Designing Stress Scenarios

Cecilia Parlatore and Thomas Philippon

NYU Stern and NBER

Stress Testing Conference

October 8, 2020

Question What is the optimal stress test design?

Stress tests are used in liquidity/risk management and financial supervision

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- Literature focuses on disclosure of results
- ▶ No guidance on how to design the forward-looking scenarios

- Stress tests are used in liquidity/risk management and financial supervision
- Three components

- Literature focuses on disclosure of results
- ▶ No guidance on how to design the forward-looking scenarios
- ► This paper: Optimal scenario design

What are stress tests used for?

What are stress tests used for?

This paper: model stress tests as a learning mechanism

Learn to manage risk and take a remedial action

- Informational content of stress test depends on stress scenarios
- Endogenous information processing constraint

- Informational content of stress test depends on stress scenarios
- Endogenous information processing constraint
- 2. Specialization vs. diversification in learning
 - Stress few factors vs. many factors
 - Depends on the cost of the ex-post remedial action and priors

- Informational content of stress test depends on stress scenarios
- Endogenous information processing constraint
- 2. Specialization vs. diversification in learning
 - Stress few factors vs. many factors
 - Depends on the cost of the ex-post remedial action and priors
- 3. How much to stress each factor depends on
 - cost of remedial action, beliefs about exposures, how systemic the factor is

Environment

- J macroeconomic factors, $s = [s_1, ..., s_J]$
- \blacktriangleright N banks, $i = 1, \ldots, N$
 - Losses of bank i given s

$$y_i = x_i \cdot s + \eta_i,$$

where x_i is the vector of exposures and η_i is idiosyncratic risk

Environment

- J macroeconomic factors, $s = [s_1, ..., s_J]$
- N banks, $i = 1, \ldots, N$
 - Losses of bank i given s

$$y_i = x_i \cdot s + \eta_i,$$

where x_i is the vector of exposures and η_i is idiosyncratic risk

One regulator with preferences over aggregate wealth

$$W = \overline{\omega} - \sum_i y_i$$

▶ Remedial action $a_{i,j}$ to reduce *i*'s exposure to factor s_j at a convex cost c_j $(a_{i,j})$

Environment

- J macroeconomic factors, $s = [s_1, ..., s_J]$
- N banks, $i = 1, \ldots, N$
 - Losses of bank i given s

$$y_i = x_i \cdot s + \eta_i,$$

where x_i is the vector of exposures and η_i is idiosyncratic risk

One regulator with preferences over aggregate wealth

$$W = \overline{\omega} - \sum_i y_i$$

• Remedial action $a_{i,i}$ to reduce i's exposure to factor s_i at a convex cost $c_i(a_{i,j})$

• The regulator does not know the exposures $\{x_i\}_i$ and can learn from stress tests

A stress test is

1. a set of
$$M$$
 scenarios $\hat{S} = \left[\hat{s}^{(1)\prime},...,\hat{s}^{(M)\prime}\right]'$

2. reported losses
$$\hat{y}\equiv\left\{\hat{y}_{i}^{(m)}
ight\}_{i}$$
 for each scenario m for each bank i

A stress test is

1. a set of M scenarios $\hat{S} = \left[\hat{s}^{(1)\prime}, ..., \hat{s}^{(M)\prime}\right]'$ $\triangleright \hat{s}^{(m)}$ is a realization of the risk factors s (e.g. $\pi = 2\%$, u = 10%, R = -20%) 2. reported losses $\hat{y} \equiv \left\{\hat{y}_i^{(m)}\right\}_i$ for each scenario m for each bank i

A stress test is

 a set of M scenarios Ŝ = [ŝ⁽¹⁾,...,ŝ^(M)]'

 ŝ^(m) is a realization of the risk factors s (e.g. π = 2%, u = 10%, R = -20%)
 reported losses ŷ ≡ {ŷ_i^(m)}_i for each scenario m for each bank i
 ŷ_i^(m) = ŝ^(m) · x'_i + α_i (M) ε⁰_i + σ_{ε,i} (ŝ^(m)) · ε_i,

where ε_i^0 and ε_i are normally distributed

A stress test is

a set of M scenarios \$\hfrac{S} = [\hfrac{S}^{(1)'}, ..., \hfrac{S}^{(M)'}]'\$
 \$\hfrac{S}^{(m)}\$ is a realization of the risk factors \$s\$ (e.g. \$\pi = 2\%, \$u = 10\%, \$R = -20\%)\$
 reported losses \$\hfrac{y}{i} \equiv \biggle \biggle \hfrac{y}_i^{(m)}\biggree_i\$ for each scenario \$m\$ for each bank \$i\$
 \$\hfrac{y}_i^{(m)} = \hfrac{S}^{(m)} \cdot x'_i + \alpha_i (M) \varepsilon_i^0 + \sigma_{\varepsilon,i} \biggree_i\$,"

where ε_i^0 and ε_i are normally distributed

 \blacktriangleright Reported losses are noisy signals about exposures that depend on \hat{S}

- Weight on exposures is determined by \hat{s}
- Harder to predict losses under more extreme scenarios: $\sigma_{\varepsilon,i}$ increasing in $\|\hat{s}^{(m)}\|$
- Costly to have more scenarios. Today: Fixed M = 1

Learning and risk management

Learning and risk management

Learning and risk management

Stress test results (signals)

$$\begin{split} \hat{y}_{1}^{(1)} &= \hat{s}^{(1)} \cdot x_{1}' + e_{1}^{(1)} \\ &\vdots \\ \hat{y}_{N}^{(1)} &= \hat{s}^{(1)} \cdot x_{N}' + e_{N}^{(1)} \\ &\vdots \\ \hat{y}_{1}^{(M)} &= \hat{s}^{(M)} \cdot x_{1}' + e_{1}^{(M)} \\ &\vdots \\ \hat{y}_{N}^{(M)} &= \hat{s}^{(M)} \cdot x_{N}' + e_{N}^{(M)} \end{split}$$

 $N \times M$ signals

Stress test results (signals)

$$\mathbf{\hat{y}} = \left(\mathbf{I}_N \otimes \mathbf{\hat{S}}\right) \mathbf{x} + \mathbf{e}$$
,

where $\mathbf{e} \sim N\left(0, \mathbf{\Sigma}_{\mathbf{e}}\left(\hat{S}
ight)
ight)$ is the vector of errors

Stress test results (signals)

$$\hat{\mathbf{y}} = \left(\mathbf{I}_N \otimes \hat{S}\right) \mathbf{x} + \mathbf{e}$$
,

where $\mathbf{e} \sim N\left(0, \mathbf{\Sigma}_{\mathbf{e}}\left(\hat{S}
ight)
ight)$ is the vector of errors

Applying the Kalman filter, the regulator's posterior is

$$\mathbf{x} \mid \hat{\mathbf{y}} \sim N\left(\bar{\mathbf{x}} + K\left(\hat{S}
ight) \left(\hat{\mathbf{y}} - \bar{\mathbf{x}}
ight)$$
 , $\hat{\Sigma}_{\mathbf{x}}\left(\hat{S}
ight)
ight)$

where

$$K(\hat{S}) = \Sigma_{\mathbf{x}} \left(\mathbf{I}_{N} \otimes \hat{S} \right)' \left(\left(\mathbf{I}_{N} \otimes \hat{S} \right) \Sigma_{\mathbf{x}} \left(\mathbf{I}_{N} \otimes \hat{S} \right)' + \Sigma_{\mathbf{e}} \left(\hat{S} \right) \right)^{-1} \\ \hat{\Sigma}_{\mathbf{x}} \left(\hat{S} \right) = \left(\mathbf{I}_{NJ} - K\left(\hat{S} \right) \left(\mathbf{I}_{N} \otimes \hat{S} \right) \right) \Sigma_{\mathbf{x}}$$

Stress test results (signals)

$$\hat{\mathbf{y}} = \left(\mathbf{I}_N \otimes \hat{S}
ight) \mathbf{x} + \mathbf{e}$$
,

where $\mathbf{e} \sim N\left(0, \mathbf{\Sigma}_{\mathbf{e}}\left(\hat{S}
ight)
ight)$ is the vector of errors

Applying the Kalman filter, the regulator's posterior is

Stress test results (signals)

$$\hat{\mathbf{y}} = \left(\mathbf{I}_N \otimes \hat{S}
ight) \mathbf{x} + \mathbf{e}$$
,

where $\mathbf{e} \sim N\left(0, \mathbf{\Sigma}_{\mathbf{e}}\left(\hat{S}
ight)
ight)$ is the vector of errors

Applying the Kalman filter, the regulator's posterior is

- ► A scenario choice maps to a posterior precision
 - \Rightarrow Endogenous feasibility set for posterior precisions (depends only on priors)

- A scenario choice maps to a posterior precision
 - \Rightarrow Endogenous feasibility set for posterior precisions (depends only on priors)
- Example: Two factors, one bank

Prior correlation in exposures $\Sigma_{x,12} = 0$

- A scenario choice maps to a posterior precision
 - \Rightarrow Endogenous feasibility set for posterior precisions (depends only on priors)
- Example: Two factors, one bank

Prior correlation in exposures $\Sigma_{x,12} = 0.5$

- ► A scenario choice maps to a posterior precision
 - \Rightarrow Endogenous feasibility set for posterior precisions (depends only on priors)
- Example: Two factors, one bank

Prior correlation in exposures $\Sigma_{x,12} = 0.8$

Regulator's problem

$$\max_{\hat{\Sigma}_{\mathbf{x}}\in\Sigma}\mathbb{E}\left[\mathbb{E}\left[\left.\mathbb{E}\left[\left.U\left(W\left(\left\{a_{i,j}^{\star}\left(\hat{\mathbf{x}},\hat{\Sigma}_{\mathbf{x}}\right)\right\}_{i,j}\right)\right)-\sum_{i,j}c_{j}\left(a_{i,j}^{\star}\left(\hat{\mathbf{x}},\hat{\Sigma}_{\mathbf{x}}\right)\right)\right|\hat{\mathbf{x}},\hat{\Sigma}_{\mathbf{x}}\right]\right]\right]$$

where Σ is *endogenous:* outcome of Kalman filter

Regulator's problem

$$\max_{\hat{\Sigma}_{\mathbf{x}} \in \mathbf{\Sigma}} \mathbb{E}\left[\mathbb{E}\left[\left.U\left(W\left(\left\{a_{i,j}^{\star}\left(\hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right)\right\}_{i,j}\right)\right) - \sum_{i,j} c_{j}\left(a_{i,j}^{\star}\left(\hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right)\right)\right| \hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right]\right]$$

where Σ is *endogenous:* outcome of Kalman filter

- Two ways to reduce risk: learning (ex-ante) vs. intervening (ex-post)
 - \blacktriangleright Increasing returns to learning: More learning \leftrightarrow intervention responds more to \hat{y}
 - Decreasing returns to intervening: Convex intervention costs

Regulator's problem

$$\max_{\hat{\Sigma}_{\mathbf{x}} \in \mathbf{\Sigma}} \mathbb{E}\left[\mathbb{E}\left[\left.U\left(W\left(\left\{a_{i,j}^{\star}\left(\hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right)\right\}_{i,j}\right)\right) - \sum_{i,j} c_{j}\left(a_{i,j}^{\star}\left(\hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right)\right)\right| \hat{\mathbf{x}}, \hat{\Sigma}_{\mathbf{x}}\right]\right]$$

where Σ is *endogenous:* outcome of Kalman filter

- Two ways to reduce risk: learning (ex-ante) vs. intervening (ex-post)
 - lacksim Increasing returns to learning: More learning \leftrightarrow intervention responds more to \hat{y}
 - Decreasing returns to intervening: Convex intervention costs
- Optimal learning policy
 - ► Specialization if increasing returns > convexity in costs ⇒ stress few factors
 - Diversification if increasing returns < convexity in costs \Rightarrow stress many factors

Optimal Scenario

- Example: Mean variance preferences + quadratic costs + one scenario
 The weight of a factor in the optimal scenario
 - ▶ is non-monotone with respect to its ex-post intervention cost
 - is non-monotone with respect to its expected mean
 - increases with its prior uncertainty
 - increases with the correlation with exposures within the bank
 - increases with the correlation with exposures across banks (systemic factors)

Intervention costs

• One representative bank N = 1, two risk factors J = 2

Higher expected exposure to a risk factor

• One representative bank N = 1, two risk factors J = 2

Systemic factors

• Two banks N = 2, two factors J = 2

Summary

- Scalable and implementable framework to design stress scenarios
 - Inputs: Regulator's beliefs and preferences
 - Extensions: non-separable intervention costs, other preferences
- ► Going forward:
 - > Dynamic stress testing: multiple rounds of learning through stress tests
 - Strategic exposures: Endogeneize bank exposures (moral hazard, time inconsistency)