response functions to a monetary policy shock (an innovation to the

central bank’s interest rate target in equation (10) ) in Figure 6.17 Since the optimal policy

rule changes period-by-period, there is a set of impulse reponses for each data point. We

focus on four time periods, the first quarter each of 1975, 1979, 1990 and the last sample

period. We established that the US economy was operating in determinate equilibrium in

1975, 1990 and 2012. In these periods, a monetary policy shock raises the Federal Funds

rate, lowers inflation, and lowers output growth, just as the intuition for the basic New

Keynesian framework would suggest. The strength of the individual responses depends

solely on the policy coeffi cients since the other structural parameters of the model are

treated as fixed for the entire sample.

The pattern for 1979 is strikingly different, however. In response to a positive interest

rate shock inflation and output growth both increase with a prolonged adjustment pattern

in the former. Moreover, the Federal Funds rate remains persistently high for several years,

17 Impulses responses to the other shocks are available on request. They are consistent with the pattern
displayed in this Figure. Supply shocks raise output growth and lower inflation, while demand shocks lead
to increases in both. The interest rate stabilizes by going up in accordance with the feedback mechanism
embodied in equation (11). The exception is the pattern for 1979, the reason for which we discuss in this
section.
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as opposed to its response in 1975. The key difference is that the equilibrium in 1979 is

indeterminate. This finding is consistent with the observation in Lubik and Schorfheide

(2003) that indeterminacy changes the way a model’s variables respond to fundamental

shocks. This can be seen in our simple example where in the indeterminate solution (5) the

response of xt to εt depends on the sign of the indeterminacy parameter m. Furthermore,

a quick calculation shows that the Taylor principle, approximated by the Fisher equation,

is violated in 1979 despite the strong and persistent interest rate response.

Our benchmark results show that the analysis provided by Clarida, Galí, and Gertler

(2000) and Lubik and Schorfheide (2004) is essentially correct. The US economy was in an

indeterminate equilibrium for much of the 1970s that it escaped from in the early 1980s,

during a period that coincided with changes in the Federal Reserve’s operating procedures

under Volcker’s chairmanship, hence the moniker the Volcker disinflation. The mechanism

through which the indeterminate equilibria arose and switches between the types of equi-

libria occurred is consistent with Orphanides’view that the Federal Reserve misperceived

the incoming data. We capture this idea by means of a central bank learning framework.

We now dig deeper into our model’s mechanism to understand teh the origins of the Great

Inflation and Volcker’s disinflation.

5.2 The Volcker Disinflation of 1974

What drives the switches between determinacy and indeterminacy is the implied policy

reaction chosen by the central bank which can change period by period depending on the

incoming data. While we do not describe policy, as in much of the literature, via a linear

rule, we can gain some insight by contrasting the optimal Federal Funds rate from the model

with the actual rate in Figure 7. We note that for much of the sample period optimal policy

is tighter than actual policy. This obviously explains the determinate outcomes after the

Volcker disinflation of 1982, as the Fed wanted to implement a tighter policy than was

eventually realized.

At the same time, we also note that during the indeterminacy period during the second

half of the 1970s the perceived optimal Federal Funds rate path was considerably above the

realized path. This illustrates the main point of our paper. The Federal Reserve desired

to implement a policy that would have resulted in a unique equilibrium, but because of its

imperfect understanding of the structure of the economy and measurement issues in the

real-time data flow, the chosen policy led to indeterminacy. Figure 7 also shows a quite

dramatic interest rate hike in late 1974, where the Federal Reserve intended to raise the
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FF rate to almost 30%. As Figure 5 shows this generated a switch from indeterminacy to

determinacy which persisted for a year despite a sharp reversal almost immediately.

In Figures 8 and 9 we plot the measurement errors in, respectively, inflation and output

growth against the determinacy indicator. This gives insight into the underlying deter-

minants of the optimal policy choice. We define the measurement error as the difference

between the real-time data and the final data. A positive measurement error thus means

that the data are coming in stronger than they actually are. Consider the inflation picture

in the third quarter of 1974. The Federal Reserve observes inflation that is two percentage

points higher than the final revision indicates We note that the true data, i.e., the final data,

are generated by the private sector equations. The seemingly high inflation thus prompts

the Fed to jack up the policy rate, as shown in Figure 7. Note that this is quickly reversed

as the next data points indicate a negative measurement error, but because of the persis-

tence in the learning process and the sluggishness of the Federal Reserve’s backward-looking

model, determinacy switches tend to last for several periods.

Figures 8 and 9 also show that the volatility and extent of the measurement errors

declined after the early 1980s, which is the main reason that the Great Moderation period

is, in fact, one of equilibrium determinacy. Moreover, over the course of the sample, the

learning central bank develops a better understanding of the underlying structural model

and the nature of the measurement error simply because of longer available data series as

time goes by. Nevertheless, data misperception issues can still arise as evidenced by the

spike in late 2008 in Figure 9 and the seemingly increased volatility of the inflation error

during the Great Recession.

Whether an equilibrium is determinate or indeterminate is determined by the private

sector equations once the central bank has communicated the policy rule for this period.18

The switches should therefore be evident from changes in the chosen policy parameters.

We can back out time series for the policy coeffi cients from the estimated model. These

are reported in Figure 10. Since the chosen form of the policy rule contains more lags,

namely three, than is usual for the simple New Keynesian framework upon which most of

our intuition is built, we also report the sum of those coeffi cients to gauge the effective

stance of policy in Figure 11.

At the beginning of the sample, the inflation coeffi cients are essentially zero. With only

mild support from positive output coeffi cients, the resulting private sector equilibrium is

18This is where the assumption of promised utility bears most weight since we can solve the linear rational
expectations model in the usual manner (Sims, 2002) and do not have to account for the potential future
switches in policy in every period.
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indeterminate. The switch to a determinate equilibrium in 1974Q3 is evident from the sharp

rise in the inflation coeffi cients at all lags and also in the sum of the coeffi cients. This is

accompanied by an increase in the output coeffi cients.The switch back to an indeterminate

equilibrium during the late Burns-Miller period seems a knife-edge case as both inflation

and output coeffi cients come down, but to levels that might not be considered a priori

inconsistent with a determinate equilibrium. The behavior of the coeffi cient on the lagged

interest rate is interesting in this respect. It is well known (Woodford, 2003) that highly

inertial policy rules support determinate equilibria even if the inflation coeffi cients are not

large. The rule becomes less inertial as the early 1970s progress, reaching almost zero in

1976. It then climbs only gradually which is consistent with the indeterminate equilibrium

occurring in the late 1970s.

After 1980 the policy coeffi cients settle at their long-run values. There is virtually no

variation afterwards. What is striking from the graphs is that the Volcker disinflation

is essentially absent from the output and inflation coeffi cients. It appears only as the

endpoint of the gradual rise in the lagged interest-rate coeffi cient. The Volcker disinflation

can therefore be interpreted not as an abrupt change in the Federal Reserve’s responsiveness

to inflation, but rather as the culmination of a policy move towards a super-inertial policy.19

A more pointed explanation is that the Volcker disinflation happened in 1974 under Burns’

chairmanship. The sudden spike in inflation prompted the Federal Reserve to act tough

by sharply increasing its feedback coeffi cients and gradually implementing a more inertial

regime, which is evident from the continuous rise of the coeffi cient on lagged inflation. It

reached its long-run value right in time for what the literature has identified as the onset

of the Volcker disinflation. The groundwork was prepared, however, by Burns in 1974.

The analysis of Liu, Waggoner, and Zha (2011) offers an interesting contrast to our

interpretation of the determinacy episode of 1974-1975. They find a short-lived switch to a

high-inflation target regime (with a level of the inflation target around 5 % in annual terms,

see their Figure 4 on p. 281) that coincides with our switch to a determinate equilibrium.

The inflation target in their model is the steady-state or long-run level of inflation if no

further regime changes were to occur. The central bank in our model always targets 2%

annual inflation, but as its views change, so does its perceived long-run level of inflation.

It only has one instrument to balance two goals, an inflation target and a GDP growth

target. Consequently, the long-run level of inflation is not necessarily equal to its target.

Figure 12 depicts the perceived long-run view of inflation held by the Federal Reserve in our

19Coibion and Gorodnichenko (2011) offer a similar interpretation.
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framework. We see that the estimated long-run level of inflation is in the ballpark of the Liu,

Waggoner and Zha (2011) estimate just before the switch to determinacy. This is driven

in both frameworks by the inflationary spike of the first oil-price shock. What follows

afterwards is interpreted differently. Our Federal Reserve lowers its inflation target and

switches to an aggressively anti-inflationary regime, while the Liu-Waggoner-Zha Federal

Reserve accommodates the spike by a switch to a high-inflation target. Within a year,

however, the long-run perceived level of inflation in our model decreases, as does the inflation

target in the model of Liu, Waggoner and Zha (2011).

Finally, we can also contrast the Federal Reserve’s and the private sector’s one-period

ahead inflation expectations. These are reported in Figure 13. The private sectors expecta-

tions are the rational expectations from within the structural model given the policy rule,

while the Fed’s expectations are computed from its reduced-from model as a one-period

ahead forecast. The latter are noticeably less volatile and smoother than the former, which

reflects the different nature of the expectation formation. Moreover, the Fed’s expectations

were consistently higher than the private sector’s expectations during the Great Inflation,

whereas in the Great Moderation the respective expectations line up more closely and fluctu-

ate around a 2% inflation target. This is therefore further evidence of data misperceptions

as the underlying source for indeterminate outcomes. The Federal Reserve consistently

expected higher inflation than actually materialized and chose policy accordingly.

Our results thus confirm those of Clarida, Galí, and Gertler (2000), Lubik and Schorfheide

(2004), and others that have argued that the Great Moderation was kick-started by a shift

to a more anti-inflationary policy under Volcker; whereas the Great Inflation was largely the

outcome of weak policy. Much of this literature rests, however, on sub-sample estimation

with exogenous break dates. Moreover, it also often lacks a rationale as to why a central

bank would pursue ostensibly sub-optimal policies. Our approach instead is not subject to

the former concern, and we provide an answer to the latter question. Our model is estimated

over the whole sample period, while the shifts between determinacy occur endogenously as

the central bank changes its behavior in the light of new data. The seemingly sub-optimal

behavior is rationalized by the signal extraction problem the policymakers face. From their

perspective policy is chosen optimally. Where our results deviate from the previous liter-

ature is that they show that the 1970s also exhibited determinate equilibria, especially for

an extended period in the middle of the decade.
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6 Robustness

It is well known that models under learning are quite sensitive to specification assumptions.

We therefore conduct a broad range of robustness checks to study the validity of our inter-

pretation of the Great Inflation in the benchmark model. Broadly speaking, our results are

robust. We begin by assessing the sensitivity of the baseline results to changes in individual

parameters based on the posterior mean estimates. This gives us an idea how significant,

in a statistical sense, our determinacy results are. The second exercise changing the central

bank’s forecasting model to make it closer to the underlying structural model of the private

sector. Both exercises confirm the robustness of our benchmark results. These are sensitive,

however, to a change in how capture the central bank’s initial beliefs at the beginning of

the sample. We show how alternative, but arguably equally plausible assumptions change

the determinacy pattern considerably over the full sample period. Finally, we also consider

alternative information sets of the central bank, specifically when it gains access to the final

data.

6.1 Sensitivity to Parameters

Our results in terms of the determinacy indicators are fairly unequivocal which equilibrium

obtained at each data point over the entire sample period. Probabilities of a determinate

equilibrium are either zero or one. As we pointed out above, the determinacy indicator

is an average over the draws from the posterior distribution at each point, which appears

highly concentrated in either the determinacy or the indeterminacy region of the parameter

space. A traditional coverage region to describe the degree of uncertainty surrounding the

determinacy indicator would therefore be not very informative.

To give a sense of the robustness of the indicator with respect to variations in the

parameters, we perform the following exercise. We fix all parameters at their estimated

posterior means. We then vary each parameter one by one for each data point and each

imputed realization of the underlying shocks and measurement errors, and record whether

the resulting equilibrium is determinate or indeterminate. As the results of, for instance,

Bullard and Mitra (2002) indicate the boundary between determinacy and indeterminacy

typically depends on all parameters of the model, specifically on the Phillips curve parameter

κ and the indexation parameter απ. While this certainly is the case in our framework

as well20, we find, however, that the determinacy indicator is not sensitive to almost all

20New analytical results by Bhattarai, Lee, and Park (2013) in a New Keynesian model with a rich lag
structure support this conjecture.
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parameters in the model, the exception being the two weights in the central bank’s loss

function, λy and λi.21.

We report the simulation results for the two parameters in Figures 14 and 15, respec-

tively. We vary each parameter over the range [0, 1]. Each point in the underlying grid in

these figures is a combination of a quarterly calendar date and the value of the varying para-

meter over the range. We depict indeterminate equilibria in blue, determinate equilibria are

red. The posterior mean of λy is 0.065. The horizontal cross-section at this value replicates

Figure 5. Indeterminacy in the early 1970s was followed by a determinate period around

1975, after which another bout of indeterminacy towards the late 1970s was eradicated by

the Volcker disinflation.

Figure 14 shows that a higher weight on output growth in the Federal Reserve’s loss

function would generally tilt the economy towards indeterminacy, other things being equal.

The reason is that a higher weight on output reduces the relative weight on inflation so that

in the presence of inflation surprises, be they in the actual or in the real time data that

are subject to measurement error, the central bank responds with less vigor in the implied

policy rule. A second observation is that the indeterminacy and determinacy regimes in the

early to mid 1970s are largely independent of the central bank’s preferences. Similarly, the

pattern of determinate equilibria from the mid-1990s on appears unavoidable in the sense

that even a strong preference for output growth could not have avoided it. The pattern for

variations in the weight on interest-rate smoothing λi is similar. At the posterior mean of

0.82 the determinacy indicator is not sensitive to large variations in this parameter.

6.2 Model Structure

Our results are obviously dependent on the specification of the model used by the private

sector, namely the structural model that we regard as the data-generating process for the

final data, and on the empirical model used by the central bank to learn about the private

sector’s model. In our baseline specification we chose a restricted VAR for the central

bank’s forecasting model following the by now standard specification of Primiceri (2006). It

is restricted in the sense that we included a one-period lagged nominal interest rate in the

output equation, but not lagged values for the inflation rate. Moreover, lag lengths were

chosen by the usual criteria and not with reference to the ARMA-structure implied by the

21This finding is reminiscent of the results in Dennis (2006), who estimates these weights using likelihood-
based methods in a similar model, albeit without learning and measurement error. He finds that the main
determinant of fit and the location of the likelihood function in the parameter space are the central bank’s
preference parameters.
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structural model.

We therefore consider an alternative specification that removes some of these restrictions.

Specifically, we include lag polynomials for the inflation rate and the nominal interest rate

in the empirical output equation.22 This brings the empirical model closer to the reduced-

form structural model since output growth in the Euler-equation (20) depends on the real

interest rate path, whereas the New Keynesian Phillips curve (19) only depends on output.

The results from this specification (not reported, but available upon request) are generally

the same as for our benchmark specification. The determinacy period during the mid-1970s

last longer, and a determinate equilibrium obtains at the beginning of the effective sample

period. The latter is driven by a comparatively large measurement error in inflation at the

beginning of the sample which prompted a sharp initial interest rate hike. As we have seen

in the baseline specification, switching dates between determinacy and indeterminacy are

associated with large measurement errors.

6.3 The Role of Initial Beliefs

A key determinant of the learning dynamics is the choice of initial beliefs held by the central

bank. Since updating the parameter estimates in the face of new data can be quite slow,

initial beliefs can induce persistence and therefore make switching less likely, everything

else equal. There is no generally accepted way to choose initial beliefs. In our baseline

specification we pursued the to us most plausible approach in that we use a training sample

to estimate initial beliefs as part of the overall procedure. We fix the initial mean beliefs

before the start of the training sample to be zero and initialize R (the recursively estimated

second moment matrix of the data) to be of the same order of magnitude as the second

moment matrix in the training sample. As an alternative, we pursue a variant of the model

where we estimate the scale of the initial second-moment matrix by estimating a scalar

scale factor that multiplies both initial R matrices. Results (not reported, but available on

request) are unchanged from our benchmark.

When we substantially change the magnitude of R by making the initial values an order

of magnitude larger, we do get changes in the indeterminacy indicator, but the posterior

value at the posterior mode of that specification is 30 log points lower than in our benchmark

specification. The determinacy indicator for this specification is depicted in Figure 16.

Indeterminacy lasts throughout the 1970s and well into the middle of the 1980s. Initial

beliefs are such that policy is too accommodative an the data pattern in the 1970s is not

22We are grateful to Alejandro Justiniano for suggesting this specification to us.
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strong enough to lead to different central bank policies. Moreover, the learning mechanism

is slow moving so that initial beliefs need not be quickly dispersed. Although the Volcker

disinflation happened it took a while for the Federal Reserve to catch up. For the rest of

the Volcker-Greenspan period determinate equilibria obtained.

6.4 The Information Set of the Central Bank

In our benchmark case, we do not allow the central bank to use final data. This is obviously

a somewhat extreme assumption since data revisions occur frequently and the revised data

become closer to the final data. We treat the data vintage of 2012Q3 as final, but it may not

necessarily be that since the Bureau of Economic Analysis periodically revises its procedure.

In any case, the Federal reserve of 2012Q3 was certainly aware of the final data as of this

date. The robustness of our benchmark results therefore warrants specila consideration

with respect to the assumption what the central bank knows and when does it know it.

First, we ask what would happen if the central bank had access to real-time data with

a one-period lag. The indeterminacy indicator in that case behaves quite erratically (not

reported). However, this model’s posterior mode implies a posterior value that is 600

log points lower than for our benchmark case, implying that this timing assumption in

combination with our model is rejected by the data in favor of the benchmark case. Next we

allow the central bank to use final data throughout. Since that model features a smaller set

of observables (mis-measured data does not enter the model anymore), we can not directly

compare posterior values. The implied indeterminacy indicator in Figure 17, however, is

closer to our benchmark case than for the previous robustness check. The second switch to

indeterminacy happens later in 1992, but we still see the temporary switch in the middle

of the 1970s.

This results also shows the centrality of data misperceptions in understanding the tran-

sition from the Great Inflation to the Great Moderation. As argued by Beyer and Farmer

(2007), models with indeterminate equilibria have the tendency to dominate the data since

they offer a route for estimation algorithms to capture the observed persistence in the data.

This is evident from Figure 17 as indeterminacy lasts into the 1990s, well beyond a break

date that most researchers would consider plausible. Data misperception is therefore the

critical element that unifies the different strands of interpretation of the Great Inflation and

Moderation.
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7 Conclusion

We argue in this paper that the Great Inflation of the 1970s can be understood as the result

of equilibrium indeterminacy in which loose monetary policy engendered excess volatility

in macroeconomic aggregates and prices. We show, however, that the Federal Reserve in-

advertently pursued policies that were not anti-inflationary enough because it did not fully

understand the economic environment it was operating in. Specifically, it had imperfect

knowledge about the structure of the U.S. economy and it was subject to data mispercep-

tions since the real-time data flow did not capture the true state of the economy, as large

subsequent revisions showed. It is the combination of learning about the economy and,

more importantly, signal extraction to filter out measurement noise that resulted in policies

that the Federal Reserve believed to be optimal, but when implemented led to equilibrium

indeterminacy in the private sector.

In this sense, we combine the insights of Clarida, Galí, and Gertler (2000) and Lubik

and Schorfheide (2004) about the susceptibility of New Keynesian modelling frameworks

to sub-optimal interest rate rules with the observation of Orphanides (2001) that monetary

policy operates in a real-time environment that cannot be perfectly understood. It is only

the passage of time that improves the central bank’s understanding of the economy through

learning. Additionally, a reduction in measurement error, that is, a closer alignment of the

real-time data with their final revisions, reduced the possibility of implementing monetary

policies that imply indeterminacy. Consequently, and in this light, the Volcker disinflation

and the ensuing Great Moderation can be understood as just the result of better data and

improved Federal Reserve expertise.

The key contributions of our paper are therefore twofold. First, we offer an interpretation

of the Great Inflation and the Great Moderation that combines and reconciles the good

policy/bad policy viewpoint with the data misperception argument. The weakness of the

former is that it offers no explanation why the Burns-Miller Federal Reserve behaved in

this manner. We provide this explanation through introducing measurement error through

data misperceptions into the methodological framework of Lubik and Schorfheide (2004).

Interestingly, our results should also offer comfort to the good luck/bad luck viewpoint, as

espoused by, for instance, Sims and Zha (2006) since we find that the switches between

determinacy and indeterminacy are largely driven by the good or bad luck of obtaining real

time data that are close, or not close to the final data. The second contribution, and one

that follows from the previous observation, is that of a cautionary tale for policymakers. The
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possibility of slipping into an indeterminate equilibrium is reduced with better knowledge

about the structure of the economy and the quality of the data.

The main criticism to be levelled against our approach is that the private sector behaves

in a myopic fashion despite forming expectations rationally. In order to implement our

estimation algorithm we rely on the promised utility assumption of Sargent, Williams,

and Zha (2006) which means that the private sector, despite all evidence to the contrary,

maintains the belief that policy that is changing period by period will be fixed forever. A

key extension of our paper would therefore be to model the private sector as incorporating

the central bank’s learning problem by means of the approach in Farmer, Waggoner, and

Zha (2009).
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Appendix: Data Construction

All data we use is quarterly. The Federal Funds Rate is the average funds rate in a quarter

obtained from the Board of Governors. For quarterly inflation and quarterly output growth

data, we use the real time database at the Federal Reserve Bank of Philadelphia. The in-

flation data is constructed using a GDP deflator-based price index since this index gives us

the longest available time series. The real-time output growth is constructed using the real

output series. Both the output and price level series are seasonally adjusted. As a proxy

for final data, we use the data of the most recent vintage we had access to when estimating

the model (data up to 2012:Q1 available in 2012:Q2). The data starts in 1965:Q4.
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Table 1: Calibration

Parameter Value Source

Inflation Target πtarget 2.00%
Output Target ∆ytarget 0.75% Q/Q Sample Average

Discount Factor β 0.99 Standard
Indexation NKPC απ 0.50 Pre-Sample Estimate
Habit Parameter δy 0.00 Pre-Sample Estimate

Lag Length in CB regression 3 Standard
Gain Parameter 0.01 Primiceri (2006)

Table 2: Posterior Mean Estimates

5th Percentile Median 95th Percentile

Shocks: ρz 0.87 0.91 0.94
ρg 0.62 0.67 0.72
σz 0.002 0.003 0.004
σg 0.010 0.011 0.013
σi 0.006 0.007 0.0073

Measurement: ρπ 0.02 0.075 0.15
ρygrowth 0.41 0.49 0.56
σπ 0.0019 0.0022 0.0024
σygrowth 0.0054 0.0059 0.0064

Structural: κ 0.05 0.07 0.1
λy 0.059 0.065 0.072
λi 0.74 0.82 0.90
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Figure 1: Real-Time and Final Data: Real GDP Growth Rate
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Figure 2: Real-Time and Final Data: CPI Inflation Rate
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Figure 3: Indeterminacy through Learning: Least-Squares Learning Estimate of Perceived
Law of Motion
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Figure 4: Prior and Posterior Parameter Density: Benchmark Specification
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Figure 6: Impulse Response Functions to a Monetary Policy Shock
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Figure 7: Evolution of the Federal Funds Rate: Actual vs. Prescribed under Optimal Policy
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Figure 10: Estimated Policy Coeffi cients: Benchmark Specification
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Figure 14: Sensitivity of Determinacy Indicator to Parameters: Output
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Figure 15: Sensitivity of Determinacy Indicator to Parameters: Interest-Rate Smoothing
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