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1 Introduction

A rapidly growing body of research has examined tail risks in macroeconomic outcomes. Most of

this work has focused on the risk of significant declines in gross domestic product (GDP), brought

about by a deterioration of financial conditions. In particular, growth-at-risk (GaR), the, say, 5%

quantile of a predictive GDP distribution, has emerged as a popular measure of downside risk; see

e.g. Adrian et al. (2020), Prasad et al. (2019), and Caldara et al. (2019). Both the International

Monetary Fund (IMF) as well as the European Central Bank (ECB) now routinely publish GaR

estimates for major world economies; see IMF (2017) and ECB (2019). These developments have

motivated a proliferation of modeling frameworks to assess the severity of extreme events asso-

ciated with key economic variables, including single-equation quantile regression (QR) models

(Adrian et al. (2020)), panel QR models (Adrian et al. (2018), Beutel (2019), Brandao-Marques

et al. (2020)), panel-GARCH models (Brownlees and Souza (2019)), fully non-parametric Kernel

regression models (Adrian et al. (2020)), combined linear vector autoregressive (VAR) and single-

equation QR models (Duprey and Ueberfeldt (2020)), nonlinear Bayesian VAR models (Caldara

et al. (2019), Carriero et al. (2020)), and quantile VAR models (Chavleishvili and Manganelli

(2019), Adrian et al. (2020)).1 Despite GaR’s rapid success, however, the question how the sta-

tistical notion of downside risk can be made operational for the assessment of risks to financial

stability and for macro-prudential policy has received much less attention.

As a result, financial stability policy makers continue to wrestle with urgent open questions.

How can financial stability risks be quantified in a meaningful but yet easy-to-communicate way?

How large and variable are downside risks to the economy stemming from financial stress and

vulnerabilities? Is the macro-economy at all times equally vulnerable to adverse shocks? Is current

financial stability policy too loose or too tight? Finally, does actively managing the financial cycle

pay off in terms of better macroeconomic outcomes?

This paper addresses the above questions based on an estimated structural quantile vector au-

1Manganelli and Kilian (2008) show that GaR is a special case of the downside risk measures proposed by Fishburn
(1977) in the context of portfolio allocation. They also propose to view a central bank’s decision as a risk management
problem, requiring the central bank to optimally balance the risks to economic growth and to price stability.
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toregressive (QVAR) model. The QVAR model allows us to quantify future risks to economic ac-

tivity caused by elevated levels of financial stress as well as by economic vulnerability to shocks.

We argue that our framework inherits the best features from both the VAR and QR strands of liter-

ature: The VAR permits all endogenous variables to interact over time, allows us to be transparent

about the identification of structural shocks, and allows us to simulate from the model and compare

different counter-factual policy scenarios. By contrast, QR allows the dynamic properties of the

system to differ across quantiles, capturing potential asymmetries in the propagation of structural

shocks. As a welcome by-product, QR parameter estimates are less sensitive to outliers when

compared to their least squares counterparts. This robustness feature can become relevant when

financial variables are included in the model and the financial system and the economy face abrupt

and large changes. Succinctly put, our QVAR model relates to the single-equation QR approach of

Adrian et al. (2020) as the VAR model of Sims (1980) relates to the straightforward single-equation

autoregressive approaches of e.g. Koyck (1954) and Almon (1965).

We include measures of financial stress (realized risk) and medium-term vulnerabilities along-

side GDP growth in our baseline model. Financial stress is proxied by the ECB’s Composite

Indicator of Systemic Stress (CISS; see Hollo et al. (2012)), while medium-term vulnerabilities

are proxied by Schüler et al. (2019)’s real-time broad financial cycle indicator. Financial stress, the

financial cycle, and GDP growth can interact freely in our preferred model specification, and can

do so to different extents at different quantiles. The three-variable setup reflects the consideration

that financial stability is of concern to policy makers (only) to the extent that it has real economic

consequences, e.g. in terms of future employment, consumption, or overall economic activity.

The ECB’s definition of financial stability refers to “the risk that the provision of necessary

financial products and services by the financial system will be impaired to a point where economic

growth and welfare may be materially affected;” see ECB (2019).2 Downside risk measures thus

have the potential to play an important role when assessing and communicating financial stability

2Similarly, the Financial Stability Board, International Monetary Fund, and the Bank for International Settlements
define systemic risk as a “risk of disruption to financial services that is (i) caused by an impairment of all or parts of
the financial system, and (ii) has the potential to have serious negative consequences for the real economy;” see FSB
(2009).
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policy decisions.

Beyond the empirical contribution based on estimated QVAR models this paper also proposes

an additional parsimonious downside risk measure to complement GaR. The average future growth

shortfall (AGS) over a certain prediction horizon H (say, eight quarters) quantifies the time-t

expected average contraction of GDP between t + 1 and t + H as implied by current financial

stress and vulnerabilities. In contrast to GaR, growth shortfall (GS) is a coherent risk measure

(see Artzner et al. (1999)) and extends the assessment of risks by taking into account the entire

lower tail of the predictive GDP growth distribution. GS can be factored into two intuitive terms:

the expected loss conditional on a contraction, and the probability of experiencing a contraction.

While both components can be studied separately and can be of interest in their own right, such as

in stress test or macroeconomic modeling, AGS summarizes them tractably into one metric and is

easily obtained from a QVAR model.

The empirical part of this paper applies our statistical model to both euro area and U.S. data.

The paper focuses on euro area data between 1988Q3 and 2018Q4,3 and analogous tables and

figures based on U.S. data between 1973Q1 and 2018Q4 are discussed in a Web Appendix. Our

main empirical findings are remarkably similar across the euro area and U.S. samples.

We focus on four empirical findings. First, a variable selection exercise suggests that central

bank “intermediate target” variables, such as the financial cycle and (de-trended) money market

interest rates, interact closely with GDP growth and financial stress across all quantiles. Other

variables, such as the term spread may also play a role, particularly for U.S. data, but are not

ranked as highly by model selection criteria. Fortunately, the financial cycle can be influenced to

at least some extent by macro-prudential (and monetary) policy instruments. Our downside risk

estimates are not particularly sensitive to the exclusion of short-term interest rates; we therefore

use the more parsimonious trivariate model specification for most of our results.

Second, the dynamic properties of the system differ significantly across quantiles. A formal

Wald test rejects the pooling, or parameter homogeneity, restrictions implied by a linear VAR

3Counterfactual data preceding the formation of the euro area (pre-1999) is obtained from an internal ECB
database.
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specification for our data at any reasonable confidence level. The QVAR is instead characterized

by substantial asymmetries. For example, a shock to financial stress (CISS) shifts the left tail

of future GDP towards more negative values, while leaving its conditional median and right tail

approximately unaffected. As a second example, growing financial vulnerabilities (the financial

cycle) shift the right tail of future financial stress towards higher values, while shifting its left tail

further to the left. As in Adrian et al. (2020), macro-financial interactions imply that the upper

quantiles of predictive GDP growth distribution are less volatile than its lower quantiles.

Our model-implied downside risk measures are strongly sensitive to the inclusion of financial

variables. Not only do downside risks associated with the global financial crisis between 2008 and

2009 decline much later, and to a lesser extent, when financial stress is missing, but in addition the

downside risks associated with the 2010 – 2012 euro area sovereign debt crisis are missed almost

entirely when financial stress (CISS) is not included in the model.

Third, we find that the euro area economy is not equally resilient to the same sequence of ad-

verse financial shocks at all times. The asymmetries (nonlinearities) uncovered in the data suggest

that our QVAR model provides a natural environment to perform repeated model-based macro-

prudential stress tests for the economy as a whole. We here understand stress testing as a forecast

of what would happen to all variables in the system should it be subjected to a fixed sequence

of adverse shocks. We find that downside risks conditional on future adverse real and financial

shocks shoot up during crises, and are driven during the crisis by spikes in our financial stress in-

dictor and by reductions in the vulnerability indicator. Our measure of downside risk can be used

as a quantitative yardstick to calibrate the size of macro-prudential capital and liquidity buffers.

The Stoic Roman philosopher Seneca once observed that “When pleasures have corrupted

both mind and body, nothing seems tolerable – not because the suffering is hard, but because the

sufferer is soft.”4 When applied to financial sector stress testing, the quote could read: “When

excess leverage and bad credit growth have sufficiently weakened financial stability, then no shock

to financial conditions seems tolerable – not because the shock is large, but because the system

4Seneca, De Ira, Liber II, XXV, 3.
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has become financially vulnerable.” In QVAR-based stress tests, the impact of a shock to financial

conditions (stress) depends not only on its initial severity, but also on the endogenous, asymmetric

responses of all other variables in the system. Allowing for such feedback and asymmetries is

crucial when subjecting the system to a sequence of joint tail shocks. To counteract the feedback

and the asymmetries we argue that macro-prudential policy should act in a counter-cyclical fashion

by releasing requirements such as capital and liquidity buffers when downside risk is exceptionally

high and tightening when downside risk is exceptionally low.

Finally, we find that managing the financial cycle is not obviously costly in terms of expected

future economic growth. In a thought experiment, we ask the question: what would euro area real

GDP growth have been had a macro-prudential policy maker been able to perfectly mitigate the

contributions from the financial cycle, while leaving the structural shocks to the other variables

unchanged.5 We find that in the counterfactual exercise both mean and median of GDP growth

are higher, growth volatility is lower as negative and positive extreme realizations disappear, and

growth is less skewed towards the downside. Welfare calculations from stabilizing the financial

cycle can be based on the macro-prudential objective function suggested by Carney (2020). The

associated welfare gains can be positive or negative, and are most positive in exuberant times when

the financial cycle is above its conditional median.

Our findings can have important implications for the design of central banks’ financial stability

policies. As a first key takeaway, macro-prudential policies, rather than monetary policy, should

be first in line to address future financial stability risks. In our thought experiment, adjusting

macroprudential policies counter-cyclically to manage the financial cycle is associated with non-

negligible welfare gains. This is in line with e.g. Svensson (2017), who advises against leaning

against excessive credit growth using short-term interest rates and favours macro-prudential instru-

ments instead. Second, model-based stress tests can give additional, quantitative information when

to build up macro-prudential capital buffers and when to release them. Such macro model-based

stress test outcomes can complement early warning indicators such as the credit-to-GDP-ratio gap

5For a detailed discussion of the assumptions underlying this thought experiment we refer to the main text.
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that has traditionally informed the calibration of the counter-cyclical buffer. Doing so may help

overcome a potential “inactivity-bias,” according to which few jurisdictions have set their counter-

cyclical capital buffers to above-zero levels from the buffer’s inception in 2014 to late 2019.6

We proceed as follows. Section 2 defined our downside risk measures and presents the statisti-

cal model. Section 3 introduces our data. Section 4 applies the model to euro area and U.S. data.

Section 5 concludes. A Web Appendix provides further technical and empirical results.

2 Statistical model

2.1 Measures of downside risk

The ECB’s definition of financial stability refers to “the risk that the provision of necessary fi-

nancial products and services by the financial system will be impaired to a point where economic

growth and welfare may be materially affected.” Our point of departure is that financial stability

is of concern to policy makers (only) to the extent that it has real economic consequences, e.g. in

terms of future employment, consumption, or overall economic activity.

We define three measures of adverse real economic impact arising from financial stress and

systemic vulnerabilities. Each measure is of interest in different settings. Our first measure of

adverse impact is growth-at-risk (GaRγ
t,t+h) at confidence level γ ∈ (0, 1), defined implicitly as

P
[
yt+h ≤ GaRγ

t,t+h|F1t

]
= γ, (1)

where yt denotes the quarterly annualized real GDP growth rate between time t − 1 and t, and

h = 1, . . . , H denotes a certain prediction horizon. The information set F1t contains all data

known at time t; see Section 2.2 below. In words, GaRγ
t,t+h is defined such that the probability of

quarterly annualized output growth at t+ h falling below GaRγ
t,t+h is γ.

6At the end of 2018, 19 out of 28 European Union countries, and 15 out of 19 euro area countries, had counter-
cyclical capital buffers set at zero; see Web Appendix A for details.
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Our second measure of adverse real economic impact is growth shortfall (GS), defined as

GSτt,t+h =

∫ τ

−∞
yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h < τ,F1t]× P [yt+h < τ |F1t] , (2)

where Ft,t+h is a time-t conditional cumulative distribution function (cdf), E [·|F1t] denotes a time-

t conditional expectation, and the threshold τ ∈ R could be set to a low conditional quantile, say

τ = GaRγ
t,t+h. If so, then the first factor in (2) coincides with the familiar notion of expected short-

fall; see e.g. McNeil et al. (2005, Ch. 2). Alternatively, it could be set to a certain unconditional

quantile, or be set to zero. If τ = 0, then GS (2) corresponds to the economic question: what is the

time t-expected contraction of the economy at time t+ h. GS factors into two terms: the expected

growth rate given a contraction, and the conditional probability of witnessing a contraction.7

Our final measure of adverse real economic impact is the average future growth shortfall (AGS)

between t+ 1 and t+H , defined as

GS
τ

t,t+1:t+H = H−1
H∑
h=1

GSτt,t+h. (3)

If τ = 0, then the AGS corresponds to the question: what is the average future expected contraction

of the economy between t+ 1 and t+H .

All above risk measures are economically intuitive and straightforward to communicate. Risk

measures (2) and (3), however, have theoretical and practical advantages over (1). First, expected

shortfall-based measures are coherent risk measures, while any single quantile in isolation is not

(Artzner et al. (1999)). For example, GS contributions are sub-additive, while GaR contributions

are not. This feature is desirable if one, for instance, wants to study sector contributions to ag-

gregate GDP at risk. Second, while all above risk measures (1) – (3) can take into account the

asymmetric impact of financial variables on the economy, only (2) and (3) take into account the

7To see this, note that E [yt+h|yt+h < τ,F1t] ≡
∫∞
−∞ yt+h·1{yt+h<τ}dFt,t+h(yt+h)∫∞
−∞ 1{yt+h<τ}dFt,t+h(yt+h)

=
∫ τ
−∞ yt+hdFt,t+h(yt+h)

P[yt+h<τ |F1t]
.
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entire left tail.

When considering financial stability policies aimed at containing downside risks, then the ex-

pected growth rate of the economy, as well as the upper quantiles of future GDP growth, should

not be unduly affected. For later reference, we define the growth longrise8 (GL) as the complement

to GS,

GLτt,t+h =

∫ ∞
τ

yt+hdFt,t+h(yt+h)

= E [yt+h|yt+h > τ,F1t]× P [yt+h > τ |F1t] . (4)

If τ = 0, then (4) corresponds to the question: what is the time-t expected expansion of the

economy between t + h − 1 and t + h. Similarly to GS, the growth longrise (4) captures the

expected growth given an expansion, and the conditional probability of experiencing an expansion.

Given the complementarity between GS and GL, their sum equals the expected growth rate of the

economy between t+ h− 1 and t+ h,

E [yt+h|F1t] =

∫ ∞
−∞

yt+hdFt,t+h(yt+h)

=

∫ τ

−∞
yt+hdFt,t+h(yt+h) +

∫ ∞
τ

yt+hdFt,t+h(yt+h)

= GSτt,t+h + GLτt,t+h.

Analogously to (3), we also define the average future growth longrise (AGL) between t + 1 and

t+H as

GL
τ

t,t+1:t+H = H−1
H∑
h=1

GLτt,t+h. (5)

Finally, let ȳt,t+1:t+H = H−1
∑H

h=1 yt,t+h be the average future economic growth rate between

t + 1 and t + H . Since (2) and (4) are linear, the expected future growth rate of the economy

between t + 1 and t + H is E [ȳt,t+1:t+H |F1t] = GS
τ

t,t+1:t+H + GL
τ

t,t+1:t+H . As a result, expected

8The term longrise was coined by Adrian et al. (2020) as the antonym to shortfall.
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average future growth can be read off any figure reporting GS
τ

t,t+1:t+H and GL
τ

t,t+1:t+H by adding

the two lines.

Different econometric techniques can be used to estimate (1) – (5). We will estimate it from

a structural quantile vector autoregressive (QVAR) model; see Section 2.2. One advantage of

quantile regression is that it allows financial variables to have a different impact on different parts

of the distribution. This is relevant, as financial stress may impact the left tail of output growth

much more than, say, its upper quantiles.9 QVAR models allow all variables to interact at times

t+ 1, t+ 2, . . . , t+H , and to do so to different extents at different quantiles.

2.2 Quantile vector autoregression

This section provides a concise exposition of the structural quantile vector autoregressive (QVAR)

model of Chavleishvili and Manganelli (2019).

We observe a series of random variables {x̃t : t = 1, · · · , T}, where x̃t ∈ Rn is an n-vector

with ith element denoted by x̃it for i ∈ {1, · · · , n} and n ∈ N. While the baseline empirical model

in Section 4 considers three variables, we here develop intuition based on a simpler bivariate model

for the data vector x̃t = (yt, st)
′, where yt is the quarterly annualized real GDP growth between

t− 1 and t, and st is a coincident indicator of systemic financial stress. For any arbitrary but fixed

quantile γ, the QVAR model of order 1 is given by

x̃t+1 = ωγ + Aγ0 x̃t+1 + Aγ1 x̃t + εγt+1 (6)

P(εγi,t+1 < 0|Fit) = γ, for i = 1, · · · , n, (7)

where the vector of structural quantile residuals is given by εγt ≡ [εγ1t, . . . , ε
γ
nt]
′. Recursive identifi-

cation is achieved by restricting the [n × n] matrix Aγ0 to be lower triangular with zeros along the

main diagonal. The presence of contemporaneous dependent variables on the right-hand side of

9Asymmetric responses of the real economy to large adverse financial shocks are in line with the empirical findings
in Adrian et al. (2020), but also with recent theoretical advances. Asymmetric responses can e.g. be explained by
occasionally binding financing constraints; see e.g. Bianchi (2011) and He and Krishnamurthy (2019).
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(6) requires us to be precise about the available information at any time and for each variable. We

work with an incremental information set that increases one scalar observation at a time,

F1t = {x̃t, x̃t−1, . . .} (8)

Fit = {x̃1,t+1, . . . , x̃i−1,t+1, x̃t, x̃t−1, . . .} for i ∈ {2, . . . , n}. (9)

In words, F1t contains only variables observed up to time t. The information sets Fit for i > 1

contain increasingly more information about variables observed at t+ 1.10

We may wish to consider multiple quantiles of multiple variables at the same time. To do this in

a compact way, we consider p distinct quantiles 0 < γ1 < · · · < γp < 1, for p ∈ N, not necessarily

equidistant. In addition, we let xt ≡ [ιp ⊗ x̃t] denote the vector stacking p times the dependent

variables x̃t, where ιp is a p-vector of ones. The stacked QVAR model of order 1 is then given by

xt+1 = ω + A0xt+1 + A1xt + εt+1 (10)

P(ε
γj
i,t+1 < 0|Fit) = γj, for i = 1, · · · , n, j = 1, · · · , p (11)

where the vector of structural quantile residuals is given by εt ≡ [εγ11t , · · · , ε
γ1
nt, · · · , ε

γp
1t , · · · , ε

γp
nt ]
′.

The [np × np] matrices A0 and A1 are block diagonal to avoid trivial multicollinearity problems.

The model (10) – (11) is essentially a convenient way to stack p quantile-specific QVAR models

(6) – (7).

An explicit example may be instructive. Let’s recall the above bivariate example x̃t = (yt, st)
′

of real GDP growth and financial stress, and consider p = 2 quantiles for simplicity, 0.10 and 0.90.

The system (10) – (11) can then be written as

10For a similar incremental conditioning approach in a different setting see e.g. Koopman and Durbin (2000).
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

yt+1

st+1

yt+1

st+1


=



ω.1y

ω.1s

ω.9y

ω.9s


+



0 0

a.1021 0

0 0

0 0

0 0

0 0

0 0

a.9021 0





yt+1

st+1

yt+1

st+1



+



a.111 a.112

a.121 a.122

0 0

0 0

0 0

0 0

a.911 a.912

a.921 a.922





yt

st

yt

st


+



ε.1y,t+1

ε.1s,t+1

ε.9y,t+1

ε.9s,t+1


(12)

Here, the ordering of the observations in (12) reflects the assumption that the financial stress vari-

able st can react contemporaneously to macroeconomic shocks, while real output growth yt can

react to financial shocks only with a lag. Such assumptions are standard in the empirical literature;

see e.g. Gilchrist and Zakrajsek (2012).

2.3 Forecasting

This section explains how forecasts can be generated from the stacked QVAR model (10) – (11)

without invoking parametric assumptions on εt+1.

It is helpful to introduce the conditional quantile operator Qγj
it (xk,t+1), where xk,t+1 is the k-th

element of xt+1, k = 1, . . . , np. Given information set Fit, the operator is implicitly defined by

P
(
xk,t+1 < Q

γj
it (xk,t+1)|Fit

)
= γj, for j = 1, . . . , p.

In words, Qγj
it (xk,t+1) returns the γj quantile of random variable xk,t+1 conditional on Fit. The

element xk,t+1 is random because it depends on its own shock at time t + 1, but also, potentially,

on shocks to earlier elements x1,t+1, . . . , xk−1,t+1.

To build intuition first, let us return to the simple bivariate example (12) with n = p = 2. Let’s
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assume we are interested in forecasting, say, the 0.9 quantile of the financial stress variable st+1.

The fourth equation of (12), corresponding to the 0.9 quantile of st+1, is

st+1 = ω.9s + a.9021[ω
.9
y + a.911yt + a.912st + ε.9y,t+1] + a.921yt + a.922st + ε.9s,t+1

= ω.9s + a.9021ω
.9
y + (a.9021a

.9
11 + a.921)y1 + (a.9021a

.9
12 + a.922)st + a.9021ε

.9
y,t+1 + ε.9s,t+1

= q.9st + a.9021ε
.9
y,t+1 + ε.9s,t+1 (13)

where q.9st ≡ ω.9s + a.9021ω
.9
y + (a.9021a

.9
11 + a.921)yt + (a.9021a

.9
12 + a.922)st depends only on deterministic

parameters to be estimated and variables observed at time t. We note that Q.9
st(ε

.9
s,t+1) = 0 because

of the identifying restriction (11), stating P
(
ε.9s,t+1 < 0|Fst

)
= 0.9 when Fst = {yt+1, yt, st, . . .}.

In addition, q.9st + a.9021ε
.9
y,t+1|Fst is non-random. As a result, Q.9

st(st+1) = q.9st + a.9021ε
.9
y,t+1. This

quantity is, however, not too helpful because it’s still a random variable at time t. We therefore

keep on taking quantiles. Using the identifying restriction (11) again, Q.9
yt(ε

.9
y,t+1) = 0, yields

Q.9
yt (Q.9

st(st+1)) = q.9st. As a result, q.9st is our sought-after forecast of the 0.9 quantile of st+1, and is

easily computed. This approach of iterated quantiles can be repeated for any potentially remaining

variables in xt+1. Following that, the approach can be repeated for future variables in xt+h for

h > 1.11

The above reasoning can be formalized. The scalar operatorsQγj
it (xk,t+1) can be combined into

a vector version, with quantile operators nesting each other up to n times. The vector operators can

again be sequentially combined, up toH times. In the end, the [np×1]-vector of quantile forecasts

at time t associated with process (10), for h = 1, . . . , H , can be obtained quite straightforwardly

as

x̂t+h =
h−1∑
j=0

Bjν +Bhxt, (14)

where ν = (Inp − A0)
−1 ω and B = (Inp − A0)

−1A1. We refer to Chavleishvili and Manganelli

(2019) for the proof. It is easily verified that x̂4,t+1 (i.e., the fourth element of x̂t+1, obtained using

11 This example implicity assumes that a.9021 is positive. If not, then the 0.9 conditional quantile and the 0.1
conditional quantile cross. This is because, when a.9021 < 0, then P

(
a.9021ε

.9
y,t+1 < 0

)
= P

(
ε.9y,t+1 > 0

)
=

1− P
(
ε.9y,t+1 < 0

)
= 1− 0.9 = 0.1. If this happens we reorder (relabel) the quantiles accordingly.
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(14)) coincides with q.9st as defined below (13).

A drawback of (14), forH ≥ 2, is that it continues to use the same quantile-specific parameters.

In other words, it keeps sending x̂t+h down the same path. It therefore cannot be used directly to

explore the entire growing tree of potential outcomes x̂t+h for all h = 1, . . . , H . The next section

discusses a simulation approach that does not suffer from this drawback.

2.4 Semi-parametric risk measurement

This section explains how we obtain the time-t downside risk measures introduced in Section 2.1

from our semi-parametric structural QVAR model (10) – (11) using simulation methods. To this

end we rely on a growing literature on simulation methods for quantile regression; see e.g. Hahn

(1995) and Koenker (2005, Ch. 2.6).

When we defined the structural QVAR model for an arbitrary quantile γ as (6) – (7), and

insisted that the model holds for all γ ∈ (0, 1), we effectively specified a complete stochastic

mechanism for generating the one-step ahead variable x̃t+1 conditional on time-t information and

deterministic parameters. Recall that any scalar response variable x̃i,t+1, i = 1, . . . , n, with con-

ditional cdf Fi,t,t+1, can be simulated by generating a standard uniform variable ui,t+1 ∼ U[0, 1],

and then setting x̃i,t+1 = F−1i,t,t+1(ui,t+1). Thus, in model (6) – (7), x̃i,t+1 can be simulated setting

x̃i,t+1 = ω
ui,t+1

i + A
ui,t+1

0,i x̃i,t+1 + A
ui,t+1

1,i x̃i,t, where ω(·)
i , A(·)

0,i, and A(·)
1,i denote the i-th row of ωγ ,

Aγ0 , and Aγ1 , respectively, evaluated at γ = ui,t+1. This procedure allows us to generate the x̃t+h,

recursively, for h = 1, . . . , H , conditional on the relevant information sets.

We sketch our simulation algorithm here, and refer to Web Appendix B.4 for details. Let

t = 1, . . . , T denote any time in our sample. We obtain time-t conditional downside risk measures

by simulating forward S = 10, 000 potential future paths for all n variables in x̃i,t+h, h = 1, . . . , 8

quarters ahead. The simulations are based on inverse cdf-sampling as described above, and use

the one-step-ahead recursion (6). At each t + h, we calculate GSτt,t+h and GLτt,t+h by evaluating

the sample analogues of (2) and (4). At the end of each simulation, we average across H to obtain

downside risk measures ḠSτt,t+1:t+h and ḠL
τ
t,t+1:t+h; see (3) and (5). Finally, all estimates are
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averaged over the S simulation draws.

Rather than re-estimating the model parameters within each simulation and for each variable

using γi = ui,t+h, it is computationally advantageous to discretize the support of the standard

uniform random variable with an appropriately chosen grid 0 < γ1 < . . . < γp < 1, and to

estimate all parameters once and for all in the beginning based on the full sample. We then use

the parameter estimates associated with the closest selected quantile in any simulation. We use

p = 20 grid-points for this purpose, 0 < 0.025, 0.075, . . . , 0.925, 0.975 < 1, each at the midpoint

of 1/20th of the unit interval. These grid-points are symmetric about the median, and yield equi-

probable simulation paths. Crossing quantiles (see footnote 11) are not an issue since we move

through the tree at random. Our downside risk estimates reported in Section 4.4 are robust to

increasing the number of grid-points, and to interpolating parameter estimates between quantiles.

2.5 Counterfactual scenarios

This section explains how counterfactual scenarios can be obtained from the QVAR model (10)

– (11). We use counterfactual scenarios repeatedly below, e.g. when considering a market-based

stress test against 2008Q1–2009Q2-sized financial shocks in Section 4.5, and when studying the

benefits vs. cost from tightening macro-prudential policy stance in Sections 4.6.

Rather than moving through the complete tree of potential future values of x̃t+h at random,

as explained in Section 2.4, we may at other times wish to consider only one path in isolation.

One path in isolation can also be thought of as a ‘counterfactual scenario,’ or model-based thought

experiment that conditions on an arbitrary but fixed sequence of future shocks.

The quantile of each element of the vector xt+1 at time t is a random variable, as, except for the

first element, it depends on the contemporaneous shocks of the other variables. Given the recursive

identification assumption, we can forecast the quantiles conditional on any desired quantile shock

realization. To this end we define a sequence of selection matrices {Sγ
h

t+h}Hh=1, with typical [n×np]

element Sγ
h

t+h selecting specific quantile shocks from the [np× 1] vector εt+h (see (10)), one shock

14



for each variable i:

Sγ
h

t+hεt+h ≡ [ε
γ1t+h

1,t+h, · · · , ε
γnt+h

n,t+h]
′, (15)

for γit+h ∈ {γ1, · · · , γp} and i ∈ {1, · · · , n}, selecting the variable-specific shocks to be set to

zero.12 By (6)–(7), the quantile forecast of x̃t+1, conditional on setting the quantile shocks identi-

fied by the matrix Sγ
h

t+h to zero, is

ˆ̃xt+h|Sγ
h

t+h = Ct+h(ω + A1xt+h−1) (16)

where Ct+h ≡ (In − Sγ
h

t+hA0S̄)−1Sγ
h

t+h, and where S̄ is a [np × n] matrix such that xt+h =

S̄Sγ
h

t+hxt+h.13

Given the above sequence {Sγ
h

t+h}Hh=1, it is now possible to iterate the system (16) forward to

obtain forecasts of the dependent variables x̃t+h at any future point h conditional on the specified

counterfactual scenario.

2.6 Comparing multiple counterfactual scenarios

An objective function is useful to compare the outcomes implied by two or more counterfactual

scenarios.

Suppose the macro-prudential authority has an instrument (or vector of instruments) ct that can

be used to influence the predictive growth distribution. This influence can be direct (ct → yt+1)

or indirect (e.g., ct → st → yt+1). The QVAR structure allows us to capture both types of

transmission. A convenient way to penalize downside risk is given by

max
{ct+h}∞h=1

∞∑
h=1

βh(GLt,t+h(ct+h) + λGSt,t+h(ct+h)) (17)

where λ > 1 is a weight determining the aversion to negative realisations of output growth, β is an

12Recall that zero is not a neutral value except for the median; see (11).
13S̄ consists of stacked identity matrices and is always available and unique. The selection of variable-specific

quantiles via (15) does not lead to a loss of information.
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intertemporal discount factor, and GSt,t+h is a negative number.

The objective function (17) is reminiscent of the mean with downside risk model in asset al-

location; see e.g. Fishburn (1977). Since E [yt+h|F1t] = GSτt,t+h + GLτt,t+h, see Section 2.1, (17)

can be rewritten in terms of expected future economic growth instead of upper quantiles to future

growth. If so, the objective function (17) is equal to the expression suggested by Carney (2020),

max
{ct+h}∞h=1

∞∑
h=1

βh(Et(yt+h(ct+h)) + (λ− 1)GSt,t+h(ct+h)), (18)

trading off future trend growth against downside risks to the economy. We use (18) to compare the

benefits from adopting an active financial stability policy with the benefits from adopting a passive

financial stability policy in Section 4.6 below.

3 Data

3.1 Macroeconomic data pre-1999

Structural QVAR models require a sufficiently large sample size to ensure that its parameters can

be estimated with adequate precision. At least two challenges are present, however, when working

with euro area macro data in practice. First, the euro area celebrated its 20th anniversary merely in

2019. When working with quarterly data, T = 4× 20 = 80 is at the lower end of what is required

for a meaningful empirical study of macro-financial interactions at different quantiles. Second,

euro area membership has been expanding over time, from initially 11 countries in 1999 to 19

countries in 2015. Changes in euro area aggregate data stemming from new countries joining,

rather than, say, from changes in financial conditions or growing vulnerabilities, would severely

complicate any empirical analysis.

Fortunately, both problems can be addressed. During the ECB’s early years, pre-1999 macro-

financial time series data were urgently needed for monetary policy analysis. Against this back-

ground counterfactual data were constructed “as if” the euro area had already consisted earlier; see
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e.g. Fagan et al. (2001). Such pre-1999 euro area data is publicly available.14 We obtain real GDP

growth data from 1988Q3 to 2018Q4 from this source, resulting in T = 121.

3.2 Composite indicator of systemic stress

This section introduces the ECB’s composite indicator of systemic stress (CISS). The CISS is

computed for the euro area as a whole. It includes 15 raw, mainly market-based financial stress

measures that are split equally into five categories: financial intermediaries, money markets, equity

markets, bond markets, and foreign exchange markets; see Web Appendix C.1 and Hollo et al.

(2012) for details. Each category is summarized by a sub-index. The sub-indices are subsequently

aggregated to a single time series in a way that takes their time-varying cross-correlations into

account. As a result, the CISS takes higher values when stress prevails in several market segments

at the same time, capturing the idea that financial stress is more systemic, and more dangerous for

the economy as a whole, whenever financial instability spreads widely across different segments

of the financial system. Web Appendix C.1 provides a listing of all included data series. The CISS

is updated regularly and publicly available.15

The left panel of Figure 1 reports euro area GDP growth along with the CISS between 1988Q3

and 2018Q4. High values of the CISS are observed during the recession in 1992, the global

financial crisis between 2008 and 2009, and during the euro area sovereign debt crisis between

2010 and 2012. In each case, elevated financial stress is associated with negative GDP growth.

3.3 Real-time estimates of the financial cycle

For future reference, this section briefly discusses Schüler et al. (2019)’s real-time financial cycle

indicator. The construction of the indicator mirrors that of the CISS; see Web Appendix (C.2) for

details and Figure 1 for an illustration. Their indicator takes high values when i) total non-financial

14https://eabcn.org/page/area-wide-model. In its most recent version, the database adopts a fixed euro area composi-
tion approach, constructing aggregate data series as if the euro area had always consisted of its current (end-of-sample)
19 members. Most variables are available from 1970Q1 onwards. The further back, however, the more uncertain the
data quality.

15https://sdw.ecb.europa.eu/
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Figure 1: Euro area real GDP growth rate, CISS, and financial cycle indicator
Left panel: The GDP growth rate is annualized (left scale). The CISS varies between 0 and 1 by construction (right
scale). Right panel: The real-time broad financial cycle indicator of Schüler et al. (2019). The financial cycle indicator
takes high values when total non-financial credit volumes grow at a fast pace, and real estate, equity, and bond prices
grow at a fast pace as well. Shaded areas indicate CEPR euro area recession periods.
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credit volumes grow at an unusually fast pace (proxying a credit boom), and ii) real estate, equity,

and bond prices grow at an unusually fast pace as well at the same time (proxying asset price

inflation). In this sense, their financial cycle indictor is not a measurement of credit growth, which

can be beneficial, but of bad, or excess, credit growth that coincides with asset price inflation.

The financial cycle indicator is available for the euro area and the U.S. from the authors. Their

indicator took high values during the dot-com boom years between 1997 and 2000, and during

the credit boom years preceding the 2008–2009 global financial crisis. Their indicator took par-

ticularly low values in 2009 and 2011, times associated with crisis-induced fire sales and financial

system deleveraging.
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4 Empirical results

Our empirical study is structured around the following interrelated questions. Which variables

other than real GDP growth should be included in a multivariate quantile model for downside

risk measurement purposes? Do quantile regression estimates differ significantly across quantiles?

How large were downside risks to the euro area economy stemming from financial stress and

vulnerabilities? Is the euro area economy at all times equally vulnerable to a fixed sequence of

adverse shocks? Does managing the financial cycle pay off in terms of less volatile macroeconomic

outcomes? Finally, (when) does it pay off to adopt active macroprudential policies? We focus

our discussion on the euro area, and report analogous tables and figures for U.S. data in Web

Appendix E.

4.1 Variable selection exercise

A two-variable QVAR model for quarterly real GDP growth and the CISS provides a minimal sys-

tem to study downside risks to the real economy. GDP growth is required to quantify downside

risks, and the CISS significantly impacts the left tail of the predictive GDP growth distribution;

see Section 4.2 below. This minimal system, however, may miss important interactions with other

economic variables. In addition, it misses a variable that can be influenced directly through finan-

cial stability policies. This section presents the main results of a systematic search over potential

additional endogenous variables to be included in a QVAR.

Our variable selection exercise is set up as follows. We estimate a recursive trivariate QVAR

for x̃t = (yt, zt, st)
′, consisting of annualized quarterly real GDP growth yt, a third variable zt to be

affected by macroprudential policies, and the CISS st. Sandwiching zt between yt and st implies

that zt can explain st (the CISS) both instantaneously and with a lag. We loop over many available

macro-financial variables zt. For each case we evaluate the average quantile regression objective

function at quantiles ranging from 0.1 to 0.9 (decile-by-decile). The objective function is evalu-

ated only for the GDP growth and CISS equations, as these variables remain fixed across loops.
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Each trivariate system is estimated for the same number of data points and deterministic model

parameters. As a result, information criteria penalty terms are the same across specifications, and

can therefore be set to zero for model comparison purposes without loss of generality.16

Figure 2 presents our main variable selection results for the euro area. Variables are ranked

in terms of average check function values – the smaller the better. Non-stationary time series are

de-trended using Hamilton (2018)’s regression filter, and are marked with a star (*) in the figure

legend.

Two variables stand out as interacting closely with euro area GDP growth and financial stress

at all nine quantiles. Both are related to central bank policy instruments. The de-trended three-

months EURIBOR rate, a measure of monetary policy, is ranked first, impacting both future GDP

growth as well as current financial conditions. Schüler et al. (2019)’s broad financial cycle in-

dicator (see Section 3.3) is ranked second, followed by the euro area’s capacity utilization rate.

Capacity utilization is a business cycle indicator, and as such highly correlated with GDP growth,

and arguably of lesser interest in a financial stability context.

Web Appendix E.2 reports analogous results for U.S. data. Approximately similar variables

are selected.

16For a discussion of model selection between different quantile time series models see e.g. Lee et al. (2014).
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Figure 2: Variable selection
Variables are ranked according to their average check function value in a three-variable QVAR. Real quarterly GDP
growth and CISS are fixed variables in the QVAR. Check function variables are evaluated at quantiles from 0.1 to 0.9
(decile-by-decile) for US GDP growth and US CISS only. Estimation sample is 1976Q2 to 2018Q4. Non-stationary
time series are de-trended using Hamilton (2018)’s regression filter and are indicated in the legend with a asterisk (*).
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4.2 Model specification and parameter estimates

We choose a trivariate QVAR specification as our benchmark model. Our benchmark model con-

sists of annualized quarterly real GDP growth yt, the financial cycle indicator ct, and the CISS st.

We therefore consider x̃t = (yt, ct, st)
′.

Figure 3 reports parameter and standard error estimates for our baseline specification. Param-

eter point estimates are obtained equation-by-equation via np univariate quantile regressions. The

appropriate standard error bands about the parameter point estimates, however, do not coincide

with the equation-by-equation estimates as supplied by common software packages. The standard

errors reported in Figure 3 take cross-equation restrictions at common quantiles into account, see

Web Appendix B.1 for details, and can be tighter or wider compared to the equation-by-equation

standard error estimates.

We discuss the parameter estimates from top left to bottom right. Each of the panels presents

the parameter estimates across nine deciles together with 95% confidence bands and the corre-

sponding least squares estimate. The arrangement of panels in Figure 3 corresponds to the ordering

of variables in (6). Overall, the quantile regression estimates differ substantially across quantiles,

as well as from their least squares counterparts. Each intercept estimate in ω increases monotoni-

cally in the considered quantile. This pattern is by construction, and reflects the fact that quantile

shocks are not centered around zero; see (11).

All contemporaneous effects are visible from matrix A0. The contemporaneous impact of

GDP growth on the financial cycle (element [2,1]) as well as on the CISS (element [3,1]) is small

and rarely statistically significant. The [3,2]-element of A0 points to a positive contemporaneous

impact of the financial cycle on the CISS at its lower quantiles. This element is a mirror image of

the [3,2]-element in A1. Taken together, they suggest that the CISS is high when the the financial

cycle falls (or vice versa). This is intuitive, as financial sector deleveraging and financial stress

tend to go hand-in-hand.

All lagged effects are visible from matrix A1. The [1,3]-element points to the familiar finding

that the effect of financial stress (CISS) on future GDP growth is approximately zero at the upper
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quantiles of future GDP growth, but markedly negative, and significantly different from zero, at

its lower quantiles. As a result, a positive shock to the CISS (i.e., increased, or more widespread

financial stress) shifts the lower tail of the predictive GDP distribution toward more negative values,

while leaving its upper quantiles less affected. The [3,2]-element of A1 captures the lagged effect

of the financial cycle on the CISS. The effect is positive and statistically significant, particularly for

the CISS’s upper quantiles. As a result, a positive shock to the financial cycle (e.g., an increasingly

bad credit boom) at time t shifts the right tail of the CISS at t + 1 towards more adverse values.

Put differently, excessive (bad) credit growth increases the likelihood of elevated financial stress in

the future.

The [3,3]-element of A1 captures the autoregressive coefficient associated with the CISS. The

estimate exceeds one at the 0.9 quantile, pointing to a local non-stationarity in the rightmost

tail. Local non-stationarity is not uncommon in QAR models, and does not imply global non-

stationarity; see Koenker (2005, Ch. 8.3). Indeed, conditional quantiles simulated from our QVAR

model at estimated parameters converge to their unconditional counterparts. The standard errors

around the locally non-stationary estimate are, however, not reliable, and not reported for this

reason.

Three specifications have been run for robustness. Web Appendix D.1 studies a linear VAR

for x̃t. The downside risk estimates obtained from the linear VAR model are visibly different from

those obtained from the QVAR model. The parameter homogeneity restrictions implied by the

linear specification tend to be rejected; see Section 4.3 below.

The variable selection exercise in Section 4.1 suggested that short-term interbank rates can

be a useful additional variable to consider in a QVAR. Web Appendix D.2 studies a five-variable

monetary structural QVAR model. This model additionally contains the three-month EURIBOR

rate as well as quarterly changes in the GDP deflator (inflation). This monetary structural QVAR

model is of considerable interest in its own right. It yields, however, broadly similar predictions

in terms of downside risks and measures of macro-prudential policy stance. We therefore proceed

with the above more parsimonious trivariate model for simplicity.
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Web Appendix D.3 extends our baseline model with an additional, annual lag for all variables.

Information criteria prefer the more parsimonious version. Average future growth shortfall re-

sponds more quickly, and more severely, to contemporaneous financial stress when based on a

single-lag specification. We therefore proceed with the single-lag specification.

Web Appendix E.3 reports parameter and standard error estimates based on our baseline QVAR

model for U.S. data. The parameter estimates are broadly in line with those for the euro area:

Growing financial vulnerabilities shift the right tail of the U.S. CISS towards more positive values.

A shock to the U.S. CISS shifts the left tail of the predictive GDP growth distribution towards more

negative values, while leaving the right tail less affected.
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Figure 3: Parameter estimates for baseline QVAR model
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Variables are
ordered GDP growth (respective first row), financial cycle (second row), and CISS (third row). Parameter estimates
are obtained equation-by-equation while standard error estimates take cross-equation restrictions into account; see
Web Appendix B.1. Standard error bands are dashed and at a 95% confidence level. Red horizontal lines indicate least
squares estimates. Estimation sample is 1988Q3 to 2018Q4.
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4.3 Wald test and quantile impulse response functions

Table 1 reports the outcome of three Wald χ2 tests of parameter homogeneity across quantiles.

We proceed equation by equation for i = 1, 2, 3. Each Wald test is implemented as explained in

Koenker (2005, Ch. 3.3.2); see also Koenker and Basset (1982) and Web Appendix B.2. The test

rejects the parameter equality restrictions implied by a linear VAR for two of our three variables,

GDP growth and CISS. Parameter homogeneity is most forcefully rejected for the GDP growth

equation. The test outcomes are intuitive given the parameter and standard error estimates reported

in Figure 3.

The asymmetries implied by the test outcome can be visualized via quantile impulse response

function (IRF) estimates. We refer to Chavleishvili and Manganelli (2019) and Web Appendix

B.3 for details on IRF in a structural QVAR model context. Figure 4 plots the QIRFs associated

with the parameter estimates reported in Figure 3. As expected, the real GDP response to a shock

to the CISS depends markedly on the quantile of the predictive distribution. The 0.1 quantile re-

spond much more strongly than the 0.9 quantile to the same shock. A shock to the financial cycle

decreases the CISS in the short term, while raising it over the medium term. The 0.9 quantile re-

sponds more strongly to a positive shock than the 0.1 quantile, narrowing the predictive distribution

of the CISS.

Web Appendix E.4 discusses the analogous results for U.S. data. The Wald test outcomes and

impulse response function estimates are qualitatively similar.
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Table 1: Wald test of parameter homogeneity.
Wald tests statistics. The test’s null hypothesis states that the quantile regression estimates, across p = 9 quantiles,
are equal to the median regression parameter estimates. We consider our baseline trivariate QVAR model, estimated
decile-by-decile, ranging from 0.1 to 0.9; see Figure 3. The test statistic is χ2-distributed. The appropriate degrees-
of-freedom (df) are given by the number of right-hand-side variables per equation (excluding the constant, 3, 4, and 5,
respectively), times the number of imposed restrictions (9− 1 = 8).

df test statistic p-value
real GDP growth, yt 24 209.71 0.00
financial cycle indicator, ct 32 26.12 0.76
CISS Financial stress index, st 40 79.52 0.00

Figure 4: Quantile impulse response functions
Impulse response functions implied by the parameter estimates reported in Figure 3. Variables are ordered as GDP
growth (respective first row), financial cycle (second row), and CISS (third row). Estimation sample is 1988Q3 to
2018Q4.
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4.4 Average future growth shortfall

This section discusses our downside risk estimates as introduced in Section 2.1. Figure 5 plots the

average future growth shortfall (AGS) and longrise (AGL) for the euro area. The risk estimates

are based on full-sample parameter estimates, but are otherwise conditional on variables observed

up to time t only. Growth shortfall and longrise are forward-looking, and averaged over t + 1

and t + 8; see (3) and (5). To study the importance of including current financial conditions and

medium-term vulnerabilities we compare our baseline QVAR model to a much simpler, univariate

quantile autoregressive (QAR) model for GDP growth only. The QAR model does not include the

financial cycle nor the CISS.

We focus on three findings. First, accounting for financial conditions is crucial. There is a

pronounced difference between the downside risk (AGS) estimate implied by the trivariate QVAR

and the univariate QAR. During the global financial crisis (GFC) between 2008 and 2009, the

QAR-based downside risk estimate declines much later, and by much less, compared to the QVAR-

based estimate. The sovereign debt crisis between 2010 and 2012 is missed almost entirely based

on the QAR model.

Second, as a result of macro-financial interactions, the QVAR’s lower quantiles for future GDP

growth are more volatile than its upper quantiles. This observation mirrors those of Adrian et al.

(2020), who focus on single quantiles in isolation. Web Appendix D.5 plots the tail conditional

expectation and expected probability of a contraction underlying GSτt,t+1:t+H and GLτt,t+1:t+H sep-

arately; see the first and second term in (2) and (4), respectively. Most of the variability in

AGSτt,t+1:t+8 comes from the changes in growth conditional on being in a recession-term, with

an additional contribution from increasing the probability of a contraction in bad times.

Lastly, the downside risks implied by the QVAR model can be economically large. The GFC

implied an extreme AGS over eight quarters of approximately -3.5%. This corresponds to a

(1 − 0.035/4)8 − 1 ≈ −6.8% reduction in real living standards. This is a substantial expected

contraction, reflecting severe downside risks from a deterioration of financial conditions. During

median times, the estimated AGS is approximately -0.5% and corresponds to a more moderate risk
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Figure 5: Euro area AGS and AGL estimates
Time-t average future growth shortfall (AGSτt,t+1:t+8) and average future growth longrise (AGLτt,t+1:t+8) estimates
evaluated at τ = 0; see (3) and (5). The trivariate estimate is based on our baseline QVAR model (dashed line, scale
on left axis) that allows for macro-financial interactions. The univariate estimate is based on a one-equation restricted
model with a constant and lagged GDP growth as the only right-hand-side variables (dotted line, scale on left axis).
Each model is estimated for p = 20 quantiles ranging from 0.025 to 0.975. We compare these estimates to quarterly
annualized real GDP growth (solid line, scale on right axis). Shaded areas indicate euro area recessions as determined
by the CEPR business cycle dating committee. The estimation sample is 1988Q3 to 2018Q4.
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of a (1− 0.005/4)8 − 1 ≈ −1.0% reduction in real living standards.

From a risk management perspective the AGS can be compared to the AGL as the latter pro-

vides an indication of the upside for the economy. The GFC did not only generate an extremely low

value for the AGS, but also for the AGL. With a value of only 0.4%, the average expected expan-

sion of the economy over the following eight quarters would have been approximately 0.8%. This

compares to an average of approximately 4% over the entire sample. The GFC thus reduced living

standards especially because of the contraction, but also persistently muted the upside potential of

the economy, and did so until early 2015.

Web Appendix E.5 discusses the analogous figure for U.S. data. Similar observations hold

true for these data as well: Accounting for financial conditions is crucial. Model-implied lower
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quantiles for future GDP growth are more volatile than upper quantiles. Downside risks vary

substantially over time and can be economically large.

4.5 Model-based stress testing

Our structural QVAR model provides a natural environment to perform model-based stress testing

exercises. We here understand stress testing as a forecast of what would happen to x̃t conditional

on the system being subjected to a certain fixed sequence of adverse shocks. We refer to such a

sequence of adverse shocks as a stress scenario. For the computation of forecasts conditional on

such scenarios we refer to Section 2.5. Our stress testing approach is different from supervisory

stress tests in that our main variable of interest is not banking sector health but real economic

(GDP) impact.

Figure 6 reports the time-t conditional forecast of average future real GDP growth ¯̂yt,t+1:t+8

between time t and t + 8 as implied by our trivariate model. The forecast is conditional on a 0.1

(conditional) quantile realization for GDP growth yt+h, a 0.1 quantile realization of the financial

cycle ct+h, and a 0.8 quantile realization for CISS st+h, consecutively for h = 1, . . . , 8. The

magnitude of these shocks is approximately in line with the eight observed quantile realizations

for all variables between 2008Q1 and 2009Q4. The stress test is repeated at each t = 1, . . . , T , and

always based on the same (full sample) parameter estimates. As a result, the figure is informative

about the impact of GFC-sized real and financial shocks on real living standards at any time in our

sample.

We observe that the euro area economy is not equally resilient to the same stress scenario at

all times. This is a direct consequence of the asymmetries (nonlinearities) inherent in the esti-

mated QVAR model. When financial imbalances and financial stress are high, real GDP growth is

particularly vulnerable.

Figure 6 can be informative when assessing macro-prudential policy stance. An unusually

high level of vulnerability to future real and financial shocks — a value of ¯̂yt,t+1:t+8 below its own

10% quantile, say — indicates that large shocks have materialized and macro-prudential buffers
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Figure 6: Vulnerability to GFC-sized shocks
Dashed line: euro area annualized quarterly real GDP growth. Solid line: predicted average annualized quarterly
real GDP growth ¯̂yt,t+1:t+8 two years ahead conditional on consecutive 0.1 quantile realizations for GDP growth yt,
0.1 quantile realizations of the financial cycle ct, and 0.8 quantile realizations for CISS st. Predictions are based on
full sample parameter estimates. Estimations sample 1988Q3 – 2018Q4. Horizontal lines refer to 0.1, 0.5, and 0.9
empirical quantiles of ¯̂yt,t+1:t+8.
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should be released. In the euro area, such values are observed during the financial crisis of 2008 –

2009 and the sovereign debt crisis in 2011 – 2012. Low to moderate levels of vulnerability indi-

cate times when macro-prudential buffers could be built up. Gradually growing macro-prudential

capital buffers help increase banking sector resilience, lean against bad credit growth, improve

incentives,and are available to be released later whenever necessary.

Web Appendix E.6 discusses the analogous figure for U.S. data. Similar observations hold true

for these data as well.
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4.6 The benefits from active macroprudential policy

An active debate in policy circles and academia revolves around the question which policies should

be used to address financial stability risks. Should macro-prudential policy be the first line of de-

fense? Or should monetary policy be used instead to lean against the buildup of financial vulnera-

bilities?

To inform this debate this section proposes a thought experiment. We ask the question what

would euro area real GDP growth have been had an all-powerful policy-maker been able to reset the

financial cycle to its conditional median over the entire sample period, while leaving the structural

shocks to the other variables unchanged. To interpret the outcome we need to assume that all

quantile-specific parameters remain fixed at their full-sample estimates as the system is subjected

to counterfactual shocks.17

The counterfactual realizations are constructed as follows. At any time t = 1, . . . , T , given

a counterfactual realization ˆ̃xi,t, there are p potential paths for variable i to go down to arrive at

ˆ̃xi,t+1. For any variable i other than the financial cycle, we select the path corresponding to the

filtered structural shocks. For the financial cycle we always select the conditional median path.

Given ˆ̃xt+1, we repeat the procedure for all t.

The top left, top right, and bottom left panels in Figure 7 compare real-world data with counter-

factual model-based outcomes for real GDP growth, financial cycle, and financial stress in the euro

area. The final bottom-right panel presents Kernel estimates of the distribution of real GDP growth

in either case. We find that leaning against the financial cycle is not obviously costly in terms of

expected growth. In fact, expected growth is higher in the counterfactual scenario as it increases

from 1.66% to 1.83% annualized real GDP growth. In addition, economic growth is more stable

(less volatile around its mean) and less skewed to the downside in the counterfactual scenario.

Table 2 reports descriptive statistics for the real-world GDP growth sample (left column) and its

counterfactual counterpart (right column). Extremely negative and extremely positive realizations

17This assumption can be phrased and tested in terms of the “super-exogeneity” of certain variables; see Engle et al.
(1983) and Favero and Hendry (1992). Accordingly, the policy interventions should be small enough to not cause
pronounced variation in deterministic parameters; see e.g. Lucas (1976).
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for GDP growth disappear from the counterfactual sample. Both mean and median growth are

higher, volatility is lower, and growth is less skewed to the downside in the counterfactual sample.

These findings are in line with e.g. Brandao-Marques et al. (2020), who find that macro-prudential

policies are effective in dampening downside risks to economic growth stemming from the build-

up of financial vulnerabilities. In addition, our results suggest that policy makers can lean against

financial vulnerabilities at little-to-no cost to mean (trend, potential) GDP growth.

The objective function (18) can be used to study the welfare benefit associated with managing

the financial cycle. We evaluate

ut (Scenario) =
12∑
h=1

¯̂yt,t+h (Scenario) + 0.25 · ĜSt,t+h (Scenario) , (19)

where ¯̂yt,t+h is the average taken over p realizations of ŷt,t+h, parameters are chosen as β = 1,

λ = 1.25, and τ = 0, and where we truncated the infinite sum after H = 12. One reason to

penalize downside risks to the economy is that they can change the expected future growth path of

the economy; see Section 4.4.

Figure 8 plots the utility difference ∆ut = ut (active) − ut (passive) associated with adopting

the active macro-prudential policy. Adopting a less-passive financial stability policy is not equally

beneficial at all times. The benefits from leaning against bad credit growth are maximal during

the late 1980s around the fall of the iron curtain in some European countries before the 1992

recession, during the late 1990s before the bust of the dot-com boom in 2000, and during the mid-

2000s before the onset of the global financial crisis in 2007. The benefits from leaning against

the financial cycle are estimated to be negative following the global financial crisis in 2009, and

following the euro area sovereign debt crisis in 2012. This is intuitive, as the financial system

was already deleveraging during these times, and requiring more would add insult to injury. The

utility difference ∆ut is strongly correlated with the euro area financial cycle, suggesting that it is

a valuable variable to track to inform macroprudential policy discussions.

Web Appendix E.7 reports the corresponding figure and table for U.S. data. Both mean and
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median are higher in the counterfactual sample of a managed financial cycle. Adopting an active

financial stability policy is not equally beneficial at all times. ∆ut is less strongly associated with

the financial cycle in the U.S. than in the euro area.
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Figure 7: Leaning against the financial cycle
Top left panel: actual quarterly annualized real GDP growth for the euro area, and counterfactual data assuming
that the policy maker resets the financial cycle to its conditional median at all times. Top right panel: actual and
counterfactual values for the financial cycle. Bottom left panel: actual and counterfactual values for financial stress.
Bottom right panel: Kernel estimate over a histogram of actual and counterfactual real GDP growth. Actual data are
in solid lines. Counterfactual realizations are in dashed lines.
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Table 2: Comparison actual vs. counterfactual euro area growth rates
Left column: actual quarterly annualized real GDP growth for the euro area. Right column: counterfactual data
assuming that a policy maker could reset the financial cycle to its median conditional value at any time. Estimation
sample is 1988Q3 to 2018Q4.

Real Counterfactual
GDP growth GDP growth

Moments
Mean 1.664 1.830
Std. Dev. 2.275 1.559
Variance 5.175 2.431
Skewness -2.331 -1.311
Kurtosis 13.929 8.509

Percentiles
1% -6.831 -2.901
5% -1.587 -.299
10% -1.039 .131
50% 1.980 1.885
90% 3.785 3.707
95% 4.456 4.236
99% 5.386 4.822

Smallest values
1st -12.065 -6.393
2nd -6.831 -2.901
3rd -3.065 -1.313
4th -2.735 -.796

Largest values
4th 5.070 4.369
3rd 5.134 4.424
2nd 5.386 4.822
1st 5.993 4.829
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Figure 8: The benefits from active macro-prudential policy
The benefit of adopting an active macro-prudential policy stance in utility terms, ∆ut = ut (active) − ut (passive);
see (19). Parameters are chosen as β = 1, λ = 1.25, τ = 0, and H = 12. The difference is based on full sample
estimates. Estimation sample is 1988Q3 to 2018Q4. Shaded areas indicate euro area recessions.
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5 Conclusion

We proposed a structural QVAR model that relates downside risks to the economy to measures of

financial stress and medium-term vulnerabilities. In an empirical study of euro area and U.S. data

between 1988Q3 and 2018Q4 we found that the dynamic properties of the system differ across

quantiles. The left quantiles of the predictive GDP growth distribution is related to a contempo-

raneous indicator of systemic stress, whose right quantiles are related to financial vulnerabilities.

Counterfactual simulations allow us to construct urgently-needed indicators of macro-prudential

policy stance, and to assess when macro-prudential interventions are relatively more likely to be

beneficial.
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A The non-cyclicality of the counter-cyclical capital buffer

Figure A.1 plots the evolution of required counter-cyclical capital buffers (CCyB) for banks located

in 28 European Union countries (top panel) and 19 euro area countries (bottom panel) between

2014 and 2019. By December 2019, five years after the introduction of CCyB, less than one in

three countries have moved to positive CCyBs. The majority of countries have not activated this

financial stability tool, in line with a potential inactivity bias.

2



Figure A.1: The non-cyclicality of the counter-cyclical capital buffer
Required counter-cyclical capital buffers for banks located in 28 European Union countries (top panel) and 19 euro
area countries (bottom panel) between 2014 and 2019. The size of the circles is proportional to the number of countries
for which the CCyB takes a certain value. Source: end-of-year data from the European Systemic Risk Board.
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B Technical details

B.1 Parameter estimation and standard errors

The recursive QVAR model (10) – (11) can be estimated using the framework developed by White

et al. (2015). Let qθt (β) ≡ ωθ + Aθ0Yt + Aθ1Yt−1 and qθjit (β) the jth quantile of the ith variable of

the vector qθt (β), where we have made explicit the dependence on β, the vector containing all the

unknown parameters in ωθ, Aθ0, and Aθ1. Define the quasi-maximum likelihood estimator β̂ as the

solution of the optimization problem:

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ρθ

(
Ỹit − q

θj
it (β)

)}
, (B.1)

where ρθ (u) ≡ u(θ − I(u < 0)) is the standard check function of quantile regressions. The

asymptotic distribution of the regression quantile estimator is provided by White et al. (2015),

which we report here for convenience.

Under the assumptions of Theorems 1 and 2 of White et al. (2015), β̂ is consistent and asymp-

totically normally distributed. The asymptotic distribution is:

√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (B.2)

where

Q ≡
n∑
i=1

p∑
j=1

E[f
θj
it (0)∇qθjit (β∗)∇′qθjit (β∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qθjit (β∗)ψθj(ε
θj
it )

ψθj(ε
θj
it ) ≡ θj − I(ε

θj
it ≤ 0)

ε
θj
it ≡ Ỹit − q

θj
it (β∗)

1



and f θjit (0) is the conditional density function of εθjit evaluated at 0.

The asymptotic variance-covariance matrix can be consistently estimated as suggested in Theo-

rems 3 and 4 of White et al. (2015), or using bootstrap-based methods following Buchinsky (1995).

Modern statistical softwares typically contain packages for quantile regression estimation and in-

ference that estimate the above quantities. Our paper uses the interior point algorithm discussed

by Koenker and Park (1996) and as implemented in Stata.

B.2 Wald test for slope parameter homogeneity

The classical theory of linear regression assumes that the conditional quantile functions of the

response variable given covariates are all parallel to one another. In our model, linearity implies

that the slope parameters Aγ0,i, A
γ
1,i (i.e. parameters other than the constant ωi), i = 1, . . . , n,

associated with different γs are identical across γs. Covariates effects then shift the location of

the response distribution but do not change its scale or shape. In many applications, however,

quantile regression parameter estimates often vary considerably across quantiles. As a result, an

immediate and fundamental problem of inference in QR models involves testing for equality of

slope parameters across quantiles. We proceed equation by equation for i = 1, 2, 3. The Wald test

is implemented as explained in Koenker (2005, Ch. 3.3.2); see also Koenker and Basset (1982).

B.3 Impulse response functions

Impulse response functions (IRFs) from our structural QVAR model can be defined in different

ways, and each way has its advantages and drawbacks. This section derives IRFs that are closely

related to standard IRFs from linear VAR models, facilitating their interpretation. For example,

we can track the conditional median response of each variable instead of the conditional mean

response. When median dynamics are used to propagate the initial shock, the signs of the off-

diagonal parameters in A0 are of no concern; see footnote 11 in the main text.
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B.4 Simulation algorithm for downside risk measures

Let t = 1, . . . , T denote any time in our sample. We obtain time-t conditional downside risk

measures by simulating forward S = 10, 000 potential future paths for all n variables in x̃i,t+h,

h = 1, . . . , 8 quarters ahead.

We proceed as follows.

1. Fix any t = 1, . . . , T . Obtain and save full-sample parameter estimates for all variables at

all p = 20 quantiles 0 < 0.025, 0.075, . . . , 0.925, 0.975 < 1. Set s = h = 1.

2. Draw n standard uniform random variables ui,t+h, one for each variable 1, . . . , n. Select

variable-specific quantiles γi,t+h that are closest to ui,t+h, respectively. Combine the chosen

rows ωγi,t+h

i , Aγi,t+h

0,i , Aγi,t+h

1,i into QVAR parameter matrices ωγ , Aγ0 , Aγ1 .

3. Predict xt+h one-step ahead using (6); see also (16).

4. Compute and save downside risk estimates GSτt,t+h and GLτt,t+h by evaluating the sample

analogues of (2) and (4). For example,

GSτ,(s)t,t+h = x̃
(s)
1,t+h · 1{x̃

(s)
1,t+h < τ},

where x̃(s)1,t+h denotes a simulated value for quarterly real GDP growth at time t+ h.

5. If h < H , set h = h + 1 and return to step 2. If h = H , compute AGSτt,t+1:t+h and

AGLτt,t+1:t+h by averaging over GSτt,t+h and GLτt,t+h. Save these simulation-specific risk

estimates.

6. If s < S, increase s = s + 1 and return to step 2. If s = S, compute final time-t downside

risk measures as averages across simulation runs.
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C Data details

C.1 CISS: construction details and data sources

The Composite Indicator of Systemic Stress (CISS) belongs to the family of financial stress indices

(FSIs). FSIs are generally designed to quantify the level of stress in the whole or parts of the

financial system. They do this by aggregating a certain number of individual stress indicators into

a single statistic; see Illing and Liu (2006) and Kliesen et al. (2012) for surveys. The individual

components capture market- and instrument-specific stress symptoms, such as increased market

volatility, default risk premia, or liquidity risk premia.

The distinctive feature of the CISS is its focus on the systemic dimension of financial stress.

Systemic stress is interpreted as an ex post measure of systemic risk, i.e. a measure of the degree to

which systemic risk materialised. It builds on standard definitions of systemic risk characterising

it as the risk that financial instability becomes so widespread that it severely disrupts the provi-

sion of financial services to the broader economy with significant adverse effects on growth and

employment; see e.g. de Bandt and Hartmann (2000) and Freixas et al. (2015, p. 13). The CISS op-

erationalises the idea of systemic stress by aggregating market-specific subindexes of stress based

on time-varying correlations between them in the same way portfolio risk (variance) is computed

from the risk profiles of individual assets (variances and covariances). In this way the CISS puts

more weight on situations in which stress prevails in several market segments at the same time.

This is consistent with the idea that stress becomes systemic when it is correlated and widespread.

Table C.1 provides a description of all CISS components.

The CISS is computed as follows. First, 15 stress indicators are selected from five major seg-

ments of the financial system. The five market segments are i) the financial intermediaries sector,

ii) money markets, iii) bond markets, iv) equity markets (only nonfinancial stocks), and v) foreign

exchange markets. Taken together, these segments cover the main financial flows from lenders

to ultimate borrowers. The financial funds are allocated either directly via securities markets, or

indirectly through financial intermediaries.
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Second, all indicators are transformed by applying a probability integral transform (PIT) based

on their empirical cumulative distribution function. For this purpose, the T observations of an in-

dicator xt = (x1, x2, ..., xT ) are first ranked in ascending order, i.e. x[1] ≤ x[2] ≤ ... ≤ x[T ], where

x[1] represents the sample minimum and x[T ] the maximum. The transformed indicators zt result

from replacing each original observation xt with its respective empirical cumulative distribution

function value F (xt). That value can be computed as the ranking number r of observations not

exceeding a particular value xt, divided by the total number of observations T .

zt = F (xt) :=


r
T

for x[r] ≤ xt < x[r+1], r = 1, 2, ..., T − 1

1 for xt ≥ xT .
(C.1)

The transformation results in indicators which are unit-free and unconditionally uniformly dis-

tributed over the unit interval. The transformed indicators are thus homogenous in terms of scale

and distribution. The PIT also robustifies the composite indicator to outliers. This is an important

property since the CISS is computed recursively over an expanding data window from January

2002 onwards. For each market segment i = 1, 2, . . . , 5, we compute a stress subindex sit from

j = 1, 2, 3 transformed components zijt as a simple arithmetic average: sit = 1
3

∑3
j=1 zijt.

Finally, the last aggregation step requires an estimate of time-varying cross-correlations be-

tween the sit. We estimate the variance-covariance matrix Ht of the 5-dimensional vector of

demeaned subindexes s̃t = (st − 0.5) as an exponentially-weighted moving average (EWMA),

according to which

Ht = λHt−1 + (1− λ)s̃ts̃
′
t, (C.2)

with a smoothing parameter fixed at λ = 0.93. This is a common choice for daily or weekly data;

see Engle (2002). The elements ωijt of correlation matrix Ωt are computed from the elements hijt

of Ht as ωijt = hijt/
√
hiithjjt. The CISS is now computed as

CISSt = (w · zt)′Ωt(w · zt), (C.3)

5



where 0 < CISSt ≤ 1 by construction. The vector of market segment weights w is given in the

last column of Table C.1 and is chosen to be approximately in line with euro area national accounts

and preliminary data analysis; see Hollo et al. (2012) for details.
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Table C.1: Components of the CISS
A listing of variables and transformations used in the computation of the CISS. Volatility is computed as a weekly
average of absolute daily log return or interest rate changes. CMAX computed based on end-of-week values. All other
series are computed as weekly averages of daily data. Data start in January 1980 or when becoming available. Data
sources are Thomson Financial Datastream, ECB, and own calculations. Weekly updates of the CISS are available
from the ECB’s Statistical Data Warehouse. The SDW key is CISS.D.U2.Z0Z.4F.EC.SS CI.IDX.

Sector and variables weight
A. Money markets 0.15
A.1 Volatility of 3-month Euribor.
A.2 Spread between 3-month Euribor and French Treasury bill rate.
A.3 Monetary Financial Institutions’ recourse to the ECB’s marginal lending facility

divided by total reserve requirements.

B Bond markets 0.15
B.1 Volatility of German 10-year benchmark government bond prices.
B.2 7-year yield spread between A-rated nonfinancial corporate and government bonds.
B.3 10-year interest rate swap spread.

C. Equity markets 0.25
C.1 Volatility of non-financial stock price index.
C.2 Maximum cumulated loss (CMAX) of non-financial stock price index

over a moving 2-year window; CMAXt = 1− xt/max[xi ∈ (xt−j |j = 0, 1, . . . , 104)].
C.3 Stock-bond return correlation between total market stock price index and German

10-year government bonds. Computed as difference between moving 4-week and 4-year
windows to account for trend changes. Negative differences are set to zero.

D. Financial intermediaries 0.30
D.1 Volatility of financial stock price index.
D.2 Geometric average of the CDF-transformed CMAX and the book-price ratio

associated with a financial stock price index.
D.3 7-year yield spread between A-rated financial and non-financial corporate bonds.

E. Foreign exchange markets 0.15
E.1 Volatility of euro exchange rate vis--vis US dollar.
E.2 Volatility of euro exchange rate vis--vis Japanese Yen.
E.3 Volatility of euro exchange rate vis--vis British pound.

7



C.2 Financial cycle indicator details

This subsection sketches the construction of Schüler et al. (2019)’s broad financial cycle indicator

for convenience. For details we refer to the original paper.

The indicator is constructed as follows. First, quarterly growth rates of total credit volume, real

estate prices, equity prices, and bond prices are obtained. Second, the four series are combined

using the CISS methodology as detailed in Section C.1. This approach ensures that the indicator

emphasizes times when all four sub-indicators take high values simultaneously. Third, the resulting

time series is smoothed by taking a weighted average over a rolling window covering the last six

quarters. The weights decline linearly, with the highest weight on the most recent observation.

The latter step serves to trade off reliability (fewer erratic movements) against timeliness (ability

to react to recent developments in a timely fashion). The indicator is shown to have out-of-sample

early warning properties viz-à-viz financially led downturns.

C.3 Variable selection: data list and transformations

Table C.2 reports all macro-financial variables used in our variable selection exercise in Section

4.1. We provide a description and the source. Non-stationary time series were detrended using

Hamilton (2018)’s regression filter.
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Table C.2: Variables list for the selection exercise
We report all variables used for our variable selection exercise in Section 4.1. We provide a description and the data source.

Variable Description Source
Total employment Euro area total employment, calendar and seasonally adjusted. Number of persons (Thousands) Euro area Wide model
Unemployment rate Euro area unemployment rate, share of civilian workforce, seasonally Adjusted (%) Euro area Wide model
Gross household savings rate Euro area gross household saving rate, calendar and seasonally adjusted. Euro area Wide model
10-year Government bond yield Euro area nominal Long-Term Interest Rate, Percent Per Annum Euro area Wide model
3-Month Euribor Euro area Nominal Short-Term Interest Rate, Last Trade Price, Percent Per Annum Euro area Wide model
Loans to HHs and Non-profit orgs Euro area Loans to Households and Non-Profit Organisations Serving Households, Current Prices, Market Value, Euro (Billions) Euro area Wide model
Loans to Non-Financial corporations Euro area Loans to Non-Financial Corporations, Current Prices, Market Value, Adjusted for Breaks, Euro (Billions) CEPREMAP
Capacity utilization rate Euro area Total Manufacturing Capacity Utilization Rate, Seasonally Adjusted, Monthly Average EA19 (%) DATASTREAM
House price index Euro area Residential Property Price Index, Real Value (2015=100) OECD
House price index - DPI ratio Euro area Residential Property Price Index-to-Per Capita Net Nominal Disposable Income Ratio (%) OECD
Standarised House price index-DPI ratio Euro area Standardised Residential Property Price Index-to-Per Capita Net Nominal Disposable Income Ratio (%) OECD
House price index, EA17 Euro area Residential Property Price Index, Real Value (2015=100). EA17 OECD
House price index-DPI ratio, EA17 Euro area Residential Property Price Index-to-Per Capita Net Nominal Disposable Income Ratio. EA17 (%) OECD
Standarised House price index-DPI ratio, EA17 Euro area Standardised Residential Property Price Index-to-Per Capita Net Nominal Disposable Income Ratio. EA17 (%) OECD
House price index - rent price index ratio, EA17 Euro area Residential Property Price Index-to-Rent Price Index Ratio. EA17 (%) OECD
Standarised house price index - rent price index ratio, EA17 Euro area Standardised Residential Property Price Index-to-Rent Price Index Ratio. EA17 (%) OECD
Systemic risk indicator (Median) Median of the sistemic risk indicator. EA19 ECB
Systemic risk indicator (Mean) Mean of the sistemic risk indicator. EA19 ECB
Broad financial cycle indicator Broad Financial Cycle Indicator Schueler, Hiebert and Peltonen (2019)
Narrow financial cycle indicator Narrow Financial Cycle Indicator Schueler, Hiebert and Peltonen (2019)
10-year US-Euro area interest rate spread 10-Year US Euro Area interest rate differential, Spread, End of Period, Percent per Annum ECB
EURO STOXX 50 price index EURO STOXX 50 Price Index, Monthly Average ECB
Current account balance EA Current Account Balance as a Share of GDP. EA19 (%) ECB
News-based economic policy uncertainty index European Economic Policy Uncertainty Index: News Index (Mean=100)
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D Additional results for euro area data

D.1 Robustness to adopting a restricted (linear) specification

We recompute Figure 5 based on a slope-restricted QVAR model and compare it to the original

version in qualitative terms.
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D.2 Robustness to extending the QVAR information set to five variables

This section considers an alternative five-variable QVAR model specification. The extended model

contains quarterly changes in the GDP deflator (inflation) and the three-month EURIBOR interest

rate as additional endogenous variables. The monetary policy rate is ordered last, as the central

bank sets it in a systematic, forward-looking way (that is, however, not modeled further). The

quarterly changes in the GDP deflator are ordered first, and thus does not react contemporaneously

to the other four variables.

Figure D.1 plots downside risk (average future growth shortfall) based on the extended five-

variable model. Our baseline AGS sstimates are provided as a point of comparison; see Figure 5.

Both model specifications yield broadly similar predictions in terms of downside risk. We therefore

proceed with the above more parsimonious trivariate model for simplicity.

Figure D.1: Average future growth shortfall estimates for euro area data
Growth shortfall estimates based on a five-variable QVAR including, in addition, quarterly changes in the log GDP
deflator (i.e., inflation) and the three-month EURIBOR interest rate as additional endogenous variables. Our baseline
growth shortfall estimates are provided as a point of comparison; see Figure 5. Shaded areas indicate CEPR recessions.
The estimation sample is 1988Q3 to 2018Q4.
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D.3 Robustness to changes in lag length

This section considers an alternative model specification with an extended lag structure. The alter-

native model retains the baseline three variables as endogenous variables, but allows for an addi-

tional lag at the fourth quarter (q = 1, 4). Figure D.2 is analogous to Figure 5. Information criteria

prefer the more parsimonious version. Average future growth shortfall responds more quickly, and

more severely, to contemporaneous financial stress when based on a single-lag specification.

Figure D.2: Average future growth shortfall estimates for euro area data
Growth shortfall estimates based on a three-variable QVAR with an extended lag structure (q = 1, 4). Our baseline
growth shortfall estimates are provided as a point of comparison; see Figure 5. Shaded areas indicate CEPR recessions.
The estimation sample is 1988Q3 to 2018Q4.
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D.4 Parameter estimates from a restricted sample

Figure 3 reports our baseline QVAR parameter estimates when the estimation sample is restricted

to exclude counterfactual pre-1999 euro area data. The point estimates are more noisy but overall

similar. The standard error bands are wider, suggesting less precise parameter estimates.
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Figure D.3: Parameter estimates for 1999Q1 – 2018Q4 restricted sample
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Estimation sample is
1999Q1 to 2018Q4. Variables are ordered GDP growth (respective first row), financial cycle (second row), and CISS
(third row). Parameter estimates are obtained equation-by-equation while standard error estimates take cross-equation
restrictions into account; see Web Appendix B.1. Standard error bands are dashed and at a 95% confidence level. Red
horizontal lines indicate least squares estimates.
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D.5 Tail conditional expectation and contraction probability

Time-t average future growth shortfall AGSτt,t+1:t+8, and average future growth longrise AGLτt,t+1:t+8

consist of two factors: a tail conditional expectation term, and the probability of a contraction; see

(2) and (4). The top and bottom panel of Figure D.4 plot the first and second factor over time,

respectively. Most of the variability in AGSτt,t+1:t+8 comes from the first term, with an additional

contribution of the second term in bad times.
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Figure D.4: Euro area AGS and AGL components
Top panel: average future conditional tail expectation; see first factor in (2) and (4). Bottom panel: average future
contraction probability; see second factor in (2) and (4). Each estimate is based on p = 20 quantiles ranging from
0.025 to 0.975. The threshold τ is set to zero; see Figure 5. We compare these estimates to quarterly annualized real
GDP growth (solid line, left scale). Shaded areas indicate euro area recessions as determined by the CEPR business
cycle dating committee. The estimation sample is 1988Q3 to 2018Q4.
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E Selected results for U.S. data

E.1 U.S. data

The left panel of Figure E.1 reports U.S. quarterly annualized real GDP growth along with the

CISS between 1973Q1 and 2018Q4. Shaded areas indicate recession periods according to the

NBER business cycle dating committee. High values of the CISS are clearly associated with

negative realizations of real GDP growth.

The right panel of Figure E.1 plots Schüler et al. (2019)’s broad financial cycle indicator for

the U.S. Their indicator took high values in the years leading up to the U.S. savings and loan crisis

during 1982 and 1984, during the dot-com boom years between 1997 and 2000, and during the

“conundrum” period between 2003 and 2006 preceding the financial crisis.

Figure E.1: U.S. real GDP growth rate, CISS, and financial cycle indicator
The GDP growth rate is annualized. Shaded areas indicate NBER recession periods. CISS and FCY vary between 0
and 1 by construction.
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E.2 Variable selection results

This section reports the results from a variable selection exercise for U.S. data. The setup of

the exercise is analogous to the one presented in Section 4.1. We study which variable is most

appropriate to be added to a baseline bivariate QVAR containing real GDP growth and U.S. CISS.

Figure E.2 presents our variable selection results. Remarkably, the highly-ranked variables are

relatively similar. The broad financial cycle estimate of Schüler et al. (2019) is found to interact

closely with U.S. real GDP growth, as well as the U.S. version of the CISS. Short-term and long-

term interest rates (implicitly, the term spread) appear to matter as well. The NFCI favored by

Adrian et al. (2020) is ranked highly because it is closely related to the U.S.-version of the CISS.

18



Figure E.2: Variable selection for U.S. data
Variables are ranked according to their average check function value in a three-variable Q-VAR. Real quarterly GDP
growth (ordered first) and the U.S. CISS (ordered last) remain fixed inputs in the three-variable system. The middle
variable is looped over. Check function variables are evaluated at quantiles from 0.1 to 0.9 (decile-by-decile) for the
GDP growth and CISS equation only. Estimation sample is 1976Q2 to 2018Q4. Non-stationary time series were
de-trended using Hamilton (2018)’s regression filter (q = 8, h = 2) and are marked with a star.
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E.3 Parameter estimates

Figure E.3 reports parameter and standard error estimates for our favorite trivariate specification

based on U.S. data. The arrangement of panels in Figure E.3 corresponds to the ordering of vari-

ables in (6).
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Figure E.3: Parameter estimates for baseline QVAR model
Parameter estimates from a trivariate QVAR model estimated for p = 9 quantiles from 0.1 to 0.9. Parameter estimates
are obtained equation by equation while standard error estimates take cross-equation restrictions into account; see Web
Appendix A.1. SE banks are at a 95% confidence level. Estimation sample is 1976Q2 to 2018Q4.
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E.4 Wald test and quantile impulse response functions

Table E.1 reports the outcome of three Wald tests of parameter homogeneity across quantiles. We

implement the Wald χ2 test as explained in Koenker (2005, Ch. 3.3.2); see also Koenker and Basset

(1982). The Wald test strongly rejects the pooling (parameter homogeneity) restrictions implied by

a linear specification for the GDP growth and CISS equation for U.S. data. The pooling restrictions

are not rejected for the financial cycle equation. The test outcomes are intuitive given the parameter

and standard error estimates reported in Figure E.3.

Table E.1: Wald test for slope homogeneity.
Wald tests statistics. We consider our baseline trivariate QVAR model, estimated decile-by-decile ranging from 0.1
to 0.9; see Figure E.3. The null hypothesis states that the parameter estimates across the p = 9 quantiles are equal
to the median estimates. The test statistic is χ2-distributed. The test statistic’s degrees-of-freedom (df) is given by
the number of right-hand-side variables per equation (excluding the constant, i.e. 3, 4, and 5, respectively) times the
number of imposed restrictions (9− 1 = 8).

df test statistic p-value
real U.S. GDP growth yt 24 66.38 0.00
U.S. financial cycle indicator ct 32 39.25 0.18
U.S. CISS financial stress index st 40 152.87 0.00
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Figure E.4: Quantile impulse response functions
Impulse response functions implied by the parameter estimates reported in Figure E.3. Variables are ordered as GDP
growth (respective first row), U.S. financial cycle (second row), and U.S. CISS (third row). Estimation sample is
1973Q1 to 2018Q4.
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E.5 Growth shortfall estimates

Figure E.5 plots our estimates for average future growth shortfall (AGS) and longrise (AGL) based

on U.S. data. Each estimate is based on full-sample estimates, but is otherwise conditional on

variables observed up time t, covering the next two years t+ 1, . . . , t+ 8.

The main findings are identical to the ones based on euro area data. There is a pronounced

difference between the AGS estimate implied by a univariate QR autoregressive model and the

baseline trivariate QVAR. The latter takes financial conditions into account, while the former does

not.

Time-t average future growth shortfall (AGSτt,t+1:t+8) and average future growth longrise (AGLτt,t+1:t+8),

evaluated at τ = 0 and as reported in Figure E.5, consist of two factors: a tail conditional expecta-

tion term, and the probability of a contraction; see (2) and (4). The top and bottom panel of Figure

E.6 plot the first and second factor over time, respectively. Most of the variability in AGSτt,t+1:t+8

Figure E.5: Growth shortfall estimates for US data
Growth shortfall estimates based on a three-variable Q-VAR. We estimated a different set of parameters for quantiles
ranging from 0.1 to 0.9 (decile-by-decile). Shaded areas indicate NBER recessions. The estimation sample is 1973Q1
to 2018Q4.
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comes from the first term, with an additional contribution of the second term in bad times.
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Figure E.6: US AGS and AGL components
Top panel: average future conditional tail expectation; see first factor in (2) and (4). Bottom panel: average future
contraction probability; see second factor in (2) and (4). Each estimate is based on p = 20 quantiles ranging from
0.025 to 0.975. We compare these estimates to quarterly annualized real GDP growth (solid line, left scale). Shaded
areas indicate US recessions as determined by the CEPR business cycle dating committee. The estimation sample is
1973Q1 to 2018Q4.
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E.6 Model-based stress testing

Figure E.7 reports the time-t conditional forecast of average future real GDP growth ¯̂yt,t+1:t+8

between time t and t + 8 as implied by our trivariate model. The forecast is conditional on a 0.1

(conditional) quantile realization for GDP growth yt+h, a 0.1 quantile realization of the financial

cycle ct+h, and a 0.8 quantile realization for CISS st+h, consecutively for h = 1, . . . , 8. The

magnitude of these shocks is approximately in line with the eight observed quantile realizations

for all variables between 2008Q1 and 2009Q4. The stress test is repeated at each t = 1, . . . , T , and

always based on the same (full sample) parameter estimates. As a result, the figure is informative

about the impact of GFC-sized real and financial shocks on real living standards at any time in our

sample.

27



Figure E.7: Vulnerability to GFC-sized shocks
Dashed line: U.S. annualized quarterly real GDP growth. Solid line: predicted average annualized quarterly real GDP
growth ¯̂yt,t+1:t+8 two years ahead conditional on consecutive 0.1 quantile realizations for GDP growth yt, 0.1 quantile
realizations of the financial cycle ct, and 0.8 quantile realizations for CISS st. Predictions are based on full sample
parameter estimates. Estimations sample 1973Q1 – 2018Q4. Horizontal lines refer to 0.1, 0.5, and 0.9 empirical
quantiles of ¯̂yt,t+1:t+8. The vertical line indicates the Lehman Brothers bankruptcy in 2008Q3.
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E.7 The benefits from active policy

The top left, top right, and bottom left panels in Figure E.8 compare real-world U.S. data with

counterfactual model-based outcomes for real GDP growth, financial cycle, and financial stress.

The final panel presents Kernel estimates of the distribution of real GDP growth in either case. Ex-

pected growth is higher in the counterfactual scenario. In addition, economic growth is more stable

(less volatile around its mean) and less skewed to the downside in the counterfactual scenario.

Table E.2 reports descriptive statistics for the real-world GDP growth sample (left column) and

its counterfactual counterpart (right column). Extremely negative and extremely positive realiza-

tions for GDP growth disappear from the counterfactual sample. Both mean and median are higher

in the counterfactual sample.

Figure E.9 plots the utility difference ∆ut = ut (active)−ut (passive) associated with adopting

an active macro-prudential policy.
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Table E.2: Comparison actual vs. counterfactual US growth rates
Left column: actual quarterly annualized real GDP growth for the US. Right column: counterfactual data assuming
that a policy maker could reset the financial cycle to its median conditional value at any time. Estimation sample is
1973Q1 to 2018Q4.

Real Counterfactual
GDP growth GDP growth

Moments
Mean 2.649 2.868
Std. Dev. 3.079 2.274
Variance 9.478 5.172
Skewness -.369 -.041
Kurtosis 5.761 2.719

Percentiles
1% -8.242 -2.159
5% -2.964 -1.169
10% -1.131 -.012
50% 2.935 2.782
90% 6.463 5.961
95% 7.325 6.695
99% 9.102 7.640

Smallest values
1st -8.655 -2.939
2nd -8.242 -2.159
3rd -6.214 -2.157
4th -4.869 -1.947

Largest values
4th 8.345 7.462
3rd 8.995 7.624
2nd 9.102 7.640
1st 15.457 8.006
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Figure E.8: Leaning against the U.S. financial cycle
Top left panel: actual quarterly annualized real GDP growth for the U.S., and counterfactual data assuming that a policy
maker could reset the financial cycle to its conditional median at any time. Top right panel: actual and counterfactual
values for the financial cycle. Bottom left panel: actual and counterfactual values for financial stress. Bottom right
panel: Kernel estimate over a histogram of actual and counterfactual real GDP growth.
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Figure E.9: The positive benefits from macro-prudential policy
The benefit of adopting a less passive macro-prudential policy stance in utility terms, ∆ut = ut (less passive) −
ut (passive); see (19). Parameters are chosen as β = 1, λ = 1.25, τ = 0, and H = 12. The difference is based on full
sample estimates. Estimation sample is 1973Q1 to 2018Q4. Shaded areas indicate U.S. recessions.
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