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Abstract

We develop a tractable framework to study the optimal design stress scenarios. A risk-
averse principal (e.g, a manager, a regulator) seeks to learn about the exposures of a group
of agents (e.g., traders, banks) to a set of risk factors. The principal asks the agents to
report their outcomes (e.g., credit losses) under a variety of scenarios that she designs. She
can then take remedial actions (e.g., mandate reductions in risk exposures). The principal’s
program has two parts. For a given set of scenarios, we show how to apply a Kalman filter
to solve the learning problem. The optimal design is then a function of what she wants to
learn and how she intends to intervene if she uncovers excessive exposures. The choice of
optimal scenarios depends on the principal’s prior’s about risk exposures, the cost of ex-post
interventions, and the potential correlation of exposures across agents.
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1 Introduction

Stress tests are ubiquitous in risk management and financial supervision. Risk officers use stress
tests to set and monitor risk limits within their organizations, and financial regulators around the
world use stress tests to assess the health of financial institutions. To give just a few examples:
financial firms use stress tests to complement their statistical risk management tools (e.g., Value
at Risk); asset managers stress test their portfolios; trading venues stress tests their counter-party
exposures; regulators mandate large scale stress tests for banks and insurance companies and use
the results to enforce capital requirements and validate dividend policies.1

Despite the growing importance of stress testing and the amount of resources devoted to
them, there is little theoretical guidance on exactly how one should design the stress scenarios.
A theoretical literature has focused on the trade-offs involved in the disclosure of supervisory
information (see Goldstein and Sapra, 2014 for a review), which range from concerns about the
reputation of the regulator (Shapiro and Skeie, 2015) to the importance of having a fiscal backstop
(Faria-e-Castro et al., 2017). Though these papers provide insights as to what to do with the
results of asset quality reviews, they do not model stress testing. They are silent about the design
of forward-looking scenarios, which are the hallmarks of stress testing.

The goal of our paper is to start filling this void. There are two ways to think about stress
tests: as learning mechanisms, or as tests of capital adequacy. We focus on the learning aspect of
stress testing because it is the richer and more complex aspect of the exercise. Our results shed
light on risk exposures and capital ratios, but we do not specify the direct link between passing
the test and having a particular level of equity. To do so one would need to take a stand on many
features of financial regulations that are not central to our analysis.2

1Central banks in the United States, Europe, England, Brazil, Chile, Singapore, China, Australia, and New
Zealand, as well as the International Monetary Fund in Japan, have recently used stress tests to evaluate the
banking sector’s solvency and guide banking regulation.

2For instance, imagine that a bank needs the same level of ex-ante equity to satisfy a 9% capital requirement
after scenario 1 or a 7% requirement after scenario 2 (presumably because scenario 2 embodies a higher degree of
stress). As far as ex-ante capital adequacy is concerned, these two regulations are equivalent. The law sometimes
mandates one of these numbers, in which case our model can shed light on the other, but in general the “level”
of the ratio and the “degree” of the stress are not independent and a model is likely to pin down a combination
as opposed to a particular value for each. A scenario used for “pass/fail” also needs to be plausible in a way that
a learning scenario does not have to be. When stress test results are mechanically linked to capital requirements
the choice of scenarios can be used to increase the effective requirement (if one assumes that, for some reason,
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We model stress testing as a learning mechanism. We consider a principal and a potentially
large number of agents. The agents can be traders within a financial firm, or they can be financial
firms within a financial system. The principal can be a regulator designing supervisory tests, or
a risk officer running an internal stress test. For simplicity we will use the supervisory stress
testing example in much of the paper. Banks are exposed to a set of risk factors, but their
exposures are unknown to the regulator. The regulator is risk averse and worries about the
financial system experiencing large losses in some states of the world. The regulator then designs
a set of scenarios and asks the banks to report what their losses would be under these scenarios.
From their responses, the regulator learns about the underlying exposures of the banks. Based on
this information, the regulator can decide to intervene, i.e., she can ask a set of banks to reduce
their exposures to some factors.

Our main insight comes from writing the learning problem as a Kalman filter. The filter
gives us a mapping from prior beliefs and test results into posterior beliefs. The precision of
the mapping depends on the scenarios. We can then formulate the regulator’s problem as an
information acquisition problem in which the regulator chooses the precision of her signals. By
explicitly considering the structure of the signals generated by the stress tests, we can map the
feasible set of precision choices to the primitive parameters of the model, such as the priors of
the regulator regarding the banks’ exposures. If, for instance, the regulator is worried about a
particular risk factor, we can derive the stress test that maximizes learning about the exposures
to this risk factor.

Will the regulator focus a particular risk factor or will she try and learn about several factors
at the same time? We show that the answer depends on her prior beliefs about correlation
between the banks’ risk exposures and on the marginal cost of intervention cost. The regulator
can choose to mandate a broad risk reduction. This is likely to involve a lot of unnecessary
changes and disruptions, but it does not require much information. If the cost of intervention is
high, this strategy is not efficient and the regulator will want to learn in order to avoid unnecessary
interventions. She can learn by choosing a more extreme scenario along a particular risk dimension,
but extreme scenarios lead to less precise answers. The reduction in overall information quality

the baseline requirement is too weak) or to implement counter-cyclical ratios (keeping the level of stress constant
as the economy improves leads to larger assumed shocks). Finally, passing the stress test means that regulators
deem the institution safe and sound even in the stress scenario, and thus that lender-of-last-resort policies would
be appropriate.
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depends on the correlation of the risk exposures. Whether or not there is specialization in learning
depends therefore on the intervention cost function and on the prior correlation matrix.

The costs of intervention and the prior beliefs of the regulator are central in determining the
optimal scenario design. When the intervention costs are heterogenous, the regulator chooses
to stress the factor where interventions are more costly, since this allows her to limit wasteful
interventions.

When the regulator expects a high exposure to a risk factor, she stresses that factor more
because the benefit from learning about it is larger. When this expected exposure is high enough,
the regulator may choose to stress only that factor and concentrate all her efforts in reducing the
ex-ante uncertainty along that factor’s dimension.

Our model also sheds light on the role of systematic factors, within or across banks. When the
exposures to two factors within a bank are correlated, learning about the exposure to one factor
also provides information about the exposure to the other factor. Hence, the regulator stresses
more the factors with correlated exposures and may focus on these factors if the correlation is
high enough. However, due to the convexity of the information acquisition cost, the regulator’s
specialization is usually incomplete and she tends to put weight on all factors.

Similarly, the regulator optimally puts more weight on systemic factors in stress scenarios.
When different banks have correlated exposures to a (systemic) factor, learning about one bank’s
exposure to this factor provides information about the other banks’ exposures. The higher the
expected correlation between the exposures to the systemic factor, the more precise the information
about the banks’ exposure to it and the less costly it becomes for the regulator to learn about it.
Hence, the regulator optimally stresses systemic factors more and may choose to specialize and
stress only these factors when they are systemic enough (the banks’ exposures to it are sufficiently
correlated).

The main advantage of our framework is that it can be easily applied to design stress tests
in practice. The only inputs needed are the regulator’s preferences and beliefs. Though for
expositional purposes we develop our insights in the context of a small number of banks and few
independent macroeconomic factors, our framework can accommodate correlated macro factors,
including non-linear combinations of factors, arbitrary and general correlation structures for risk
exposures across and within banks, and different preferences for the regulator. Moreover, the
linear structure allows it to be scalable and very easy to implement, even with a large number of
banks, scenarios and risk factors.
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Literature Review

Most of the literature on stress tests focuses on banking. Several recent papers study
specifically the trade-offs involved in disclosing stress test results. Goldstein and Leitner (2018)
focus on the Hirshleifer (1971) effect: revealing too much information destroys risk-sharing
opportunities between risk neutral investors and (effectively) risk averse bankers. These risk-
sharing arrangements also play an important role in Allen and Gale (2000). Shapiro and Skeie
(2015) study the reputation concerns of a regulator when there is a trade-off between moral
hazard and runs. Faria-e-Castro et al. (2017) study a model of optimal disclosure where the
government trades off Lemon market costs with bank run costs, and show that a fiscal backstop
allows government to run more informative stress tests. Schuermann (2012) analyzes the design
and governance (scenario design, models and projection, and disclosure) for more effective stress
test exercises. Schuermann (2016) particularly determines how stress testing in crisis times can
be adapted to normal times in order to insure adequate lending capacity and other key financial
services. Orlov et al. (2017) look at the optimal disclosure policy when it is jointly determined
with capital requirements, while Gick and Pausch (2014) and Inostroza and Pavan (2017) do so
in the context of Bayesian persuasion.

While most of the existing literature on stress testing, theoretical and empirical, analyzes
the disclosure of stress test results, Leitner and Williams (2018) focus on the disclosure of the
regulator’s risk modeling. They examine the trade-offs involved in disclosing the model the
regulator uses to perform the stress test to banks. However, none of these papers consider the
optimal scenario design, which is the focus of our paper.

Most empirical papers on stress tests focus on the information content at the time of disclosure,
using an event study methodology to determine whether stress tests provide valuable information
to investors. Petrella and Resti (2013) assess the impact of the 2011 European stress test exercise.
For the 51 banks with publicly traded equity, they find that the publication of the detailed results
provided valuable information to market participants. Similarly, Donald et al. (2014) evaluate
the 2009 U.S. stress test conducted on 19 bank holding companies and find significant abnormal
stock returns for banks with capital shortfalls. Candelon and Sy (2015), Bird et al. (2015), and
Fernandes et al. (2015) also find significant average cumulative abnormal returns for stress tested
BHCs around many of the stress test disclosure dates. Flannery et al. (2016) find that U.S. stress
tests contain significant new information about assessed BHCs. Using a sample of large banks with
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publicly traded equity, the authors find significant average abnormal returns around many of the
stress test disclosures dates. They also find that stress tests provide relatively more information
about riskier and more highly leveraged bank holding companies. Glasserman and Tangirala
(2016) evaluate one aspect of the relevance of scenario choices. They show that the results of U.S.
stress tests are somewhat predictable, in the sense that rankings according to projected stress
losses in 2013 and 2014 are correlated. Similarly, the rankings across scenarios in a given year
are also correlated. They argue that regulators should experiment with more diverse scenarios, so
that it is not always the same banks that project the higher losses. Acharya et al. (2014) compare
the capital shortfalls from the stress tests with the capital shortfalls predicted using the systemic
risk model of Acharya et al. (2016) based on equity market data. Camara et al. (2016) study the
quality of the 2014 EBA stress tests using the actual micro data from the tests.

Finally, our paper is related to the large theoretical literature on information acquisition
following Verrecchia (1982), Kyle (1989) and especially Van Nieuwerburgh and Veldkamp (2010).
In this class of models, the cost of acquiring information pins down the set of feasible precisions and
determines whether there are signals are complement or substitutes. Vives (2008) and Veldkamp
(2009) provide a comprehensive review of this literature. These papers take the information
processing constraint on the signal precisions as given. In contrast, our paper focuses on the design
of the signals that the regulator receives and endogenizes the information processing constraint.

The rest of the paper is organized as follows. Section 2 describes the environment. Section 3
introduces the notion of stress test. Sections 4 and 5 respectively provide an application of the
general environment to linear quadratic preferences for the regulator and characterize the optimal
stress scenarios for this case. Section 6 concludes.

2 Environment

We consider the problem of a regulator who needs to learn about the risk exposures of a set of
banks in order to take remedial actions. The regulator elicits information from the banks in the
form of stress tests. In our model, a stress test is a technology used by regulators to ask questions.
The banks cannot evade the questions and have to answer to the best of their abilities. Banks in
our model can only lie by omission.
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2.1 Banks and Risks

There is one regulator overseeing N banks indexed by i ∈ [1, .., N ] exposed to systematic and
idiosyncratic risks. The state of the macro-economy is the vector s = [s1, .., sJ ] where J is the
number of systematic factors. The vector xi = [xi,1, .., xi,J ] represents the exposures of bank i,
with xi,j the exposure of bank i to factor j. The excess losses of bank i in state s are given by

yi (s) = xi · s+ ηi =
J∑
j=1

xi,jsj + ηi, (1)

where ηi is a random idiosyncratic shock. We normalize the baseline scenario to s ≡ 0, so that
our scenarios should be interpreted as deviations from the baseline.

The net worth of bank i is given by

wi (s) = w̄i − yi (s) , (2)

where w̄i is the mean level of profits net of debt. For instance, we could have w̄i = ri − di where
ri would be average revenues and di outstanding debt. Given Eq. (1) and Eq. (2), the aggregate
net worth of the banking system is

W (s) =
N∑
i=1

wi = w̄ − x · s,

where w and x are the sum of the corresponding variables across the N banks in the economy.
We do not restrict the factors to be independent, and we can allow for a non-linear mapping

by setting sj+1 = s2
j . Our factors can be thought of as fundamental shocks in a macroeconomic

model or as traditional macroeconomic variables such as GDP, unemployment, or house prices as
functions of the factors. In a linear interpretation, factors can be negative (good state) or positive
(bad case), and xi,j are positive numbers for most banks, although a particular bank could, in
principle, have a short exposure. We consider several special cases below.

2.2 Regulatory Interventions and Preferences

As in Acharya et al. (2016), we assume that the regulator has preferences U (W ) over the total
net worth of the banking system W .3 The regulator can intervene to force the banks to reduce

3More generally, we could have U ([wi]1..N ). This would capture the case where the idiosyncratic failure of bank
i matters regardless of the health of the banking sector as a whole. As in the systemic risk literature, we impose
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their exposures. In our context, an intervention is any action that the regulator can take to force
a bank to lower its exposure to a risk factors after the regulator has learned the results from the
stress test. It could be a broad action, such as increasing capital requirements, or a targeted one,
like a higher ratio for specific loans, i.e., commercial real estate. If the regulator takes action
ai = [ai,1, .., ai,J ] on bank i, the exposure of bank i to factor j becomes (1− ai,j)xi,j.

Intervention are costly. There are direct costs born by the regulators and the banks, as well
as indirect costs from the disruption of valuable activities. We assume that the costs are convex
in the size of the intervention. For simplicity, we make it quadratic and equal to 1

2
∑
i,j φja

2
ij. To

shorten the notation, we define the cell-by-cell multiplication operator ◦ as

(1− ai) ◦ xi ≡ [(1− ai,1)xi,1, . . . , (1− ai,J)xi,J ] .

Let I denote the information set of the regulator at the time when she chooses her intervention
policy. The regulator’s problem is to choose an intervention policy to maximize her expected
utility given by

E
[
U

(
w̄ − η −

(
N∑
i=1

(1− ai) ◦ xi
)
· s
)
− 1

2

N∑
i=1
‖φ ◦ aij‖2

∣∣∣∣∣ I
]
,

where φ =
(√

φ1, ...,
√
φJ
)
is an N × 1 vector that modulates the marginal cost of intervening to

reduce the risk exposure of banks along each dimension j = 1, . . . , J

Example. Suppose that there is only one bank.4 Then, the regulator chooses her intervention
policy to maximize

E

U
w̄ − η − J∑

j=1
(1− aj)xjsj

− 1
2

J∑
j=1

φja
2
j

∣∣∣∣∣∣ I
 .

The first order condition (FOC) for this problem is

aj = 1
φj

E [xjsjU ′ (W )| I] . (3)

The FOC equates the marginal cost of an action to its expected marginal benefit. The expected
marginal benefit of reducing risk exposure to factor j depends on the covariance between the
the restriction that only W matters. As discussed in Acharya et al. (2016), this specification naturally arises when
healthy banks can efficiently take over of failed ones. As a result, a financial crisis only happens when the financial
system as a whole is under-capitalized.

4Equivalently, all banks are identical and have the same risk exposures.
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marginal social utility U ′ (W ) and the marginal increase in the bank’s net worth xjsj. Risk
reduction is valuable when we expect that U ′ to be large when s is positive.

The regulator could mandate a reduction is all risky activities: this would not require much
information, but it would be costly. On the other hand, if the regulator had access to adequate
information, she could mandate reductions only for the activities that create significant systematic
risk. We think of stress tests precisely as a way of figuring out what these activities are.

3 Stress Tests

In this section, we study how the regulator can learn about banks’ risk exposures {xj}Jj=1 by
running a stress test.

3.1 Definitions

The regulator has a prior belief over the distribution of exposures, both within banks and across
banks, that is the result of the her previous estimates of these exposures. We stack the banks’
exposures in one NJ vector as follows

x ≡



[x′1]
..

[x′i]
..

[x′N ]


and we summarize the regulator’s prior over the vector of exposures x as

x ∼ N (x,Σx) ,

where

x =


x1
...
xN

 and Σx =



Σ1
x Σ12

x · · · Σ1N
x

Σ12
x Σ2

x
. . . ...

... . . . . . . Σ(N−1)N
x

Σ1N
x · · · Σ(N−1)N

x ΣN
x
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with Σi
x = V (xi) for all i and Σij

x = Cov (xi, xj) for all i 6= j. If Σi
x is diagonal the regulator

expects the exposures of bank i to the different factors to be independent of each other. If Σij
x = 0,

the regulator’s prior is that the risk exposures of bank i and j are independent.
To learn about the banks’ risk exposures, the regulator can ask the banks to estimate their

losses, and report their estimates, under a particular realization of the macroeconomic state. This
choice of macroeconomic state is a scenario ŝ.

Definition 1. A scenario ŝ is a realization of the row-vector of states s.

A scenario ŝ is a row-vector of size J that represents an aggregate state of the economy. Given
our normalization of the baseline scenario to s = 0, a scenario close to 0 is a scenario close to the
baseline of the economy. A scenario ŝ in which element ŝj is large, represents a large deviation
from the baseline along the dimension of factor j. The larger the distance between ŝ and 0, the
more extreme the scenario. When designing a stress test, the regulator specifies a set of scenarios
for which the banks need to report their losses.

Definition 2. A stress test is a collection of scenarios
{
ŝ(m)

}M
m=1

and reported losses {ŷi}Ni=1 for
each bank under each scenario.

For each scenario ŝ(m) bank i reports its net losses ŷ(m)
i , or equivalently, its net worth ŵ

(m)
i .

For simplicity, we will express all of our analysis in terms of the net losses reported by the banks
ŷi =

[
ŷ

(1)
i , ...., ŷ

(M)
i

]
. For simplicity, we assume that the reported losses in the stress test are being

reported by the banks. However, these could also come from imperfect models that the central
bank uses to estimate the individual banks’ losses.

3.2 Stress test results

Banks use imperfect models to predict what their losses would be under the stress test scenario.
More precisely, we assume bank i estimates its losses under scenario ŝm as

ŷ
(m)
i = ŝ(m) · x′i + e

(m)
i (4)

where e(m)
i ∼ N

(
0,Σ(m)

e,i

)
. We think of e(m)

i as capturing genuine model uncertainty because
the banks themselves do not know their true exposures and because macro-economic scenarios
are partly ambiguous and misspecified. Σ(m)

e,i determines the precision of bank i’s report under
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scenario m. We specify the following functional form for the precision of a particular scenario ŝ(m)

when there are M scenarios in the stress test

Σ(m)
e,i ≡

(
1 + λi (M)

∥∥∥αi0 · ŝ(m)
∥∥∥αi

1
)
σ2
ε , (5)

where αi0 is a positive vector of size J , αi1 > 2 is a scalar, and λi (M) is a positive and increasing
function ofM . The term

∥∥∥αi0 · ŝ(m)
∥∥∥ increases with the deviation of the scenario from the baseline.

This specification captures the idea that extreme scenarios are harder to estimate, and that
increasing the number of scenarios in a stress test reduces the precision of the bank’s responses.
The vector of weights αi0 captures the idea that risk exposures to some factors might be easier to
learn than others. The curvature αi1 determines the sensitivity of the precision of bank i’s report
to extreme scenarios. The larger αi1, the harder it is for bank i to provide a precise estimate of its
losses for scenarios away from the baseline. We assume that αi1>2 to allow for a non-trivial trade-
off in the regulator’s design problem. Finally, λi (M) represents the increasing cost of computing
expected losses for a bank with limited information processing capacity.

The structure of the bank’s internal models are the outcome of learning about risk exposures
from historical data. Therefore, the mistakes a bank makes in computing its expected revenues
for each scenario may be correlated. The variance-covariance matrix of the errors made by bank
i in computing its stress test results is given by

Σi
e =



Σ(1)
e,i Σ(1,2)

e,i · · · Σ(1,M)
e,i

Σ(1,2)
e,i Σ(2)

e,i
. . . ...

... · · · . . . Σ(M−1,M)
e,i

Σ(1,M)
e,i · · · Σ(M−1,M)

e,i Σ(M)
e,i

 ,

where
Σ(m,`)
e,i = Cov

[
e

(m)
i , e

(`)
i

]
∀m, ` = 1, ...,M.

Differences in Σi
e across banks reflect differences in information (priors), in the amount or quality

of data available to each bank, or in the bank’s information processing capacity. We assume that
xi and ei =

[
e

(1)
i , ...., e

(M)
i

]
are independent, but we allow banks to make correlated mistakes. The

correlation among the mistakes made by bank i and bank j is given by Σij
e . The results of the
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stress test can be summarized in the NM vector

ŷ ≡



[ŷ′1]
..

[ŷ′i]
..

[ŷ′N ]


,

and similarly for e.

3.3 Learning from stress tests

By implementing stress tests, the regulator elicits information from the banks which she uses to
learn about the banks’ risk exposures to the aggregate factors. In fact, we can interpret stress test
results as signals about the banks’ risk exposures.

The information available to the regulator after seeing the results of the stress test can be
summarized in the following state space representation

ŷ =
(
IN ⊗ Ŝ

)
x + e, (6)

where IN is the identity (diagonal) matrix of size N and

Ŝ ≡



ŝ(1)

..

ŝ(m)

..

ŝ(M)


is the M × J matrix of scenarios. The covariance matrix of the error terms e is

Σe
(
Ŝ
)
≡



Σ1
e Σ12

e · · · Σ1N
e

Σ12
e Σ2

e
. . . ...

... · · · . . . Σ(N−1)N
e

Σ1N
e · · · Σ(N−1)N

e ΣN
e


which is of size NM ×NM and depends on the stress test scenarios.
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Remember that the regulator observes ŷ and want to learn about x. Expressing the stress test
as in equation (6) allows us to apply the Kalman filter and to fully characterize the posteriors
beliefs of the regulator after observing the results.

Proposition 1. After observing the results ŷ of the stress test, the posterior beliefs of the regulator
regarding the banks’ risk exposures are

x| ŷ ∼ N
(
x̂, Σ̂x

)
,

where the posterior mean x̂, the Kalman gain K, and the posterior covariance matrix Σ̂x are given
by

x̂ =
(
INJ −K

(
IN ⊗ Ŝ

))
x̄ +Kŷ , (7)

K = Σx
(
IN ⊗ Ŝ

)′ ((
IN ⊗ Ŝ

)
Σx

(
IN ⊗ Ŝ

)′
+ Σe

(
Ŝ
))−1

, (8)

Σ̂x =
(
INJ −K

(
IN ⊗ Ŝ

))
Σx . (9)

The Kalman gain K is an NJ ×MN matrix. The weight Kj is a measure of the amount of
information about the exposure to risk factor j contained in the stress test result.

The posterior covariance matrix Σ̂x plays a critical role in our analysis. Σ̂x measures the
residual uncertainty that persists after observing the results of the stress test. The goal of the
stress test is to reduce this residual uncertainty as much as possible, along the dimensions that
depend on the objective function and on the priors of the regulator.

3.4 Scenario choice as signal design

In the standard state-space representation in Equation (6), the reported losses by the banks are
signals about linear combinations of the banks’ exposure to the risk factors. The stress test
scenarios determine the structure of the signals observed by the regulator. The scenarios also
determine the precision of the banks’ reported losses in Eq. (5). This defines the tradeoff at the
heart of the design problem. Increasing sj in a scenario makes the results more informative about
exposures to factor j, but extreme scenarios reduce the precision of the banks’ report.

When designing the scenarios, the regulator anticipates how she will interpret the results of
the test. The extent to which learning will take place is captured by the expected distribution of
the posterior mean, given by

x̂ ∼ N (x,Σx̂) , (10)
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where the variance of posterior beliefs is given by

Σx̂ ≡ Σx − Σ̂x = K
(
IN ⊗ Ŝ

)
Σx.

The matrix Σx̂ represents the expected amount of learning from stress test Ŝ. If the stress test
is pure noise, then K = 0 and Σ̂x = Σx. The posterior distribution is the same as the prior
distribution, and there is no uncertainty about the posterior means: they are simply the priors
and Σx̂ = 0. If the test is fully informative, then Σ̂x = 0. The regulator expect to change her
mind a lot in response to the tests, and Σx̂ = Σx. The goal of the regulator is to maximize her
learning Σx̂ by minimizing the residual uncertainty Σ̂x, taking into account that the Kalman gain
K is a function of the scenario, given by equation (8).

Example. Let us consider the simple case of one bank, two factors, and one scenario: N = 1,
J = 2, M = 1 (we drop the superscript m since M = 1). Increasing ŝj in the scenario affects
learning according to

dΣx̂

dŝj
= −

[
dKl

dŝj
ŝh +KlI {j = h}

]
lh

Σx, (11)

where I {j = h} is 1 if j = h and 0 otherwise. The change in the information gain in the dimension
of the risk exposure to factor j is given by

dKl

dŝj
= ∂Kl

∂ŝj
+ ∂Kl

∂Σe
(
Ŝ
) ∂Σe

(
Ŝ
)

∂ŝj
. (12)

Equation (12) shows the two effects of changing the stress scenario along dimension j. The direct
effect is to change the information content about the exposure to factor j. The second, indirect
effect is to change the precision of the bank’s report.

These two effects depend on the prior of the regulator. Consider the case where the regulator
thinks that the risk factors are uncorrelated, i.e., if Σx,12 = 0. In that case we can sign the
direction of the direct effect of ŝj on Σx̂,jj given by

sgn
((

∂Kj

∂ŝj
ŝj +Kj

)
Σx,jj

)
= sgn (ŝj) . (13)

Equation (13) shows that making the scenario more extreme by increasing the absolute size of ŝj
increases the amount of information the stress test results contain about the bank’s risk exposure
to risk factor j. Similarly, the direct effect of changes in ŝj on Σx̂,hh depends on the how the
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weight Kh that the regulator puts on the stress test result to learn about xh changes with ŝj.
When Σx,12 = 0 we have

sgn
(
∂Kh

∂ŝj
ŝhΣx,hh

)
= − sgn (ŝj) . (14)

As Equation (14) shows, making the scenario more extreme in the dimension of one risk factor
reduces the amount of information that the stress test result contains about the bank’s exposure
to the other risk factor h 6= j. When Σx,12 = 0, learning about the risk exposure of the bank to one
risk factor contains no information about the bank’s exposure to the other risk factor. Therefore,
increasing the amount that can be learned in one dimension by making the scenario more extreme
in this dimension decreases the informational gain in the other dimension.

The indirect effect of changing ŝj on the amount that can be learned from the stress test
depends on how the scenario affects the precision of the bank’s report. A lower precision of the
bank’s report, i.e. a higher Σe

(
Ŝ
)
, always decreases the amount of information that the stress

test contains about the bank’s risk exposures. Formally,
∂Kl

∂Σe
(
Ŝ
) ≤ 0. (15)

Moreover, given our assumption in Equation (5),

∂Σe
(
Ŝ
)

∂ |ŝj|
> 0. (16)

The expression for Σe
(
Ŝ
)
in Equation (5) captures the idea that more extreme scenarios are

harder for the bank to predict accurately. Hence, though increasing |ŝj| makes the stress test
results relatively more informative about the bank’s exposure to factor j, it also decreases the
total amount of information available by reducing the overall precision of the stress test result.

Using Equations (14), (15), and (16), the total effect of ŝj on the amount amount of information
about the exposure to risk factor i contained in the stress test result is

sgn
(
dΣx̂,hh

d |ŝj|

)
< 0.

When the regulator has a prior belief that the risk exposures of the bank are uncorrelated, she
faces a trade-off between learning about one factor or the other. However, when the regulator’s
prior is such that Σx,12 6= 0, this result may be overturned and putting more weight on ŝj in the
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scenario can directly increase the weights K1 and K2 the regulator puts on the stress test result
to update her beliefs on both risk exposures.

3.5 Optimal stress scenario design

Running stress tests and processing information is costly for the banks and for the regulator. The
cost for the banks is captured by the precision of the bank’s reports being decreasing in the number
of scenarios. We can also incorporate a cost of creating additional scenarios for the regulator:
choosing M scenarios for the stress test has a cost C (M), where C ′ (·) > 0 and C ′′ (·) ≥ 0. When
designing a stress test, the regulator has to choose how many and which scenarios to include. The
regulator’s problem can be written as

max
M∈N∪{0}

V (M)− C (M) ,

where
V (M) = max

{sm}M
m=1

E
[
U (W (a? (IM)))− 1

2 ‖φ ◦ a
? (IM)‖2

]
(17)

and
V (0) = E

[
U (W (a? (I0)))− 1

2 ‖φ ◦ a
? (I0)‖2

]
,

where a? (I) is the optimal intervention policy of the regulator given her information set I given
by Eq. (3), I0 is the information set of the regulator if she does not run a stress test, and

W (a) =
N∑
i=1

ωi − ηi − J∑
j=1

(1− aij)xij · sj

 . (18)

The information set on which the regulator conditions her intervention policy depends on her
scenario choice. The choice of scenario affects the actual choice of policy a? and the ex-ante
distribution of this policy. However, since the regulator is choosing a? optimally, the envelope
theorem implies we can ignore the direct effect the scenario choice has on a? and focus on the
effect on its ex-ante distribution. To fix ideas, we explore this dependence in an application in the
next section.

Scenario choice as information precision choice The regulator’s problem in Equation (17)
only depends on the scenario ŝ indirectly through the distribution of ŷ. Given the Gaussian
structure of the random variables and the linearity of the signals, this distribution only depends
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on the posterior precision of the exposures, Σ̂x. Therefore, choosing a scenario ŝ is equivalent
to choosing a posterior covariance matrix Σ̂x. Each scenario ŝ determines the structure of the
signals about the banks’ risk exposures contained in the stress test results ŷ. This signal structure
determines the amount of information that can be extracted from the stress test results and, hence,
the amount of residual uncertainty that the regulator faces after observing ŷ, which is measured
by Σ̂x.

Therefore, the regulator’s problem in Equation (17) can be rewritten in terms of choosing a
posterior covariance matrix Σ̂x ∈ Σ. The set Σ from which the regulator can choose maps a set of
posterior precisions Σ̂x for each feasible set of stress test scenarios ŝ and it is given by Equation
(9). Note that Σ is a closed and convex set. Moreover, the set Σ is the set of feasible posterior
variances and it plays the role of a budget set in models in which agents choose the precision
of their signals under information processing constraints. Figures (1) shows the feasible set of
posterior precisions

{
Σ̂x,jj

}
j=1,2

for the case in which there is one representative bank and two
risk factors for different values of prior correlations among risk factors.

Choosing a more extreme scenario has two effects on the amount of information that the
regulator can acquire. On one hand, a higher value of ŝi increases the weight the bank’s stress
test results put on the bank’s exposure to factor i. On the other hand, more extreme scenarios
are harder to predict and the stress test results become more noisy, i.e., the variance of the error
term Σe

(
Ŝ
)
is larger. For scenarios that are close to the benchmark, small values of (ŝ1, ŝ2),

the first effect dominates and making the scenario more extreme translates into lower posterior
variances (acquiring more information). For more extreme scenarios, the second effect dominates
and moving away form the benchmark reduces the amount of information the regulator can get
from the stress test. These countervailing effects limit how much the regulator can learn form the
stress test, as can be seen in Figures 1.

The prior correlation between the bank’s risks exposures also determines the amount of
information that the regulator can acquire from the stress test. When the regulator’s prior is
such that risk exposures are correlated, the cost of increasing the value of ŝi in terms of decreasing
the information about risk exposure j is lower. Hence, the regulator can learn more from the
stress tests and reduce the posterior variances

{
Σ̂x,jj

}
j
. At the same time, the regulator cannot

learn about the bank’s exposure to factor 1 without learning about the bank’s exposure to factor
2. Hence, as it can be seen from panels a), b), c) and d) Figures 1, the boundary of set of feasible
posterior precisions, Σ, becomes more convex.
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(a) Prior correlation in exposures Σx,12 = 0
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(b) Prior correlation in exposures Σx,12 = 0.2
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(c) Prior correlation in exposures Σx,12 = 0.5
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(d) Prior correlation in exposures Σx,12 = 0.8

Figure 1: Feasible set of posterior variances,
(
Σ̂x,11, Σ̂x,22

)
when there are two factors and one

representative bank for different values of the regulator’s prior correlation among the bank’s risk
exposures to factors 1 and 2.

Note: Figures 1 illustrates the set of feasible posterior variances, Σ for different values of prior correlations
among risk exposures. The parameters used are M = 1, N = 1, J = 2, λ (M) = 0.05M , α0 = [1, 1],

α1 = 5,σ2
ε = 1, Σx,11 = Σx,22 = 1.
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4 Linear quadratic preferences

We consider the case in which the regulator has linear quadratic preferences over the aggregate
net worth of the banking sector. In this case, the regulator’s utility is given by

U (W ) = W − γ

2W
2.

We normalize our model in such a way that the factors are orthogonal, mean zero and unit
variance: E [s] = 0 and V [s] = IJ , where V denotes the variance-covariance matrix and IJ is
the identity matrix of size J . We start by looking at the regulator’s optimal intervention choice.
Then, we analyze the optimal scenario choice. To do this, we first focus on how the scenario choice
affects the structure of the information available to the regulator and then proceed to illustrate
how the optimal scenario choice depends on the primitives of the model. To simplify the analysis,
we assume that the cost function C (·) is such that it is too costly for the regulator to choose more
than one scenario.

4.1 Intervention policy

When there are N banks and J factors the banking sector’s wealth is given by W = ω̄ − η̄ −∑N
i=1

∑J
j=1

(
1− a?i,j (ŷ)

)
xi,jsj. With linear quadratic preferences, the first order condition that

characterizes the optimal action choice in Equation (3) becomes

φja
?
i,j (ŷ) = E

[
xi,jsj

(
1 + γ

N∑
n=1

J∑
h=1

(
1− a?n,h (ŷ)

)
xn,hsh

)∣∣∣∣∣ ŷ
]
∀i = 1, ..., N, ∀j = 1, ..., J. (19)

Moreover, given our normalization of the risk factors, the intervention policy problem is separable
in the dimension of the risk factor. More specifically, the regulator chooses her intervention along
dimension j for all banks, a?j ≡

(
a?1,j (ŷ) , a?2,j (ŷ) , ..., a?N,j (ŷ)

)
, independently of her intervention

on all other dimensions. In this case, the optimal intervention policy in Equation (19) can be
written as

a?j =
(
φjIN + γE

[
xjx

′
j

∣∣∣ ŷ]E [s2
j

])−1
γE

[
xjx

′
j

∣∣∣ ŷ]1N×1E
[
s2
j

]
∀j = 1, . . . , J. (20)

Equation (20) shows that the optimal intervention policy of the regulator depends on the
stress test only through the stress test’s informational content. The stress test results affect
the regulator’s behavior by changing her perceived risk in the economy, which is measured by
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{
γE

[
xjx

′
j

∣∣∣ ŷ]E [s2
j

]}
j
. Note that E

[
xjx

′
j

∣∣∣ ŷ] = Σ̂x,j + x̂jx̂
′
j. Hence, the optimal intervention

along dimension j depends on the amount of information revealed by the stress test about
the exposure of the banks to risk factor j, measured by Σ̂x,j, and on the stress test results
through the posterior mean of this risk exposures x̂j. This is consistent with the regulator
designing the stress test to extract information from the banks. Moreover, since the regulator’s
intervention problem is separable in the dimension of the risk factor, the regulator only cares
about Σ̂x,jj ≡

{
Σ̂in
x,jj

}
i,n
∀j ∈ J when she chooses her intervention policy.

Proposition 2. The regulator intervenes more in bank i along dimension j when the perceived
risks coming from bank i being exposed to risk factor j,

{
γE [xi,jxn,j| ŷ]E

[
s2
j

]}
n
, is higher.

As proposition 2 shows, a risk averse regulator will intervene more to reduce risk along
dimension j for bank i the higher her perceived risks associated with bank i being exposed to risk
factor j. This risks have four components: risk aversion γ; the variance of risk factor j, E

[
s2
j

]
;

the expected exposures of the banks to risk factor j, {x̂n,j}n; and the precision with which the
regulator estimates these exposures, Σ̂x,jj. Intuitively, a higher γ implies that the regulator dislikes
risk more and, therefore, prefers the banking sector to be exposed to less risk overall. Therefore,
a more risk averse regulator intervenes more in all dimensions, in particular she intervenes more
in bank i along dimension j. Similarly, a higher uncertainty about the net worth of the banking
sector coming from bank i being exposed to factor j, measured by ∑N

n=1 E [xi,jxn,j| ŷ]E
[
s2
j

]
, also

induces the regulator to intervene more. This uncertainty can be driven by the volatility of the
macroeconomic risk factor j, E

[
s2
j

]
, by imprecise estimates of the banks’ risk exposures,Σ̂x,jj, or

by high expected exposure to the risk factor j, high x̂i,j.

4.2 Scenario choice

Suppose that the regulator optimally chooses one scenario for the stress test. In this case, the
regulator chooses a scenario ŝ = [ŝ1, ŝ2, . . . , ŝJ ]′ to solve

max
ŝ∈R̄J

Eŷ,η

W − γ

2W
2 − 1

2

N∑
i=1

J∑
j=1

φj
(
a?i,j (ŷ)

)2
 , (21)

which is the same as

min
ŝ∈R̄J

Eŷ

γ
 J∑
j=1

(
11×N − a?j (ŷ)′

)
E
[
xjx

′
j

∣∣∣ ŷ] (11×N − a?j (ŷ)′
)′
E
[
s2
j

]2

+
J∑
j=1

φja
?
j (ŷ)′ a?j (ŷ)

 ,
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Figure 2: Indifference curves of the regulator with linear quadratic preferences

Note: Figures 2 illustrates the regulator’s indifference curves as a function of the posterior variances, {Σx,jj}j .
The parameters used are N = 1, J = 2, γ = 1, and φ1 = φ2 = 1.

where a?j (ŷ) is given by Equation (20). Although ŝ does not appear explicitly in Equation (21) it
determines the distribution of x̂ and, as can be seen from Equation (19), the optimal intervention
policy choice a?j (ŷ). Given our assumption about the orthogonality of the risk factors, the problem
is separable in the risk exposures to factors 1 and 2 and the problem can be rewritten in terms
of the precisions with which the exposures to these risk factors are estimated. The feasible set of
posterior precisions over which the regulator can choose, Σ, is given by the Kalman filter formulas
in Equations (8) and (9). The regulator’s utility can be written as a function the posterior
precisions

{
Σ̂x,jj

}
j
. Figure (2) illustrates the indifference curves of a regulator when there is one

representative bank and two factors. Intuitively, a risk-averse regulator has higher utility the lower
the posterior uncertainty about the bank’s risk exposures.

Learning and ex-post interventions There are two ways in which the regulator can reduce
the risk she faces: learning about the risk exposures and intervening to force the banks to reduce
their exposures to the risk factors. Whether these tools are compliments or substitutes depends
on the cost of intervention relative to the regulators risk aversion. When the cost of intervening
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along dimension j is too convex relative to the regulators risk aversion, the regulator prefers to
learn about all risk exposures and chooses small interventions along all dimensions. In this case,
learning and intervening are complements and the optimal scenario stresses all risk factors. When
the cost of intervention is less convex, it is relatively cheap to have large interventions. In this
case, learning and intervening ex-post are substitutes. The regulator chooses to intervene more
in those dimensions about which the stress test provides less information. As the next section
illustrates, whether learning and intervening ex-post are complements or substitutes depends on
the parameters of the model.

5 Optimal scenario design

The regulator cares about the stress test result because it contains information about the banks’
exposures to the risk factors. As we discussed in the previous section, the regulator’s choice of
scenario determines the signals that she has available to choose her intervention policy. Hence,
it is natural that the regulator’s problem can be cast in terms of choosing the precision of the
information available to her. Formulating the regulator’s problem in this way unfolds the problem
in two. First, we can focus on the information acquisition aspect embedded in the stress scenario
design. Once one understands the choice of information, we can use the insights of Section 3.4 to
understand the optimal scenario choice.

The regulator can choose scenarios that stress only one factor or scenarios that stress multiple
factors. She can choose extreme scenarios or scenarios closer to the benchmark. The optimal
choice of scenario for the regulator, which determines the amount and type of learning from the
stress test that can be attained by the regulator, depends on the intervention costs to reduce the
banks’ exposure to the different factors, on the regulator’s prior distribution over the banks’ risk
exposures, and on the distribution of the errors in the banks’ reported losses. In these Section, we
explore how these parameters affect the optimal scenario choice by providing numerical examples
that illustrate the economic forces at play. We start by analyzing the case in which there is only
one bank to focus on how the intervention costs, the prior mean of the risk exposures and the
correlation among them within a bank determine the scenario choice. Then, we consider the case
with two banks and concentrate on how having systemic factors impacts the stress scenario design.
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5.1 One bank

When there is only one bank in the economy, the net worth of the banking system is given by
W = w̄ − η − ∑J

j=1

(
1− a?j (ŷ)

)
xjsj. Then, the optimal intervention policy in Equation (20)

becomes

a?j (ŷ) =
γ
(
Σ̂x,jj + x̂2

j

)
E
[
s2
j

]
φj + γ

(
Σ̂x,jj + x̂2

j

)
E
[
s2
j

] . (22)

As in the general case in Equation (20), conditional on an expected risk exposure, the regulator
wants to intervene more the more uncertain she is about that risk exposure and the lower the cost
of intervening along that factor’s dimension. Intuitively, the regulator is willing to bear a higher
exposure to factor j when the exposure to factor j is more precisely estimated or when it is too
expensive to reduce the exposure to that factor es-post.

Using the optimal intervention policy, the regulator’s information choice problem can be
rewritten as minimizing sum of marginal intervention costs as follows

min
{Σ̂x,jj}

j
∈Σ

J∑
j=1

φjEŷ
[
a?j (ŷ)

]
.

Since ex-post interventions are costly for the regulator, she chooses posterior variances to minimize
the total amount of expected interventions weighted by the average marginal cost of intervening.
Even though the objective function is separable in the dimension of the factors, the precision
choices along the factor dimensions are not independent of each other. The precision budget set
Σ restricts the amount of information about the exposures to different factors that the regulator
can choose. For example, when the regulator’s prior is that risk exposures to different factors are
uncorrelated, increasing the precision of the stress test results as a signal of the exposure to one
factor comes at the expense of receiving less precise information about all other factors to which
the bank is exposed.

From Equation (22) we know that the optimal intervention to reduce the exposure to factor
j, a?j (ŷ), is increasing in the uncertainty about the bank’s exposure to factor j,Σ̂x,jj, and in the
bank’s expected exposure to that factor,x̂j, and that

x̂j =
(
Σx,jj − Σ̂x,jj

) 1
2 z + x̄j

where z ∼ N (0, 1). Then, the derivative of the expected intervention in dimension j with respect
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to Σ̂x,jj is

dE
[
a?j (ŷ)

]
dΣ̂x,jj

= Eŷ

 ∂a?j (ŷ)
∂
(
Σ̂x,jj + x̂2

j

)
E [sj]2

∂
(
Σ̂x,jj + x̂2

j

)
∂Σ̂x,jj

E [sj]2
. (23)

Equation (23) represents the change in the expected intervention by the regulator along dimension
j as the posterior precision changes. When the uncertainty about the bank’s net worth coming
from factor j, measured by

(
Σ̂x,jj + x̂2

j

)
E [sj]2, increases, the regulator intervenes more along

dimension j. The second term in Equation (23) represents the change in this uncertainty as the
residual uncertainty about the bank’s exposure to risk factor j changes. Since these two terms are
positive, learning about the exposure to factor j and intervening the reduce the bank’s exposure
to that factor are substitute instruments to reduce the overall exposure to risk. Intuitively, when
the cost to intervene along dimension j increases, learning becomes relatively cheaper and the
regulator stresses that dimension more. The increases precision of the regulator’s information
along dimension j implies that she can intervene more accurately when it is more expensive to do
so and it reduces the overall expected costs of intervention.

The regulator does not only need to decide whether to learn or intervene along dimension j, but
she also needs to allocate her resources across the different factor dimensions. Should the regulator
learn only about the bank’s exposure to one factor? Should she learn about multiple factors?
How much weight should the regulator put in each factor when designing the stress scenario?
In the remainder of this section we provide numerical examples to illustrate how the relative
intervention cost and the regulator’s prior beliefs about the bank’s risk exposures determine her
optimal scenario choice. For most exercises we focus on the two factor case and use the following
baseline parameters γ = 1, φ1 = φ2 = 1, x̄ = [1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,
σ2
ε = 1, and Σx = IJ .

Intervention costs

Everything else equal, the regulator will choose to intervene less along dimensions with higher
intervention costs. Since learning and intervening are substitute instruments to reduce risk, this
implies that a higher intervention costs to reduce the bank’s exposure to factor j will lead to more
learning about the bank’s exposure to this factor (lower posterior variance). This translates into
an optimal stress scenario that stresses the factor with the higher intervention cost more. When
the intervention cost along dimension j becomes high enough, the regulator finds it optimal to
specialize and learn only about factor j from the stress test to minimize the expected costs of

24



1 1.05 1.1 1.15 1.2 1.25

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Optimal scenario choice

1 1.05 1.1 1.15 1.2 1.25

0.75

0.8

0.85

0.9

0.95

(b) Optimal posterior

Figure 3: Optimal scenario and information choice as a function the intervention cost to reduce
the exposure to factor 2, φ2.

Note: Figure 3 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of the intervention cost along the dimension of factor 2. The parameters used are N = 1, J = 2, γ = 1,

φ1 = 1, x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2
ε = 1, and Σx = IJ .
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Figure 4: Optimal expected ex-post interventions as a function the intervention cost to reduce the
exposure to factor 2, φ2.

Note: Figure 4 illustrates the regulator’s optimal expected ex-post interventions to reduce the bank’s exposure to
factors 1 and 2 as a function of the intervention cost along the dimension of factor 2. The parameters used are

N = 1, J = 2, γ = 1, φ1 = 1, x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2
ε = 1, and Σx = IJ .

intervention. Figure (3) illustrates the optimal scenario choice and the implied posterior precision
as the cost of intervening to reduce the bank’s exposure to factor 2 increases.

Figure (4) shows the expected optimal intervention as a function of the intervention cost to
reduce the exposure to factor 2. The expected intervention cost is lower in the dimension of
factor 2 for two reasons. First, it is more costly to intervene to reduce the exposure to factor 2.
Second, the regulator has more precise information about the bank’s exposure to factor 2, which
allows her to intervene more accurately. As the cost of intervention φ2 increases, the expected
intervention along dimension 2 decreases since it becomes more expensive to intervene and the
regulator stresses factor 2 more in the optimal stress scenario.

Prior mean risk exposure The prior mean of the exposure of the bank to each factors affects
the how much the regulator wants to learn about each risk exposure. When the prior expected
risk exposure to a factor is large, the risk along dimension 1 becomes more important and the
regulator wants to learn more about the bank’s exposure which he expects to be bigger. When
risk exposures are uncorrelated, this is achieved by increasing factor 1 in the stress test scenario
and decreasing factor 2. When the expected risk exposure is high enough, the regulator finds it
optimal to set factor 2 to zero in the stress test and learn only about factor 1. This does not imply
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ŝ
⋆ j

ŝ1
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Figure 5: Optimal scenario and information choice as a function of the prior mean x̄1.

Note: Figure 5 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of the prior mean of the risk exposure to factor 1. The parameters used are N = 1, J = 2, γ = 1,

φ1 = φ2 = 1, x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2
ε = 1, and Σx = IN .

that the regulator stops caring about the bank’s exposure to risk factor 2. However, the regulator
will choose to reduce the risk generated by the bank’s exposure to factor 2 by intervening more
heavily ex-post and not learning about it at all. Panel (a) in Figure 5 shows the weights of risk
factors 1 and 2 in the optimal scenario as x̄1 changes. Panel (b) in the same figure shows the
posterior precisions for the bank’s risk exposures as a function of the expected risk exposure to
factor 1.

Prior correlation in risk exposures within banks The prior correlation among risk
exposures plays a crucial role in determining how much the regulator can learn from a stress
test, as it can be seen from the feasible set of posterior precisions, Σ, in Figures (1). When the
prior correlation among risk exposures is zero, the regulator faces a trade-off between learning
about one risk exposure or the other. Scenarios that provide a lot of information about the bank’s
risk exposure to factor 1 contain very little information about the bank’s risk exposure to factors
2 and 3. For example, an extreme scenario that puts all the weight on risk factor 1 and no weight
on the other risk factors contains no information about the bank’s risk exposure to factors 2 and
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Figure 6: Optimal expected ex-post interventions as a function of the prior mean x̄1.

Note: Figure 5 illustrates the regulator’s the regulator’s optimal expected ex-post interventions to reduce the
bank’s exposure to factors 1 and 2 as a function of the prior mean exposure to factor 1.The parameters used are

N = 1, J = 2, γ = 1, φ1 = φ2 = 1, x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2
ε = 1, and Σx = IJ .

3 at all. When the correlation between risk exposures is non-zero, this trade-off is attenuated as
signals about one risk exposure always contain some information about the other.

Panel (a) in Figure 7 plots the weight on risk factor 1 in an optimal scenario as a function of the
regulator’s prior correlation among risk exposures. As one can see in this figure, the correlation
in risk exposures does not affect the scenario choice. However, as panel (b) shows, the amount of
information that the regulator can get from the same scenario changes as the prior correlation in
risk exposures varies. As bank’s risk exposures become more correlated in the bank’s prior, the
more informative the stress test.

When there are more than two factors, the scenario choice will be affected by the prior
correlation among the bank’s risk exposures to factors 1 and 2. As this correlation increases,
the regulator will put more weight on the factors to which the bank’s exposures are correlated
and decrease the weight of the remaining factor. When the exposures of the bank to factors 1 and
2 are very correlated, the regulator finds it optimal to learn only about these two risk exposures
and chooses not to deviate from the benchmark for factor 3.
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Figure 7: Optimal scenario and information choice as a function of the prior correlation in risk
exposures, Σx,12.

Note: Figure 7 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of prior correlation in risk exposures. The parameters used are N = 1, J = 3, γ = 1,
φ1 = φ2 = φ3 = 1,x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2

ε = 1, and Σx = IJ .

5.2 Two banks
When there are multiple (types of) banks in the economy, the regulator’s beliefs about the risk
exposures within and across banks determine the optimal choice of stress scenario. Consider the
case in which there are two banks and two risk factors. In this case, the banking sector’s wealth
is given by W = ω̄ − η̄ −∑2

i=1

(∑2
j=1

(
1− a?i,j (ŷ)

)
xi,jsj

)
. With linear quadratic preferences, the

system that characterizes optimal action choices in Equation (20) becomes

a?i,j (ŷ) =
γE
[
s2
j

] (
φj
∑2
n=1 E [xi,jxn,j | ŷ] + γE

[
s2
j

] (
E
[
x2
i,j

∣∣ ŷ]E [x2
z,j

∣∣ ŷ]− (E [xi,jxz,j | ŷ])2
))

φ2
j + γE

[
s2
j

] (
φj
∑2
n=1 E

[
x2
n,j

∣∣ ŷ]+ γE
[
s2
j

] (
E
[
x2
i,j

∣∣ ŷ]E [x2
z,j

∣∣ ŷ]− (E [xi,jxz,j | ŷ])2
)) ∀i, j = 1, 2.

(24)
As in the one bank case, the optimal ex-post intervention for bank i along the dimension of

factor j depends on the intervention cost φj and on the uncertainty about bank i’s exposure to
factor j. However, when there are multiple banks, the optimal intervention a?i,j also depends on
how the posterior covariance of exposures to factor j across banks, as it can be seen from Equation
(24). This posterior covariance in turn depends on the regulator’s prior beliefs about the banks’
risk exposures and, in turn, on the amount of scenario choice. In the remainder of this section,
we provide numerical examples to understand how the regulator’s beliefs affect the optimal stress
scenario design when there are multiple banks. We use the following baseline parameters. N = 2,
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Figure 8: Optimal scenario and information choice as a function of the prior correlation between
the bank’s risk exposures to factor 1, Σ11

x,12.

Note: Figure 8 illustrates the regulator’s optimal choice of scenario and the implied posterior variance as a
function of prior correlation in risk exposures. The parameters used are N = 2, J = 2, γ = 1, φ1 = φ2 = 1,

x̄=[1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3,σ2
ε = 1, and Σx = INJ .

J = 2, γ = 1, φ1 = φ2 = 1, x̄ = [1, 1], λ (M) = M , M = 1, α0 = [1, 1], α1 = 3, σ2
ε = 1, and

Σx = INJ .

Correlated risk exposures across banks When there are multiple banks, the exposures to
the risk factors are likely to be correlated among banks, even when the factors are orthogonal.
Figure 8 shows the optimal scenario weights as a function of the correlation between the exposure
to risk factor 1 for banks 1 and 2, when there are two banks, two risk factors and one scenario.

When the exposures to factor 1 are correlated across banks, the stress test results of bank i
contain information about bank i’s exposures to both risk factors and about bank j’s exposure
to factor 1, as long as the weight of factor 1 in the stress test’s scenario is non-zero. Figure 8
shows that, in this case, learning about factor 1 becomes more valuable for the regulator to the
point that the stress scenario only puts weight on factor 1 when the risk exposures of the banks to
factor 1 are very correlated. In this case, the regulator does not learn about the risk exposures to
factor 2 and only chooses to intervene ex-post to reduce the losses associated with this factor. The
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posterior variance of the risk exposures to factor 2 remain constant and equal to the prior. On the
other hand, the posterior variance of the exposure of the banks to factor 1 decreases mechanically
with Σ12

x,11 since the the stress test of bank j becomes more informative of bank i’s exposure to
factor 1 as this correlation increases.

6 Conclusion

Despite the grow-in importance of stress testing for financial regulation, economists still lack a
theory of the design of stress scenarios. We model stress testing as a learning mechanism and we
derive optimal scenarios. We show how the design of these optimal scenarios depends on the cost
of interventions, the prior beliefs of the regulator, the precision of regulatory information, and the
presence of systemic risk factors.

Our approach is consistent with the general principles of current policies implement in various
jurisdiction, but it has the advantage that our optimal scenarios are not arbitrary. For example, the
current policy on stress scenario design in the U.S. allows for the stress scenarios to “follow either
a recession approach, a probabilistic approach, or an approach based on historical experiences.”5

These concepts are somewhat vague and have generated much discussion among banks and
regulators. Some commentators argue that scenarios should be predictable while others advocate
a flexible design to accommodate emerging risks and changing exposures. Our learning approach
shows how to incorporate this goals in the design of the stress scenarios.

5See 12 CFR Part 252 Appendix A.
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Appendix
The Appendix contains some auxiliary calculation for formulas in the text. It needs to be completed.

A Learning
A.1 Proof of Proposition 1
The following state space representation holds

x = x

ŷ =
(

IN ⊗ Ŝ
)

x + e

where e ⊥ x. Therefore, the standard Kalman filter formulas applied to the context of our model gives the result
in the proposition.

A.2 Example
If M = 1 and J = 2, we have that for each bank i

x̂i = (I2 −KiS)xi +Kiŷi (A.1)

Ki =
[

Σix,1 Σix,12
Σix,12 Σix,2

] [
s1
s2

]([
s1 s2

]([ Σix,11 Σix,12
Σix,12 Σix,22

])[
s1
s2

]
+ Σie

)−1

=

 Σi
x,11s1+Σi

x,12s2

Σi
x,11(s1)2+2Σi

x,12s1s2+Σi
x,22s

2
2+Σi

e

Σi
x,12s1+Σi

x,22s2

Σi
x,11(s1)2+2Σi

x,12s1s2+Σi
x,22s

2
2+Σi

e


Σ̂ix =

(
I2 −

[
K1
K2

] [
s1 s2

]) [ Σix,11 Σix,12
Σix,12 Σix,22

]
=
[

(1−K1s1) Σix,11 +K1s2Σix,12 (1−K1s1) Σix,12 +K1s2Σix,22
K2s2Σix,11 + (1−K2s2) Σix,12 K2s2Σix,12 + (1−K2s2) Σix,22

]
.

Also,
ŷi ∼ N

(
x1s1 + x2s2, σ

2
ŷi

)
,

where σ2
ŷi = s2

1
(
Σix,11 + Σie,11

)
+2s1s2

(
Σix,12 + Σie,12

)
+s2

2
(
Σix,22 + Σie,22

)
. Then, unconditionally of the realization

of ŷi the distribution of x̂i is
x̂i ∼ N

(
xi,Kiσ

2
ŷiK

T
i

)
.

Using the expressions for Ki we have that

∂K1

∂s1
=

Σix,11

(
Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie

)
−
(
Σix,11ŝ1 + Σix,12ŝ2

) (
2Σix,11ŝ1 + 2Σix,12ŝ2

)
(

Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie
)2

=
−
(
Σix,11ŝ1

)2 + Σix,11Σix,22 (ŝ2)2 − 2Σix,12ŝ2
(
Σix,11s1 + Σix,12s2

)
+ Σix,11Σie(

Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie
)2

∂K2

∂s2
=
−
(
Σix,22ŝ2

)2 + Σix,22Σix,11 (ŝ1)2 − 2Σix,12ŝ1
(
Σix,12ŝ1 + Σix,22ŝ2

)
+ Σix,22Σie(

Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie
)2
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∂K2

∂s1
=

Σix,12

(
Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie

)
−
(
Σix,12ŝ1 + Σix,22ŝ2

) (
2Σix,11ŝ1 + 2Σix,12ŝ2

)
(

Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie
)2

∂K1

∂s2
=

Σix,12

(
Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie

)
−
(
Σix,11ŝ1 + Σix,12ŝ2

) (
2Σix,12ŝ1 + 2Σix,22ŝ2

)
(

Σix,11 (ŝ1)2 + 2Σix,12ŝ1ŝ2 + Σix,22 (ŝ2)2 + Σie
)2

If the regulator has a prior such that the bank’s exposures to the risk factors are uncorrelated, i.e., if Σx,12 = 0,
we have

∂K1

∂s1
= Σix,11

−Σix,11 (ŝ1)2 + Σix,22 (ŝ2)2 + Σie(
Σix,11 (ŝ1)2 + Σix,22 (ŝ2)2 + Σie

)2

∂K2

∂s2
=
−
(
Σix,22ŝ2

)2 + Σix,22Σix,11 (ŝ1)2 + Σix,22Σie(
Σix,11 (ŝ1)2 + Σix,22 (ŝ2)2 + Σie

)2

∂K2

∂s1
= −

2Σix,22ŝ2Σix,11ŝ1(
Σix,11 (ŝ1)2 + Σix,22 (ŝ2)2 + Σie

)2

∂K1

∂s2
= −

2Σix,11ŝ1Σix,22ŝ2(
Σix,11 (ŝ1)2 + Σix,22 (ŝ2)2 + Σie

)2

B Optimal Intervention policy
Under linear quadratic preferences, the first order condition that characterizes the regulator’s optimal intervention
policy is

φja
?
i,j (ŷ) = E [xi,jsj (1− γW )| ŷ] ∀i = 1, ..., N, ∀j = 1, ..., J,

where W =
∑N
i=1

(∑J
j=1

(
1− a?i,j (ŷ)

)
xi,jsj + ηi − di

)
. This is the same as

φja
?
i,j (ŷ) = E

[
xi,jsj

(
1 + γ

N∑
n=1

J∑
h=1

(
1− a?n,h (ŷ)

)
xn,hsh + γ

N∑
i=1

di

)∣∣∣∣∣ ŷ
]
.

Since E [sj ] = 0 for all j, we have

φja
?
i,j (ŷ) = γ

N∑
n=1

(
1− a?n,j (ŷ)

)
E [xi,jxn,j | ŷ]E

[
s2
j

]
.

Let a?j =
(
a?1,j , . . . , a

?
N,j

)′. Then, the FOCs can be written as

φja
?
j = −γ


E [x1,jx1,j | ŷ] E [x1,jx2,j | ŷ] . . . E [x1,jxN,j | ŷ]

E [x2,jx1,j | ŷ]
. . . · · ·

...
... · · · · · ·

...
E [xN,jx1,j | ŷ] · · · · · · E [xN,jxN,j | ŷ]

E
[
s2
j

]
a?j +


γ
∑N
n=1 E [x1,jxn,j | ŷ]E

[
s2
j

]
γ
∑N
n=1 E [x2,jxn,j | ŷ]E

[
s2
j

]
...

γ
∑N
n=1 E [xN,jxn,j | ŷ]E

[
s2
j

]

 ,
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which is the same as

φja
?
j = −

(
Σ̂x,j + x̂jx̂

′
j

)
γE

[
s2
j

]
a?j +

(
Σ̂x,j + x̂jx̂

′
j

)
1N×1γE

[
s2
j

]
,

where x̂j = (x̂i,j, . . . , x̂N,j)′. Then,

a?j =
(
φjIN + γ

(
Σ̂x,j + x̂jx̂

′
j

)
E
[
s2
j

])−1
γ
(
Σ̂x,j + x̂jx̂

′
j

)
1N×1E

[
s2
j

]
∀j = 1, . . . , J (A.2)

B.1 Proof of Proposition 2
It follows directly from the system in Equation (A.2).

B.2 One bank
When there is only one bank, the optimal intervention policy in Equation (20) becomes

φ1 0 · · · 0 0
0 φ2 · · · · · · 0
...

. . . . . . · · · 0

0 · · · · · ·
. . .

...
0 · · · · · · 0 0φJ

 a
? (ŷ) = −γ



E
[
x2

1
∣∣ ŷ]E [s2

1
]

0 · · · 0 0
0 E
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x2

2
∣∣ ŷ]E [s2

2
]
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. . . . . . · · ·
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0 · · · · · ·
. . . 0

0 · · · · · · 0 E
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1
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2
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[
x2
J−1
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]

γE
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x2
J
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This is the same as

a?j (ŷ) =
γE

[
x2
j

∣∣∣ ŷ]E [s2
j

]
φj + γE

[
x2
j

∣∣∣ ŷ]E [s2
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Σ̂x,jj + x̂2

j

)
E
[
s2
j
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(
Σ̂x,jj + x̂2

j

)
E
[
s2
j

] ∀j. (A.3)

B.3 Two banks
When there are two banks and two factors, the regulator’s optimal intervention policy is
characterized by the following systems

a?j =
(
φjI2 + γ

[
E [x1,jx1,j| ŷ] E [x1,jx2,j| ŷ]
E [x2,jx1,j| ŷ] E [x2,jx2,j| ŷ]
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j
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or, equivalently,
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γE
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j
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E
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E
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)) ∀i, j.
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C Scenario choice
Since E [sj] = E [sjsk] = 0 for all j 6= k, the objective function of the regulator can be written as

O ≡Ex̂,s,η

W − γ

2W
2 − 1

2

J∑
j=1

φja
?
j (ŷ)′ a?j (ŷ)
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)
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+ 1
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2
(
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)
E
[
xjx

′
j
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(A.4)

− 1
2

J∑
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Eŷ

γ (11×N − a?j (ŷ)′
)
E
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xjx
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∣∣∣ ŷ] (11×N − a?j (ŷ)′
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 ,
where a?j =

(
a?1,j, . . . , a

?
N,j

)′
and x̂j = (x̂i,j, . . . , x̂N,j)′ .

C.1 One bank
When there is only one bank, the objective function of the regulator in Equation (A.4) becomes

O = ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

Eŷ
[
γ
(
1− a?j (ŷ)

)2
E
[
x2
j

∣∣∣ ŷ]E [s2
j

]
+ φj

(
a?j (ŷ)

)2
]
.

Using the he optimal intervention policy in Equation (A.3) we have
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O = ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

φjEŷ

γ( 1
1 + γE

[
x2
j

∣∣ ŷ]E [s2
j

])2

E
[
x2
j

∣∣ ŷ]E [s2
j

]
+
(

γE
[
x2
j

∣∣ ŷ]E [s2
j

]
φj + γE

[
x2
j

∣∣ ŷ]E [s2
j

])2


= ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

φjEŷ

( 1
φj + γE

[
x2
j

∣∣ ŷ]E [s2
j

])2

γE
[
x2
j

∣∣ ŷ]E [s2
j

] (
φj + γE

[
x2
j

∣∣ ŷ]E [s2
j

])
= ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

φjEŷ

[
γE
[
x2
j

∣∣ ŷ]E [s2
j

]
φj + γE

[
x2
j

∣∣ ŷ]E [s2
j

]]

= ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

φjEŷ

 γ
(

Σ̂x,jj + x̂2
j

)
E
[
s2
j

]
φj + γ

(
Σ̂x,jj + x̂2

j

)
E
[
s2
j

]


= ω − γ

2
(
ω2 + σ2

η

)
− 1

2

J∑
j=1

φjEŷ
[
a?j (ŷ)

]

Since x̂j ∼ N
(
x̄j,Σx,jj − Σ̂x,jj

)
we have x̂j =

(
Σx,jj − Σ̂x,jj

) 1
2 z + x̄j where z ∼ N (0, 1). In this

case, the objective function is separable in Σ̂x,jj.
Let,

Σ =
{{

Σ̂x,jj

}
: Σ̂x,jj = Σx,jj (1−Kj (ŝ) ŝj)− Σx,hjKj (ŝ) ŝh ∀h, j = 1, .., J, h 6= j for some ŝ ∈ Ω

}
,

(A.5)
where Ω is the set of scenarios. Then, the regulator’s problem can be written in terms of choosing
posterior variances as

min
{Σ̂x,jj}∈Σ

1
2

J∑
i=1

φjEx̂,e,η,s
[
a?j (ŷ)

]
.
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