The Real Effects of Financial Networks¹

Co-Pierre Georg

Deutsche Bundesbank and University of Cape Town

Boston Policy Workshop 09 July 2017

¹Joint work with Christian Bittner (Deutsche Bundesbank) and Falko Fecht (Frankfurt School). The views expressed are not necessarily the views of the Deutsche Bundesbank.

- Kashyap and Stein (2000): Impact of monetary policy on bank-lending is more pronounced for banks with lower market liquidity
- Interbank markets are major source of private funding liquidity for German banks (\sim 25-30% balance sheet size)
- Banks engage in bilateral over-the-counter lending to one another ⇒ Interbank network

- Kashyap and Stein (2000): Impact of monetary policy on bank-lending is more pronounced for banks with lower market liquidity
- Interbank markets are major source of private funding liquidity for German banks (\sim 25-30% balance sheet size)
- Banks engage in bilateral over-the-counter lending to one another ⇒ Interbank network

Hypothesis: Some positions in interbank network make it easier to access private funding liquidity

Some Stylized Facts About the German Interbank Market

Figure: The German interbank market at the end of 2008

Figure: The German interbank market at the end of 2014

Intuition why Network Structure Matters for Liquidity Access

Figure 3: Borrower B has identical balance sheet in both cases, but the global network structure is different.

Co-Pierre Georg (Bundesbank & UCT)

Identification

- Dependent variable: Bilateral bank-firm lending before and after sovereign debt crisis [Bear Stearns; Lehman]
- Key independent variable: Indirect access to private liquidity (change + level)
- Two approaches:
 - 1 Difference-in-differences approach, including controls for firm demand
 - 2 Dynamic panel controlling for observed and unobserved bank and firm heterogeneity

Identification

- Dependent variable: Bilateral bank-firm lending before and after sovereign debt crisis [Bear Stearns; Lehman]
- Key independent variable: Indirect access to private liquidity (change + level)
- Two approaches:
 - 1 Difference-in-differences approach, including controls for firm demand
 - 2 Dynamic panel controlling for observed and unobserved bank and firm heterogeneity

Results

- Diff-in-Diff: Increase in centrality implies more loans to firms (intensive margin), and more new loans to firms (extensive margin)
- 2 Dynamic panel: Increase in centrality implies more credit to firms with more tangible assets, in particular following a shock

Overview of Identification and Results

Figure: Normalised (to mean of shock period) lending from banks above and below the median centrality.

Co-Pierre Georg (Bundesbank & UCT)

- Bank-lending channel Kashyap and Stein (2000); Khwaja and Mian (2008); Jimenez et al. (2011, 2013)
- Interbank markets as mechanism to manage liquidity risk Rochet and Tirole (1996); Iyer et al. (2014)
- Efficient re-allocation of liquidity within markets
 Di Maggio et al. (2016); Li and Schuerhoff (2014); Gabrieli and Georg (2016)
- Interbank markets as source of interconnectedness Allen and Gale (2000); Freixas et al. (2000); Elliott et al. (2015); Acemoglu et al. (2016)

- May 2010: Greek bailout and SMP (around EUR60 billion bond purchases within a week)
- Pre-Shock period: Q1/2009 Q4/2009
- Shock period: Q1/2010 Q2/2010
- Post-Shock period: Q3/2010 Q2/2011

- May 2010: Greek bailout and SMP (around EUR60 billion bond purchases within a week)
- Pre-Shock period: Q1/2009 Q4/2009
- Shock period: Q1/2010 Q2/2010
- Post-Shock period: Q3/2010 Q2/2011
- German banks differentially affected by sovereign debt crisis: some banks had sizable holdings of GIIPS sovereign and corporate bonds, others didn't

Figure: Normalized retail funding for banks above and below median of GIIPS exposure

Figure: Lending to non-financial firms by banks in upper and lower tercile of GIIPS exposure

Figure: Interbank lending for banks above and below median of GIIPS exposure

Figure: Interbank funding for banks above and below median of GIIPS exposure

No difference in CB funding, but in CB lending

Figure: Lending to central bank for banks above and below median of GIIPS exposure

Figure: Central bank funding for banks above and below median of GIIPS exposure We use data from four main sources:

- Quarterly bank-firm and bank-bank lending from large credit registry ("Millionenkredit-Evidenzzentrale" - MiMiK)
 Value of loans that exceed EUR1.5 million during a quarter
- Annual firm balance sheet information from Bureau van Dijk ("DAFNE") Match with clear name of firm using simple ML
- Monthly bank characteristics from balance sheet statistics ("BISTA")
- Quarterly information about bank securities holdings ("WPInvest") matched with ECB list of eligible collateral
- We use 4,822 bank-firm relationships from 98 commercial banks to 1,302 randomly drawn firms that borrow from at least two banks

Difference-in-Differences, Controlling for Demand

 \blacksquare Sovereign debt crisis possibly affects firms as well as banks $\Rightarrow {\sf Khwaja} \text{ and Mian (2008)}$

Collapse quarterly observations into pre- and post-shock period

Difference-in-Differences, Controlling for Demand

- \blacksquare Sovereign debt crisis possibly affects firms as well as banks $\Rightarrow {\sf Khwaja} \text{ and Mian (2008)}$
- Collapse quarterly observations into pre- and post-shock period
- We estimate the following model:

$$\Delta \log \text{Volume}_{ij} = \beta_j + \beta_I + \beta \text{Controls}_i + \beta_1 \text{NetPos}_{i,\text{pre}} + \beta_2 \Delta \text{NetPos}_i + \varepsilon_{ij}$$

where β_I is a dummy for the bank-type and Controls_i is a vector of bank-specific controls

- log Volume_{ij,t} log of volume from bank i to firm j at time t, obtained from MiMiK
- And similarly for extensive margin (Exit, Entry, Access)

The Network of Liquidity Transfer

Computing the Network Mean

Figure: Schematic for computation of network mean

- X_j is the variable of interest, i.e. characteristic of node *i*.
- Network mean is defined as:

$$\widehat{X}_{i,t}^{(1)} = \sum_{j:i} \left. \frac{w_{ji,t} \cdot X_{j,t}}{W_{i,t}} \right|_{d_{j,t} \ge 1} \tag{1}$$

where $w_{ji,t}$ is volume of loan from j to i at t and $W_{i,t}$ is total borrowing by i at t.

• Only neighbors who have neighbors themselves are counted in the mean.

- Most straightforward variable: X_{i,t} = 1
 ⇒ (weighted) in-degree of i at t as proxy for access.
- Access can be computed iteratively, e.g. for second neighbors:

$$\widehat{X}_{i,t}^{(2)} = \sum_{j:i} \left. \frac{w_{ji,t} \cdot \widehat{X}_{j,t}^1}{W_{i,t}} \right|_{d_{j,t} \ge 1}$$

$$(2)$$

Independent variable to measure indirect access to private funding liquidity for DiD specification:

$$\Delta \widehat{X}_{i}^{(n)} = \widehat{X}_{i,\text{post}}^{(n)} - \widehat{X}_{i,\text{pre}}^{(n)}$$

Betweenness centrality is defined

$$Betweenness_{i,t} = \frac{1}{\alpha} \sum_{j \neq i \neq k} \frac{a_{jk,t|i}}{a_{jk,t}}$$

where $\alpha = (|\mathcal{N}| - 1) \times (|\mathcal{N}| - 2)$

- *a_{jk,t|i}* denotes the number of shortest paths between *j* and *k* that contains *i*, and *a_{jk,t}* is the total number of shortest paths between *j* and *k*.
- Note: betweenness centrality is unweighted and undirected, other measures of access are not

Include controls for pre-determined levels of:

- Bank's equity ratio
- The ratio of provision income to total income as a proxy for how actively a bank is involved in financial markets
- The ratio of business loans to total assets as a measure for how focused a bank is on traditional lending
- The bank's access and actual recourse to central bank liquidity, which might serve as a substitute to interbank liquidity
- The bank's dependency on short-term funding

Also **changes** of controls in some specifications

Interlude: What determines centrality?

	$\Delta \log Volume$	EquityRatio	log BankSize	stLiab/totalLiab	CBFundingBankSize	BusinessLoansTotalAssets	ProvisionTotalIncome	$\Delta EquityRatio$	$\Delta \log \mathrm{BankSize}$	$\Delta { m shorttermLiabtotalLiab}$	ΔCBF undingBankSize	$\Delta Business Loans Total Assets$	$\Delta Provision Total Income$	NetPos	$\Delta NetPos$	log NetPos	$\Delta \log \operatorname{NetPos}$
$\Delta \log Volume$	1.00																
EquityRatio log BankSize stLiab/totalLiab CBFundingBankSize BusinessLoansTotalAssets ProvisionTotalIncome	0.01 -0.01 -0.04 -0.04 0.01 0.03	1.00 -0.10 0.02 -0.25 0.20 0.12	1.00 0.55 -0.01 -0.60 -0.01	1.00 0.01 -0.47 0.14	1.00 0.01 -0.30	1.00 -0.39	1.00										
$\begin{array}{l} \Delta EquityRatio \\ \Delta \log BankSize \\ \Delta shorttermLiabtotalLiab \\ \Delta CBFundingBankSize \\ \Delta BusinessLoansTotalAssets \\ \Delta ProvisionTotalIncome \end{array}$	-0.05 0.07 0.04 0.03 0.01 0.03	-0.52 0.37 -0.22 0.23 -0.43 -0.04	-0.35 0.33 -0.24 0.04 -0.24 0.00	-0.19 0.28 -0.54 -0.00 -0.34 0.10	0.13 -0.27 0.00 -0.87 0.39 0.10	0.18 -0.26 0.09 0.01 0.04 -0.03	-0.20 0.41 0.05 0.24 -0.15 -0.10	1.00 -0.77 0.02 -0.08 0.55 -0.03	1.00 0.03 0.21 -0.60 0.09	1.00 -0.01 0.21 -0.06	1.00 -0.27 -0.09	1.00 -0.04	1.00				
NetPos Δ NetPos log NetPos Δ log NetPos	$\begin{array}{c} 0.01 \\ 0.05 \\ 0.01 \\ 0.05 \end{array}$	-0.13 0.23 -0.12 0.23	$0.50 \\ 0.15 \\ 0.52 \\ 0.15$	$\begin{array}{c} 0.25 \\ 0.15 \\ 0.26 \\ 0.15 \end{array}$	-0.15 0.01 -0.16 0.01	-0.47 -0.22 -0.49 -0.22	0.03 0.40 0.03 0.40	-0.11 -0.58 -0.12 -0.59	0.10 0.61 0.11 0.62	-0.09 0.05 -0.10 0.05	0.15 -0.09 0.15 -0.09	-0.18 -0.18 -0.19 -0.19	$\begin{array}{c} 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \end{array}$	$1.00 \\ 0.04 \\ 1.00 \\ 0.02$	1.00 0.04 1.00	1.00 0.02	1.00

Figure: Pearson correlation of dependent and independent variables.

Consider the following simple algorithm with seven steps (Gabrieli and Georg (2016)):

- 1 Select an undirected random network with N nodes. Since interbank networks are typically of core-periphery type, we draw N_G core-periphery networks with N nodes.
- 2 Select N_r random reference nodes r.
- 3 Calculate the initial centrality of the reference node C_r^i where $C \in \{Betweenness, Katz\}.$
- 4 Add N_m random links to/from the reference node r.

Algorithm (ctd.):

- 5 Allow the rest of the network to change: select N_{-r} random nodes in the network and change a random number of links of these, that are not to/from the reference node r.
- 6 Now calculate the updated centrality of the reference node C_r^u and compute the absolute change in the centrality (relative to the initial centrality):

4

$$\Delta C_r = \left| \frac{C_r^u - C_r^i}{C_r^i} \right|.$$

7 Calculate the mean of ΔC_r .

Can Banks Control Their Own Centrality?

Figure: Log of ΔC_r as a function of an increasing network size for CP network.

Co-Pierre Georg (Bundesbank & UCT)

Can Banks Control Their Own Centrality?

Figure: Log of ΔC_r as a function of an increasing network size for ER network.

Co-Pierre Georg (Bundesbank & UCT)

Results

Results - Diff-in-Diff, Controlling for Demand

	(1) $\Delta \log Volume_{ij,t}$	(2) ∆ log Volume _{ij,t}	(3) EXIT	(4) EXIT	(5) ENTRY	(6) ENTRY
$\Delta \widehat{X}_{i}^{(2)}$	0.170***	0.188***	-0.00264***	-0.00309***	0.00406***	0.00495***
	(0.0342)	(0.0597)	(0.000827)	(0.000871)	(0.00110)	(0.00154)
$\widehat{X}_{i}^{(2)}$	0.00363	0.0356**	-0.000172	-0.000316	-0.000174	0.000282
.,	(0.0125)	(0.0143)	(0.000178)	(0.000315)	(0.000305)	(0.000344)
log BankSize _{i. T-1}		-1.012***		-0.00852		-0.00901
		(0.361)		(0.00680)		(0.00954)
EquityRatio _{i.T-1}		-82.08***		1.374**		-1.253*
.,		(27.49)		(0.586)		(0.726)
CollateralRatio _{$i, T-1$}		0.960		0.0946		0.135
		(3.699)		(0.0833)		(0.0970)
$stLiab/totalLiab_{i,T-1}$		-2.080		0.0464		-0.0413
		(2.393)		(0.0435)		(0.0690)
$CBFundingRatio_{i,t-1}$		3.008		0.443		0.0415
		(13.73)		(0.286)		(0.327)
BusinessLoansTotalAssets _{$i,T-1$}		-2.897		-0.101		-0.119
		(3.647)		(0.0616)		(0.0815)
ProvisionTotalIncome _{$i,T-1$}		-2.959		0.110		0.00663
		(6.445)		(0.0992)		(0.128)
Costant	1.521	23.35**	0.360	0.396	0.0186	0.169
	(5.567)	(10.05)	(0.355)	(0.411)	(0.0651)	(0.227)
Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes
N	4822	4818	4822	4818	4822	4818
R ²	0.324	0.333	0.320	0.329	0.338	0.342
R ² (adjusted)	0.0742	0.0834	0.0688	0.0782	0.0924	0.0964

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Results - Diff-in-Diff, Controlling for Demand

	(1) $\Delta \log \text{Volume}_{ij,t}$	(2) $\Delta \log \text{Volume}_{ij,t}$	(3) EXIT	(4) EXIT	(5) ENTRY	(6) ENTRY
$\Delta Centrality_{i,t}$	0.368** (0.182)	0.419** (0.197)	-0.00526 (0.00316)	-0.00287 (0.00346)	0.0131** (0.00558)	0.0155*** (0.00393)
$logBankSize_{i,t-1}$		-0.128 (0.415)		-0.0147* (0.00758)		-0.0196* (0.0103)
$EquityRatio_{i,t-1}$		28.70 (19.61)		-1.235***		0.442
$CollateralRatio_{i,t-1}$		-3.651		0.0513		-0.133
$stLiab/totalLiab_{i,t-1}$		-1.057		0.0901*		0.00443
$CBFundingRatio_{i,t-1}$		36.41**		-0.346		1.417***
$BusinessLoansTotalAssets_{i,t-1}$		2.321		-0.0764		0.0443
$ProvisionTotalIncome_{i,t-1}$		-0.736		0.0163		0.203
Constant	-1.771 (8.438)	0.316 (11.54)	0.358 (0.342)	0.664* (0.347)	0.271 (0.345)	0.603* (0.352)
Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes
$\frac{N}{R^2}$ R^2 (adjusted)	2236 0.397 0.0336	2232 0.417 0.0594	2236 0.419 0.0697	2232 0.447 0.108	2236 0.399 0.0374	2232 0.423 0.0702

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Dynamic Panel with time-varying bank FEs

- Firms with relatively fewer tangible assets depend more on bank funding
- We estimate the following model:

$$\begin{split} & \log \operatorname{Volume}_{ij,t} = \beta_{i,t} + \beta_j + \beta_0 \log \operatorname{Volume}_{ij,t-1} \\ & + \beta_1 \operatorname{TangibleAssets}_{j,T-1} \\ & + \beta_2 \operatorname{TangibleAssets}_{j,T-1} \times \Delta \log \operatorname{NetPos}_{i,t} \\ & + \beta_3 \operatorname{TangibleAssets}_{j,T-1} \times \operatorname{SHOCK}_{i,t} \\ & + \beta_4 \operatorname{TangibleAssets}_{j,T-1} \times \operatorname{SHOCK}_t \times \Delta \log \operatorname{NetPos}_{i,t} \\ & + \beta_5 \operatorname{TangibleAssets}_{j,T-1} \times \operatorname{SHOCK}_{i,t} \times \Delta \log \operatorname{NetPos}_{i,t} + \varepsilon_{ij,t} \end{split}$$

- TangibleAssets_{*j*,T-1} is the share of tangible assets to total assets of firm *j* at the end of the previous year
- SHOCK_{i,t} is indicator variable whether banks are above/below median of GIIPS exposure before shock

Results – Dynamic Panel

	(1) $\log \operatorname{Volume}_{ij,t}$	(2) $\log \operatorname{Volume}_{ij,t}$	(3) log Volume _{ij,t}
log Volume _{ij,t-1}	0.768***	0.768***	0.768***
	(0.0116)	(0.0116)	(0.0116)
$TangibleAssets_{j,T-1}$	0.0904	0.0914	0.102*
	(0.0564)	(0.0582)	(0.0590)
$TangibleAssets_{j, T-1} imes \Delta log NetPos_{i, t}$	1.438**		
	(0.691)		
$TangibleAssets_{j,T-1} \times SHOCK_t \times \Delta \log NetPos_{i,t}$		2.658	
		(1.831)	
TangibleAssets _{i,T-1} × SHOCK _{i,t}			0.0486***
3,			(0.00935)
TangibleAssets _{<i>i</i>,<i>T</i>-1} × SHOCK _{<i>i</i>,<i>t</i>} × Δ log NetPos _{<i>i</i>,<i>t</i>}			2.253*
			(1.276)
Constant	1.338***	1.322***	1.320***
	(0.146)	(0.152)	(0.145)
Time-Varying Bank FEs	Yes	Yes	Yes
Firm FEs	Yes	Yes	Yes
N	13719	13719	13719
R^2	0.813	0.813	0.813
R ² (adjusted)	0.794	0.794	0.794

Standard errors in parentheses

* $\rho < 0.1$, ** $\rho < 0.05$, *** $\rho < 0.01$

The role of interbank relationships

- Empirical evidence for relationship lending in the interbank market (Furfine (1999); Cocco, Gomes, and Martins (2009); Bräuning and Fecht (2017))
- Measure strength of relationship using Herfindahl index:

$$X_{i,t} \equiv HHI_{i,t} = \sum_{j:i} \left(\frac{w_{ji,t}}{W_{i,t}}\right)^2 \tag{3}$$

Network mean computed with HHI as main explanatory variable

$$\widehat{X}_{i,t}^{(2)} = \widehat{HHI}_{i,t}^{(2)}$$

Smaller HHI implies more diversification, less pronounciation of relationships

The role of interbank relationships

	(1) $\Delta \log \operatorname{Volume}_{ij,t}$	(2) $\Delta \log \operatorname{Volume}_{ij,t}$	(3) EXIT	(4) EXIT	(5) ENTRY	(6) ENTRY
$\Delta \widehat{HHI}_{i}^{(1)}$	26.40 (22.67)	20.71 (18.38)	-0.472 (0.408)	-0.260 (0.354)	0.950* (0.534)	0.843** (0.401)
$\widehat{HHI}_{i,\text{pre}}^{(1)}$	7.096	12.33*	-0.172*	-0.179	0.0394	0.0389
$\log BankSize_{i, \mathcal{T}-1}$	(6.015)	(6.267) -1.266*** (0.408)	(0.0883)	(0.117) -0.00247 (0.00756)	(0.136)	(0.140) -0.0117 (0.00986)
$EquityRatio_{i,T-1}$		-81.62***		1.535***		-1.092
$CollateralRatio_{i,\mathcal{T}-1}$		(27.83) -6.534 (4.718)		(0.502) 0.215** (0.0860)		(0.705) -0.0668 (0.127)
stLiab/totalLiab; 7-1		-1.529		0.0449		0.0145
		(2.827)		(0.0471)		(0.0737)
$CBFundingRatio_{i,t-1}$		19.06*		0.155		0.548*
$BusinessLoansTotalAssets_{i, \mathcal{T}-1}$		-0.685 (4.117)		-0.129* (0.0714)		-0.0218 (0.0949)
Provision TotalIncome _{$i, T-1$}		0.977		0.0637		0.118
_		(5.412)		(0.104)		(0.125)
Constant	-1.554 (5.793)	30.27*** (11.39)	0.421 (0.363)	0.252 (0.407)	-0.0368 (0.0729)	0.266 (0.248)
Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes
N	4822	4818	4822	4818	4822	4818
R^2 R^2 (adjusted)	0.315	0.328	0.318	0.326	0.330	0.336
r (aujusteu)	0.0010	0.0768	0.0052	0.0745	0.0813	0.0879

Standard errors in parentheses

* $\rho < 0.1$, ** $\rho < 0.05$, *** $\rho < 0.01$

The role of interbank relationships

	(1) $\Delta \log \text{Volume}_{ij,t}$	(2) $\Delta \log \text{Volume}_{ij,t}$	(3) EXIT	(4) EXIT	(5) ENTRY	(6) ENTRY
$\Delta \widehat{HHI}_{i}^{(2)}$	7.925 (26.26)	27.33 (27.86)	-0.191 (0.365)	-0.225 (0.418)	0.266 (0.580)	0.920 (0.650)
$\widehat{HHI}_{i,\text{pre}}^{(2)}$	-29.02 (19.99)	-30.34* (17.67)	0.524 (0.370)	0.301 (0.315)	-0.431 (0.539)	-0.376 (0.434)
$logBankSize_{i,T-1}$		-1.065*** (0.383)	()	-0.00643 (0.00719)	()	-0.0141 (0.00999)
$EquityRatio_{i,T-1}$		-54.92*** (20.21)		1.219** (0.568)		-0.901 (0.672)
$CollateralRatio_{i, \mathcal{T}-1}$		-8.243* (4.303)		0.249*** (0.0869)		-0.0898 (0.132)
$stLiab/totalLiab_{i,T-1}$		-1.550 (2.453)		0.0327 (0.0509)		-0.0233 (0.0593)
$CBFundingRatio_{i,t-1}$		21.37* (12.29)		0.138 (0.276)		0.547 (0.331)
$BusinessLoansTotalAssets_{i, T-1}$		0.919 (3.556)		-0.163** (0.0672)		-0.0280 (0.0780)
Provision IotalIncome _{$i, T-1$}		10.36* (6.224)		-0.0418 (0.114)		0.299** (0.141)
Constant	8.243 (5.423)	35.49*** (13.07)	0.225 (0.271)	0.218 (0.410)	0.0864 (0.124)	0.398 (0.280)
Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes
N R^2 (adjusted)	4822 0.314 0.0600	4818 0.329 0.0777	4822 0.316 0.0621	4818 0.325 0.0730	4822 0.326 0.0758	4818 0.336 0.0879

Standard errors in parentheses

* $\rho < 0.1$, ** $\rho < 0.05$, *** $\rho < 0.01$

Summary

- Indirect (and direct) access to private funding liquidity enables banks to provide more and more new lending to their non-bank borrowers.
- Effect is stronger for firms that are more dependent on bank funding
- Our paper complements existing work on bank-lending channel through market liquidity and literature on the importance of financial networks.

Open/Interesting Questions:

- What are the underlying (microeconomic) reasons for this channel? E.g. search vs. bargaining.
- Highlights the importance of interbank markets in Germany ⇒ Policy Q: What happens if we substitute with public liquidity?

Summary

- Indirect (and direct) access to private funding liquidity enables banks to provide more and more new lending to their non-bank borrowers.
- Effect is stronger for firms that are more dependent on bank funding
- Our paper complements existing work on bank-lending channel through market liquidity and literature on the importance of financial networks.

Open/Interesting Questions:

- What are the underlying (microeconomic) reasons for this channel? E.g. search vs. bargaining.
- Highlights the importance of interbank markets in Germany ⇒ Policy Q: What happens if we substitute with public liquidity?

Thank you!